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ANISOTROPIC ADAPTIVE KERNEL DECONVOLUTION

F. COMTE(∗) AND C. LACOUR(∗∗)

Abstract. In this paper, we consider a multidimensional convolution model for which we
provide adaptive anisotropic kernel estimators of a signal density f measured with additive
error. For this, we generalize Fan’s (1991) estimators to multidimensional setting and use
a bandwidth selection device in the spirit of Goldenschluger and Lepski’s (2011) proposal fr
density estimation without noise. We consider first the pointwise setting and then, we study
the integrated risk. Our estimators depend on an automatically selected random bandwidth.
We assume both ordinary and super smooth components for measurement errors, which have
known density. We also consider both anisotropic Hölder and Sobolev classes for f . We provide
non asymptotic risk bounds and asymptotic rates for the resulting data driven estimator, which
is proved to be adaptive. We provide an illustrative simulation study, involving the use of Fast
Fourier Transform algorithms. We conclude by a proposal of extension of the method to the
case of unknown noise density, when a preliminary pure noise sample is available.

March 2011
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1. Introduction

There have been a lot of studies dedicated to the problem of recovering the distribution f of
a signal when it is measured with an additive noise with known density. Several strategies have
been proposed since Fan (1991) in order to provide adaptive strategies for kernel (Delaigle and
Gijbels (2004)) or projection (Pensky and Vidakovic (1999), Comte et al. (2006)) estimators.
The question of the optimality of the rates revealed real difficulties, after the somehow classical
cases studied by Fan (1991): the case of super smooth noise (i.e. with exponential decay of its
characteristic function) in presence of possibly also super smooth density implies non standard
bias variance compromises that requires new methods for proving lower bounds. These problems
have been studied by Butucea (2004), Butucea and Tsybakov (2007, 2008) and by Butucea and
Comte (2009).

Then new directions lead researchers to release the assumption that the characteristic function
of the noise never vanishes, see Hall and Meister (2007); Meister (2008). Others released the
assumption that the density of the noise is known. In physical contexts, where it is possible to
obtain samples of noise alone, a solution has been proposed by Neumann (1997), extended to
the adaptive setting by Comte and Lacour (2011), another idea is developed in Johannes (2009).
Other authors assumed repeated measurements of the same signal, and proposed estimation
strategy without noise sample, see Delaigle et al. (2008).

All these works are in one dimensional setting. Our aim here is to study the multidimensional
setting, and to propose adaptive strategies that would take into account possible anisotropy for
both the function to estimate and the noise structure. As already explained in Kerkyacharian
et al. (2001), adaptive procedures are delicate in a multidimensional setting because of the lack
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of natural ordering. For instance, the model selection method is difficult to apply here since it
requires to bound terms on sums of anisotropic models. In this paper, we use a unified setting
where all estimators can be seen as kernel estimators, and we use the so-called "Lepski methods"
recently developed in Goldenschluger and Lepski (2010, 2011) to face anisotropy problems. The
originality of our work is to use Talagrand inequality as the key of the deviation in the mean
squared error case. This idea is also exploited in a different context by Doumic et al. (2011). And
indeed, we succeed in building adaptive kernel estimators in many contexts. The bandwidth is
automatically selected. We provide risk bounds for these estimators, for both pointwise risk when
local bandwidth selection in proposed and for the integrated mean square risk (MISE) when the
global selection is studied. We also consider both anisotropic Hölder and Sobolev classes for f ,
the Fourier-domain-definition of the last ones allowing to also deal with the case of super smooth
functions to recover. Few papers study the multidimensional deconvolution problem; we can
only mention Youndjé and Wells (2008) who consider a cross-validation method for bandwidth
selection in an isotropic and ordinary smooth setting. Our paper considerably generalizes their
results with a different method, and provides new results and new rates in both pointwise and
global setting.

We want here to emphasize that our setting is indeed very general. We consider all possible
cases: the noise can have both ordinary smooth (O.S.) components (i.e. a characteristic function
with polynomial rate of decay in the corresponding directions) and super smooth (S.S.) compo-
nents (exponential rate of decay), and the signal density also. In particular, we obtain surprising
results in the mixed cases: if one component only of the noise is S.S. (all the others being O.S.),
in presence of an O.S. signal, then the rate of convergence of the estimator is logarithmic. On the
contrary, if the signal has k out of d components S.S. in presence of an O.S. noise, then the rate
of the estimator is almost as good as if the dimension of the problem was d− k instead of d. We
obtain also natural extensions of the univariate rates, and in particular the important fact that
the rates can be logarithmic if the noise is S.S. (for instance in the Gaussian case) but are much
improved if the signal is also S.S.: for instance, if the signal is also Gaussian, then polynomial
rates are recovered.

In spite of the difficulty of the problem, in particular because of the large number of parameters
required to formalize the regularity indexes of the functions, we exhibit very synthetic penalties
than can be used in all cases. We also provide more precise but more technical results. It is
certainly worth mentioning that the adaptive strategy we propose in the pointwise setting is not
only a generalization of the one-dimensional results obtained in Butucea and Comte (2009), but
is also a different procedure.

The plan of the paper is the following. In Section 2, we describe the model and the assumptions:
the functional classes and the kernels used in the following. We both give the conditions required
in the following for the kernels and provide concrete examples of kernels fulfilling them. We define
the general estimator by generalization of the one-dimensional kernel to multidimensional setting.
In Section 3, we study the pointwise risk and we discuss the rates. Then we propose a pointwise
bandwidth selection strategy and prove risk bounds for the estimator in the case of Hölder classes
and for Sobolev classes. As in the univariate case, adaptation costs a logarithmic loss in the rates.
In Section 4, we provide global MISE bounds and describe an adaptive estimator, which is studied
both on Nilkols’kii (see Nikol’skĭı (1975) and Kerkyacharian et al. (2001)) classes and for Sobolev
densities. Here, it is possible that adaptation has no price and that the rate corresponds exactly
to the optimal one found without adaptation. We provide in Section 5 illustrations and examples
in dimension 2, for models having possibly very different behavior in the two directions. We give
results of a small Monte-Carlo study, obtained by clever use of IFFT to speed the programs. Up
to our knowledge, these effective experiments are the first ones in such a general setting. In a
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concluding Section 6, we pave the way for a generalization of the method to the case where the
known noise density is replaced by an estimation based on a preliminary sample. To finish, all
proofs are gathered in Section 7.

2. Model, estimator and assumptions.

2.1. Model and notation. We consider the following d-dimensional convolution model

(1) Yi =




Yi,1
...
Yi,d


 = Xi + εi =




Xi,1
...
Xi,d


+




εi,1
...
εi,d


 , i = 1, . . . , n.

We assume that the εi and the Xi are i.i.d. and the two sequences are independent. Only the
Yi’s are observed and our aim is to estimate the density f of X1 when the density fε of ε is known.

As far as possible, we shall denote by x variables in the time domain and by t or u variables
in the frequency domain. We denote by g∗ the Fourier transform of an integrable function g,
g∗(t) =

∫
ei〈t,x〉g(x)dx where 〈t, x〉 =

∑d
j=1 tjxj is the standard scalar product in R

d. Moreover
the convolution product of two functions g1 and g2 is denoted by g1 ?g2(x) =

∫
g1(x−u)g2(u)du.

We recall that (g1 ? g2)
∗ = g∗1g

∗
2 . As usual, we define

‖g‖1 =

∫
|g(x)|dx and ‖g‖ = ‖g‖2 =

(∫
|g(x)|2dx)

)1/2

.

The notation x+ means max(x, 0), and a ≤ b for a, b ∈ R
d means a1 ≤ b1, . . . , ad ≤ bd. For two

functions u, v, we denote u(x) . v(x) if there exists a positive constant C not depending on x
such that u(x) ≤ Cv(x) and u(x) ≈ v(x) if u(x) . v(x) and v(x) . u(x).

2.2. The estimator. Let us now define our collection of estimator. Let K be a kernel in L
2(Rd)

such that K∗ exists. Then we define, for h ∈ (R∗
+)d,

Kh(x) =
1

h1 . . . hd
K

(
x1

h1
, . . . ,

xd

hd

)
and L∗

(h)(t) =
K∗

h(t)

f∗ε (t)
.

The kernel K is such that Fourier inversion can be applied:

L(h)(x) = (2π)−d

∫
e−i〈t,x〉K∗

h(t)/f∗ε (t)dt.

Considering that f∗ = f∗Y /f
∗
ε , a natural estimator of f is such that

f̂∗h(t) = f̂∗Y (t)L∗
(h)(t) = K∗

h(t)
f̂∗Y (t)

f∗ε (t)
, where f̂∗Y (t) =

1

n

n∑

k=1

ei〈t,Yk〉,

and thus

f̂h(x) =
1

n

n∑

k=1

L(h)(x− Yk),

Note that our estimator here is the same, in multivariate context, as the one proposed in
one-dimensional setting by Fan (1991). It verifies

E(f̂∗h(t)) = K∗
h(t)

f∗Y (t)

f∗ε (t)
= K∗

h(t)f∗(t) so that E(f̂h) = Kh ? f =: fh.

To construct an adaptive estimator, we also introduce auxiliary estimators involving two kernels.
This idea, already used in Devroye (1989), allows us in the following to automatically select
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the bandwidth h (see section 3.3), following a method described in Goldenschluger and Lepski
(2011). We consider

f̂h,h′(x) = Kh′ ? f̂h(x),

which implies that

f̂∗h,h′(t) = K∗
h′(t)K∗

h(t)
f̂∗Y (t)

f∗ε (t)
.

Note that, for all x ∈ R
d, we have f̂h,h′(x) = f̂h′,h(x). The estimator which is finally studied is

f̂ĥ where ĥ is defined by using the collection (f̂h,h′).

2.3. Noise assumptions. We assume that the characteristic function of the noise has a poly-
nomial or exponential decrease:

(Hε) ∃α ∈ (R+)d, ρ ∈ (R+)d, β ∈ R
d(βj > 0 if ρj = 0) s. t. ∀t ∈ R

d,

|f∗ε (t)| ≈
d∏

j=1

(t2j + 1)−βj/2 exp(−αj |tj|ρj ).

Note that this assumption implies f∗ε (t) 6= 0. A component j of the noise is said to be ordinary
smooth (OS) if αj = 0 or ρj = 0 and super smooth otherwise. We take the convention that αj = 0
if ρj = 0 and ρj = 0 if αj = 0.

Let us recall that exponential or gamma type densities are ordinary smooth, and that Cauchy
or Gaussian densities are super smooth. The Gaussian case is considered in many problems
and enhances the interest of super smooth contexts, but exponential-type densities keep a great
interest in physical contexts, see for instance the fluorescence model studied in Comte and Re-
bafka (2010) where the measurement error density is fitted as an exponential type distribution,
belonging to the ordinary smooth class.

To be more precise, we introduce the following notation. We denote by OS the set of directions
j with ordinary smooth regularity (αj = ρj = 0), and by SS the set of directions j with super
smooth regularity (ρj > 0) so that under (Hε),

|f∗ε (t)| ≈
∏

j∈OS

(t2j + 1)−βj/2
∏

k∈SS

(t2k + 1)−βk/2 exp(−αk|tk|ρk).

2.4. Regularity assumptions. We consider in the sequel several types of regularity for the
target function f , associated with slightly different definition of the estimator: the choice of the
kernel depends on the type of regularity space. We used Greek letters for the noise regularity,
and now, we use Latin letters for the function f indexes.

First, for pointwise estimation purpose, we consider functions f belonging to Hölder classes
denoted by H(b, L), b = (b1, . . . , bd) such that:
the function f admits derivatives with respect to xj up to order bbjc (where bbjc denotes the
largest integer less than bj) and

∣∣∣∣∣
∂bbjcf

(∂xj)bbjc (x1, . . . , xj−1, x
′
j , xj+1, . . . , xd) −

∂bbjcf

(∂xj)bbjc (x)

∣∣∣∣∣ ≤ L|x′j − xj |bj−bbjc.

Next for global estimation purpose, the functional spaces associated with standard kernel esti-
mators are the anisotropic Nikol’skii class of functions, as in Goldenschluger and Lepski (2010),
see also Nikol’skĭı (1975), Kerkyacharian et al. (2001). We consider the class N (b, L) which is
the set of functions f : R

d → R such that f admits derivatives with respect to xj up to order
bbjc, and



5

(i) ‖ ∂bbjcf

(∂xj)bbjc
‖ ≤ L, for all j = 1, . . . , d, where ‖.‖ denotes the L

2(Rd)-norm.

(ii) For all j = 1, . . . , d, for all t ∈ R,

∫ ∣∣∣∣∣
∂bbjcf

(∂xj)bbjc (x1, . . . , xj−1, xj + y, xj+1, . . . , xd) −
∂bbjcf

(∂xj)bbjc (x)

∣∣∣∣∣

2

dx ≤ L2|y|2(bj−bbjc).

Lastly, and for both pointwise and global estimation, we shall consider general anisotropic
Sobolev spaces S(b, a, r, L) defined as the class of integrable functions f : R

d → R satisfying

∫
|f∗(t1, . . . , td)|2

d∏

j=1

(1 + t2j)
bj exp(2aj |tj|rj )dt1 . . . dtd ≤ L2.

We set aj = 0 if rj = 0, and reciprocally. If some aj are nonzero, the corresponding direction
are associated with so-called "super smooth" regularities. To standardize notations, we set
aj = rj = 0 when Hölder or Nikol’skii regularity is considered.

We can note that Sobolev spaces allow one to take into account a global regularity rather
than a pointwise one. Nevertheless, they have a convenient Fourier-domain representation, in
particular when one wants to consider super smooth or analytical functions, even in pointwise
setting. If the noise density can have such property in the case of Gaussian measurement error,
it is natural to think that the signal density may have the same behavior.

2.5. Assumptions on the kernel. For the estimators to be correctly defined, the kernel must
be chosen sufficiently regular to balance the noise.

We assume that K(x) = K(x1, . . . , xd) =
∏d

j=1Kj(xj). This assumption is not necessary, but
simplifies the proofs. Besides, the kernels used in practice verify this condition. Moreover, we
recall that K belongs to L

2(Rd) and admits a Fourier transform.
To ensure the finiteness of the estimators, we shall use the following assumption:

Kvar(β) For j ∈ OS:
∫
|K∗

j (u)|2(1 + u2)βjdu <∞ and
∫
|K∗

j (u)|(1 + u2)βj/2du <∞
For j ∈ SS: K∗

j (t) = 0 if |t| > 1 and sup|t|≤1 |K∗
j (t)| <∞

Moreover, we may require a classical assumption to control the bias Hölder or Nikol’skii spaces
described above.

Korder(`) The kernel K is of order ` = (`1, . . . , `d) ∈ R
d
+, i.e.

∗
∫
K(x)dx = 1

∗ ∀1 ≤ j ≤ d, ∀1 ≤ k ≤ `j ,
∫
xk

jK(x)dx = 0

∗ ∀1 ≤ j ≤ d,
∫
(1 + |xj |)`j |K(x)|dx <∞

Note that this implies the condition used in Fan (1991) which is stated in the Fourier domain.
This condition is verified by the following kernels defined in Goldenschluger and Lepski (2010).

We start by defining univariate functions uj(x) such that
∫
uj(x)dx = 1,

∫
|x|`j |uj(x)|dx < +∞

and then

(2) Kj(xj) =

`j∑

k=1

(
`j
k

)
(−1)k+1 1

k
uj(

xj

k
).
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Then Kj is a univariate kernel of order `j. The multivariate kernel is defined by

(3) K(x) = K(x1, . . . , xd) =
d∏

j=1

Kj(xj).

The resulting kernel is such that
∫ ∏d

j=1 x
kj

j K(x)dx1 . . . dxd = 0 if 1 ≤ kj ≤ `j for one j ∈
{1, . . . , d}, and thus satisfies Korder(`).

We can give an example of kernel satisfying Assumptions Kvar(β) and Korder(`). We can
use the construction above with uj(xj) = v`j+2(xj) where

vp(x) = cp

(
sin(x/p)

x/p

)p

, vp(0) = cp, v∗p(t) =
2πpcp

2p
1[−1,1] ? · · · ? 1[−1,1]︸ ︷︷ ︸

p times

(pt),

where cp is such that
∫
vp(x)dx = 1. This is what can be done when the function under estima-

tion is assumed to be in a Hölder or in a Nikol’skii space.

When considering Sobolev space and Assumption Kvar(β) is required, we can simply use the
sinus cardinal kernel denoted by K = sinc and defined by

K∗
j (t) = 1[−1,1](t) = v∗1(t), Kj(xj) =

sin(xj)

πxj
,Kj(0) =

1

π
.

Remark. When only ordinary smooth noises are considered on Hölder or Nikol’skii spaces, we
may also use other type of kernels. For instance, use the construction of kernel of order ` based
on

uj(xj) = cj

(
xj −

1

2

)bβjc+1(
xj +

1

2

)bβjc+1

1[− 1
2
, 1
2
](xj).

Indeed, it can be proved that K∗
j (tj) = O(|tj |−(bβjc+2)) when |tj| → +∞.

3. Pointwise estimation

3.1. Bias and variance. Let x0 be a point in R
d. The aim is to study the estimator f̂h of f ,

and more precisely its risk at point x0: |f(x0) − f̂h(x0)|. It is well known that

E|f(x0) − f̂h(x0)|2 = |f(x0) − fh(x0)|2︸ ︷︷ ︸
bias

+ E|fh(x0) − f̂h(x0)|2︸ ︷︷ ︸
variance

(recall that fh = E(f̂h) = Kh ? f). We first control the bias. We define

B0(h) =

{
‖f − fh‖∞ if ‖K‖1 <∞
‖f∗ − f∗h‖1/(2π)d otherwise

The following proposition holds.

Proposition 1. The bias verifies |f(x0) − fh(x0)| ≤ B0(h) and, under assumptions

• f belongs to Hölder class H(b, L) and the kernel verifies Korder(`) with ` ≥ bbc, or
• f∗ ∈ L1, f belongs to Sobolev class S(b+ 1/2, a, r, L) and K = sinc

Then B0(h) . L
∑d

j=1 h
bj+rj/2
j exp(−ajh

−rj

j ).

Note that we recover the classical order h
bj

j when aj = 0. Let us now study the variance of

estimators f̂h.
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Proposition 2. The variance verifies E|fh(x0) − f̂h(x0)|2 ≤ V0(h) where

(4) V0(h) =
1

(2π)2d

1

n
min

(
‖f∗ε ‖1

∥∥∥∥
K∗

h

f∗ε

∥∥∥∥
2

2

,

∥∥∥∥
K∗

h

f∗ε

∥∥∥∥
2

1

)
.

Moreover, under (Hε) and Kvar(β), if hj ≤ 1 for all j,

V0(h) .
1

n

d∏

j=1

h
(ρj−1)++ρj−1−2βj

j exp(2αjh
−ρj

j ).

When f∗ε = 1 (no noise), we obtain the classical order
∏

j 1/(nhj).
Eventually, the bound on the MSE is obtained by adding the squared bias bound and the

variance bound.

3.2. Rates of convergence.

3.2.1. Homogeneous cases. We first give the bandwidth choices and rates of convergence which
are obtained when all components of both f and fε have the same smoothness. Recall that
in dimension 1, the minimax rates are logarithmic when the noise is super smooth, unless the
function f is super smooth too : see Fan (1991), Pensky and Vidakovic (1999), Comte et al.
(2006).

First, consider that both the function f and the noise are ordinary smooth. We can compute
the anisotropic rate that can be deduced from a "good" choice of h = (h1, . . . , hd). Indeed, let
us look at

∂

∂hj

(
h2b1

1 + · · · + h2bd
d + n−1

d∏

i=1

h
−(2βi+1)
i

)

= 2bjh
2bj−1
j − (2βj + 1)n−1h

−(2βj+2)
j

d∏

i=1,i6=j

h
−(2βi+1)
i .

Setting this to 0 for all j yields

(5)
d∏

i=1,i6=j

h2βi+1
i,opt h

2bj+2βj+1
j,opt ∝ n−1, j = 1, . . . , d

and thus h
2bj

j,opt = h2bk
k,opt. Therefore the optimal bandwidth choices are

hj,opt ∝ (n−1/(2bj+bj
∑d

i=1[(2βi+1)/bi])

and the resulting rate is

(6) n
−1/(1+ 1

2

∑d
i=1

2βi+1

bi
)
.

Secondly, consider the case where the noise is super smooth (all (βj , ρj) nonzero) but the
function is ordinary smooth. Then hj,opt = ((2αj + 1)/ log(n))1/ρj and the rate is

(7) [log(n)]−2 min1≤j≤d(bj/ρj).

We can remark two things in this case: the rates are logarithmic, and the bandwidth choice is
known because it only depends on the parameters of the noise density, which is assumed to be
known. This explains why no bandwidth selection procedure is required here, as long as only
classical Hölder regularities are considered.
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Now consider the case where the noise is ordinary smooth (all ρj’s are zeros) but the function
is super smooth (with all (aj , rj) nonzero). Then we take hj,opt = (aj/ log(n))1/rj and the rate is

(8) [log(n)]
∑d

j=1(2βj+1)/rj/n.

We can see that here, the rates are very good. It is worth mentioning that the first paper
considering super smooth function f is Pensky and Vidakovic (1999).

We do not give a general bandwidth choice in the case where both functions can be super
smooth, because it is very intricate. General formula in dimension 1 are given in Lacour (2006),
see also Butucea and Tsybakov (2007, 2008). We can just emphasize that in such case the
rates can be considerably improved, compared to the logarithmic issue above. For instance, it
is easy to see that the compromise between a bias of order exp(−1/h2) and a variance of or-
der exp(1/h2)/n is obtained for h =

√
2/ log(n) and gives a rate of order 1/

√
n. To be even

more precise, the optimal rate in dimension 1, if the signal is N (0, σ2) and the noise N (0, σ2
ε), is

n−1/(1+θ2)[log(n)]−(1+1/(1+θ2))/2, θ2 = σ2
ε/σ

2, for 1/hopt =
√

[log(n) + (1/2) log(log(n))]/(σ2 + σ2
ε).

As the bandwidth choice is very difficult to describe in the general case, this enhances the inter-
est of automatic adaptation which is proposed below, when Sobolev spaces are considered. Note
that optimal choices of the bandwidth are of logarithmic orders in all those cases.

3.2.2. Discussion about mixed cases. Let us consider now the case where the function is still
ordinary smooth, but components 1 to j0 of the noise are ordinary smooth while components
j0 + 1 to d are super smooth, 1 ≤ j0 < d. Then it is clear that exponential components
must first be "killed" by choosing logarithmic bandwidths and as the bandwidths are involved
additively in the bias term, the rate becomes logarithmic. More precisely, taking for j = 1, . . . , j0,
hj,opt ∝ n−1/(2d(2βj+1)) and for j = j0 + 1, . . . , d, hj,opt = [log(n)/(4dαj)]

−1/ρj gives a variance
term of order

n−1
j0∏

j=1

h
−2βj−1
j,opt

d∏

j=j0+1

h
(ρj−1)++(ρj−1)−2βj

j,opt exp(2αjh
−ρj

j,opt)

∝ n−1+j0/(2d)+(d−j0)/(2d) logω(n) = n−1/2 logω(n),

where ω =
∑d

j=j0+1(2βj + 1 − ρj − (ρj − 1)+)/ρj . Therefore, the variance is negligible and the
rate is determined by the bias terms and is proportional to

(9) [log(n)]−minj0+1≤j≤d(bj/ρj).

The conclusion is that the presence of one super smooth component of the noise implies a loga-
rithmic rate, when the function to estimate is ordinary smooth (and bandwidth selection is not
required).

The other case we can handle is when the noise has all its components ordinary smooth, but
the function has its j0 first components ordinary smooth and the d− j0 last ones super smooth.
Let us take d = 2 and j0 = 1 for simplicity. Clearly, we can choose h2,opt = (log(n)/a2)

−1/r2 , so
that the MSE for (h1,opt, h2,opt) is proportional to

h2b1
1,opt + h2b2+r2

2,opt exp(−2a2h
−r2
2,opt) + n−1h−2β1−1

1,opt h−2β2−1
2,opt

∝ h2b1
1,opt + n−2[log(n)]−(2b2+r2)/r2 + n−1h−2β1−1

1,opt [log(n)](2β2+1)/r2 .

Therefore, the optimal choice of h1 is obtained as in dimension 1 with respect to a sample size
n/[log(n)](2β2+1)/r2 and we find h1,opt ∝ (n/[log(n)](2β2+1)/r2)−1/(2β1+2b1+1). The final rate is
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proportional to (n/[log(n)](2β2+1)/r2)−2b1/(2β1+2b1+1). This is the rate corresponding to the one-
dimensional problem, up to a logarithmic factor.
More generally, we obtain in dimension d, the rate corresponding to dimension j0 of the OS-OS
problem, up to logarithmic factors.

3.3. Adaptive estimator.

3.3.1. General result. Now, our aim is to automatically select a bandwidth in a discrete set
H0 (described below) such that the corresponding estimator reaches the minimax rate, without
knowing the regularity of f . We have at our disposal estimators f̂h(x0) and f̂h,h′(x0) = Kh′ ?

f̂h(x0), for x0 = (x0,1, . . . , x0,d) ∈ R
d such that f̂h,h′(x0) = f̂h′,h(x0). We define

(10) A0(h, x0) = sup
h′∈H0

[
|f̂h′(x0) − f̂h,h′(x0)| −

√
Ṽ0(h′)

]

+

,

and

ĥ(x0) = arg min
h∈H0

{
A0(h, x0) +

√
Ṽ0(h)

}

with

(11) Ṽ0(h) = c0 log(n)V0(h)

and c0 is a numerical constant to be specified later. The final estimator is f̃(x0) = f̂ĥ(x0)(x0).

The term Ṽ0(h) corresponds to the variance of the estimate f̂h(x0) multiplied by log(n). Now,
we can state the result concerning the adaptive estimator. Define

N(K) =

{
‖K‖1 if ‖K‖1 <∞
‖K∗‖∞ otherwise

Theorem 1. Assume that N(K) <∞ and let

H0 = {h(k) h
(k)
j ≤ 1, for j = 1, . . . , d, V0(h

(k)) ≤ 1,
∥∥∥∥
K∗

h(k)

f∗ε

∥∥∥∥
2

2

∥∥∥∥
K∗

h(k)

f∗ε

∥∥∥∥
−2

1

≥ log(n)

n
for k = 1, . . . , bnεc}.(12)

Let q be a real larger than 1. Assume that c0 ≥ (4(1 + ‖K∗‖∞)(2ε+ q))2/min (‖f∗ε ‖1, 1) . Then,
with probability larger than 1 − 4n−q,

(13) |f̃(x0) − f(x0)| ≤ inf
h∈H0

{
(1 + 2N(K))B0(h) + 3

√
Ṽ0(h)

}
.

We can make two comments about this result.

(1) Inequality (13) is a trajectorial oracle inequality, up to the log(n) factor in the term Ṽ0(h)
which appears in place of V0(h).

(2) Condition (12) is typically verified if ‖K∗
h/f

∗
ε ‖2

2 ≥ log(n) and max(‖K∗
h/f

∗
ε ‖2

2 , ‖K∗
h/f

∗
ε ‖2

1) ≤
n. It is just slightly stronger than assuming the variance V0(h) bounded.

It is also important to see that we can deduce from Theorem 1 a mean oracle inequality.
More precisely, we have |f̃(x0)− f(x0)| ≤ (‖K∗

h/f
∗
ε ‖1 + |f(x0)|). Then, for h ∈ H0, ‖K∗

h/f
∗
ε ‖2

1 ≤
(n/ log(n))‖K∗

h/f
∗
ε ‖2

2 and V0(h) ≤ 1 imply ‖K∗
h/f

∗
ε ‖2

1 ≤ n. Thus |f̃(x0)−f(x0)|2 . n. Therefore,
Theorem 1 implies that, ∀h ∈ H0,

(14) E|f̃(x0) − f(x0)|2 ≤
{

(1 + 2N(K))B0(h) + 3

√
Ṽ0(h)

}2

+
C

n
.
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We just have to choose q ≥ 2 in Theorem 1.

3.3.2. Study of Condition (12). Let us define h̄opt = (h̄1,opt, . . . , h̄d,opt) the minimizer of the right
hand side of equation (14):

h̄opt = arg min
h∈R

d
+

{
B2

0(h) + Ṽ0(h)
}
.

Note that h̄opt here corresponds to the value of hopt computed in Section 3.2 where n is replaced
by n/ log(n). We need to check that h̄opt belongs to H0 to ensure that the infimum in (13) is
reached.

This is what is stated in the following Corollary.

Corollary 1. Assume that (Hε) holds and either

1. f belongs to Hölder class H(b, L), the noise has all its components OS and the kernel
verifies Korder(`) with ` ≥ bbc, Kvar(β), and is such that K∗

j is lower bounded on

[−qj, qj ] for qj > 0, and j = 1 . . . , d, or
2. f∗ ∈ L1, f belongs to Sobolev class S(b+ 1/2, a, r, L) and K = sinc.

Then h̄opt ∈ H0 and thus the infimum in Inequality (13) is reached.
In particular in case 1., we have

(15) E(|f̃(x0) − f(x0)|2) = O((n/ log(n))
−1/(1+ 1

2

∑d
i=1

2βi+1

bi
)
).

We can notice that the proof of Corollary 1 relies on the intermediate result stating that
Condition (12) is equivalent to the following one:

(16)
d∏

j=1

h
(ρj−1)
j . n/ log(n).

The consequence of Corollary 1 is that the right hand side of (13) always leads to the best
compromise between the squared bias B2

0(h) and Ṽ0(h), that is the optimal rates of section 3.2
with respect to a sample size n/ log(n).

Remark 1. As we already mentioned, we have an extra log(n) factor in Inequality (13). In case
1. above, we can concretely see the loss in the rate by comparing the right-hand-side of (15) to the
optimal rate (6). This logarithmic loss, due to adaptation, is known to be nevertheless adaptive
optimal for d = 1, see Butucea and Tsybakov (2007, 2008) and Butucea and Comte (2009), and
we can conjecture that it is also the case for larger dimension.

Remark 2. In the case of a super smooth noise on Hölder spaces, we already mentioned that no
bandwidth selection is required. Indeed, we just have to take hj = (log(n)/2αj)

−1/ρj for the super

smooth components and hj = n−1/(2d(2βj+1)) for ordinary smooth components, and the rate has a
logarithmic order determined by the bias term, see (9). This is the reason why general adaptation
is studied only on Sobolev spaces. The rates can be then considerably improved compared to the
rate (9).

4. Global estimation

Let us now study the procedure for global estimation. In this section we assume that f belongs
to L

2(Rd).
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4.1. Bias and variance. We study now the MISE E‖f − f̂h‖2, made up of a bias term plus a
variance term. We can prove the following bound for the bias.

Proposition 3. Under assumptions

• f belongs to Nikol’skii class N (b, L) and the kernel verifies Korder(`) with ` ≥ bbc, or
• f belongs to Sobolev class S(b, a, r, L) and K = sinc

Then ‖f − fh‖ . L
∑d

j=1 h
bj

j exp(−ajh
−rj

j )

Let us now bound the variance of the estimator.

Proposition 4. We have E‖fh − f̂h‖2 ≤ V (h) where

V (h) =
1

(2π)dn

∥∥∥∥
K∗

h

f∗ε

∥∥∥∥
2

Moreover, under (Hε) and Kvar(β)

V (h) .
1

n

d∏

j=1

h
−1−2βj+ρj

j exp(2αjh
−ρj

j )

We emphasize that the rates of convergence (6), (7) and (8) are formally preserved here,
for the same optimal bandwidths choices, but with a definition of the parameters bj which is
different (in case 2. here, f belongs to S(b, a, r, L) while in the pointwise setting it was chosen
in S(b + 1/2, a, r, L)). Therefore, we refer to section 3.2 for all remarks concerning the quality
of the rates and to the cases where part of the components of f or fε are ordinary smooth and
others are super smooth.

4.2. The global adaptive estimator. Now, we describe the adaptive estimation. As previ-
ously, we define

A(h) = sup
h′∈H

[
‖f̂h′ − f̂h,h′‖ −

√
Ṽ (h′)

]

+

,

and

ĥ = arg min
h∈H

{
A(h) +

√
Ṽ (h)

}

with Ṽ (h) defined by

(17) Ṽ (h) = (1 + ‖K∗‖∞)2(1 + 2η)2V (h)C(h)

where η is a numerical constant and C(h) ≥ 1 is a correcting term discussed below. Ideally,
this term would be a constant but in super smooth cases, this may not be possible. The final
estimator is f̌ = f̂ĥ.

We give first an adaptive trajectorial result in term of a general constraint on C(h).

Theorem 2. Assume that ‖K∗‖∞ <∞ and let

H = {h(k) h
(k)
j ≤ 1, for j = 1, . . . , d, V (h(k)) ≤ 1,

C(h)max(1, ‖K∗
h/f

∗
ε ‖2

2/‖K∗
h/f

∗
ε ‖2

∞) ≥ (log n)2 for k = 1, . . . , bnεc}.(18)

Then, with probability larger than 1 − nεe−[min(η,1)η/46](log n)2

(19) ‖f̌ − f‖ ≤ inf
h∈H

{
(1 + 2‖K∗‖∞)‖f − fh‖ + 3

√
Ṽ (h)

}
.
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Remark 3. Clearly, asymptotically when n gets large, ∀ε > 0, nεe−[min(η,1)η/46](log n)2 = O(1/n−q)
for any integer q. But in practice, the cardinality bnεc of H should not be too large.

Note that, as in the pointwise setting, we can write

‖f − f̌‖ ≤ ‖f‖ + ‖f̌‖ ≤ ‖f‖ +

√
nV (ĥ) ≤ ‖f‖ +

√
n

as ĥ is chosen in H. Therefore, Inequality (19) implies that

(20) E(‖f̌ − f‖) ≤ inf
h∈H

{
(1 + 2‖K∗‖∞)‖f − fh‖ + 3

√
Ṽ (h)

}
+
C2(η)√

n
.

Now we can study condition (18) in our usual specific settings. Let us define ȟopt as the
optimal bandwidth choice:

ȟopt = arg min
h∈R

d
+

{‖f − fh‖ + Ṽ (h)}.

As in the pointwise setting, the optimal compromise is automatically reached by the estimator
if ȟopt belongs to H; but contrary to the pointwise setting, we may preserve a rate without loss
if C(h) can be taken equal to a constant. We can prove the following result.

Corollary 2. Assume that (Hε) holds, that the noise has all its components OS and either
1. f belongs to Nikol’skii class N (b, L), and K verifies Kvar(β), 0 < supuj∈R |K∗

j (u)|u2βj <∞
for j = 1, . . . , d, Korder(`) with ` ≥ bbc,
or
2. f∗ ∈ L1, f belongs to a Sobolev class S(b, 0, 0, L) and K = sinc.

Then, we can take C(h) = 1 and have ȟopt ∈ H (where H as defined in Theorem 2). Thus,
the infimum in Inequalities (19) and (20) are reached. That is, we have

(21) E(‖f̌ − f‖2) = O(n
−1/(1+ 1

2

∑d
i=1

2βi+1

bi
)
).

Clearly in the case of ordinary smooth noise and function f , the estimator automatically
reaches the optimal rate, without requiring the knowledge of the regularity of f , which is never-
theless involved in the resulting rate.

If we want to use constraint (18) in the general setting, we have to choose C(h) = log2(n) and
then, a systematic loss occurs:

Corollary 3. Assume that (Hε) holds, that f∗ ∈ L1, f belongs to Sobolev class S(b, a, r, L) and
K = sinc. Take C(h) = log2(n). Then ȟopt ∈ H and the infimum in Inequalities (19) and (20)
are reached.

Nevertheless, if H is more precisely specified, we can prove a better result in expectation:

Theorem 3. Assume that (Hε) holds, that f∗ ∈ L1, f belongs to Sobolev class S(b, a, r, L) and
K = sinc. Define now for M given, M ≤ n,

HM = {h(k), h
(k)
j =

1

k
, j = 1, . . . , d, k = 1, . . . ,M, with V (h(k)) ≤ 1}.

Choose

(22) C(h) =

d∑

j=1

h
−2ρj1ρj≥1/2

j .
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Then choose M such that ȟopt ∈ HM (M = n always suits). Then we have

(23) E(‖f̌ − f‖) ≤ 3 inf
h∈HM

{
‖f − fh‖ +

√
Ṽ (h)

}
+
C2√
n
.

Remark 4. By ȟopt ∈ HM , we mean that 1/[1/ȟopt] ∈ H where [x] denotes the integer part of
x. In the formulation above, the infimum in (23) is necessarily reached.

The exact choice instead of (22) is the following

(24) C(h) =

d∑

j=1

ωjh
−(2ρj−1)++(ρj−1)+
j

for constants ωj depending on αj, βj , ρj that can be specified (see Section 7.9 in Appendix).

Let us discuss the possible loss in the rate of convergence of the estimator resulting from the
choice (22) of C(h) and Inequality (23).

(1) If fε is ordinary smooth, equation (22) says that C(h) = 1 and therefore, as ȟopt belongs

to H, the optimal rate (n
−1/(1+ 1

2

∑d
i=1

2βi+1

bi
)
or [log(n)]

∑d
j=1(2βj+1)/rj/n) is automatically

reached by the estimator.
(2) If fε is super smooth, equation (22) says that the variance term has to be slightly in-

creased.
(a) Nevertheless, if the function f is ordinary smooth, the minimization in (20) still

yields the optimal rate. Indeed, in that case the variance is made negligible with
respect to the bias by the optimal bandwidth choice (see the computations in Section
3.2).

(b) When f is also super smooth, if all ρj ’s are less than 1/2, then there is no loss.
Otherwise, the optimal bandwidth choice is such that, in part of the cases, the
bias is dominating, and then there is still no loss. When some of the ρj’s are
larger than 1/2 and the variance is dominating, there is a loss. But as the selected
bandwidths have logarithmic orders in the concerned cases, the rates are deteriorated
in a negligible way and less than if they were computed with respect to a sample
size n/ log2maxj ρj (n) instead of n. In other words, the loss is always negligible with
respect to the rate.

5. Numerical illustration

5.1. Implementation. The theoretical study shows the advantages of the kernel sinc. It has
also good properties for practical purposes, since it allows to use Fast Fourier Transform. Thus
we consider in this section, in the case d = 2, the kernel K(x, y) = sinc(x)sinc(y)/π2. Let us
denote ϕh,j(x) = π/

√
h1h2K(x1/h1 − πj1, x2/h2 − πj2). The main trick used here follows from

model selection works on deconvolution (see Comte et al. (2006) and Comte and Lacour (2011)).
It is shown therein that (ϕh,j)j∈Z2 is an orthonormal basis of the space of integrable functions
having a Fourier transform with compact support included into [−1/h1, 1/h1] × [−1/h2, 1/h2].

Then f̂h can be written in this basis: f̂h =
∑

j â
h
jϕh,j with

âh
j =

1

4π2

∫
f̂∗hϕ

∗
h,j =

√
h1h2

4π

∫ 1/h1

−1/h1

∫ 1/h2

−1/h2

f̂∗Y
f∗ε

(u1, u2)e
iπ(u1h1j1+u2h2j2)du1du2.
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The interesting point is here that such coefficients can be computed via Fast Fourier Transform.
So we implement our estimator in the following way

f̂h =
∑

|j1|≤M

∑

|j2|≤M

âh
jϕh,j

with M = 64. Moreover, we use that with cardinal sine kernel, we have fh,h′ = fh∨h′, by denoting
h ∨ h′ = (max(h1, h

′
1),max(h2, h

′
2)).

Then in the poinwise setting, we compute A0(h, x0) as given by (10) with Ṽ0(h) given by (11)
and c0 = 0.01. Thus, the plots of the selected estimators f̂ĥ(x0)(x0) are given on a grid of points
x0 in a domain which is specified in each example.

In the global setting, we can exploit additional useful properties of the representation. Indeed,
for all h′, h′′,

‖f̂h′ − f̂h′′‖2 =
1

4π2
‖f̂∗h′ − f̂∗h′′‖2 =

1

4π2

∥∥∥∥∥
f̂∗Y
f∗ε

1Dh′ −
f̂∗Y
f∗ε

1Dh′′

∥∥∥∥∥

2

with Dh = [−1/h1, 1/h1] × [−1/h2, 1/h2]. Then, if Dh′′ ⊂ Dh′ ,

‖f̂h′ − f̂h′′‖2 =
1

4π2

∫

Dh′\Dh′′

∣∣∣∣∣
f̂∗Y
f∗ε

∣∣∣∣∣

2

=
1

4π2

∫

Dh′

∣∣∣∣∣
f̂∗Y
f∗ε

∣∣∣∣∣

2

− 1

4π2

∫

Dh′′

∣∣∣∣∣
f̂∗Y
f∗ε

∣∣∣∣∣

2

= ‖f̂h′‖2 − ‖f̂h′′‖2,

where we have ‖f̂h‖2 =
∑

j |âh
j |2. Then the computation of

A(h) = sup
h′∈H

[√
‖f̂h′‖2 − ‖f̂h∨h′‖2 −

√
Ṽ (h′)

]

+

is considerably accelerated. We choose Ṽ (h) = 0.05 log2(n)V (h), that is C(h) in formula (17) is
taken equal to log2(n) as recommended by Corollary 3. Once the bandwidth is selected in the

global setting, we have the coefficients âĥ
j and thus, we can plot f̂ĥ(x, y) at any point (x, y).

We take H and H0 included in {4/m, 1 ≤ m ≤ 3n1/4}.

5.2. Examples. Now we compute estimators for different signal densities and different noises.
Let λ = 6, µ = 1/4.

Example 1 Cauchy distribution: f(x, y) = (π2(1+x2)(1+y2))−1 on [−4, 4]2 with a Laplace/Laplace
noise, i.e.

fε(x, y) =
λ2

4
e−λ|x|e−λ|y|; f∗ε (x, y) =

λ2

λ2 + x2

λ2

λ2 + y2

The smoothness parameters are b1 = b2 = 0, r1 = r2 = 1, β1 = β2 = 2 and ρ1 = ρ2 = 0.
For this example, we can compute that the rate is of order (log(n))10/n.

Example 2 Mixed Gaussian distribution: Xi,1 = W/
√

7 with W ∼ 0.4N (0, 1) + 0.6N (5, 1), and Xi,2

independent with distribution N (0, 1). We estimate the density on [−2, 4]2. We consider
that the noise follows a Laplace/Gaussian distribution, i.e.

fε(x, y) =
λ

2
e−λ|x| 1

µ
√

2π
e−y2/(2µ2); f∗ε (x, y) =

λ2

λ2 + x2
e−µ2y2/2

The smoothness parameters are b1 = b2 = 0, r1 = r2 = 2, β1 = 2, β2 = 0 and
ρ1 = 0, α2 = µ2/2, ρ2 = 2. Here the rate of convergence is n−16/17[log(n)]63/34 in
the global setting and n−16/17[log(n)]23/17 for the bandwidths h−1

1 =
√

7 log(n) and
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Figure 1. Example 2, global bandwidth selection, with n = 500. Top right:
true density f , top left: estimator f̌ , bottom: sections, dark line for f and light
line for the estimator

h−1
2 =

√
a log(n) − b log(log(n)) for a = 16/17 and b = 40/17 in both cases. We use that

µ2 = 1/16.

n = 100 n = 300 n = 500 n = 750 n = 1000
Ex 1 Global 0.419 0.289 0.215 0.161 0.137
Ex 1 Pointwise 0.269 0.140 0.101 0.083 0.068
Ex 2 Global 3.615 1.699 0.761 0.473 0.367
Ex 2 Pointwise 3.477 1.714 0.799 0.526 0.363
Ex 3 Global 0.800 0.402 0.303 0.248 0.212
Ex 3 Pointwise 0.622 0.293 0.212 0.167 0.138

Table 1. MISE ×100 averaged over 100 samples

Example 3 Gamma distribution: Xi,1 ∼ Γ(5, 1/
√

5) and Xi,2 ∼ Γ(5, 1/
√

5). We estimate the density
on [0, 8]2. The noise follow a Gaussian/Gaussian distribution, i.e.

fε(x, y) =
1

2πµ2
e−(x2+y2)/(2µ2); f∗ε (x, y) = e−µ2(x2+y2)/2

So b1 = b2 = 5, r1 = r2 = 0, β1 = β2 = 0, α1 = α2 = µ2/2 and ρ1 = ρ2 = 2. This is an
example with pointwise rate [log(n)]−4 and global rate(log(n))−9/2 (which is not so slow,
for instance, for n = 1000, this term is smaller than 1/n!).

For these examples, we apply both global and pointwise estimation procedure, and we compute
the Mean Integrated Squared Error on a grid of 50 × 50 points. The MISE (multiplied by 100,
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Figure 2. Example 3, pointwise bandwidth selection,with n = 500. Top right:
true density f , top left: estimator f̃ , bottom: sections, dark line for f and light
line for the estimator

n = 100 n = 300 n = 500 n = 750 n = 1000
Ex 1 1.48 2.04 2.01 1.96 1.97
Ex 2 1.08 1.03 1.05 1.07 1.25
Ex 3 1.36 1.53 1.57 1.57 1.62

Table 2. Coracle averaged over 100 samples

averaged over 100 samples) is given in Table 1. For each path, we also compare the MISE for
the global procedure with the minimum risk for all bandwidths of the collection. Table 2 gives
the empirical version of the oracle constant defined by

Coracle = E

(
‖f̌ − f‖2

infh∈H ‖f̂h − f‖2

)
.

It shows that the adaptation is performing, since the risk for the chosen ĥ is very close to the
best possible in the collection (the nearest of one Coracle, the better the algorithm is).

We also illustrate the results with some figures. Figure 1 shows the surface z = f(x, y) for
Example 2 and the estimated surface z = f̌(x, y) obtained by global bandwidth selection. For
more visibility, sections of the previous surface are drawn. We can see the curves z = f(x,−0.3)
versus z = f̌(x,−0.3) and the curves z = f(−0.3, y) versus z = f̌(−0.3, y). For this figure, the
selected bandwidth is ĥ = (0.29, 0.57). Thus, the bandwidth in the first direction is twice smaller,
to recover the two modes, that shows that our procedure takes really anisotropy into account.
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Figure 3. Dependent case, global bandwidth selection,with n = 500. Top right:
true density f , top left: estimator f̃ , bottom: sections, dark line for f and light
line for the estimator

Figure 2 is an analogous illustration of Example 3, but with a pointwise bandwidth selection, as
described in Section 3. We obtain a slightly more angular figure. Nevertheless, we can notice by
observing Table 1 that the MISE is almost always smaller for this kind of estimation.

To conclude this section, we would like to mention that we can keep good results even in
case of dependent components of both the noise and the signal. More precisely, we can take

X ∼ N (0,Σ) and ε ∼ N (0,Σε) with Σ =

(
1 −0.7

−0.7 2

)
and Σε = 10−2

(
1 0.25

0.25 1.0625

)
,

with X and ε independent. We present in Figure 3 an illustration of the results for the global
method.

6. Concluding remarks: the case of unknown noise density

The assumption of the knowledge of the error distribution is often disputed. Relaxing this
assumption requires conditions for obvious reasons of identifiability. Here is a quick description
of what can be done in case of additional observations of the noise ε−1, . . . , ε−N (think of a
measure device calibrated without signal). We use this preliminary noise sample to estimate f∗ε
in the following way

1

f̃∗ε (x)
=

1{|f̂∗
ε (x)|≥N−1/2}

f̂∗ε (x)
=






1

f̂∗ε (x)
if |f̂∗ε (x)| ≥ N−1/2

0 otherwise

where f̂∗ε (x) = N−1
∑N

j=1 e
−i〈x,ε−j〉 is the natural estimator of f∗ε . Then it is sufficient to write

f̄∗h(t) = K∗
h(t)

f̂∗Y (t)

f̃∗ε (t)
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to define new estimators of f in this context. Adapting all the previous results in this framework
is beyond the scope of this paper, but we can observe the effect of this modification on the
integrated squared error, for instance. The bias is unchanged, but an additional term appears in
the variance:

Proposition 5. We have E‖fh − f̄h‖2 . V (h) +W (h) where

W (h) =
1

(2π)dN

∥∥∥∥
K∗

hf
∗

f∗ε

∥∥∥∥
2

.

It is possible to give a bound of W (h) in term of the smoothness indices of fε and f but
we skip this tedious formula, which is just a generalization of Lemma 2 in Comte and Lacour
(2011). In the case of an ordinary smooth function and a fully ordinary smooth noise, we obtain

W (h) . N−1
∏d

j=1 h
−2(βj−bj)+
j .

Thus, we get new rates of convergence in terms of n and N . If N > n, W (h) is always
smaller than V (h). In this case, an adaptive procedure is conceivable, replacing Ṽ (h) by V̄ (h) =

C̄(h)
∥∥∥K∗

h/f̃
∗
ε

∥∥∥
2
/n and modifying H in the same way. The efficiency of this strategy can be

proved by controlling terms of the form [‖f̄h − f̂h‖2 − V̄ (h)]+. This was successfully established
in Comte and Lacour (2011) in dimension 1, but such a study in dimension d would be much
too long here.

7. Proofs

We start with three useful lemmas.

Lemma 1. For all m > 0,

•
∫m
−m(x2 + 1)γ exp(c|x|s)dx ≈ m2γ+1−secm

s
,

•
∫∞
m (x2 + 1)−γ exp(−c|x|s)dx ≈ m−2γ+1−se−cms

.

Proof of this lemma is based on integration by parts and is omitted. See also Butucea and
Tsybakov (2007, 2008).

Lemma 2. [Bernstein inequality] Let T1, . . . , Tn be independent random variables and Sn(T ) =∑n
i=1[Ti − E(Ti)]. Then, for η > 0,

P(|Sn(T ) − E(Sn(T ))| ≥ nη) ≤ 2max

(
exp

(
−nη

2

4v

)
, exp

(
−nη

4b

))
,

where Var(T1) ≤ v and |T1| ≤ b.

It is proved in Birgé and Massart (1998), p.366 that P(|Sn(T ) − E(Sn(T ))| ≥ nη) ≤
2 exp

(
−nη2/(2v2 + 2bη

)
. Lemma 2 follows.

Lemma 3. [Talagrand Inequality] Let Y1, . . . , Yn be i.i.d. random variables and νn(t) = 1
n

∑n
i=1 |ψt(Yi)−

E(ψt(Yi))] for t belonging to B̄ a countable subset of functions. For any η > 0,

(25) P (sup
t∈B̄

|νn(t)| ≥ (1 + 2η)H) ≤ max

(
exp

(
−η

2

6

nH2

v

)
, exp

(
−min(η, 1)η

21

nH

M

))
.

and

(26) E

[
sup

t∈B̄(0,1)

|νn(t)| − (1 + 2η)H
]

+
≤
(√

3π

2

√
v

n
e−

η2

6
nH2

v +
21

η ∧ 1

M

n
e−

(η∧1)η
21

nH
M

)
,
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with

sup
t∈B̄

‖ψt‖∞ ≤M, E

[
sup
t∈B̄

|νn(t)|
]
≤ H, sup

t∈B̄

1

n

n∑

k=1

Var(ψt(Yk)) ≤ v.

Proof of Lemma 3: We apply the Talagrand concentration inequality given in Klein and Rio
(2005) to the functions si(x) = t(x) − E(t(Yi)) and we obtain

P (sup
t∈B̄

|νn(t)| ≥ H + λ) ≤ exp

(
− nλ2

2(v + 4HM) + 6Mλ

)
.

Then we modify this inequality following Birgé and Massart (1998) Corollary 2 p.354. It gives

(27) P (sup
t∈B̄

|νn(t)| ≥ (1 + η)H + λ) ≤ exp

(
−n

3
min

(
λ2

2v
,
min(η, 1)λ

7M

))
.

To conclude for (25), we set λ = ηH.
For (26), we take λ = ηH + u and write

E

[
sup

t∈B̄(0,1)

|νn(t)| − (1 + 2η)H
]

+
≤

∫ +∞

0
P

(
sup

t∈B̄(0,1)

|νn(t)| ≥ (1 + η)H + ηH + u

)
du

≤
∫ +∞

0
e−

nη2H2

6v e−
nu2

6v du+

∫ +∞

0
e−

nη(η∧1)H
21M e−

n(η∧1)u
21M du

=

√
3π

2

√
v

n
e−

nη2H2

6v +
21M

n(η ∧ 1)
e−

nη(η∧1)H
21M

which is the result of (26).�

7.1. Proof of Proposition 1. In the first case, the bias term is the same as in density esti-
mation (see Tsybakov (2009)) and the use of Taylor formula to partial functions t 7→ f(x1 −
v1h1, . . . , xi−1 − vi−1hi−1, t, xi+1, . . . , xd) yield

|fh(x0) − f(x0)| ≤ L

d∑

j=1

∫
|xj|bj |K(x)|dx

bbjc!
h

bj

j .

In the second case, since f∗, f∗h ∈ L1, we can write

f(x0) − fh(x0) =
1

(2π)d

∫
e−i〈x0,u〉

1(
∏d

j=1[−1/hj ,1/hj ])c(uj)f
∗(u1, . . . , ud)du1 . . . dud

Then, for f ∈ S(b, a, r, L), the bias term is

|f(x0) − fh(x0)| ≤ 1

(2π)d

d∑

j=1

∫
1|uj|≥1/hj

|f∗(u1, . . . , ud)|du1 . . . dud

≤ 1

(2π)d

d∑

j=1

∫ [
1|uj|≥1/hj

|
d∏

k=1

(1 + u2
k)

−bk/2 exp(−ak|uk|rk)

]

×
[
|f∗(u1, . . . , ud)|

d∏

k=1

(1 + u2
k)

bk/2 exp(ak|uk|rk)

]
du1 . . . dud

≤ L

(2π)d

d∑

j=1

(∫

|u|≥1/hj

(1 + u2)−bj exp(−2aj |u|rj )du

)1/2
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since ∏

k 6=j

(1 + u2
k)

−bk/2 exp(−ak|uk|rk) ≤ 1.

Then, using Lemma 1, |f(x0) − fh(x0)| . L
∑d

j=1 h
bj+rj/2−1/2
j exp(−ajh

−r
j ).

7.2. Proof of Proposition 2. The independence of the observations gives

Var(f̂h(x0)) =
1

n
Var

(
1

(2π)d

∫
e−i〈u,x0〉K∗

h(u)
ei〈u,Y1〉

f∗ε (u)
du

)
.

A simple bound of the variance by the expectation of the square yields Var(f̂h(x0)) ≤ (n(2π)2d)−1‖K∗
h/f

∗
ε ‖2

1.
But we can also write

Var(f̂h(x0))n(2π)2d =

∫∫
e−i〈u−v,x0〉K

∗
h(u)K∗

h(−v)
f∗ε (u)f∗ε (−v) (f∗Y (u− v) − f∗Y (u)f∗Y (−v))dudv

≤
∫∫ ∣∣∣∣

K∗
h(u)K∗

h(−v)
f∗ε (u)f∗ε (−v)

∣∣∣∣ |f∗Y (u− v)|dudv

≤
∫ ∣∣∣∣

K∗
h(u)

f∗ε (u)

∣∣∣∣
2 ∫

|f∗Y (t)|dt ≤
∥∥∥∥
K∗

h

f∗ε

∥∥∥∥
2

2

‖f∗ε ‖1

using Schwarz inequality.
Now, under (Hε), (2π)2dnV0(h) is bounded by the minimum of

‖f∗ε ‖1

d∏

j=1

∫ ∣∣∣∣∣
K∗

j (ujhj)

(u2
j + 1)−βj/2 exp(−αj |uj |ρj )

∣∣∣∣∣

2

duj

and



d∏

j=1

∫ ∣∣∣∣∣
K∗

j (ujhj)

(u2
j + 1)−βj/2 exp(−αj |uj|ρj )

∣∣∣∣∣ duj




2

If j ∈ SS, i.e. ρj > 0 then K∗
j (t) = 0 if |t| ≥ 1. Consequently, using Lemma 1,

∫ ∣∣∣∣
K∗

j (uhj)

(u2 + 1)−βj/2 exp(−αj|u|ρj )

∣∣∣∣
2

du =

∫ 1/hj

−1/hj

|K∗
j (uh)|2(u2 + 1)βj exp(2αj |u|ρj )du

≤ ‖K∗
j ‖2

∞

∫ 1/hj

−1/hj

(u2 + 1)βj exp(2αj |u|ρj )du

. h
−2βj−1+ρj

j exp(2αjh
−ρj

j )

In the same way
∫ ∣∣∣∣

K∗
j (uhj)

(u2 + 1)−βj/2 exp(−αj |u|ρj )

∣∣∣∣ du =

∫ 1/hj

−1/hj

|K∗
j (uh)|(u2 + 1)βj/2 exp(αj |u|ρj )du

≤ ‖K∗
j ‖∞

∫ 1/hj

−1/hj

(u2 + 1)βj/2 exp(αj |u|ρj )du

. h
−βj−1+ρj

j exp(αjh
−ρj

j )
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Now, if j ∈ OS, i.e. αj = ρj = 0, then
∫ ∣∣∣∣

K∗
j (uhj)

(u2 + 1)−βj/2

∣∣∣∣
2

du = h−1
j

∫
|K∗

j (u)|2((uh−1
j )2 + 1)βjdu . h

−1−2βj

j

∫
|K∗

j (u)|2(u2 + 1)βjdu

and
∫ ∣∣∣∣

K∗
j (uhj)

(u2 + 1)−βj/2

∣∣∣∣ du . h
−1−βj

j

∫
|K∗

j (u)|(u2 + 1)βj/2du. Finally, using that hj ≤ 1, we

obtain the following bound for nV0(h)

∏

j∈SS

min(1, h
−1+ρj

j )h
−2βj−1+ρj

j exp(2αjh
−ρj

j )
∏

j∈0S

h
−1−2βj

j =

d∏

j=1

h
(ρj−1)+
j h

−2βj−1+ρj

j exp(2αjh
−ρj

j ).

7.3. Proof of Theorem 1.

7.3.1. Proof of Theorem 1. We want to bound |f̃(x0) − f(x0)|. Let h ∈ H0 be fixed. The
following decomposition holds:

|f̃(x0) − f(x0)| ≤ |f̂ĥ(x0)(x0) − f̂h,ĥ(x0)(x0)|
︸ ︷︷ ︸

D1

+ |f̂h,ĥ(x0)
(x0) − f̂h(x0)|

︸ ︷︷ ︸
D2

+ |f̂h(x0) − f(x0)|.

By definition of A(h, x0),

D1 ≤ A0(h, x0) +

√
Ṽ0(ĥ(x0)).

And by definition of A0(ĥ(x0), x0),

D2 ≤ A0(ĥ(x0), x0) +

√
Ṽ0(h).

Therefore

D1 +D2 ≤ A0(h, x0) +

√
Ṽ0(ĥ(x0)) +A0(ĥ(x0), x0) +

√
Ṽ0(h) ≤ 2

[
A0(h, x0) +

√
Ṽ0(h)

]
,

by using the definition of ĥ(x0). Thus

(28) |f̃(x0) − f(x0)| ≤ 2A0(h, x0) + 2

√
Ṽ0(h) + |f̂h(x0) − f(x0)|.

To study A0(h, x0), we can write

f̂h′(x0) − f̂h,h′(x0) = f̂h′(x0) − fh′(x0) − (f̂h,h′(x0) − fh,h′(x0)) + fh′(x0) − fh,h′(x0),

where

fh(x0) = E(f̂h(x0)) = Kh ? f(x0)

fh,h′(x0) = E(f̂h,h′(x0)) = Kh′ ? Kh ? f(x0).

For any h′,
|fh′(x0) − fh,h′(x0)| = |Kh′ ? (f −Kh ? f)(x0)| ≤ N(K)B0(h).

We get back to the definition of A0(h, x0)

A0(h, x0) = sup
h′∈H0

[
|f̂h′(x0) − f̂h,h′(x0)| −

√
Ṽ0(h′)

]

+

≤ sup
h′∈H0

[
|f̂h′(x0) − fh′(x0)| −

√
Ṽ0(h′)/(1 + ‖K∗‖∞)

]

+

(29)

+ sup
h′∈H0

[
|f̂h,h′(x0) − fh,h′(x0)| − ‖K∗‖∞

√
Ṽ0(h′)/(1 + ‖K∗‖∞)

]

+

+N(K)B0(h)
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We can prove the following concentration result:

Proposition 6. Under the Assumptions of Theorem 1, for all h, h′ ∈ H2
0, for all p ≥ 1,

P

(
|f̂h(x0) − fh(x0)| > c1(p)

√
Ṽ0(h)

)
≤ 2/np,(30)

P

(
|f̂h,h′(x0) − fh,h′(x0)| > c1(p)‖K∗‖∞

√
Ṽ0(h′)

)
≤ 2/np,(31)

as soon as c1(p)
2c0 ≥ 16p2/min (‖f∗ε ‖1, 1).

The proposition is proved below. It implies that if c1(p) = 1/(1 + ‖K∗‖∞) and c0 ≥ 16p2(1 +
‖K∗‖∞)2/min (‖f∗ε ‖1, 1),

P

{
sup
h∈H0

[
|f̂h(x0) − fh(x0)| −

√
Ṽ0(h)/(1 + ‖K∗‖2

∞)

]

+

> 0

}
≤ 2

∑

h∈H0

n−p ≤ 2nε−p

as Card(H0) ≤ nε. In the same way, for all h ∈ H0,

P

{
sup

h′∈H0

[
|f̂h,h′(x0) − fh,h′(x0)| − ‖K∗‖∞

√
Ṽ0(h)/(1 + ‖K∗‖∞)

]

+

> 0

}
≤ 2nε−p

Thus, the following set

Ω =

{
sup

h′∈H0

[
|f̂h′(x0) − fh′(x0)| −

√
Ṽ0(h′)/(1 + ‖K∗‖∞)

]

+

= 0

}
∩

{
∀h ∈ H0, sup

h′∈H0

[
|f̂h,h′(x0) − fh,h′(x0)| − ‖K∗‖∞

√
Ṽ0(h′)/(1 + ‖K∗‖∞)

]

+

= 0

}

has probability larger than 1 − 4n2ε−p. Now we choose p = 2ε + q and then c0 ≥ 16(1 +
‖K∗‖∞)2(2ε+ q)2/min (‖f∗ε ‖1, 1). Thus P (Ω) > 1 − 4n−q.

By gathering inequalities (28) and (29), we have on Ω

|f̃(x0) − f(x0)| ≤ 2A0(h, x0) + 2

√
Ṽ0(h) + |f̂h(x0) − f(x0)|

≤ 2N(K)B0(h) + 2

√
Ṽ0(h) + |f̂h(x0) − f(x0)|

But, still on Ω

|f̂h(x0) − f(x0)| ≤ B0(h) + |f̂h(x0) − fh(x0)| −
√
Ṽ0(h)/(1 + ‖K∗‖∞)

+

√
Ṽ0(h)/(1 + ‖K∗‖∞)

≤ B0(h) +

√
Ṽ0(h)

Then, on Ω,

|f̃(x0) − f(x0)| ≤ (1 + 2N(K))B0(h) + 3

√
Ṽ0(h),

which ends the proof of Theorem 1. �
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7.3.2. Proof of Proposition 6. Let us define the independent random variables

Zk(x0) =
1

(2π)d

∫
e−i〈u,x0〉K∗

h(u)
ei〈u,Yk〉

f∗ε (u)
du.

Clearly,

f̂h(x0) − fh(x0) =
1

n

n∑

k=1

[Zk(x0) − E(Zk(x0))].

We apply Bernstein Inequality recalled in Lemma 2 to the Zk(x0)’s, with η = c1(p)
√
Ṽ0(h). We

find

|Z1(x0)| ≤ (2π)−d

∫ ∣∣∣∣
K∗

h(u)

f∗ε (u)

∣∣∣∣ du =: b

and Var(Z1(x0)) ≤ nV0(h). We obtain

P

(
|(f̂h(x0) − fh(x0)| > c1(p)

√
Ṽ0(h)

)
≤ P

(
|Sn(Z(x0)) − E(Sn(Z(x0)))| ≥ c1(p)

√
Ṽ0(h)

)

≤ 2max



exp



−
n(c1(p)

√
Ṽ0(h))

2

4nV0(h)



 , exp



−
n(c1(p)

√
Ṽ0(h))

4b







 ,(32)

where c1(p) is chosen such that

(33)
nc1(p)

2Ṽ0(h)

4nV0(h)
≥ p log(n)

that is c1(p)2c0 ≥ 4p (c0 is the constant in the definition of Ṽ0(h)). Moreover,

n
√
c1(p)2Ṽ0(h)

4b
=

√
c1(p)2c0

4

√
n log(n)

√
nV0(h)

b2
.

But for h ∈ H0,

nV0(h)/b
2 = min

(
‖f∗ε ‖1

∥∥∥∥
K∗

h

f∗ε

∥∥∥∥
2

2

∥∥∥∥
K∗

h

f∗ε

∥∥∥∥
−2

1

, 1

)
≥ c3

log(n)

n

with c3 = min (‖f∗ε ‖1, 1). Thus

(34)
n
√
c1(p)2Ṽ0(h)

4b
≥ p log(n)

provided that
√
c3c

2
1(p)c0 ≥ 4p. Note now that this last condition also ensures the first constraint

c1(p)
2c0 ≥ 4p. Therefore, inserting (33) and (34) in (32) implies the first inequality (30) of

Proposition 6.
To prove (31), we follow the same line. For the study of

f̂h,h′(x0) − fh,h′(x0) = Kh ? (f̂h′ − fh′)(x0),

we can simply replace K∗
h(u) by K∗

h(u)K∗
h′(u), with |K∗

h(u)| ≤ ‖K∗‖∞ so that it adds a term
‖K∗‖∞ in the previous computations. Thus we get (31) and this end the proof of Proposition 6. �
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7.4. Proof of Corollary 1. Let us denote |f∗ε,j(t)| the j-th component of the order of the noise

characteristic function, i.e. |f∗ε,j(t)| = (1 + t2)−βj/2 exp(−αj |t|ρj ). First, we write

‖K∗
h/f

∗
ε ‖2

1

‖K∗
h/f

∗
ε ‖2

2

.

d∏

j=1

(∫
|K∗

j (tjhj)||f∗ε,j(tj)|−1dtj

)2

∫
|K∗

j (tjhj)|2|f∗ε,j(tj)|−2dtj

.




d∏

j=1

1

hj




d∏

j=1

(∫
|K∗

j (uj)||f∗ε,j(uj/hj)|−1duj

)2

∫
|K∗

j (uj)|2|f∗ε,j(uj/hj)|−2duj
.

Consider now case 1. Under (Hε), in the OS case, we get

‖K∗
h/f

∗
ε ‖2

1

‖K∗
h/f

∗
ε ‖2

2

.




d∏

j=1

1

hj




d∏

j=1

(∫
|K∗

j (uj)|(1 + (uj/hj)
2)βj/2duj

)2

∫
|K∗

j (uj)|2(1 + (uj/hj)2)βjduj

.




d∏

j=1

1

hj




d∏

j=1

(∫
|K∗

j (uj)|(h2
j + u2

j)
βj/2duj

)2

∫
|K∗

j (uj)|2(h2
j + u2

j)
βjduj

.




d∏

j=1

1

hj




d∏

j=1

(∫
|K∗

j (uj)|(1 + u2
j)

βj/2duj

)2

∫
|K∗

j (uj)|2u2βj

j duj

:= C(ε,K)
d∏

j=1

1

hj
.

because 0 < hj ≤ 1 and the assumptions make all integrals finite.

Consider case 2., where Kj = sinc, and use the equivalence Lemma 1. Then we get straightfor-
wardly

‖K∗
h/f

∗
ε ‖2

1

‖K∗
h/f

∗
ε ‖2

2

.

d∏

j=1

h
ρj−1
j .

Therefore h̄opt belongs to H0 if condition (16) is satisfied. Let us explain why constraint (16)
is fulfilled in the two cases of Corollary 1.

First, in case 1., it follows from (5) that h̄j,opt are such that

(
d∏

i=1

1/h̄i,opt) ≤ (
d∏

i=1

(h̄P
i,opt)

−2βi−1)(
d∏

i=1,i6=j

h̄−2bi
j,opt) ∝ n/ log(n)

for j = 1, . . . , d which implies clearly that they satisfy the constraint
∏d

j=1(1/hj) ≤ n/ log(n).
This is the reason why (16) and thus (15) hold.

Second, in case 2., the general constraint is also satisfied by the optimal bandwidths because
the negative powers on the hj ’s get smaller when ρj increases, and each time a ρj is nonzero, it
is associated to a logarithmic order for the hj ’s. Condition (16) can also easily be checked for
mixed cases. Therefore, h̄opt also belongs to H0 and Corollary 1 is proved. �

7.5. Proof of Proposition 3. In the first case, standard methods (see Tsybakov (2009) or
Kerkyacharian et al. (2001)) yield

‖fh − f‖ ≤ C(K,d, b)L

d∑

j=1

h
bj

j .
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In the Sobolev case, Parseval formula gives ‖fh − f‖2 = (2π)−d‖f∗h − f∗‖2 and

‖f∗h − f∗‖2 =

∫

(
∏d

j=1[−1/hj ,1/hj ])c

|f∗(u)|2du

≤
d∑

j=1

∫
(1 + u2

j )
−bj exp(−2aj |uj |rj )1|uj|≥1/hj

|f∗(u1, . . . , ud)|2(1 + u2
j )

bj exp(2aj |uj|rj )du1 . . . duj

. L

d∑

j=1

h
2bj

j exp(−2ajh
−rj

j ).

7.6. Proof of Proposition 4. The first bound is obtained by writing

E‖f̂h − fh‖2 =
1

(2π)d

∫
Var

(
K∗

h

f∗ε
f̂∗Y

)
≤ 1

(2π)dn

∫ ∣∣∣∣
K∗

h

f∗ε
ei〈u,Y1〉

∣∣∣∣
2

.

Now we use the bound on ‖K∗
h/f

∗
ε ‖2 proved for Proposition 2:

nV (h) .
∏

j∈SS

h
−2βj−1+ρj

j exp(2αjh
−ρj

j )
∏

j∈0S

h
−1−2βj

j =

d∏

j=1

h
−2βj−1+ρj

j exp(2αjh
−ρj

j ).

7.7. Proof of Theorem 2.

7.7.1. Proof of Theorem 2. The beginning of the proof is the same as the one of Theorem 1. Let
h ∈ H be fixed. The following decomposition holds:

(35) ‖f̌ − f‖ ≤ ‖f̂ĥ − f̂h,ĥ‖︸ ︷︷ ︸
D3

+ ‖f̂h,ĥ − f̂h‖
︸ ︷︷ ︸

D4

+ ‖f̂h − f‖.

By definition of A(h),

D3 ≤ A(h) +

√
Ṽ (ĥ).

And by definition of A(ĥ),

D4 ≤ A(ĥ) +

√
Ṽ (h).

Therefore

(36) D3 +D4 ≤ A(h) +

√
Ṽ (ĥ) +A(ĥ) +

√
Ṽ (h) ≤ 2

[
A(h) +

√
Ṽ (h)

]
,

by using the definition of ĥ. To study A(h), we can write

f̂h′ − f̂h,h′ = f̂h′ − fh′ − (f̂h,h′ − fh,h′) + fh′ − fh,h′.

But
‖fh′ − fh,h′‖ = ‖Kh′ ? (f −Kh ? f)‖ ≤ ‖K∗

h′‖∞‖f − f ? Kh‖
as ‖u ? v‖ ≤ ‖u∗‖∞‖v‖, for functions u with Fourier transform and v ∈ L2(R

d). As ‖K∗
h′‖∞ =

‖K∗‖∞, we get
‖fh′ − fh,h′‖ ≤ ‖K∗‖∞‖f − fh‖.

In the same way,
‖f̂h,h′ − fh,h′‖ ≤ ‖K∗‖∞‖f̂h′ − fh′‖.
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Then
‖f̂h′ − f̂h,h′‖ ≤ (1 + ‖K∗‖∞)‖f̂h′ − fh′‖ + ‖K∗‖∞‖f − fh‖.

We get back to the definition of A(h)

A(h) = sup
h′∈H

[
‖f̂h′ − f̂h,h′‖ −

√
Ṽ (h′)

]

+

≤ (1 + ‖K∗‖∞) sup
h′∈H

[
‖f̂h′ − fh′‖ −

√
Ṽ (h′)/(1 + ‖K∗‖∞)

]

+

+ ‖K∗‖∞‖f − fh‖.(37)

We can prove the following concentration result:

Proposition 7. [Variance concentration] Under the assumptions of Theorem 2, for all h′ in H,

P

{
‖f̂h′ − fh′‖ ≥

√
Ṽ (h′)/(1 + ‖K∗‖∞)

}
≤ exp

(
−min(η, 1)η

46
(log n)2

)

This proposition is proved below.
Then, if we define

Ω = {∀h′ ∈ H ‖f̂h′ − fh′‖ ≤
√
Ṽ (h′)/(1 + ‖K∗‖∞)},

then P (Ωc) ≤ ∑
h′∈H e

−κ(log n)2 ≤ card(H)e−κ(log n)2 with κ = min(η, 1)η/46. Now, gathering
the terms yields, on Ω, ∀h ∈ H,

‖f̌ − f‖ ≤ 2‖K∗‖∞‖f − fh‖ + 2

√
Ṽ (h) + ‖f̂h − f‖

≤ (1 + 2‖K∗‖∞)‖f − fh‖ + 2

√
Ṽ (h) + ‖f̂h − fh‖

But, on Ω, ‖f̂h − fh‖ ≤
√
Ṽ (h)/(1 + ‖K∗‖∞) ≤

√
Ṽ (h). Thus, on Ω,

‖f̌ − f‖ ≤ (1 + 2‖K∗‖∞)‖f − fh‖ + 3

√
Ṽ (h)

which ends the proof of Theorem 2. �

7.7.2. Proof of Proposition 7. Let B(0, 1) = {t ∈ L2(R
d) ∩ L1(R

d), ‖t‖ = 1}. We can note that
f̂h and fh belong to L2(R

d) ∩ L1(R
d), and

‖f̂h − fh‖ = sup
t∈B(0,1)

〈f̂h − fh, t〉 = sup
t∈B̄(0,1)

〈f̂h − fh, t〉

where B̄(0, 1) is a dense countable subset of B(0, 1) (thanks to the separability of L2(R)d, such
a set exists).

Now

〈f̂h − fh, t〉 =
1

n

n∑

i=1

|ψt(Yi) − E(ψt(Yi))] =: νn(t)

where

ψt(y) =
1

(2π)d

∫
ei〈u,y〉t∗(−u)K

∗
h(u)

f∗ε (u)
du.

then νn(t) is an empirical process, such that t 7→ νn(t) is continuous.
We can apply Talagrand Inequality recalled in Lemma 3. To this aim, we compute H2, M

and v.
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First

E

(
sup

t∈B̄(0,1)

ν2
n(t)

)
= E

(
sup

t∈B̄(0,1)

〈f̂h − fh, t〉2
)

≤ E

(
sup

t∈B̄(0,1)

‖f̂h − fh‖2‖t‖2

)

≤ E(‖f̂h − fh‖2) ≤ V (h) ≤ V (h)C(h) =: H2.

Next,

sup
t∈B̄(0,1)

‖ψt‖∞ = sup
t∈B̄(0,1)

sup
y∈Rd

∣∣∣∣
1

(2π)d

∫
ei〈u,y〉t∗(−u)K

∗
h(u)

f∗ε (u)
du

∣∣∣∣

≤ sup
t∈B̄(0,1)

1

(2π)d

(
‖t∗‖2

∫ ∣∣∣∣
K∗

h(u)

f∗ε (u)

∣∣∣∣
2

du

)1/2

≤
√
nV (h) =: M.

Last,

sup
t∈B̄(0,1)

Var(ψt(Y1)) ≤ sup
t∈B̄(0,1)

E

∣∣∣∣
1

(2π)d

∫
ei〈u,Y1〉t∗(u)

K∗
h(u)

f∗ε (u)
du

∣∣∣∣
2

≤ sup
t∈B̄(0,1)

1

(2π)2d

∫∫
t∗(u)t∗(−v)K

∗
h(u)

f∗ε (u)

K∗
h(−v)

f∗ε (−v) f
∗
Y1

(u− v)dudv

Clearly we can get first supt∈B̄(0,1) Var(ψt(Y1)) ≤ nV (h). But we can also apply Cauchy-Schwarz
Inequality with respect to the measure |f∗Y1

(u− v)|dudv and we obtain thus

sup
t∈B̄(0,1)

Var(ψt(Y1)) ≤ sup
t∈B̄(0,1)

1

(2π)2d

∫∫
|t∗(u)|2

∣∣∣∣
K∗

h(u)

f∗ε (u)

∣∣∣∣
2

|f∗Y1
(u− v)|dudv

≤ 1

(2π)2d
sup
u∈Rd

∣∣∣∣
K∗

h(u)

f∗ε (u)

∣∣∣∣
2

sup
t∈B̄(0,1)

‖t∗‖2

∫
|fY1(z)|dz

≤ 1

(2π)d
‖K∗

h/f
∗
ε ‖2

∞.

Therefore,

v :=
1

(2π)d
min(‖K∗

h/f
∗
ε ‖2

∞, ‖K∗
h/f

∗
ε ‖2).

Inequality (25) gives

P (sup
t∈B̄

|νn(t)| ≥ (1 + 2η)H) ≤ max

(
exp

(
−η

2

6

nH2

v

)
, exp

(
−min(η, 1)η

21

√
n

))
.

Now, it is sufficient to use assumption (18) to obtain nH2/v ≥ (log n)2. Moreover (1+2η)H =√
Ṽ (h)/(1 + ‖K∗‖∞). Then

P (sup
t∈B̄

|νn(t)| ≥
√
Ṽ (h)/(1 + ‖K∗‖∞)) ≤ max

(
exp

(
−η

2

6
(log n)2

)
, exp

(
−min(η, 1)η

21

√
n

))

≤ exp

(
−min(η, 1)η

46
(log n)2

)
.

�
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7.8. Proof of Corollary 2 and Corollary 3. We proceed as in the proof of Corollary 1 and
we get

‖K∗
h/f

∗
ε ‖2

2

‖K∗
h/f

∗
ε ‖2∞

≈
d∏

j=1

∫
|K∗

j (tjhj)|2|f∗ε,j(tj)|−2dtj

suptj∈R |K∗
j (tjhj)|2|f∗ε,j(tj)|−2

≈




d∏

j=1

1

hj




d∏

j=1

∫
|K∗

j (uj)|2|f∗ε,j(uj/hj)|−2duj

supuj∈R |K∗
j (uj)|2|f∗ε,j(uj/hj)|−2

.

To prove Corollary 2, consider case 1. Under (Hε), in the OS case, we get

‖K∗
h/f

∗
ε ‖2

2

‖K∗
h/f

∗
ε ‖2∞

≈




d∏

j=1

1

hj




d∏

j=1

∫
|K∗

j (uj)|(h2
j + u2

j)
βjduj

supuj∈R |K∗
j (uj)|2(h2

j + u2
j)

βj

≈




d∏

j=1

1

hj




d∏

j=1

∫
|K∗

j (uj)|(1 + u2
j )

βjduj

supuj∈R |K∗
j (uj)|2u2βj

j

:= C(ε,K)

d∏

j=1

1

hj
,

because 0 < hj < 1 and the assumptions make all terms finite.

The result of Corollary 3 is obvious. Indeed, the choice C(h) = log2(n) ensures that condition
(18) is fulfilled and thus ȟopt ∈ H.

To understand why it can not be improved, consider case 2. (in the general terminology of
Corollary 1), where Kj = sinc, and use the equivalence Lemma 1. Then we get straightforwardly

(38) max(1,
‖K∗

h/f
∗
ε ‖2

2

‖K∗
h/f

∗
ε ‖2∞

) ≈
d∏

j=1

h
−(1−ρj)+
j .

Then we obtain the same order as in case 1. above if the ρj ’s are all zero, thus the same conclusion
holds for K taken as sinc and f ordinary smooth.

It also follows from (38) that condition (18) in the definition of H is equivalent to

(39)
d∏

j=1

h
−(1−ρj )+
j C(h) & log2(n).

In the case of ordinary smooth f∗ε , consider the case where the function f is super smooth. Then
the condition (39) can be written

∏
j(1/hj)C(h & log2(n). This is not necessarily satisfied by

the optimal bandwidths which have logarithmic orders, if we only set C(h) = 1. But as the
powers of log(n) involved in ȟopt depend on the regularity of f , which is unknown, the quantity
missing to reach log2(n) is unknown. In the case of super smooth f∗ε , it is clear that if all ρj ’s
are larger than one, C(h) = log2(n) is the only possible choice for condition (39) to be fulfilled.
�

7.9. Proof of Theorem 3. The proof starts like the proof of Theorem 2 but we replace Propo-
sition 7 by a bound in expectation obtained in an analogous way, but by using equation (26)
instead of equation (25). As all bounds M,v,H have been computed in the proof of Proposition
7, we easily obtain that

E

(
‖f̂h′ − fh′‖ −

√
Ṽ (h)/(1 + ‖K∗‖∞)

)

+

≤ C

(√
v

n
e−

η2

6
n

Ṽ (h)
v +

√
V (h)

n
e−

(η∧1)η
21

√
n

)
.
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To obtain the result, we need to prove that, in case 2. of the above terminology and with our
new definition of H, we have

∑

h∈H

√
ve−

η2

6
n

Ṽ (h)
v < +∞.

Now we use the previous evaluations and in particular (38). We write C(h) =
∑d

j=1Cj(kj).
The following inequalities hold.

∑

h∈H

√
ve−

η2

6
n

Ṽ (h)
v .

∑

1≤k1,...,kd≤M




d∏

j=1

k
βj−(ρj−1)+/2
j eαjk

ρj
j



 e−κ
∑d

j=1 Cj(kj)
∏d

j=1 k
(1−ρj)+
j

.
∑

1≤k1,...,kd≤M




d∏

j=1

k
βj−(ρj−1)+/2
j eαjk

ρj
j



 e−κ
∑d

j=1 Cj(kj)k
(1−ρj)+
j

.

d∏

j=1




∑

1≤k≤M

kβj−(ρj−1)+/2eαjkρj−κCj(k)k(1−ρj )+



 := Σ,

where κ can be specified in function of η2/6 and the constants involved in Lemma 1. This explains
why we choose Cj(k) = 1 if 0 ≤ ρj < 1/2 which corresponds to the case where kρj < k(1−ρj)+ =

k1−ρj . We choose Cj(k) = (2αj/κ)k
2ρj−1 if 1/2 ≤ ρj < 1 because then αjk

ρj −κCj(k)k
(1−ρj )+ =

−αjk
ρj . In the same way, we take Cj(k) = (2αj/κ)k

ρj if ρj > 1. Then the sums over k are
bounded and Σ < +∞. These values give formula (24) which is overestimated by the proposal
(22) in order to avoid the specification of tedious constants.
Thus, we have

∑

h′∈HM

E

(
‖f̂h′ − fh′‖ −

√
Ṽ (h)/(1 + ‖K∗‖∞)

)

+

≤ C

(
Σ√
n

+ card(HM )e−
(η∧1)η

21

√
n

)
≤ C ′

√
n

since card(HM ) ≤ nd.
Therefore, it follows from (37) that, as ‖K∗‖∞ = 1 for K =sinc, then

E(A(h)) ≤ 2C ′
√
n

+ 2‖f − fh‖

and inserting this in (35) and (36) yields

E(‖f̌ − f‖) ≤ 3‖f − fh‖ + 3

√
Ṽ (h) +

2C ′
√
n
,

which is (23). This ends the proof of Theorem 3. �

7.10. Proof of Proposition 5. First, note that Neumann’s Lemma 2.1 (see Neumann (1997),
and in particular the proof of the Lemma 2.1 page 323) can be straightforwardly extended to
the multivariate setting. Define

R(t) =
1

f̃∗ε (t)
− 1

f∗ε (t)
.

The result can be written

E
(
|R(t)|2

)
≤ C

(
1

|f∗ε (t)|2 ∧ N−1

|f∗ε (t)|4
)
.
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Then the following decomposition holds:

‖fh − f̄h‖ =
1

(2π)d/2

∥∥∥∥∥K
∗
h

[
f̂∗Y − f∗Y
f∗ε

+ (f̂∗Y − f∗Y )R+ f∗YR

]∥∥∥∥∥

and thus

E(‖fh − f̄h‖2) .

∫
|K∗

h(t)|2 E[|fY (t) − f̂∗Y (t)|2]
|f∗ε (t)|2 dt

+

∫
|K∗

h(t)|2E[|fY (t) − f̂∗Y (t)|2]E(|R(t)|2)dt +

∫
|K∗

h(t)|2|f∗Y (t)|2E[|R(t)|2]dt

.
1

n

∥∥∥∥
K∗

h

f∗ε

∥∥∥∥
2

+
1

n

∥∥∥∥
K∗

h

f∗ε

∥∥∥∥
2

+N−1

∥∥∥∥
K∗

hf
∗

f∗ε

∥∥∥∥
2

where the second term is obtained by bounding R(t) by 1/|f∗ε (t)|2 and the last one uses the
second bound of R(t) and the fact that f∗Y = f∗f∗ε . The first two terms are V (h) and the last
one is W (h). Thus, we obtain E(‖fh − f̄h‖2) . V (h) +W (h). �
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