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Abstract

This paper studies the deviations of the regret in a stochastic multi-armed bandit problem.
When the total number of plays n is known beforehand by the agent, Audibert et al. (2009)
exhibit a policy such that with probability at least 1 − 1/n, the regret of the policy is of
order log n. They have also shown that such a property is not shared by the popular ucb1
policy of Auer et al. (2002). This work first answers an open question: it extends this
negative result to any anytime policy. The second contribution of this paper is to design
anytime robust policies for specific multi-armed bandit problems in which some restrictions
are put on the set of possible distributions of the different arms.

1 Introduction

Bandit problems illustrate the fundamental difficulty of sequential decision making in the face of
uncertainty: a decision maker must choose between following what seems to be the best choice in
view of the past (“exploitation”) or testing (“exploration”) some alternative, hoping to discover a
choice that beats the current empirically best choice. More precisely, in the stochastic multi-armed
bandit problem, at each stage, an agent (or decision maker) chooses one action (or arm), and receives
a reward from it. The agent aims at maximizing his rewards. Since he does not know the process
generating the rewards, he does not know the best arm, that is the one having the highest expected
reward. He thus incurs a regret, that is the difference between the cumulative reward he would have
get by always drawing the best arm and the cumulative reward he actually gets. The name “bandit”
comes from imagining a gambler in a casino playing with K slot machines, where at each round, the
gambler pulls the arm of any of the machines and gets a payoff as a result.

The multi-armed bandit problem is the simplest setting where one encounters the exploration-
exploitation dilemma. It has a wide range of applications including advertisement (Babaioff et al.,
2009, Devanur and Kakade, 2009), economics (Bergemann and Valimaki, 2008, Lamberton et al.,
2004), games (Gelly and Wang, 2006) and optimization (Kleinberg, 2005, Coquelin and Munos, 2007,
Kleinberg et al., 2008, Bubeck et al., 2009). It can be a central building block of larger systems, like
in evolutionary programming (Holland, 1992) and reinforcement learning (Sutton and Barto, 1998),
in particular in large state space Markovian Decision Problems (Kocsis and Szepesvári, 2006). Most
of these applications require that the policy of the forecaster works well for any time. For instance,
in tree search using bandit policies at each node, the number of times the bandit policy will be
applied at each node is not known beforehand (except for the root node in some cases), and the
bandit policy should thus provide consistently low regret whatever the total number of rounds is.

Most previous works on the stochastic multi-armed bandit (Robbins, 1952, Lai and Robbins,
1985, Agrawal, 1995, Auer et al., 2002, among others) focused on the expected regret, and showed
that after n rounds, the expected regret is of order log n. So far, the analysis of the upper tail
of the regret was only addressed in Audibert et al. (2009). The two main results there about the
deviation of the regret are the following. First, after n rounds, for large enough constant C > 0, the
probability that the regret of ucb1 (and also its variant taking into account the empirical variance)

exceeds C log n is upper bounded by 1/(log n)C
′

for some constant C ′ depending on the distributions
of the arms and on C (but not on n). Second, a new upper confidence bound policy was proposed:
it requires to know the total number of rounds in advance and uses this knowledge to design a policy
which essentially explores in the first rounds and then exploits the information gathered in the



exploration phase. Its regret has the advantage of being more concentrated to the extent that with
probability at least 1 − 1/n, the regret is of order log n. The problem left open by Audibert et al.
(2009) is whether it is possible to design an anytime robust policy, that is a policy for which for any
n, with probability at least 1−1/n, its regret is of order log n. In this paper, we answer negatively to
this question when the reward distributions of all arms are just assumed to be uniformly bounded,
say all rewards are in [0, 1] for instance (Corollary 3.4). We then study which kind of restrictions on
the set of probabilities defining the bandit problem allows to answer positively. One of our positive
results is the following: if the agent knows the value of the expected reward of the best arm (but
does not know which arm is the best one), the agent can use this information to design an anytime
robust policy (Theorem 4.3).

2 Problem setup and definitions

In the stochastic multi-armed bandit problem with K ≥ 2 arms, at each time step t = 1, 2, . . . ,
an agent has to choose an arm It in the set {1, . . . ,K} and obtains a reward drawn from νIt
independently from the past (actions and observations). The environment is thus parameterized by
a K-tuple of probability distributions θ = (ν1, . . . , νK). The agent aims at maximizing his rewards.
He does not know θ but knows that it belongs to some set Θ. We assume for simplicity that Θ ⊂ Θ̄,
where Θ̄ denotes the set of all K-tuple of probability distributions on [0, 1]. We thus assume that
the rewards are in [0, 1].

For each arm k and all times t ≥ 1, let Tk(t) =
∑t

s=1 ✶Is=k denote the number of times arm k was
pulled from rounds 1 to t, and by Xk,1, Xk,2, . . . , Xk,Tk(t) the sequence of associated rewards. For

an environment parameterized by θ =
(
ν1, . . . , νK), let Pθ denote the distribution on the probability

space such that for any k ∈ {1, . . . ,K}, the random variables Xk,1, Xk,2, . . . are i.i.d. realizations
of νk, and such that these K infinite sequence of random variables are independent. Let Eθ denote
the associated expectation.

Let µk =
∫
xdνk(x) be the mean reward of arm k. Introduce µ∗ = maxk∈{1,...,K} µk and

k∗ ∈ argmaxk∈{1,...,K} µk, that is k∗ has the best expected reward. The suboptimality of arm k
is measured by ∆k = µ∗ − µk. The agent aims at minimizing its regret defined as the difference be-
tween the cumulative reward he would have get by always drawing the best arm and the cumulative
reward he actually gets. At time n ≥ 1, its regret is thus

R̂n =
n∑

t=1

Xk∗,t −
n∑

t=1

XIt,TIt
(t).

The expectation of this regret has a simple expression in terms of the suboptimalities of the arms
and the expected sampling times of the arms at time n. Precisely, we have

EθR̂n =

K∑

k=1

∆kEθ[Tk(n)]. (1)

Our main interest is the study of the deviations of the regret R̂n, i.e. the value of Pθ(R̂n ≥ x) when

x is in the order of EθR̂n. If a policy has small deviations, it means that the risks involved by its
decisions are smaller, and also, as our simulations will demonstrate it *** to be done ***, that
the expectation of the regret tends to be smaller. This can also be explained by the formula:

EθR̂n ≤ Eθ max(R̂n, 0) =

∫ +∞

0

Pθ

(
R̂n ≥ x

)
dx.

To a lesser extent it is also interesting to study the deviations of the sampling times Tn(k), as this
shows the ability of a policy to match the best arm. Moreover our analysis is mostly based on results
on the deviations of the sampling times, which then enables to derive results on the regret. We thus
define below the notion of being f -upper tailed for both quantities.
Define R

∗
+ = {x ∈ R : x > 0}, and let ∆ = mink 6=k∗ ∆k the gap between the best arm and second

best arm. Note that the case ∆ = 0 is degenerated as the sampling times of Tk(n) for k 6= k∗ such
that µk = µk∗ will in general no longer be logarithmic in n, and the definition of the regret is then
ambiguous since k∗ is not unique.

Definition 1 (f-T and f-R) Consider a mapping f : R → R
∗
+. A policy has f -upper tailed

sampling Times (in short, we will say that the policy is f -T) if and only if

∃C, C̃ > 0, ∀θ ∈ Θ such that ∆ 6= 0, ∀n ≥ 2, ∀k 6= k∗, Pθ

(
Tk(n) ≥ C

log n

∆2
k

)
≤ C̃

f(n)
.
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A policy has f -upper tailed Regret (in short, f -R) if and only if

∃C, C̃ > 0, ∀θ ∈ Θ such that ∆ 6= 0, ∀n ≥ 2, Pθ

(
R̂n ≥ C

log n

∆

)
≤ C̃

f(n)
.

In this definition, we considered that the number K of arms is fixed, meaning that C and C̃ may
depend on K. The thresholds considered on Tk(n) and R̂n directly come from known tight upper
bounds on the expectation of these quantities for several policies. To illustrate this, let us recall the

definition and properties of the popular ucb1 policy. Let X̂k,s =
1
s

∑s
t=1 Xk,t be the empirical mean

of arm k after s pulls. In ucb1, the agent plays each arm once, and then (from t ≥ K +1), he plays

It ∈ argmax
k∈{1,...,K}

{
X̂k,t−1 +

√
2 log t

Tk(t− 1)

}
. (2)

While the first term in the bracket ensures the exploitation of the knowledge gathered during steps
1 to t − 1, the second one ensures the exploration of the less sampled arms. For this policy, Auer
et al. (2002) proved:

∀n ≥ 3, E[Tk(n)] ≤ 12
log n

∆2
k

and EθR̂n ≤ 12

K∑

k=1

log n

∆k
≤ 12K

log n

∆
.

Lai and Robbins (1985) showed that these results cannot be improved up to numerical constants.
Audibert et al. (2009) proved that ucb1 is log3-T and log3-R where log3 is the function x 7→ [log(x)]3.
Besides, they also study the case when 2 log t is replaced by ρ log t in (2) with ρ > 0, and proved
that this modified ucb1 is log2ρ−1-T and log2ρ−1-R for ρ > 1/2, and that ρ = 1

2 is actually a critical
value, since for ρ < 1/2, the policy does not even have a logarithmic regret guarantee in expectation.
Another variant of ucb1 proposed by Audibert et al. is to replace 2 log t by 2 log n in (2) when we
want to have low and concentrated regret at a fixed given time n. We refer to it as ucb-h as its
implementation requires the knowledge of the horizon n of the game. The behaviour of ucb-h on
the time interval [1, n] is significantly different to the one of ucb1, as ucb-h will explore much more
at the beginning of the interval, and thus avoids exploiting the suboptimal arms on the early rounds.
Up to a change in the former definitions (n fixed, no “∀n ≥ 2”), Audibert et al. showed that ucb-h
is Id-T and Id-R where Id is the identity function.

We now introduce the weak notion of f -upper tailed as this notion will be used to get our
strongest impossibility results.

Definition 2 (f-wT and f-wR) Consider a mapping f : R → R
∗
+. A policy has weak f -upper

tailed sampling Times (in short, we will say that the policy is f -wT) if and only if

∀θ ∈ Θ such that ∆ 6= 0, ∃C, C̃ > 0, ∀n ≥ 2, ∀k 6= k∗, Pθ

(
Tk(n) ≥ C

log n

∆2
k

)
≤ C̃

f(n)
.

A policy has weak f -upper tailed Regret (in short, f -wR) if and only if

∀θ ∈ Θ such that ∆ 6= 0, ∃C, C̃ > 0, ∀n ≥ 2, Pθ

(
R̂n ≥ C

log n

∆

)
≤ C̃

f(n)
.

The only difference between f -T and f -wT (and between f -R and f -wR) is the interchange

of “∀θ” and “∃C, C̃”. Consequently, a policy that is f -T (respectively f -R) is f -wT (respectively
f -wR). Let us detail the links between the f -T, f -R, f -wT and f -wR.

Proposition 2.1 Assume that there exists α, β > 0 such that f(n) ≤ αnβ for any n ≥ 2. We have

f -T ⇒ f -R ⇒ f -wR ⇔ f -wT.

3 Impossibility result

In the previous section, we have mentioned that for any α > 0, there is a variant of ucb1 (obtained
by changing 2 log t into 1+α

2 log t in (2)) which is logα-T, and hence logα-R. The following result
shows that it is impossible to find a policy that could be more robust than these policies. For
many usual settings (e.g., when Θ is the set Θ̄ of all K-tuples of measures on [0, 1]), the agent is
too easily stuck drawing a suboptimal arm he believes best. Precisely, this situation arises when
simultaneously:
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(a) an arm k delivers payoffs according to a same distribution νk in two distinct environments θ

and θ̃,

(b) arm k is optimal in θ but suboptimal in θ̃,

(c) in environment θ̃, other arms may behave as in environment θ.

The forecaster has to choose arm k often enough, in case the current environment were θ. As arm
k delivers payoffs according to the same law in both environments, these payoffs do not help to
distinguish θ̃ from θ at all. The other arms can help to point out the difference, but they are not
chosen often enough. This is in fact this kind of situation that have to be taken into account when
balancing a policy between exploitation and exploration.

Before stating our main result, which formalizes the leads given above, let us detail the third
condition. To this aim, let us remind the following result.

Theorem 3.1 (Lebesgue-Radon-Nikodym theorem) Let µ1 and µ2 be σ-finite measures. There

exists a µ2-integrable function dµ1

dµ2
and a σ-finite measure m such that m and µ2 are singular1 and

µ1 =
dµ1

dµ2
· µ2 +m.

The density dµ1

dµ2
is unique up to µ2-negligible event.

We adopt the convention that dµ1

dµ2
= +∞ on the complementary of the support of µ2.

Lemma 3.2 We have

• µ1

(
dµ1

dµ2
= 0
)
= 0.

• µ2

(
dµ1

dµ2
> 0
)
> 0 ⇔ µ1

(
dµ2

dµ1
> 0
)
> 0.

Proof: The first point is a clear consequence of the decomposition µ1 = dµ1

dµ2
· µ2 + m and of the

convention mentioned above. For the second point, one can write by uniqueness of the decomposition:

µ2

(
dµ1

dµ2
> 0

)
= 0 ⇔ dµ1

dµ2
= 0 µ2 − a.s. ⇔ µ1 = m ⇔ µ1 and µ2 are singular.

And by symmetry of the roles of µ1 and µ2:

µ2

(
dµ1

dµ2
> 0

)
> 0 ⇔ µ1 and µ2 are not singular ⇔ µ1

(
dµ2

dµ1
> 0

)
> 0.

One may be able to distinguish environment θ from θ̃ if a certain arm ℓ delivers a payoff that
is infinitely more likely in θ̃ than in θ. This is for instance the case if Xℓ,t is in the support of ν̃ℓ
and not in the support of νℓ, but our condition is more general. If the agent observes an payoff
x from arm ℓ, the quantity dνℓ

dν̃ℓ
(x) represents how much the observation of x makes environment θ

more likely than θ̃. Thus the agent will almost never make a mistake if he removes θ from possible
environments when dνℓ

dν̃ℓ
(x) = 0. This may happen even if x is in both supports of νℓ and ν̃ℓ, for

example if x is an atom of ν̃ℓ and not of νℓ. On the contrary, if dνℓ

dν̃ℓ
(x) > 0 both environments θ and

θ̃ are likely and arm ℓ’s behaviour is both consistent with θ and θ̃.

Theorem 3.3 Let f : N → R
∗
+ be greater than order logα, that is for any α > 0, f ≫+∞ logα.

Assume that there exists θ, θ̃ ∈ Θ, and k ∈ {1, . . . ,K} such that:

(a) νk = ν̃k,

(b) k is the index of the best arm in θ but not in θ̃,

1Two measures µ1 and µ2 on a measurable space (Ω,F) are singular if and only if there exists two disjoint
measurable sets A1 and A2 such that A1 ∪A2 = Ω, µ1(A2) = 0 and µ2(A1) = 0.
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(c) ∀ℓ 6= k, Pθ̃

(
dνℓ

dν̃ℓ
(Xℓ,1) > 0

)
> 0.

Then there is no f -wT policy, and hence no f -R policy.

Let us give some hints of the proof (see section 5 for details). The main idea is to consider a
policy that would be f -wT, and in particular that would “work well” in environment θ in the sense
given by the definition of f -wT. The proof exhibits a time at which arm k, optimal in environment
θ and thus often drawn with high Pθ-probability, is drawn too many times (more than the loga-
rithmic threshold) with not so small Pθ̃-probability, which shows the nonexistence of such a policy.
More precisely, let n be large enough and consider a time N of order log n and above the threshold.
If the policy is f -wT, at time N , sampling times of suboptimal arms are of order logN at most,
with Pθ-probability at least 1 − C̃/f(N). In this case, at time N , the draws are concentrated on
arm k. So Tk(N) is of order N , which is more than the threshold. This event holds with high
Pθ-probability. Now, from (a) and (c), we exhibit constant that are characteristic of the ability of
arms ℓ 6= k to “behave as if in θ”: for some 0 < a, η < 1, there is a subset ξ of this event such that
Pθ(ξ) ≥ aT for T =

∑
ℓ 6=k Tℓ(N) and for which dPθ

dP
θ̃

is lower bounded by ηT . The event ξ on which

the arm k is sampled of order N times at least has therefore a probability of order (ηa)T at least.

This concludes this sketchy proof since T is of order logN , thus (ηa)T is of order loglog(ηa) n at least.

Note that the condition given in theorem 3.3 are not very restrictive. The impossibility holds for
very basic settings, and may hold even if the agent has great knowledges of the possible environments.
For instance, the setting

K = 2 and Θ =

{(
Ber(

1

4
), δ 1

2

)
,

(
Ber(

3

4
), δ 1

2

)}

satisfies the tree conditions of the theorem.
Nevertheless, the main interest of the result regarding the previous literature is the following corol-
lary.

Corollary 3.4 If Θ is the whole set Θ̄ of all K-tuples of measures on [0, 1], then there is no f -R
policy, where f is any function such that f ≫+∞ logα for all α > 0.

This corollary should be read in conjunction of the following result for ucb-h which, for a given
n, plays at time t ≥ K + 1,

It ∈ argmax
k∈{1,...,K}

{
X̂k,t−1 +

√
2 log n

Tk(t− 1)

}
.

Theorem 3.5 For any β > 0, ucb-h satisfies

∃C, C̃ > 0, ∀θ ∈ Θ such that ∆ 6= 0, Pθ

(
R̂n ≥ C

log n

∆

)
≤ C̃

nβ
.

Of course, nβ ≫n→+∞ logα(n) for all α, β > 0 but this does not contradict our theorem, since
we are dealing with anytime policies. ucb-h will work fine if n is known in advance, but may do
terrible at other rounds. In particular and as any policy, it can not achieve anytime polynomial
regret concentration.

Corollary 3.4 should also be read in conjunction of the following result for the policy ucb1(ρ)
which plays at time t ≥ K + 1,

It ∈ argmax
k∈{1,...,K}

{
X̂k,t−1 +

√
ρ log t

Tk(t− 1)

}
.

Theorem 3.6 For any ρ > 1/2, ucb1
(
ρ) is log2ρ−1-R.

Thus, any improvements of existing algorithms which would for instance involve estimations of
variance (see Audibert et al. (2009)), of ∆k, or of many characteristics of the distributions cannot

beat the variants of ucb1 regarding deviations. One may at best improve constants C, C̃, and this
is equivalent to changing f into fβ for a given β > 1. Nevertheless, one can not improve f , i.e. find
a better one, f̃ , such that f/f̃ →+∞ 0.
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Let us denote Θk = {θ ∈ Θ|k is the optimal arm in θ}.

Proceed as follows:

• Draw each arm once.

• Remove each θ ∈ Θ such that there exists θ̃ ∈ Θ and ℓ ∈ {1, . . . ,K} with
dνℓ
dν̃ℓ

(Xℓ,1) = 0.

• Then at each round t, play an arm

It ∈ argmin
k∈{1,...,K}

Tk(t− 1) inf
θ∈Θk

∥

∥F̂k,Tk(t−1) − Fνk

∥

∥

2

∞
.

Figure 1: c.d.f.-based algorithm.

4 Positive results

The intuition behind Theorem 3.3 suggests that, if one of the three conditions does not hold, a
robust policy would consist in the following: at each round and for each arm k, compute a distance
between the empirical distribution of arm k and the set of distribution νk that makes arm k optimal
in a given environment θ. Thus, the agent chooses an arm that fits better a winning distribution νk.
He can not get stuck pulling a suboptimal arm because there are no environments θ̃ with νk = ν̃k
in which k would be suboptimal. More precisely, if there exists such an environment θ̃, the agent is
able to distinguish θ from θ̃ because, during the first rounds, he pulls every arms and at least one
of them will not behave as if in θ if the current environment is θ̃.
Nevertheless, such a policy cannot work in general:

• If θ̃ is the current environment and even if the agent has identified θ as impossible, there still
could be other environments that are arbitrary close to θ in which arm k is optimal and which
the agent is not able to distinguish from θ̃.

• The ability to identify environments as impossible relies on the fact that the event dνk

dν̃k
(Xk,1) > 0

is almost sure under Pθ (see Lemma 3.2). If the set of all environments Θ is not discountable,
such a criterion can lead to exclude the actual environment. For instance, assume an agent
has to distinguish a distribution among all Dirac measures δx (x ∈ [0, 1]) and the uniform
probability λ over [0, 1]. Whatever the payoff x observed by the agent, he will always exclude
λ from the possible distributions, as x is always infinitely more likely under δx than under λ:

∀x ∈ [0, 1],
dλ

dδx
(x) = 0.

• On the contrary, the agent could legitimately consider an environment θ as unlikely if, for ε > 0
small enough, there exists θ̃ such that dνk

dν̃k
(Xk,1) ≤ ε.2 The former criterion only consider as

unlikely an environment θ when there exists θ̃ such that dνk

dν̃k
(Xk,1) = 0.

In this section we give sufficient conditions on Θ for such a policy to be robust, and this is equiva-
lent to finding conditions under which the converse of Theorem 3.3 holds. We estimate distributions
of each arm by means of their empirical cumulative distribution functions, and distance between two
c.d.f. is measured thanks to the norm ‖.‖∞, defined by ‖F‖∞ = sup[0,1] |F |. The empirical c.d.f of

arm k after having been pulled t times is denoted F̂k,t. The way we choose an arm at each round

is based on confidence areas around F̂k,Tk(n−1). We choose the greater confidence level such that

there is still an arm k and a winning distribution νk such that Fνk
is in the area of F̂k,Tk(n−1). We

then select the corresponding arm k. By means of Massart’s inequality (1990), this leads to a c.d.f.
based algorithm described in Figure 1.

2Note that an algorithm that includes this ability would be hard to balance.
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Let us denote Θk = {θ ∈ Θ|k is the optimal arm in θ}.

Proceed as follows:

• Draw each arm once.

• Then at each round t, play an arm

It ∈ argmin
k∈{1,...,K}

Tk(t− 1) inf
θ∈Θk

(

µk − X̂k,Tk(t−1)

)2

,

where X̂k,t is the empirical mean of arm of k after having been pulled t times.

Figure 2: c.d.f.-based algorithm in case of Bernoulli laws.

4.1 Θ is finite

When Θ is finite, none of the three limitations presented above holds, so that the converse of Theorem
3.3 is true and our algorithm is robust.

Theorem 4.1 Assume that Θ is finite and that for all θ = (ν1, . . . , νK), θ̃ = (ν̃1, . . . , ν̃K) ∈ Θ, and
k ∈ {1, . . . ,K}, at least one of the following holds:

• νk 6= ν̃k,

• k is suboptimal in θ, or is optimal in θ̃.

• ∃ℓ 6= k, Pθ̃

(
dνℓ

dν̃ℓ
(Xℓ,1) > 0

)
= 0.

Then the c.d.f. based algorithm is Idβ-T (and hence Idβ-R) for all β > 0.

4.2 Bernoulli laws

We assume that any νk (k ∈ {1, . . . ,K}, θ ∈ Θ) is a Bernoulli law (whose parameter is µk), and that
there exists γ ∈ (0, 1) such that µk ∈ [γ, 1] for all k and all θ.3 Moreover we may denote arbitrary

environments θ, θ̃ by θ = (µ1, . . . , µK) and θ̃ = (µ̃1, . . . , µ̃K).

In this case, the event
{
∀θ̃ ∈ Θ, ∀ℓ ∈ {1, · · · ,K}, dνℓ

dν̃ℓ
(Xℓ,1) > 0

}
is Pθ-a.s. for all θ so that the

impossibility result only relies on conditions (a) and (b) of Theorem 3.3. This theorem can be
modified to cover any settings, and our algorithm can be made simpler (see Figure 2).

Theorem 4.2 For any θ ∈ Θ and any k ∈ {1, . . . ,K}, let us set

dk = inf
θ̃∈Θk

|µk − µ̃k|.

Then c.d.f.-based algorithm is such that:

∀β > 0, ∃C, C̃ > 0, ∀θ ∈ Θ, ∀n ≥ 1, ∀k ∈ {1, . . . ,K}, Pθ

(
Tk(n) ≥

C log n

d2k

)
≤ C̃

nβ
.

Let f : N∗ → R
∗
+ be greater than order logα: ∀α > 0, f ≫+∞ logα.

If there exists k such that

(a’) inf
θ∈ΘrΘk

dk = inf
θ ∈ Θk

θ̃ ∈ Θ r Θk

|µk − µ̃k| = 0,

then there is no policy such that:

∃C, C̃ > 0, ∀θ ∈ Θ, ∀n ≥ 2, ∀k 6= k∗, Pθ (Tk(n) ≥ C log n) ≤ C̃

f(n)
.

3The result also holds if all parameters pk are in a given interval [0, γ], γ ∈ (0, 1).
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Proceed as follows:

• Draw each arm once.

• Then at each round t, play an arm

It ∈ argmin
k∈{1,...,K}

Tk(t− 1) inf
θ∈Θk

(

µ
∗ − X̂k,Tk(t−1)

)2

,

where X̂k,t is the empirical mean of arm of k after having been pulled t times.

Figure 3: Variant of c.d.f.-based algorithm when µ∗ is known.

Note that we do not adopt the former definitions of robustness (f − R and f − T ), because the
significant term here is dk (and not ∆k), which represents the distance between Θk and Θ r Θk.
Indeed robustness lies on the ability to distinguish environments, and this ability is all the more
stronger as the distance between the parameters of these environments is greater. Provided that the
density dν

dν̃ is uniformly bounded away from zero, the theorem holds for any parametric model, with
dk being defined with a norm on the space of parameters (instead of |.|).
Note also that the second part of the theorem is a bit weaker than impossibility theorem 3.3, because
of the interchange of “∀θ” and “∃C, C̃”. The reason for this is that condition (a) is replaced by a
weaker assumption: νk does not equal ν̃k, but condition (a’) means that such νk and ν̃k can be
chosen arbitrarily close.

4.3 µ∗ is known

This section shows that the impossibility result also breaks down if µ∗ is known by the agent. This
situation is formalized as µ∗ being constant over Θ. The first and second conditions of Theorem 3.3
do not hold: if a distribution νk makes arm k optimal in an environment θ, it is still optimal in any
environment θ̃ such that ν̃k = νk.
In this case, our algorithm can be made simpler (see Figure 3). At each round we choose the greater

confidence level such that at least one empirical mean X̂k,Tk(t−1) has µ∗ in its confidence interval,
and select the corresponding arm k. This is similar to the previous algorithm, deviations being
evaluated thanks to Hoeffding’s inequality instead of Massart’s one.

Theorem 4.3 When µ∗ is known, the variant of the c.d.f.-based algorithm is Idβ for all β > 0.

5 Proofs

5.1 Proof of Proposition 2.1

f -T ⇒ f -R: When a policy is f -T, by a union bound, the event

ξ1 =

{
∃k ∈ {1, . . . ,K}, Tk(n) ≥ C

log n

∆2
k

}

occurs with probability at most KC̃
f(n) . Introduce Sk,s =

∑s
t=1(Xk,t − µk). Since we have

n∑

t=1

XIt,TIt
(t) =

K∑

k=1

Sk,Tk(n) +

K∑

k=1

Tk(n)µk,

we have
R̂n = Sk∗,n − Sk∗,Tk∗ (n) −

∑

k 6=k∗

Sk,Tk(n) +
∑

k 6=k∗

∆kTk(n). (3)

Let T =
∑

k 6=k∗ Tk(n) = n − Tk∗(n), t∗ =
∑

k 6=k∗ C
logn
∆2

k

, and W = max0≤s≤t∗(Sk∗,n − Sk∗,n−s).

Since Sk∗,n − Sk∗,Tk∗ (n) ≤ W on the complement ξc1 of ξ1, we have

R̂n ≤ n✶ξ1 +W −
∑

k 6=k∗

Sk,Tk(n) +
∑

k 6=k∗

∆kTk(n). (4)
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Consider the events

ξ2 =

{
W >

∑

k 6=k∗

√
Cβ

2

log n

∆k

}
,

ξ3,k =

{
max

1≤s≤C log n

∆2
k

(−Sk,s) >

√
Cβ

2

log n

∆k

}
,

and
ξ = ξ1 ∪ ξ2 ∪

k 6=k∗

ξ3,k.

From Hoeffding’s maximal inequality, we have

Pθ(ξ2) ≤ exp

(
−

2
(∑

k 6=k∗

√
Cβ/2 logn

∆k

)2
∑

k 6=k∗ (C log n)/∆2
k

)
≤ exp

(
− β log n

)
=

1

nβ
≤ α

f(n)
.

We also use Hoeffding’s maximal inequality to control Pθ(ξ3,k):

Pθ(ξ3,k) ≤ exp

(
−

2
(√

Cβ/2 logn
∆k

)2

(C log n)/∆2
k

)
=

1

nβ
≤ α

f(n)
.

By gathering the previous results using a union bound, we have P(ξ) ≤ 2α+C̃
f(n) . Besides on the

complement of ξ, by using (4), we have

R̂n <
∑

k 6=k∗

√
Cβ

2

log n

∆k
+
∑

k 6=k∗

√
Cβ

2

log n

∆k
+
∑

k 6=k∗

C log n

∆k
.

We have thus proved that

∀θ ∈ Θ, ∀n ≥ 1, Pθ

(
R̂n ≥ (C +

√
2Cβ)

log n

∆

)
≤ C̃ + 2α

f(n)
,

hence the policy is f -R.
f -wT ⇒ f -wR: it is exactly the same proof as for f -T ⇒ f -R since the core of the argument is

independent of the position of “∀θ” with respect to “∃C, C̃”.
f -wR ⇒ f -wT: let us prove the contrapositive. So we assume

∃θ ∈ Θ such that ∆ 6= 0, ∀C ′, C̃ ′ > 0, ∃n ≥ 1, ∃k 6= k∗, Pθ

(
Tk(n) ≥ C ′ log n

∆2
k

)
>

C̃ ′

f(n)
. (5)

It is enough to prove that for this θ, we have

∀C > 9K/∆, ∀C̃ > α, ∃n ≥ 1,Pθ

(
R̂n ≥ C

log n

∆

)
>

C̃

f(n)
.

To achieve this, we consider C ′ = (β + 2)C/∆ and C̃ ′ = max
(
2C̃,maxm≤K f(m)

)
in (5) and let

k′ 6= k∗ be such that the event

ξ′ =

{
Tk′(n) ≥ C ′ log n

∆2
k′

}

holds with probability greater than C̃ ′/f(n) = 2C̃/f(n). From (5) and using C̃ ′ ≥ maxm≤K f(m),

we necessarily have n ≥ K. Let L = log
( f(n)

C̃
nK
)
and

ξ′′ =

{
∀k 6= k∗, ∀s ∈ {1, . . . , n}, |Sk,s| ≤

√
sL

2

}
⋂
{
∀s ∈ {1, . . . , n}, |Sk∗,n−Sk∗,n−s| ≤

√
sL

2

}
.

By Hoeffding’s inequality and a union bound, this event holds with probability at least 1− C̃/f(n).

As a consequence, we have P(ξ′ ∩ ξ′′) > C̃/f(n). We now prove that on the event ξ′ ∩ ξ′′, we have

R̂n ≥ C
log n

∆
.
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First note that for any a > 0 the function s 7→ as −
√
2sL is decreasing on

[
0, L

2a2

]
and increasing

on
[

L
2a2 ,+∞

)
, and that

Tk′(n) ≥ C ′ log n

∆2
k′

≥ CL

∆2
k′

,

since f(n)

C̃
nK ≤ αnβ

α n2 = nβ+2 ≤ nC′/C . Then, by using (3) and Tk∗(n) = n −∑k 6=k∗ Tk(n), we

have

R̂n ≥ −|Sk∗,n − Sk∗,Tk∗ (n)| −
∑

k 6=k∗

|Sk,Tk(n)|+
∑

k 6=k∗

∆kTk(n)

≥ −

√
L
∑

k 6=k∗ Tk(n)

2
−
∑

k 6=k∗

√
LTk(n)

2
+
∑

k 6=k∗

∆kTk(n)

≥
∑

k 6=k∗

(
∆kTk(n)−

√
2Tk(n)L

)

≥ ∆k′Tk′(n)

2
+

(
∆k′Tk′(n)

2
−
√
2LTk′(n)

)
+

∑

k 6=k∗,k 6=k′

min
s≥1

(
∆ks−

√
2Ls

)

≥ C ′ log n

2∆k′

+

(
C

2
−
√
2C

)
L

∆k′

−
∑

k 6=k∗,k 6=k′

L

2∆k

≥ C ′ log n

2∆k′

+
C

6

L

∆k′

− KL

2∆
≥ C ′ log n

2∆k′

≥ C
log n

∆
,

which ends the proof of the contrapositive.

5.2 Proof of Theorem 3.3

Let us first notice that a policy is f -wT if and only if

∀θ ∈ Θ such that ∆ 6= 0, ∃C, C̃ > 0, ∀n ≥ 2, ∀k 6= k∗, Pθ (Tk(n) ≥ Clog n) ≤ C̃

f(n)
.

This means that we can remove the ∆ℓ denominator without altering the definition of f -wT. Note
that this would not be possible for the f -T definition owing to the different position of “∀θ” with
respect to “∃C, C̃”.

Let us assume that the policy has the f -upper tailed property in θ, i.e., there exists C, C̃ > 0

∀N ≥ 2, ∀ℓ 6= k, Pθ

(
Tℓ(N) ≥ C logN

)
≤ C̃

f(N)
. (6)

Let us show that this implies that the policy cannot have also the f -upper tailed property in θ̃. To
prove the latter, it is enough to show that for any C ′, C̃ ′ > 0

∃n ≥ 2, Pθ̃

(
Tk(n) ≥ C ′ log n

)
>

C̃ ′

f(n)
. (7)

since k is suboptimal in environment θ̃. Note that proving (7) for C ′ = C is sufficient. Indeed if (7)
holds for C ′ = C, it a fortiori holds for C ′ < C. Besides, when C ′ > C, (6) holds for C replaced by
C ′, and we are thus brought back to the situation when C = C ′. So we only need to lower bound
Pθ̃

(
Tk(n) ≥ C log n

)
.

From Lemma 3.2, Pθ̃

(
dνℓ

dν̃ℓ
(Xℓ,1) > 0

)
> 0 is equivalent to Pθ

(
dν̃ℓ

dνℓ
(Xℓ,1) > 0

)
> 0. By indepen-

dence of X1,1, . . . , XK,1 under Pθ, condition (c) in the theorem may be written as

Pθ

(
∏

ℓ 6=k

dν̃ℓ
dνℓ

(Xℓ,1) > 0

)
> 0.

Since
{∏

ℓ 6=k
dν̃ℓ

dνℓ
(Xℓ,1) > 0

}
= ∪m≥2

{∏
ℓ 6=k

dν̃ℓ

dνℓ
(Xℓ,1) ≥ 1

m

}
, this readily implies that
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∃η ∈ (0, 1), Pθ

(
∏

ℓ 6=k

dν̃ℓ
dνℓ

(Xℓ,1) ≥ η

)
> 0.

Let a = Pθ

(∏
ℓ 6=k

dν̃ℓ

dνℓ
(Xℓ,1) ≥ η

)
.

Let us take n large enough such that N = ⌊4C log n⌋ satisfies N < n, C logN < N
2 and

f(n)ηt
(
at − (K−1)C̃

f(N)

)
> C̃ ′ for t = ⌊C logN⌋. For any C̃ ′, such a n does exist since f ≫+∞ logα for

any α > 0.
The idea is that if until round N , arms ℓ 6= k have a behaviour that is typical of θ, then

the arm k (which is suboptimal in θ̃) may be pulled about C log n times at round N . Precisely,

we prove that ∀ℓ 6= k, Pθ

(
Tℓ(N) ≥ C logN

)
≤ C̃

f(N) implies Pθ̃

(
Tk(n) ≥ C ′ log n

)
> C̃′

f(n) . Let

At = ∩s=1...t

{∏
ℓ 6=k

dν̃ℓ

dνℓ
(Xℓ,s) ≥ η

}
. By independence and definition of a, we have Pθ(At) = at. We

have

Pθ̃

(
Tk(n) ≥ C log n

)
≥ Pθ̃

(
Tk(N) ≥ C log n

)

≥ Pθ̃

(
Tk(N) ≥ N

2

)

≥ Pθ̃

(
⋂

ℓ 6=k

{
Tℓ(N) <

N

2

})

≥ Pθ̃

(
⋂

ℓ 6=k

{
Tℓ(N) < C logN

})

≥ Pθ̃

(
At ∩

{
⋂

ℓ 6=k

{
Tℓ(N) < C logN

}})
.

Introduce BN =
⋂

ℓ 6=k

{
Tℓ(N) < C logN

}
, and the function q such that

✶At∩BN
= q
(
(Xℓ,s)ℓ 6=k, s=1..t, (Xk,s)s=1..N

)
.

Since ν̃k = νk and by definition of At, we have

Pθ̃

(
At ∩

{
⋂

ℓ 6=k

{Tℓ(N) < C logN}
})

=

∫
q
(
(xℓ,s)ℓ 6=k, s=1..t, (xk,s)s=1..N

) ∏

ℓ 6= k

s = 1..t

dν̃ℓ(xℓ,s)
∏

s=1..N

dν̃k(xk,s)

≥ ηt
∫

q
(
(xℓ,s)ℓ 6=k, s=1..t, (xk,s)s=1..N

) ∏

ℓ 6= k

s = 1..t

dνℓ(xℓ,s)
∏

s=1..N

dνk(xk,s)

= ηtPθ

(
At ∩

{
⋂

ℓ 6=k

{Tℓ(N) < C logN}
})

≥ ηt
(
at − (K − 1)C̃

f(N)

)

>
C̃ ′

f(n)
,

where the one before last step relies on a union bound with (6) and Pθ(At) = at, and the last
inequality uses the definition of n. We have thus proved that (7) holds, and thus the policy cannot

have the f -upper tailed property simultaneously in environment θ and θ̃.
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5.3 Proof of theorem 4.1

Let θ be in Θ. Consider the event

ξ =

{
∀k ∈ {1, . . . ,K}, T ∈ {1, . . . , n}, T‖F̂k,T − Fνk

‖2∞ <
β + 1

2
log n

}
.

From Massart’s inequality (see Massart (1990)) applied nK times corresponding to the different
times and arms and a union bound to combine the inequalities, we have

Pθ(ξ) ≥ 1− nK(2e−(β+1) logn) = 1− 2K

nβ
.

We show that on the event ξ, inequalities Tk(n) ≤ 2(β+1) logn
δ2
k

+ 1 hold for any k 6= k∗, where

δk = minθ̃∈Θk
‖Fνk

− Fν̃k
‖∞. Note that δk > 0: if not, it would mean that k is suboptimal in θ and

optimal in an other environment θ̃, with νk = ν̃k. In this case, by hypothesis there exists ℓ 6= k such
that dν̃ℓ

dνℓ
(Xℓ,1) = 0 Pθ-a.s. Thus θ̃ is almost surely removed during the first rounds of the policy

and, as Θ is finite, all of these problematic θ̃ are removed almost surely. Note also that θ cannot

be removed: it is readily seen that Pθ

(
dνℓ

dν̃ℓ
(Xℓ,1) > 0

)
= 1 for all θ̃ ∈ Θ and, still because Θ is

finite, it is almost sure that dνℓ

dν̃ℓ
(Xℓ,1) > 0 for all θ̃ ∈ Θ. A last consequence of the finiteness of Θ is

that terms δk are uniformly bounded away from zero over Θ, and so are the terms ∆k, so that the
inequalities we are going to prove easily lead to the conclusion of the proof.

Assume by contradiction that there exists k 6= k∗ such that Tk(n) >
2(β+1) logn

δ2
k

+ 1. Then there

exists t ≤ n such that It = k and Tk(t− 1) > 2(β+1) logn
δ2
k

.

As arm k is chosen at round t, we have:

Tk∗(t− 1) inf
θ̃∈Θk∗

‖F̂k∗,T∗

k
(t−1) − Fν̃k∗

‖2∞ ≥ Tk(t− 1) inf
θ̃∈Θk

‖F̂k,Tk(t−1) − Fν̃k
‖2∞

On the one hand, we have:

β + 1

2
log n > Tk∗(t− 1) inf

θ̃∈Θk∗

‖F̂k∗,T∗

k
(t−1) − Fν̃k∗

‖2∞,

and on the other hand

√
Tk(t− 1) inf

θ̃∈Θk

‖F̂k,Tk(t−1) − Fν̃k
‖∞ ≥

√
Tk(t− 1)

(
δk − ‖F̂k,Tk(t−1) − Fνk

‖∞
)

≥
√
Tk(t− 1)

(
δk −

√
(β + 1) log n

2Tk(t− 1)

)

=
√
Tk(t− 1)δk −

√
β + 1

2
log n.

By combining the former inequalities, we get:
√

β + 1

2
log n >

√
Tk(t− 1)δk −

√
β + 1

2
log n

and

Tk(t− 1) <
2(β + 1) log n

δ2k
,

which is the contradiction expected.

5.4 Proof of Theorem 4.2

The proof of the first part of the theorem is the same as the previous section, except that one has to
substitute δk by dk and that the dk (k 6= k∗) are not necessarily non negative. Indeed, the distance

‖F̂k,T − Fνk
‖∞ equals |X̂k,T − µk| in the context of Bernoulli laws.
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The proof of the second part is similar to the one of Theorem 3.3: we assume by contradiction
that there exists a policy such that

∃C, C̃ > 0, ∀θ ∈ Θ, ∀n ≥ 1, ∀k 6= k∗, Pθ (Tk(n) ≥ C log n) ≤ C̃

f(n)
.

The main difference is that we cannot fix θ, θ̃ such that θ ∈ Θk, θ̃ ∈ Θ r Θk and µk = µ̃k. The
hypothesis only allows us to take µk and µ̃k arbitrarily close. This means that we are allowed to
consider two sequences (θn)n≥1 and (θ̃n)n≥1 such that, for all n ≥ 1 (with obvious notations):

• θn ∈ Θk, θ̃n ∈ ΘrΘk,

• µ̃n
k ≥ 2−

1
N µn

k ,

• 1− µ̃n
k ≥ 2−

1
N (1− µn

k ),

where N = ⌊4C log n⌋.

On the other hand, the hypothesis readily implies that

∀θ, θ̃ ∈ Θ, ∀ℓ ∈ {1, · · · ,K}, dν̃ℓ
dνℓ

(1) =
µ̃l

µl
≥ γ

and

Pθ


∏

ℓ 6=k

dν̃ℓ
dνℓ

(Xℓ,1) ≥ γK−1


 ≥ Pθ


⋂

ℓ 6=k

{
dν̃ℓ
dνℓ

(Xℓ,1) ≥ γ

}
 =

∏

ℓ 6=k

Pθ

(
dν̃ℓ
dνℓ

(Xℓ,1) ≥ γ

)

≥
∏

ℓ 6=k

Pθ (Xℓ,1 = 1) =
∏

ℓ 6=k

µl ≥ γK−1.

Let us denote a = γK−1 and At =
⋂t

s=1

{∏
ℓ 6=k

dν̃ℓ

dνℓ
(Xℓ,s) ≥ a

}
. By independence, we have

Pθ(At) = at.

To find a contradiction, we set t = ⌊C logN⌋ and we adapt the reasoning of the former proof.
If n is chosen large enough, one has N < n and C logN < N

2 , and then:

Pθ̃n (Tk(n) ≥ C log n) ≥ Pθ̃n (Tk(N) ≥ C log n)

≥ Pθ̃n

(
Tk(N) ≥ N

2

)

≥ Pθ̃n


⋂

ℓ 6=k

{
Tℓ(N) <

N

2

}


≥ Pθ̃n


⋂

ℓ 6=k

{Tℓ(N) < C logN}


 .

≥ Pθ̃n


At ∩




⋂

ℓ 6=k

{Tℓ(N) < C logN}






 .

Let us denoteBN =
⋂

ℓ 6=k {Tℓ(N) < C logN}. BN is measurable w.r.t. Xk,1, . . . , Xk,N andXℓ,1, . . . , Xℓ,t

(ℓ 6= k), and At is measurable w.r.t. Xℓ,1, . . . , Xℓ,t (ℓ 6= k), so that we may write

✶At∩BN
= ct,N ((Xℓ,s)ℓ 6=k, s=1..t, (Xk,s)s=1..N ) .
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By properties of ν̃nk and νnk and by definition of At we have

Pθ̃n


At ∩




⋂

ℓ 6=k

{Tℓ(N) < C logN}








=

∫
ct,N ((xℓ,s)ℓ 6=k, s=1..t, (xk,s)s=1..N )

∏

ℓ 6= k

s = 1..t

dν̃nℓ (xℓ,s)
∏

s=1..N

dν̃nk (xk,s)

≥
∫

ct,N ((xℓ,s)ℓ 6=k, s=1..t, (xk,s)s=1..N ) at
∏

ℓ 6= k

s = 1..t

dνnℓ (xℓ,s)
∏

s=1..N

(
2−

1
N dνnk (xk,s)

)

=
at

2
Pθn


At ∩




⋂

ℓ 6=k

{Tℓ(N) < C logN}








≥ at

2

(
at − (K − 1)C̃

f(N)

)
.

By straightforward calculations, one can then show that f(n)Pθ̃n (Tk(n) ≥ C log n) −−−−−→
N→+∞

+∞,

which is the contradiction expected.

5.5 Proof of Theorem 4.3

The proof is similar the one of Theorem 4.1, except that we use Hoeffding’s inequality rather than
Massart’s one. Consider the event

ξ =

{
∀k ∈ {1, . . . ,K}, s ∈ {1, . . . , n}, s(X̂k,s − µk)

2 <
β + 1

2
log n

}
.

From Hoeffding’s inequality applied 2nK times corresponding to the different times and arms and
a union bound to combine the inequalities, we have P(ξ) ≥ 1 − 2nKe−(β+1) logn = 1 − 2K

nβ . We

will prove by contradiction that on the event ξ, we have Tk(n) ≤ 1 + 2(β+1) logn
∆2

k

for all k. For

this, consider k such that Tk(n) > 2(β+1) logn
∆2

k

+ 1. Then there exists t ≤ n such that It = k and

Tk(t− 1) > 2(β+1) logn
∆2

k

. Since the arm k is chosen at time t, it means that

Tk(t− 1)
(
X̂k,Tk(t−1) − µ∗

)2 ≤ Tk∗(t− 1)
(
X̂k∗,Tk∗ (t−1) − µ∗

)2
.

On the one hand, we have:

β + 1

2
log n > Tk∗(t− 1)

(
X̂k∗,Tk∗ (t−1) − µ∗

)2
,

and on the other hand

√
Tk(t− 1)

∣∣X̂k,Tk(t−1) − µ∗
∣∣ ≥

√
Tk(t− 1)

(
∆k −

∣∣X̂k,Tk(t−1) − µk

∣∣
)

≥
√
Tk(t− 1)

(
∆k −

√
(β + 1) log n

2Tk(t− 1)

)

=
√
Tk(t− 1)∆k −

√
β + 1

2
log n.

The former inequalities leads to
√

β + 1

2
log n >

√
Tk(t− 1)∆k −

√
β + 1

2
log n ⇒ Tk(t− 1) <

2(β + 1) log n

∆2
k

.

Thus there is a contradiction, meaning that there is no k such that Tk(n) >
2(β+1) logn

∆2
k

+ 1.

14



References

R. Agrawal. Sample mean based index policies with o(log n) regret for the multi-armed bandit
problem. Advances in Applied Mathematics, 27:1054–1078, 1995.
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