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APPLICATION OF A BERNSTEIN TYPE INEQUALITY TO RATIONAL INTERPOLATION IN THE DIRICHLET SPACE

We prove a Bernstein-type inequality involving the Bergman and the Hardy norms, for rational functions in the unit disc D having at most n poles all outside of 1 r D, 0 < r < 1. The asymptotic sharpness of this inequality is shown as n → ∞ and r → 1 -. We apply our Bernsteintype inequality to an effective Nevanlinna-Pick interpolation problem in the standard Dirichlet space, constrained by the H 2 -norm.

Introduction

a. Statement of the problems. Let D = {z ∈ C : |z| < 1} be the unit disc of the complex plane and let Hol (D) be the space of holomorphic functions on D. Let also X and Y be two Banach spaces of holomorphic functions on the unit disc D, X, Y ⊂ Hol (D) . Here and later on, H ∞ stands for the space (algebra) of bounded holomorphic functions in the unit disc D endowed with the norm f ∞ = sup z∈D |f (z)| . We suppose that n ≥ 1 is an integer, r ∈ [0, 1) and we consider the two following problems.

Problem 1. Let P n be the complex space of analytic polynomials of degree less or equal than n, and R n, r = p q : q ∈ P n , d • p < d • q, q(ζ) = 0 =⇒ |ζ| ≥ 1 r ,

(where d • p means the degree of any p ∈ P n ) be the set of all rational functions in D of degree less or equal than n ≥ 1, having at most n poles all outside of 1 r D. Notice that for r = 0, we get R n, 0 = P n-1 . Our first problem is to search for the "best possible" constant C n, r (X, Y ) such that

f ′ X ≤ C n, r (X, Y ) f Y for all f ∈ R n, r .
Problem 2. Let σ = {λ 1 , ..., λ n } be a finite subset of D. What is the best possible interpolation by functions of the space Y for the traces f |σ of functions of the space X, in the worst case?

The case X ⊂ Y is of no interest, and so one can suppose that either Y ⊂ X or X and Y are incomparable. More precisely, our second problem is to compute or estimate the following interpolation constant

I (σ, X, Y ) = sup f ∈X, f X ≤1 inf g Y : g |σ = f |σ .
We also define I n, r (X, Y ) = sup {I(σ, X, Y ) : card σ ≤ n , |λ| ≤ r, ∀λ ∈ σ} .

b. Motivations. Problem 1. Bernstein-type inequalities for rational functions are applied 1.1. in matrix analysis and in operator theory (see "Kreiss Matrix Theorem" [LeTr, Sp] or [Z1, Z4] for resolvent estimates of power bounded matrices), 1.2. to "inverse theorems of rational approximation" using the classical Bernstein decomposition (see [Da, Pel, Pek]), 1.3. to effective H ∞ interpolation problems (see [Z3] and our Theorem B below in Subsection d), and more generally to our Problem 1.

Problem 2. We can give three main motivations for Problem 2.

2.1. It is explained in [Z3] (the case Y = H ∞ ) why the classical interpolation problems, those of Nevanlinna-Pick (1908) and Carathéodory-Schur (1916) (see [N2] p.231 for these two problems), on the one hand and Carleson's free interpolation problem (1958) (see [N1] p.158) on the other hand, are of the nature of our interpolation problem.

2.2. It is also explained in [Z3] why this constrained interpolation is motivated by some applications in matrix analysis and in operator theory.

2.3. It has already been proved in [Z3] that for X = H 2 (see Subsection c. for the definition of

H 2 ) and Y = H ∞ , (1) 1 4 √ 2 √ n √ 1 -r ≤ I n, r H 2 , H ∞ ≤ √ 2 √ n √ 1 -r .
The above estimate (1) answers a question of L. Baratchart (private communication), which is part of a more complicated question arising in an applied situation in [START_REF] Baratchart | Rational and meromorphic approximation in Lp of the circle : systemtheoretic motivations, critical points and error rates[END_REF] and [START_REF] Baratchart | Rational approximation problem in the real Hardy space H 2 and Stieltjes integrals : a uniqueness theorem[END_REF]: given a set σ ⊂ D, how to estimate I (σ, H 2 , H ∞ ) in terms of n = card(σ) and max λ∈σ |λ| = r only?

c. The spaces X and Y considered here. Now let us define some Banach spaces X and Y of holomorphic functions in D which we will consider throughout this paper. From now on, if f ∈ Hol(D) and k ∈ N, f (k) stands for the k th Taylor coefficient of f.

1. The standard Hardy space H 2 = H 2 (D),

H 2 = f ∈ Hol (D) : f 2 H 2 = sup 0≤r<1 ˆT |f (rz)| 2 dm(z) < ∞ ,
where m stands for the normalized Lebesgue measure on T = {z ∈ C : |z| = 1}. An equivalent description of the space H 2 is

H 2 =    f = k≥0 f (k)z k : f H 2 = k≥0 f (k) 2 1 2 < ∞    . 2. The standard Bergman space L 2 a = L 2 a (D) , L 2 a = f ∈ Hol (D) : f 2 L 2 a = 1 π ˆD |f (z)| 2 dA(z) < ∞ ,
where A is the standard area measure, also defined by

L 2 a =    f = k≥0 f (k)z k : f L 2 a = k≥0 f (k) 2 1 k + 1 1 2 < ∞    .
3. The analytic Besov space B 1 2

2, 2 (also known as the standard Dirichlet space) defined by

B 1 2 2, 2 =    f = k≥0 f (k)z k : f B 1 2 2, 2 = k≥0 (k + 1) f (k) 2 1 2 < ∞    . Then if f ∈ B 1 2
2, 2 , we have the following equality

(2)

f 2 B 1 2 2, 2 = f ′ 2 L 2 a + f 2 H 2 ,
which establishes a link between the spaces B 1 2

2, 2 and L 2 a .

d. The results. Here and later on, the letter c denotes a positive constant that may change from one step to the next. For two positive functions a and b, we say that a is dominated by b, denoted by a = O(b), if there is a constant c > 0 such that a ≤ cb; and we say that a and b are comparable, denoted by a ≍ b, if both a = O(b) and b = O(a) hold. Problem 1. Our first result (Theorem A, below) is a partial case (p = q = 2, s = 1 2 ) of the following K. Dyakonov's result [Dy]

: if p ∈ [1, ∞), s ∈ (0, +∞), q ∈ [1, +∞], then there exists a constant c p, s > 0 such that (3) C n, r B s-1 p, p , H q ≤ c p, s sup B ′ s H γ ,
where γ is such that s γ + 1 q = 1 p , and the supremum is taken over all finite Blaschke products B of order n with n zeros outside of 1 r D. Here B s p, p stands for the Hardy-Besov space which consists of analytic functions f on D satisfying

f B s p, p = n-1 k=0 f (k) (0) + ˆD (1 -|w|) (n-s)p-1 f (n) (w) p dA(w) < ∞.
For the (tiny) partial case considered here, our proof is different and the constant c 2, 1 2 is asymptotically sharp as r tends to 1 -and n tends to +∞. Theorem A. Let n ≥ 1 and r ∈ [0, 1). We have (i)

(4) a(n, r) n 1 -r ≤ C n, r L 2 a , H 2 ≤ A(n, r) n 1 -r , where a(n, r) ≥ 1 - 1 -r n 1 2 and A(n, r) ≤ 1 + r + 1 √ n 1 2 . (ii) Moreover, the sequence C n, r (L 2 a , H 2 ) √ n n≥1
is convergent and there exists a limit

(5) lim n→∞ C n, r (L 2 a , H 2 ) √ n = 1 + r 1 -r .
for all r ∈ [0, 1).

Notice that it has already been proved in [Z2] that there exists a limit

(6) lim n→∞ C n, r (H 2 , H 2 ) n = 1 + r 1 -r , for every r, 0 ≤ r < 1.
Problem 2. Looking at motivation 2.3, we replace the algebra H ∞ by the Dirichlet space B 1 2 2, 2 . We show that the "gap" between X = H 2 and Y = H ∞ (see ( 1)) is asymptotically the same as the one which exists between X = H 2 and Y = B 1 2 2, 2 . In other words, (7)

I n, r H 2 , B 1 2 2, 2 ≍ I n, r H 2 , H ∞ ≍ n 1 -r .
More precisely, we prove the following Theorem B, in which the right-hand side inequality of ( 10) is a consequence of the right-hand side inequality of (4) in the above Theorem A. Theorem B. Let n ≥ 1, and r ∈ [0, 1). Then,

(8) I n, r H 2 , B 1 2 2, 2 ≤ C n, r L 2 a , H 2 2 + 1 1 2 .
Let λ ∈ D and the corresponding one-point interpolation set σ n, λ = {λ, λ, ..., λ} n . We have,

(9) I σ n, λ , H 2 , B 1 2 2, 2 ≥ n 1 -|λ| (1 + |λ|) 2 -2 n -2|λ| n 2(1 + |λ|) 1 2
.

In particular,

(10) 1 + r 2 1 - 1 n 1 2 n 1 -r ≤ I n, r H 2 , B 1 2 2, 2 ≤ 1 + r + 1 √ n + 1 -r n 1 2 n 1 -r , (11) 
1+r 2

1 -r ≤ lim inf n→∞ I n, r H 2 , B 1 2 2, 2 √ n ≤ lim sup n→∞ I n, r H 2 , B 1 2 2, 2 √ n ≤ 1 + r 1 -r , and 
(12) √ 2 2 ≤ lim inf r→1 -lim inf n→∞ 1 -r n I n, r H 2 , B 1 2 2, 2 ≤ lim sup r→1 - lim sup n→∞ 1 -r n I n, r H 2 , B 1 2 2, 2 ≤ √ 2.
In the next Section, we first give some definitions introducing the main tools used in the proofs of Theorem A and Theorem B. After that, we prove these theorems.

Proofs of Theorems A and B

From now on, if σ = {λ 1 , ..., λ n } ⊂ D is a finite subset of the unit disc, then

B σ = n j=1 b λ j
is the corresponding finite Blaschke product where b λ = λ-z 1-λz , λ ∈ D. In Definitions 1, 2, 3 and in Remark 4 below, σ = {λ 1 , ..., λ n } is a sequence in the unit disc D and B σ is the corresponding Blaschke product. Definition 1. Malmquist family. For k ∈ [1, n], we set f k = 1 1-λ k z , and define the family (e k ) 1≤k≤n , (which is known as Malmquist basis, see [N1, p.117]), by ( 13)

e 1 = f 1 f 1 2 and e k = k-1 j=1 b λ j f k f k 2 , for k ∈ [2, n]; we have f k 2 = (1 -|λ k | 2 ) -1/2 .
Definition 2. The model space K Bσ . We define K Bσ to be the n-dimensional space:

(14)

K Bσ = B σ H 2 ⊥ = H 2 ⊖ B σ H 2 .
Definition 3. The orthogonal projection P Bσ on K Bσ . We define P Bσ to be the orthogonal projection of H 2 on its n-dimensional subspace K Bσ . Remark 4. The Malmquist family (e k ) 1≤k≤n corresponding to σ is an orthonormal basis of K Bσ .

In particular, (15)

P Bσ = n k=1 (•, e k ) H 2 e k ,
where (•, •) H 2 means the scalar product on H 2 . Proof of Theorem A.

Proof of (i). 1) We fist prove the the right-hand side inequality of (4). Using both Cauchy-Schwarz inequality and the fact that f ′ (k) = (k + 1) f (k + 1) for all k ≥ 0, we get

f ′ 2 L 2 a = k≥0 f ′ (k) 2 k + 1 = k≥0 (k + 1) 2 f (k + 1) 2 k + 1 = = k≥1 k f (k) 2 ≤ k≥1 k 2 f (k) 2 1 2 k≥1 f (k) 2 1 2 = = f ′ H 2 f H 2 ≤ C n, r H 2 , H 2 f 2 H 2 , and hence, f ′ L 2 a ≤ C n, r (H 2 , H 2 ) f H 2 , which means C n, r L 2 a , H 2 ≤ C n, r (H 2 , H 2 ). Then it remains to use [Z2, p.2]: C n, r H 2 , H 2 ≤ 1 + r + 1 √ n n 1 -r ,
for all n ≥ 1 and r ∈ [0, 1).

2) The proof of the left-hand side inequality of (4) repeates the one of [Z2, (i)] (for the left-hand side inequality) excepted that this time, we replace the Hardy norm • H 2 by the Bergman one 

• L 2 a . Indeed,
-norm) that e ′ n 2 L 2 a = n 1 -r 1 - 1 -r n , which gives C n, r L 2 a , H 2 ≥ n 1 -r 1 - 1 -r n 1 2
.

Here are the details of the proof. We have e n ∈ K b n r and e n H 2 = 1, (see [N1], Malmquist-Walsh Lemma, p.116). Moreover,

e ′ n = r (1 -r 2 ) 1 2 (1 -rz) 2 b n-1 r + (n -1) (1 -r 2 ) 1 2 1 -rz b ′ r b n-2 r = = - r (1 -r 2 ) 1 2 b ′ r b n-1 r + (n -1) (1 -r 2 ) 1 2 1 -rz b ′ r b n-2 r , since b ′ r = r 2 -1 (1-rz) 2 . Then, e ′ n = b ′ r - r (1 -r 2 ) 1 2 b n-1 r + (n -1) (1 -r 2 ) 1 2 1 -rz b n-2 r , and 
e ′ n 2 L 2 a = 1 2π ˆD |b ′ r (w)| 2 - r (1 -r 2 ) 1 2 (b r (w)) n-1 + (n -1) (1 -r 2 ) 1 2 1 -rw (b r (w)) n-2 2 dm(w) = = 1 2π ˆD |b ′ r (w)| 2 (b r (w)) n-2 2 - r (1 -r 2 ) 1 2 b r (w) + (n -1) (1 -r 2 )
1 2

1rw dm(w), which gives, using the variables u = b r (w),

e ′ n 2 L 2 a = 1 2π ˆD u n-2 2 - r (1 -r 2 ) 1 2 u + (n -1) (1 -r 2 ) 1 2 1 -rb r (u) 2 dm(u). But 1 -rb r = 1-rz-r(r-z) 1-rz = 1-r 2 1-rz and b ′ r • b r = r 2 -1 (1-rbr) 2 = -(1-rz) 2 1-r 2 . This implies e ′ n 2 L 2 a = 1 2π ˆD u n-2 2 - r (1 -r 2 ) 1 2 u + (n -1) (1 -r 2 ) 1 2 1 -r 2 (1 -ru) 2 dm(u) = = 1 (1 -r 2 ) 1 2π ˆD u n-2 2 |(-ru + (n -1)(1 -ru))| 2 dm(u),
which gives

e ′ n L 2 a = 1 (1 -r 2 ) 1 2 ϕ n 2 ,
where ϕ n = z n-2 (-rz + (n -1)(1rz)) . Expanding, we get

ϕ n = z n-2 (-rz + n -1 + rz -nrz) = = z n-2 (-nrz + n -1) = (n -1)z n-2 -nrz n-1
, and

e ′ n 2 L 2 a = 1 (1 -r 2 ) (n -1) 2 n -1 + n 2 n r 2 = 1 (1 -r 2 ) (n(1 + r) -1) = n (1 -r) (1 + r) (1 + r) - 1 n = n 1 -r 1 - 1 -r n , which gives C n, r L 2 a , H 2 ≥ n 1 -r 1 - 1 -r n 1 2
.

Proof of (ii). This is again the same proof as [Z2, (ii)] (the three steps). More precisely in Step 2, we use the same test function Step 1. We first prove the right-hand-side inequality:

lim sup n→∞ 1 √ n C n, r L 2 a , H 2 ≤ 1 + r 1 -r , which becomes obvious since 1 √ n C n, r L 2 a , H 2 ≤ 1 √ n C n, r (H 2 , H 2 ) , . and 1 √ n C n, r (H 2 , H 2 ) → 1 + r 1 -r ,
as n tends to infinity, see [Z1] p. 2.

Step 2. We now prove the left-hand-side inequality:

lim inf n→∞ 1 √ n C n, r L 2 a , H 2 ≥ 1 + r 1 -r .
More precisely, we show that

lim inf n→∞ 1 √ n D K b n r , • L 2 a →H 2 ≥ 1 + r 1 -r . Let f ∈ K b n r . Then, f ′ = (f, e 1 ) H 2 r (1 -rz) e 1 + n k=2 (k -1) (f, e k ) H 2 b ′ r b r e k + r n k=2 (f, e k ) H 2 1 (1 -rz) e k = = r n k=1 (f, e k ) H 2 1 (1 -rz) e k + 1 -r 2 (1 -rz)(z -r) n k=2 (k -1) (f, e k ) H 2 e k = = r (1 -r 2 ) 1 2 (1 -rz) 2 n k=1 (f, e k ) H 2 b k-1 r + (1 -r 2 ) 3 2 (1 -rz) 2 (z -r) n k=2 (k -1) (f, e k ) H 2 b k-1 r = = -b ′ r r (1 -r 2 ) 1 2 n k=1 (f, e k ) H 2 b k-1 r + (1 -r 2 ) 1 2 z -r n k=2 (k -1) (f, e k ) H 2 b k-1 r . Now using the change of variables v = b r (u), we get f ′ 2 L 2 a = ˆD |b ′ r (u)| 2 r (1 -r 2 ) 1 2 n k=1 (f, e k ) H 2 b k-1 r + (1 -r 2 ) 1 2 u -r n k=2 (k -1) (f, e k ) H 2 b k-1 r 2 du = = ˆD r (1 -r 2 ) 1 2 n k=1 (f, e k ) H 2 v k-1 + (1 -r 2 ) 1 2 b r (v) -r n k=2 (k -1) (f, e k ) H 2 v k-1 2 dv. Now, b r -r = r-z-r(1-rz) 1-rz = z(r 2 -1) 1-rz , which gives f ′ 2 L 2 a = ˆD r (1 -r 2 ) 1 2 n k=1 (f, e k ) H 2 v k-1 + (1 -r 2 ) 1 2 v(r 2 -1) (1 -rv) n k=2 (k -1) (f, e k ) H 2 v k-1 2 dv = = 1 1 -r 2 ˆD r n k=1 (f, e k ) H 2 v k-1 -(1 -rv) n k=2 (k -1) (f, e k ) H 2 v k-2 2 dv = = 1 1 -r 2 ˆD r n-1 k=0 (f, e k+1 ) H 2 v k -(1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k 2 dv.
Thus, ( 16) 1

f H 2 √ n(1+r)   (1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k L 2 a + r n-1 k=0 (f, e k+1 ) H 2 v k L 2 a   ≥ ≥ 1 -r n f ′ L 2 a f H 2 ≥ ≥ 1 f H 2 √ n(1+r)   (1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k L 2 a -r n-1 k=0 (f, e k+1 ) H 2 v k L 2 a   . Now, (1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k = = n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k -r n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k+1 = = n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k -r n-1 k=1 k (f, e k+1 ) H 2 v k = = (f, e 2 ) H 2 + 2 (f, e 3 ) H 2 v + n-2 k=2 [(k + 1) (f, e k+2 ) H 2 -rk (f, e k+1 ) H 2 ] v k + -r (f, e 2 ) H 2 v + (n -1) (f, e n ) H 2 v n-1 = = (f, e 2 ) H 2 + [(f, e 3 ) H 2 -r (f, e 2 ) H 2 ] v + n-2 k=2 [(k + 1) (f, e k+2 ) H 2 -rk (f, e k+1 ) H 2 ] v k + -r(n -1) (f, e n ) H 2 v n-1 , which gives (17) (1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k 2 L 2 a = = |(f, e 2 ) H 2 | 2 + 1 2 |(f, e 3 ) H 2 -r (f, e 2 ) H 2 | 2 + + 1 n r 4 (n -1) 2 |(f, e n ) H 2 | 2 + n-2 k=2 (f, e k+2 ) H 2 - rk k + 1 (f, e k+1 ) H 2 2 .
On the other hand,

(18) r n-1 k=0 (f, e k+1 ) H 2 v k L 2 a ≤ r n-1 k=0 1 k + 1 |(f, e k+1 ) H 2 | 2 1/2 ≤ r f H 2 , Now, let s = (s n ) be a sequence of even integers such that lim n→∞ s n = ∞ and s n = o(n) as n → ∞.
Then we consider the following function f in K b n r :

f = s+2 k=0 (-1) k e n-k .
Applying (17) with such an f , we get

(1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k 2 L 2 a = = r 4 (n -1) 2 n + + n-2 l=2 (n -l + 1) (f, e n-l+2 ) H 2 - r(n -l) n -l + 1 (f, e n-l+1 ) H 2 2 ,
setting the change of index l = nk in the last sum. This finally gives

(1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k 2 L 2 a = = r 4 (n -1) 2 n + s+1 l=2 (n -l + 1) 1 + r(n -l) n -l + 1 2 = = r 4 (n -1) 2 n + s+1 l=2 (n -l + 1) 1 + r 1 - 1 n -l + 1 2 , and (1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k 2 L 2 a ≥ ≥ r 4 (n -1) 2 n + (s + 1 -2 + 1)(n -(s + 1) + 1) 1 + r 1 - 1 n -(s + 1) + 1 2 = = r 4 (n -1) 2 n + s(n -s) 1 + r 1 - 1 n -s 2 . In particular, (1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k 2 L 2 a ≥ s(n -s) 1 + r 1 - 1 n -s 2 . Now, since f 2 H 2 = s n + 3, we get lim inf n→∞ 1 n f 2 H 2 (1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k 2 2 ≥ ≥ lim inf n→∞ 1 n f 2 H 2 f 2 H 2 n -f 2 H 2 1 + r 1 - 1 n -s 2 = = lim n→∞ 1 - s n n 1 + r 1 - 1 n -s 2 = (1 + r) 2 .
On the other hand, applying (18) with this f, we obtain

lim n→∞ 1 √ n f H 2 r n-1 k=0 (f, e k+1 ) H 2 v k L 2 a = 0.
Thus, we can conclude passing after to the limit as n tends to +∞ in ( 16), that

lim inf n→∞ 1 -r n f ′ L 2 a f H 2 = 1 √ 1 + r lim inf n→∞ 1 f H 2 √ n (1 -rv) n-2 k=0 (k + 1) (f, e k+2 ) H 2 v k L 2 a ≥ ≥ 1 + r √ 1 + r = √ 1 + r, and lim inf n→∞ 1 -r n D K b n r →H 2 ≥ lim inf n→∞ 1 -r n f ′ L 2 a f H 2 ≥ √ 1 + r.
Step 3. Conclusion. Using both Step 1 and Step 2, we get

lim sup n→∞ 1 -r n C n, r L 2 a , H 2 = lim inf n→∞ 1 -r n C n, r L 2 a , H 2 = 1 + r,
which means that the sequence 1

√ n C n, r (L 2 a , H 2 ) n≥1 is convergent and lim n→∞ 1 √ n C n, r L 2 a , H 2 = 1 + r 1 -r .
Proof of Theorem B.

Proofs of inequality ( 8) and of the right-hand side inequality of ( 10). Let σ be a sequence in D, and B = B σ the finite Blaschke product corresponding to σ. If f ∈ H 2 , we use the same function g as in [Z3] which satisfies g |σ = f |σ . More precisely, let g = P B f ∈ K B (see Definitions 2, 3 and Remark 4 above for the definitions of K B and P B ). Then gf ∈ BH 2 and using the definition of

C n, r (L 2 a , H 2 ) , g ′ 2 L 2 a ≤ C n, r L 2 a , H 2 2 g 2 H 2
. Now applying the identity (2) to g we get

g 2 B 1 2 2, 2 ≤ C n, r L 2 a , H 2 2 + 1 g 2 H 2 .
Using the fact that g H

2 = P B f H 2 ≤ f H 2 , we finally get g B 1 2 2, 2 ≤ C n, r L 2 a , H 2 2 + 1 1 2 f H 2 ,
and as a result,

I σ, H 2 , B 1 2 2, 2 ≤ C n, r L 2 a , H 2 2 + 1 1 2 .
It remains to apply the right-hand side inequality of (4) in Theorem A to prove the right-hand side one of (10).

Proof of inequality ( 9). 1) We use the same test function

f = n-1 k=0 (1 -|λ| 2 ) 1 2 b k λ 1 -λz -1 ,
as the one used in the proof of [START_REF] Zarouf | Effective H ∞ interpolation[END_REF]Theorem B] (the lower bound, page 11 of [Z3]). f being the sum of n elements of H 2 which are an orthonormal family known as Malmquist's basis (associated with σ n, λ = {λ, λ, ..., λ} Now, we notice that

f • b λ = n-1 k=0 z k (1 -|λ| 2 ) 1 2 1 -λb λ (z) = 1 -|λ| 2 -1 2 1 + (1 -λ) n-1 k=1 z k -λz n = = (1 -r 2 ) -1 2 1 + (1 + r) n-1 k=1 z k + rz n . 4) Next, g • b λ 2 B 1 2 2, 2 -g • b λ 2 H 2 = k≥1 k g • b λ (k) 2 ≥ ≥ n-1 k=1 k g • b λ (k) 2 = n-1 k=1 k f • b λ (k) 2 , since g • b λ (k) = f • b λ (k) , ∀ k ∈ [0, n -1]. This gives g • b λ 2 B 1 2 2, 2 -g • b λ 2 H 2 ≥ 1 1 -r 2 (1 + r) 2 n-1 k=1 k = = (1 + r) 2 1 -r 2 n(n -1) 2 = 1 + r 1 -r n(n -1) 2 = 1 + r 1 -r (n -1) 2 f 2 H 2 ,
for all n ≥ 2 since f 2 H 2 = n. Finally,

g 2 B 1 2 2, 2 ≥ n 1 -r 1 + r 2 1 - 1 n f 2 H 2 .
In particular,

I n, r H 2 , B 1 2 2, 2 ≥ n 1 -r 1 + r 2 1 - 1 n 1 2
. Some comments. a. Extension of Theorem A to spaces B s 2, 2 , s ≥ 0. Using the techniques developped in the proof of our Theorem A (combined with complex interpolation (between Banach spaces) and a reasoning by induction), it is possible both to precise the sharp numerical constant c 2, s in K. Dyakonov's result (3) (mentioned above in paragraph d. of the Introduction) and to prove the asymptotic sharpness (at least for s ∈ N ∪ 1 2 N) of the right-hand side inequality of (3). In the same spirit, we would obtain that there exists a limit: where c 2, s is defined in (3) and precised in (19). Looking at the above comment 1, cs ≍ (1 + r) s for sufficiently large values of n. Our Theorem B corresponds again to the case s = 1 2 . In this Theorem B, we prove the sharpness of the right-hand side inequality in (20) for s = 1 2 . However, for the general case s ≥ 0, the asymptotic sharpness of n 1-r s as r → 1 -and n → ∞ is less obvious. Indeed, the key of the proof (for the sharpness) is based on the property that the Dirichlet norm

(

  we use the same test function e n = th vector of the Malmquist family associated with the one-point set σ n, r = {r, r, ..., r} n see Definition 1) and prove by the same changing of variable •b r (in the integral on the unit disc D which defines the L 2 a

  k e n-k , (where s = (s n ) is defined in[Z2, p.8]), and the same changing of variable •b r in the integral on D. Here are the details of the proof.

  corresponds to the case s = 1 2 . b. Extension of Theorem B to spaces B s 2, 2 , s ≥ 0. The proof of the upper bound in our Theorem B can be extended so as to give an upper (asymptotic) estimate of the interpolation constant I n, r H 2 , B s 2, 2 , s ≥ 0. More precisely, applying K. Dyakonov's result (3) (mentioned above in paragraph d. of the Introduction) we get (20) I n, r H 2 , B s 2, 2 ≤ cs n 1r s , with cs ≍ c 2, s ,

(the one of B 1/2 2, 2 ) is "nearly" invariant composing by an elementary Blaschke factor b λ , as this is the case for the H ∞ norm. A conjecture given by N. K. Nikolski is the following:

and is due to the position of the spaces B s 2, 2 , s ≥ 0 with respect to the algebra H ∞ .