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Abstract

The Fibonacci cube Γn is the subgraph of the hypercube induced by the
binary strings that contain no two consecutive 1’s. The Lucas cube Λn is
obtained from Γn by removing vertices that start and end with 1. The
eccentricity of a vertex u, denoted eG(u) is the greatest distance between
u and any other vertex v in the graph G. For a given vertex u of Γn we
characterize the vertices v such that dΓn(u, v) = eΓn(u). We then obtain
the generating functions of the eccentricity sequences of Γn and Λn. As a
corollary we deduce the number of vertices of a given eccentricity.

Key words: Fibonacci cubes, Lucas cubes, Median Graph, Hypercube

1. Introduction

An interconnection topology can be represented by a graph G = (V,E),
where V denotes the processors and E the communication links. The hy-
percube Qn is a popular interconnection network because of its structural
properties.5

The Fibonacci cube was introduced in [Hsu93] as a new interconnec-
tion network. This graph is an isometric subgraph of the hypercube which
is inspired in the Fibonacci numbers. It has attractive recurrent structures
such as its decomposition into two subgraphs which are also Fibonacci cubes
by themselves. Structural properties of these graphs were more extensively10

studied afterwards [Kla05, MS02, DTS02, Gre06, KP05, TV07, EMPZ06,
KM11, CKMR11, KMP11, Kla11].

Lucas cubes, introduced in [MCS01], have attracted the attention as well
due to the fact that these cubes are closely related to the Fibonacci cubes.
They have also been widely studied [DTS02, CKMR11, KMP11, IKR10].15

We will next define some concepts needed in this paper. A Fibonacci

∗Corresponding author
Email addresses: aline.castro@ujf-grenoble.fr (Aline Castro),

michel.mollard@ujf-grenoble.fr (Michel Mollard)

Preprint submitted to Elsevier September 15, 2011



string of length n is a binary string b1b2 · · · bn with bi · bi+1 = 0 for 1 ≤ i < n.
In other words, a Fibonacci string does not contain two consecutive 1’s. The
Fibonacci cube Γn is the subgraph of Qn induced by the Fibonacci strings
of length n. Adjacent vertices in Γn differ in one bit. Because of the empty20

string, Γ0 = K1. A Fibonacci string of length n is a Lucas string if b1 · bn 6= 1.
That is, a Lucas string has no two consecutive 1’s including the first and
the last elements of the string. The Lucas cube Λn is the subgraph of Qn

induced by the Lucas strings of length n. We have Λ0 = Λ1 = K1.
The usual notation dG(u, v) for the shortest path distance between ver-25

tices u and v in a connected graph G will be used through this paper. The
eccentricity of a vertex u, denoted eG(u) is the greatest distance between u
and any other vertex v in the graph. When no confusion is possible we will
shorten these notations to d(u, v) and e(u). Clearly, not all the vertices of
Γn or Λn have the same eccentricity as it happens in Qn. We say that v30

satisfies the eccentricity of u when d(u, v) = e(u). The radius of a graph G,
denoted rad(G), is the minimum eccentricity among the vertices of G, while
the diameter of G, denoted diam(G) is the maximum eccentricity among
the vertices of the graph.

The radius, rad(Γn) =
⌈

n
2

⌉
and diameter, diam(Γn) = n of the Fibonacci35

cubes are obtained in [MS02]. Similarly rad(Λn) =
⌊

n
2

⌋
and diam(Λn) =

2
⌊

n
2

⌋
are determined in [MCS01].

We define the eccentricity sequence of G as the sequence {ak}
diam(G)
k=0 of

nonnegative integers, where ak is the number of vertices of eccentricity k in40

G.
In the next table, we show the number of vertices of eccentricity k in Γn

and in Λn for n = 1 to 10 which can be computed by hand.

n 0 1 2 3 4 5 6
k 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6
Γ : 1 0 2 0 1 2 0 0 3 2 0 0 1 5 2 0 0 0 4 7 2 0 0 0 1 9 9 2
Λ : 1 1 0 0 1 2 0 1 3 0 0 0 1 4 2 0 0 1 5 5 0 0 0 0 1 9 6 2

n 7 8 9 10
k 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10
Γ : 0 0 0 0 5 16 11 2 0 0 0 0 1 14 25 13 2 0 0 0 0 0 6 30 36 15 2 0 0 0 0 0 1 20 55 49 17 2
Λ : 0 0 0 1 7 14 7 0 0 0 0 0 1 16 20 8 2 0 0 0 0 1 9 30 27 9 0 0 0 0 0 0 1 25 50 35 10 2

Table 1: Number of vertices of eccentricity k in Γn and Λn.

The purpose of this work is to determine the eccentricity sequences of
the Fibonacci and Lucas cubes, Γn and Λn, for any value of n.45

This paper is organized as follows: In the next section, we state the
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notation required for the Fibonacci cubes. In section three, we characterize
the vertices of Γn that satisfy the eccentricity of a given vertex (Theorem
3.7). In section four, we obtain the eccentricity sequence of the Fibonacci
cubes (Corollary 4.4). Finally, in section five, the eccentricity sequence of50

the Lucas cube is given (Corollary 5.17).

2. Notation of Fibonacci cubes

Let Fn be the set of strings of Γn.
Let Fod ·

n be the set of strings of Γn that begin with an odd number of 0’s,
Fev ·

n the set of strings of Γn that begin with an even number (eventually
null) of 0’s,
Fev∗·

n the set of strings of Γn that begin with an even number, not null of
0’s and
F∅ ·

n the set of strings of Γn that do not begin with a 0.
We have thus Fn = Fod ·

n ]Fev ·
n = Fod ·]Fev∗·]F∅ ·

n , where ] is the disjoint
union of sets.
Let F · od

n be the set of strings in Γn that end with an odd number of 0’s.
Similarly, we define F · b

n where b ∈ {ev, ev∗, ∅}.
Let Fod od

n be the set of strings in Γn that begin and end with an odd number
of 0’s.
In the same way, we define Fab

n where a, b ∈ {od, ev, ev∗, ∅, · }.
Note that F · ·

n = Fn. Let Fn,k the set of strings of Γn with eccentricity k.
For any a, b ∈ {od, ev, ev∗, ∅, · }, let Fa b

n,k = Fa b
n ∩ Fn,k and fa b

n,k be |Fa b
n,k|.

We will denote by fa b the generating function

fa b(x, y) =
∑

n,k≥0

fa b
n,k xnyk

3. Eccentricity of a vertex of Γn.

In this section, we show that a vertex x in Γn can be written uniquely as
the concatenation of particular strings. We give some results concerning the55

eccentricity of these substrings. These results lead us to compute e(x) and
to characterize the vertices y in Γn that satisfy e(x). Finally, we determine
the last character of the strings y at distance e(x) (Corollary 3.8). This
latter result will be very useful through this paper.

Let us recall that Γn is an isometric subgraph of Qn, i.e.:60

Proposition 3.1. The distance dΓn(a, b) between a and b in Γn is dQn(a, b),
the number of positions in which the two strings a and b differ.
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Proof. Let a = (a1a2 · · · an), b = (b1b2 · · · bn) ∈ Γn and let z = (z1z2 · · · zn) ∈
Qn be defined as

zi =
{

ai if ai = bi

0 if ai 6= bi,

Note first that z is a Fibonacci string. Indeed zi = zi+1 = 1 would imply
ai = ai+1 = 1. Consider now a shortest path in Qn from a to b, s = (a =
s0, s1, · · · , z, · · · , sj = b), obtained by concatenation of a shortest path from65

a to z and a shortest path from z to b. It is easy to see that all the vertices
of s belong to Γn as well thus s is also a path in Γn. Furthermore s is a
shortest path in Γn because, as a subgraph, dΓn(a, b) ≥ dQn(a, b). �

We will thus shorten the notation dΓn(a, b) to d(a, b) in this section. Let
us denote by x = (ab) the concatenation of two strings a and b.70

Proposition 3.2. Let z ∈ Fn such that z = (xy) with x ∈ Fn1 , y ∈ Fn2

and n1 + n2 = n, then
e(z) ≤ e(x) + e(y)

Proof. Let c ∈ Fn such that d(z, c) = e(z). Then c = (ab) with a ∈ Fn1

and b ∈ Fn2 .
By the definition of eccentricity, d(x, a) ≤ e(x) and d(y, b) ≤ e(y).
Then e(xy) = d(xy, ab) = d(x, a) + d(y, b) ≤ e(x) + e(y). �

Proposition 3.3. Let z ∈ Fn such that z = (xy) with x ∈ Fn1 , y ∈ Fn275

and n1+n2 = n. If e(xy) = e(x)+e(y), then any string u ∈ Fn that satisfies
d(u, z) = e(z), can be decomposed in u = (vw) with v ∈ Fn1, w ∈ Fn2 such
that d(v, x) = e(x) and d(w, y) = e(y).

Proof. Consider a string u ∈ Fn that verifies the eccentricity of z, then
u = (vw) with v ∈ Fn1 , w ∈ Fn2 and e(xy) = d(vw, xy) = d(v, x) + d(w, y).80

But d(v, x) ≤ e(x) and d(w, y) ≤ e(y).
Thus, we must have d(v, x) = e(x) and d(w, y) = e(y). �

Because a Fibonacci string of length n is a binary string with no consec-
utive 1’s, the next proposition is clear

Proposition 3.4. The strings of Fn with n ≥ 0, can be uniquely written as

x = 0l010l110l2 · · · 10lp

with p ≥ 0, l0, lp ≥ 0 and l1, · · · , lp−1 ≥ 1.85
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Proposition 3.5. For l ≥ 0,

e(10l) = e(0l) + 1

Proof. Again, by Proposition 3.2, e(10l) ≤ 1 + e(0l). Assume that y ∈ Fl

is a string that satisfy the eccentricity of 0l, then (0y) ∈ Fl+1 is at distance
e(0l) + 1 of 10l. �

We associate next, to every string 0l ∈ Fl, a set of strings W (0l) of Fl

in the following way:90

W (0l) =

{
{1(01)b

l−1
2
c} if l is odd

{(10)a(01)b/2a + 2b = l, a, b ≥ 0} if l is even

Proposition 3.6. For l ≥ 0,

e(0l) = b l + 1
2

c

Furthermore, the strings of W (0l) are the only strings that satisfy the eccen-
tricity of 0l.

Proof. The eccentricity of 0l is the maximum number of 1 in a string of Fl.
This number is l

2 if l is even and l+1
2 if l is odd. It is immediate to verify95

that in both cases the Fibonacci strings having a maximum number of 1’s
are those of W (0l). �

Theorem 3.7. For every x = 0l010l110l2 · · · 10lp in Fn, with p, l0, lp ≥
0; l1, · · · , lp−1 ≥ 1,

e(x) = p +
p∑

i=0

b li + 1
2

c

Furthermore, the strings that verify the eccentricity of x are the strings

y = w00w10 · · ·wp−10wp

where wi ∈ W (0li) for i = 0, 1, · · · , p.

Proof. Let x = 0l010l110l2 · · · 10lp ∈ Fn, with p, l0, lp ≥ 0; l1, · · · , lp−1 ≥ 1.
Then, from Proposition 3.2, e(x) ≤ e(0l0) + e(10l1) + e(10l2) + · · ·+ e(10lp).100

Combining Propositions 3.5 and 3.6, e(x) ≤ b l0+1
2 c+

∑p
i=1(b

li+1
2 c+ 1).

Hence e(x) ≤ p +
∑p

i=0b
li+1

2 c.
Furthermore, any string y = w00w10 · · ·wp−10wp with wi ∈ W (0li) satisfies
d(x, y) = p +

∑p
i=0b

li+1
2 c, then we have the equality for the eccentricity.

Given that the strings of W (0li) are the only ones that verify the eccentricity105

of 0li , by Proposition 3.3, the only strings z ∈ Fn that satisfy d(x, z) = e(x)
are those of the form of y. �

We will use frequently the following consequence:
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Corollary 3.8. For every x = 0l010l110l2 · · · 10lp ∈ Fn, with p, l0, lp ≥
0; l1, · · · , lp−1 ≥ 1, n ≥ 1, the following are true:110

(i) if lp is an odd number and y ∈ Fn satisfies the eccentricity of x,
then y = (y′1) with y′ ∈ Fn−1,

(ii) if lp is a not null even number, then there exist y′, y′′ ∈ Fn−1, such
that y = (y′0) and y = (y′′1), both satisfy e(x),115

(iii) if lp = 0 and y ∈ Fn satisfy the eccentricity of x, then y = (y′0)
with y′ ∈ Fn−1.

Proof. Consider y ∈ Fn such that d(x, y) = e(x).

(i) Since lp is odd, the only string of W (0lp) is 1(01)b
li−1

2
c. Thus,120

y = (y′1).
(ii) Because lp is a not null even number, W (0lp) = {(10)a(01)b/2a +

2b = lp, a, b ≥ 0}. When b = 0 then a ≥ 1 and y takes the form
y = (y′0). When b ≥ 1 then y = (y′′1). The two cases are possible
since lp is not null.125

(iii) Given that lp = 0, it follows from Theorem 3.7 that y = (y′0).

�

Notice that if we consider the beginning of a word x = 0l010l110l2 · · · 10lp ∈
Fn rather than the end, then the symmetrical of Corollary 3.8 occurs. In
this case (i), (ii) and (iii) will be satisfied according to the parity of l0.130

4. Eccentricity sequence of Fibonacci cubes

Considering two subsets, namely, F · od
n,k and F · ev

n,k , we will compute f(x, y),
the generating function of the eccentricity sequence of the Fibonacci cube’s
strings. As a corollary, the value of fn,k is also determined.

Proposition 4.1. For n ≥ 1, k ≥ 1,

f · od
n,k = f · evn−1,k−1

Proof. Let x = 0l010l110l2 · · · 10lp ∈ F · od
n,k , thus p, l0 ≥ 0; l1, · · · , lp−1, lp ≥

1; n ≥ 1, k ≥ 1 and assume that lp is an odd number. Notice that lp − 1 is
a possibly null even number. Then x = (θ(x)0) with θ(x) ∈ F · ev

n−1 such that

θ(x) =
{

0l010l1 · · · 10lp−1 if lp ≥ 3
0l010l1 · · · 10lp−11 if lp = 1.

We have e(x) ≤ e(θ(x)) + 1. Furthermore, by Corollary 3.8, (ii) and (iii),135

there exists a vertex y = (y′0) with d(y, θ(x)) = e(θ(x)). Since d((y′01), x) =
e(θ(x)) + 1, we have e(x) = e(θ(x)) + 1, and θ is a 1 to 1 mapping between
F · od

n,k and F · ev
n−1,k−1. �
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Proposition 4.2. For n ≥ 3, k ≥ 2,

f · evn,k = f · evn−2,k−1 + f · evn−2,k−2 + f · evn−3,k−2.

Proof. Let x = 0l010l110l2 · · · 10lp ∈ F · ev
n,k , hence p, l0, lp ≥ 0; l1, · · · , lp−1 ≥

1; n ≥ 3, k ≥ 2. As lp is an even number, we will distinguish two cases:140

(i) If lp ≥ 2, then x = (x′00) with x′ ∈ F · ev
n−2. Furthermore, by theorem

3.7, e(x′) = e(x)− 1 = k − 1 thus x′ ∈ F · ev
n−2,k−1.

(ii) If lp = 0 then let us consider lp−1.145

If lp−1 is odd, then x = (x′1) with x′ ∈ F · od
n−1. If y satisfies e(x′),

then d((y0), x) = e(x′) + 1. Therefore, e(x′) = e(x) − 1 and x′ ∈
F · od

n−1,k−1.
If lp−1 is even, then since lp−1 cannot be null, x = (x′001) with
x′ ∈ F ·ev

n−3. Because e(001) = 2, then e(x) ≤ e(x′) + 2. The150

equality is reached because if y is such that d(x′, y) = e(y), then
d((y010), x) = e(y) + 2. Then x′ ∈ F · ev

n−3,k−2.

Then x → x′ is a 1 to 1 mapping between F · ev
n,k and F · ev

n−2,k−1 ∪ F · od
n−1,k−1 ∪

F · ev
n−3,k−2. By the previous proposition, f · od

n−1,k−1 = f · evn−2,k−2 and we are
done. �155

Theorem 4.3.

f · ev(x, y) = fev ·(x, y) =
1

1− x(x + 1)y
, (4.1)

f · od(x, y) = fod ·(x, y) =
xy

1− x(x + 1)y
, (4.2)

thus the generating function for the eccentricity sequence is∑
n,k≥0

fn,k xnyk =
1 + xy

1− x(x + 1)y
.

Proof. Let x = 0l010l11 · · · 10lp ∈ F · ev, thus p ≥ 0; l0, lp ≥ 0; l1, · · · , lp−1 ≥
1 and p is even.
Let r(x) = 0lp10lp−1 · · · 10l0 in Fev ·. Then r is a 1 to 1 mapping between
F · ev and Fev ·.
Hence for any n, k ≥ 0, f · evn,k = fev ·

n,k and f · ev(x, y) = fev ·(x, y).160

The same applies for x ∈ F · od, therefore f · od(x, y) = fod ·(x, y).

We will first demonstrate the equality (4.1), considering the linear re-
currence given by Proposition 4.2, and the following initial values:

f · ev0,0 = f · ev1,1 = f · ev2,1 = f · ev2,2 = 1 and
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f · evn,0 = 0 for n ≥ 1, f · evn,1 = 0 for n ≥ 3,

f · evn,k = 0 for k > n.

The generating function

f · ev(x, y) =
∑

n,k≥0

f · evn,k xnyk

satisfies the equation

f · ev(x, y) = 1 + xy + x2y + x2y2 +
∑

n≥3, k≥2

f · evn,k xnyk.

Then

f · ev(x, y) = 1 + xy + x2y + x2y2+
∑

n≥3, k≥2

(f · evn−2,k−1 + f · evn−2,k−2 + f · evn−3,k−2)x
nyk

= 1 + xy + x2y + x2y2+
∑

n≥3, k≥2

(f · evn−2,k−1x
n−2yk−1)x2y

+
∑

n≥3, k≥2

(f · evn−2,k−2x
n−2yk−2)x2y2

+
∑

n≥3, k≥2

(f · evn−3,k−2x
n−3yk−2)x3y2

= 1 + xy + x2y + x2y2+(f · ev(x, y)− 1)x2y + (f · ev(x, y)− 1)x2y2 + f · ev(x, y)x3y2.

Hence
f · ev(x, y) =

1
1− x(x + 1)y

.

For the equality (4.2), we will use the relation given by Proposition 4.1 and
the initial values

f · od
0,k = f · od

n,0 = 0 for n, k ≥ 0.

Thus

f · od(x, y) =
∑

n,k≥0

f · od
n,k xnyk =

∑
n,k≥1

f · od
n,k xnyk

= xy
∑

n,k≥1

f · evn−1,k−1x
n−1yk−1 = xyf · ev(x, y).

Therefore,
f · od(x, y) =

xy

1− x(x + 1)y
.

�
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Corollary 4.4. For all n, k such that n ≥ k ≥ 1,

fn,k =
(

k

n− k

)
+

(
k − 1
n− k

)
Furthermore, f0,0 = 1 and fn,0 = 0 for n > 0.

Proof.

f · ev(x, y) =
1

1− x(x + 1)y
=

∑
b≥0

(xy(1 + x))b

=
∑
b≥0

[
xbyb

b∑
a=0

xa

(
b

a

)]
=

∑
b≥0

b∑
a=0

xa+byb

(
b

a

)

=
∑
n≥0

n∑
k=0

xnyk

(
k

n− k

)
.

Therefore,

f · evn,k =
(

k

n− k

)
.

The proof for f · od
n,k is similar to the proof of f · evn,k since f · od(x, y) is xy times

f · ev(x, y). Hence

f · od(x, y) =
xy

1− x(x + 1)y
= xy

∑
b≥0

(xy(1 + x))b

= xy
∑
b≥0

b∑
a=0

xa+byb

(
b

a

)
=

∑
b≥0

b∑
a=0

xa+b+1yb+1

(
b

a

)

=
∑
n≥1

n∑
k=1

xnyk

(
k − 1
n− k

)
.

Thus f · od
n,k =

(
k−1
n−k

)
when n ≥ k ≥ 1, and f · od

n,0 = 0 for n ≥ 0. In conclusion
fn,k = f · evn,k + f · od

n,k =
(

k
n−k

)
+

(
k−1
n−k

)
�165

Using the precedent corollary, it is immediate to deduce the value of
rad(Γn) determined in [MS02]:

Corollary 4.5. The value of k ≥ 0 that satisfies min
k
{fn,k | fn,k > 0} is

k = rad(Γn) =
⌈

n
2

⌉
.

Notice that using
m∑

i=0

(
m− i

i

)
= Fm+1

9



(see [GKP94], pg. 289, equation 6.130), we obtain
n∑

i=0

fn,k =
n∑

k=1

((
k

n− k

)
+

(
k − 1
n− k

))

=
n∑

i=0

(
n− i

i

)
+

n−1∑
i=0

(
n− 1− i

i

)
= Fn+1 + Fn = Fn+2

which is consistent with
|V (Γn)| = Fn+2.

5. Eccentricity sequence of Lucas cubes170

We will use the same notation for the strings in the Fibonacci cube to
define the strings in the Lucas cube. In all the previous sections, when we
referred to Fibonacci sets, we used the letter F . For the Lucas sets, we will
use the letter L.
Accordingly, the functions for the Lucas cube will be defined in the same175

way as in the Fibonacci cube, but with a different letter, `.

In this section, we will compute the generating function of the eccentric-
ity sequence of the Lucas cube’s strings, `(x, y). For this aim, we will prove
that the sets La b

n,k and Fa b
n,k are the same for all (a, b) excluding two sets,

namely, Lod od and L∅ ∅. We proceed to compute the values of `od od
n,k and180

`∅ ∅
n,k as well as the values of fod od

n,k and f∅ ∅
n,k . These results and Theorem

4.3 will give us the eccentricity sequence that we search. As a corollary we
obtain the value of `n,k.

Note further that Λn is an isometric subgraph of Γn and Qn, i.e.:

Proposition 5.1. For all x, y ∈ Ln, n ≥ 1,

dΛn(x, y) = dΓn(x, y) = dQn(x, y)

Proof. We will prove this proposition in the same way that we proved that
dΓn(x, y) = dQn(x, y) at the beginning of Section 3.
We have dΛn(x, y) ≥ dQn(x, y). Assume x = (x1x2 · · ·xn), y = (y1y2 · · · yn)
and let z = (z1z2 · · · zn) ∈ Qn be defined as

zi =
{

xi if xi = yi

0 if xi 6= yi,

then the path s = (x = s0, s1, · · · , z, · · · , sj = y) considered in proposition185

3.1 is a shortest path in Qn from x to y using only vertices of Λn, thus the
equality is obtained. �
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Proposition 5.2. For x ∈ Ln, n ≥ 1,

eΛn(x) ≤ eΓn(x)

Proof. Let x ∈ Ln. Then using proposition 5.1 and the fact that Ln ⊂ Fn,
we have

eΛn(x) = max
z∈Ln

{dΛn(x, z)} = max
z∈Ln

{dΓn(x, z)} ≤ max
y∈Fn

{dΓn(x, y)} = eΓn(x).

�

Proposition 5.3. For x ∈ Ln \ Lod od
n , n ≥ 1,

eΛn(x) = eΓn(x).

Proof. Let x ∈ Ln \Lod od
n and without loss of generality, let us assume that

x ends with an even (eventually null) number of 0’s. By Corollary 3.8 (ii)
and (iii), there exists y ∈ Fn such that dΓn(x, y) = eΓn(x) and y ends with
a 0. Therefore, y ∈ Ln and

dΛn(x, y) = dΓn(x, y) = eΓn(x).

�

Let us observe that `n,k can be decomposed as follows:190

`n,k = `od od
n,k + `od ev∗

n,k + `od ∅
n,k + `ev∗od

n,k + `ev∗ev∗
n,k + `ev∗∅

n,k + `∅ od
n,k + `∅ ev∗

n,k + `∅ ∅
n,k .

Corollary 5.4. For n ≥ 0, k ≥ 0,

`od ev∗
n,k = `ev∗od

n,k = fod ev∗
n,k ,

`od ∅
n,k = `∅ od

n,k = fod ∅
n,k ,

`ev∗ev∗
n,k = fev∗ev∗

n,k ,

`ev∗∅
n,k = `∅ ev∗

n,k = f∅ ev∗

n,k .

Proof. When n = 0 all these numbers are null. Assume n ≥ 1 and let
x ∈ Fa b

n with (a, b) 6= (∅, ∅) then x ∈ La b
n .

Furthermore if (a, b) 6= (od, od) we have, by Proposition 5.3, eΛn(x) = eΓn(x)
and

La b
n,k = Fa b

n,k.

�

In order to obtain `n,k, we will compute the values of the functions `a b
n,k

in terms of fa b
n,k. For this reason, we will come again to the Fibonacci cube

in this part of the section.
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Proposition 5.5. For n, k ≥ 2,

fod od
n,k = fod od

n−2,k−2 + fod ev∗
n−2,k−2 + fod od

n−2,k−1

Proof. Let x = 0l010l11 · · · 10lp ∈ Fod od
n,k , n, k ≥ 2, thus p, l0, lp ≥ 0;195

l1, · · · , lp−1 ≥ 1 and l0, lp are odd numbers. Let us consider lp. We distin-
guish 2 cases:

(i) If lp = 1, then p 6= 0 and x = (x′10) where x′ is either in Fod ev∗
n−2 or

in Fod od
n−2 .200

Let y ∈ Fn−2 such that d(x′, y) = e(x′), then d(y01, x′10) = e(x′)+
2 and since e(10) = 2 then e(x) ≤ e(x′) + 2.
Therefore e(x) = e(x′) + 2 and x′ ∈ Fod ev∗

n−2,k−2 or x′ ∈ Fod od
n−2,k−2.

(ii) If lp ≥ 3, then x = (x′00) with x′ ∈ Fod od
n−2 . There exists y ∈ Fn−2

such that d(y, x′) = e(x′) then d(y01, x′00) = e(x′) + 1 and e(x) ≤205

e(x′) + 1. Therefore e(x) = e(x′) + 1 and x′ ∈ Fod od
n−2,k−1.

Then x → x′ is a 1 to 1 mapping between Fod od
n,k and Fod od

n−2,k−2 ∪Fod ev∗
n−2,k−2 ∪

Fod od
n−2,k−1. �

Consider a string x = 0l010l11 · · · 10lp ∈ Fod ev∗
n,k . We will demonstrate

next, that when we remove a 0 from 0lp , we obtain a string that belongs to
Fod od

n−1,k \ { words composed by an odd number (n− 1) of 0’s }.
For this purpose, for even n and eccentricity k, let geven

n,k be the number of
strings in Fn composed only by 0’s. Notice that by Proposition 3.6, n = 2k,
then

geven
n,k =

{
1 if n = 2k
0 otherwise.

Proposition 5.6. For n ≥ 1, k ≥ 0,

fod ev∗
n,k = fod od

n−1,k − geven
n,k .

Proof. Let x = 0l010l11 · · · 10lp ∈ Fod ev∗
n,k , n ≥ 1, k ≥ 0, thus p ≥ 1;

l0, l1, · · · , lp−1 ≥ 1 and lp ≥ 2. Then x = (x′0) with x′ ∈ Fod od
n−1 such that

x′ = 0l010l11 · · · 10lp−1.

Then by Corollary 3.8 (i), all the strings of Fn−1 that satisfy the eccentricity
of x′ have the form y = (y′1). Thus e(x′) = e(x), and x′ ∈ Fod od

n−1,k. Con-210

versely, for any string z ∈ Fod od
n−1 that is not composed only by 0’s, the string

(z0) ∈ Fod ev∗
n .

Therefore, x → x′ is a 1 to 1 mapping between Fod ev∗
n,k and Fod od

n−1,k \ { words
composed by an odd number (n− 1) of 0’s }. �

Proposition 5.5 can be rewritten in terms of fod od using the result of215

Proposition 5.6, which gives us the next
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Proposition 5.7. For n ≥ 3, k ≥ 2,

fod od
n,k = fod od

n−2,k−2 + fod od
n−2,k−1 + fod od

n−3,k−2 − geven
n−2,k−2.

Notice that

geven(x, y) =
∑

n,k≥0

geven
n,k xnyk

=
∑

n,k≥0

x2kyk = 1 + x2y + x4y2 + x6y3 + · · ·

=
1

1− x2y
(5.1)

Proposition 5.8.

fod od(x, y) =
xy(1− x2y − x3y2)

(1 + xy)(1− x2y)(1− xy − x2y)
, (5.2)

fod ev∗(x, y) =
x4y3

(1 + xy)(1− x2y)(1− xy − x2y)
. (5.3)

Proof. Considering that

fod od
1,1 = 1 and fod od

n,k = 0 for other values n ≤ 2 or k ≤ 1, then

fod od(x, y) =
∑

n,k≥0

fod od
n,k xnyk

= xy +
∑

n≥3, k≥2

fod od
n,k xnyk

Therefore by Proposition 5.7

fod od(x, y)− xy =
∑

n≥3, k≥2

(fod od
n−2,k−2 + fod od

n−2,k−1 + fod od
n−3,k−2 − geven

n−2,k−2)x
nyk

= x2y2
∑

n≥1, k≥0

fod od
n,k xnyk + x2y

∑
n,k≥1

fod od
n,k xnyk

+ x3y2
∑

n,k≥0

fod od
n,k xnyk − x2y2

∑
n≥1, k≥0

geven
n,k xnyk

thus

fod od(x, y)−xy = x2y2fod od(x, y)+x2yfod od(x, y)+x3y2fod od(x, y)−x2y2(geven(x, y)−1)

13



and by relation (5.1),

fod od(x, y)(1− x2y2 − x2y − x3y2) = xy + x2y2 +
x2y2

1− x2y
,

thus

fod od(x, y) =
xy(1− x2y − x3y2)

(1 + xy)(1− x2y)(1− xy − x2y)
.

Now we will prove equation (5.3). First we observe that fod ev∗
0,0 = 0 then

fod ev∗(x, y) =
∑

n≥1, k≥0

fod ev∗
n,k xnyk

and by Proposition 5.6,

fod ev∗(x, y) =
∑

n≥1, k≥0

(fod od
n−1,k − geven

n,k )xnyk =
∑

n,k≥0

fod od
n,k xn+1yk −

∑
n≥1, k≥0

geven
n,k xnyk

= xfod od(x, y)− (geven(x, y)− 1).

Therefore, by relation (5.1),

fod ev∗(x, y) =
x2y(1− x2y − x3y2)

(1 + xy)(1− x2y)(1− xy − x2y)
− x2y

1− x2y

=
x4y3

(1 + xy)(1− x2y)(1− xy − x2y)
.

�

Proposition 5.9. For n, k ≥ 1,

fod ∅
n,k = fod ev∗

n−1,k−1 + fod od
n−1,k−1.

Proof. Let x = 0l010l11 · · · 10lp ∈ Fod ∅
n,k ; n, k ≥ 1. Thus p ≥ 1; l0, l1, · · · , lp−1 ≥

1 and lp = 0. We have therefore, x = (x′1) with x′ either in Fod od
n−1 or in220

Fod ev∗
n−1 .

Let y ∈ Fn−1 such that d(x′, y) = e(x′).
Then d((x′1), (y0)) = e(x′) + 1 and e(x) ≤ e(x′) + 1, thus e(x) = e(x′) + 1.
Therefore, x′ belongs to Fod od

n−1,k−1 or to Fod ev∗
n−1,k−1.

Then x → x′ is a 1 to 1 mapping between Fod ∅
n,k and Fod od

n−1,k−1 ∪ Fod ev∗
n−1,k−1.225

�

Proposition 5.10.

fod ∅(x, y) =
x2y2

(1 + xy)(1− xy − x2y)
.
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Proof. Considering that

fod ∅
n,0 = fod ∅

0,k = 0 for n, k ≥ 0, we have

fod ∅(x, y) =
∑

n,k≥1

fod ∅
n,k xnyk.

Then from Proposition 5.9,

fod ∅(x, y) =
∑

n,k≥1

(fod ev∗
n−1,k−1 + fod od

n−1,k−1)x
nyk

=
∑

n,k≥1

(fod ev∗
n−1,k−1x

n−1yk−1)xy +
∑

n,k≥1

(fod od
n−1,k−1x

n−1yk−1)xy

= fod ev∗(x, y)xy + fod od(x, y)xy.

Thus by Proposition 5.8,

fod ∅(x, y) =
x4y3xy

(1 + xy)(1− x2y)(1− xy − x2y)
+

xy(1− x2y − x3y2)xy

(1 + xy)(1− x2y)(1− xy − x2y)

=
x2y2(1− x2y)

(1 + xy)(1− x2y)(1− xy − x2y)

=
x2y2

(1 + xy)(1− xy − x2y)
.

�

Proposition 5.11. For n ≥ 1, k ≥ 0,

fev∗∅
n,k = fod ∅

n−1,k,

thus
fev∗∅(x, y) = xfod ∅(x, y).

Proof. The equality is true when n = 1 or n = 2. Then let x = 0l010l110l2 · · · 10lp ∈
Fev∗∅

n,k , with n ≥ 3 and k ≥ 0. Thus p ≥ 1; l0 ≥ 2; l1, · · · , lp−1 ≥ 1; lp = 0.
As l0 > 0, then x = (0x′) with x′ ∈ Fod∅

n−1.
By Proposition 3.2,

e(x) ≤ e(x′) + 1.

Let’s suppose that e(x) = e(x′) + 1, then there exists y = (1y′) such that
d(y′, x′) = e(x′). By a symmetry argument and Corollary 3.8, y′ must begin
with 1 which leads us to a contradiction.
Therefore, e(x) = e(x′). Thus x → x′ is a 1 to 1 mapping between Fev∗∅

n,k

15



and Fod∅
n−1,k.

Considering the fact that fev∗∅
0,k = 0 for k ≥ 0, we have:

fev∗∅(x, y) =
∑

n,k≥0

fev∗∅
n,k xnyk =

∑
n≥1,k≥0

fev∗∅
n,k xnyk

=
∑

n≥1,k≥0

xfod∅
n−1,kx

n−1yk = xfod∅(x, y).

�

Proposition 5.12. For n ≥ 3, k ≥ 1,

f∅ ∅
n,k = f∅ ev∗

n−1,k−1 + f∅ od
n−1,k−1.

Proof. Let x = 0l010l11 · · · 10lp ∈ F∅ ∅
n,k with n ≥ 3, k ≥ 1. Thus p ≥ 2;

l1, · · · , lp−1 ≥ 1 and l0 = lp = 0.230

Then x = (x′1) with x′ ∈ F∅ ev∗

n−1 if lp−1 is an even number and x′ ∈ F∅ od
n−1 if

lp−1 is odd.
By Proposition 3.2, e(x) ≤ e(x′) + 1.
Let y′ ∈ Fn−1 such that d(x′, y′) = e(x′), then d((y′0), (x′1)) = e(x′) + 1.
Hence e(x) = e(x′) + 1. Thus x → x′ is a 1 to 1 mapping between F∅ ∅

n,k and235

F∅ ev∗

n−1,k−1 ∪ F
∅ od
n−1,k−1. �

Proposition 5.13.

f∅ ∅(x, y) = 1 + xy +
xy(x3y2 + x2y2)

(1 + xy)(1− xy − x2y)
.

Proof. Let us consider the next initial values:

f∅ ∅
0,0 = f∅ ∅

1,1 = 1 and f∅ ∅
n,k = 0 for other values n ≤ 2 or k = 0.

Then

f∅ ∅(x, y) =
∑

n,k≥0

f∅ ∅
n,k xnyk

= 1 + xy +
∑

n≥3,k≥1

f∅ ∅
n,k xnyk.

Then by Proposition 5.12,

f∅ ∅(x, y)− 1− xy =
∑

n≥3,k≥1

(f∅ ev∗
n−1,k−1 + fod ∅

n−1,k−1)x
nyk

= xy
∑

n≥2,k≥0

(f∅ ev∗
n,k + fod ∅

n,k )xnyk
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Observe that when n ≤ 1

f∅ ev∗
n,k + fod ∅

n,k = 0.

Hence
f∅ ∅(x, y)− 1− xy = xy(f∅ ev∗(x, y) + fod ∅(x, y)).

From Proposition 5.11,

f∅ ∅(x, y) = 1+xy+xy(xfod ∅(x, y)+fod ∅(x, y)) = 1+xy+xy(1+x)fod ∅(x, y).

Substituting fod ∅(x, y) from Proposition 5.10, we obtain the desired result.
�

Proposition 5.14. For n ≥ 3, k ≥ 1,

`od od
n,k = fod od

n,k+1

thus
`od od(x, y) = y−1fod od(x, y).

Proof. Let x = 0l010l11 · · · 10lp ∈ Lod od
n,k , n ≥ 3, k ≥ 1. Thus p ≥ 0;240

l0, l1 · · · , lp−1, lp ≥ 1
By Corollary 3.8 (i) and by symmetry, every y such that d(x, y) = eΓn(x)
has the form y = (1y′1), with y′ ∈ Fn−2. Then, y /∈ Ln and eΛn(x) < eΓn(x).
Furthermore, note that the string (1y′0) ∈ Ln. Thus d((1y′0), x) = eΓn(x)−
1. Hence eΛn(x) = eΓn(x)− 1.245

Thus, x → x maps Lod od
n,k into Fod od

n,k+1.
For the second part of the Proposition, consider the initial values

`od od
1,0 = 1 and `od od

n,k = 0 for other values n ≤ 2 or k = 0.

Thus

`od od(x, y) =
∑

n,k≥0

`od od
n,k xnyk = x +

∑
n≥3,k≥1

fod od
n,k+1x

nyk

= x + y−1
∑

n≥3,k≥1

fod od
n,k+1x

nyk+1.

But

fod od(x, y) = xy +
∑

n≥3,k≥2

fod od
n,k xnyk,

thus

`od od(x, y) = x + y−1(fod od(x, y)− xy) = y−1fod od(x, y).

�
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Proposition 5.15.
`∅ ∅(x, y) = 1.

Proof. The empty word is the only string that belongs to some Ln that
neither begins nor ends with a 0. Thus `∅ ∅

n,k = 0 for n ≥ 1. �250

Theorem 5.16. The generating function for the eccentricity sequence of
Lucas cube is

`(x, y) =
∑

n,k≥0

`n,kx
nyk =

1 + x2y

1− xy − x2y
+

1
1 + xy

− 1− x

1− x2y
.

Proof. Recall that

`n,k = `od od
n,k + `od ev∗

n,k + `od ∅
n,k + `ev∗od

n,k + `ev∗ev∗
n,k + `ev∗∅

n,k + `∅ od
n,k + `∅ ev∗

n,k + `∅ ∅
n,k .

and we have the same decomposition for fn,k.
From Corollary 5.4, when (a, b) 6= (od, od) and (a, b) 6= (∅, ∅), then

`a b
n,k = fa b

n,k. Thus

`n,k = fn,k − fod od
n,k − f∅ ∅

n,k + `od od
n,k + `∅ ∅

n,k .

Thus, the generating function

`(x, y) =
∑

n,k≥0

`n,kx
nyk

satisfies the equation

`(x, y) =
∑

n,k≥0

(fn,k − fod od
n,k − f∅ ∅

n,k + `od od
n,k + `∅ ∅

n,k ).

By Theorem 4.3 and Propositions 5.8, 5.13, 5.14 and 5.15, we conclude that

`(x, y) =
1 + xy

1− xy − x2y
− xy(1− x2y − x3y2)

(1 + xy)(1− x2y)(1− xy − x2y)

−
(

1 + xy +
xy(x + 1)x2y2

(1 + xy)(1− xy − x2y)

)
+ y−1

(
xy(1− x2y − x3y2)

(1 + xy)(1− x2y)(1− xy − x2y)

)
+ 1

=
1 + x− x2y + x2y2 − x3y + x3y2 − x4y2 − x5y3

(1 + xy)(1− x2y)(1− xy − x2y)

=
1

1 + xy
− 1− x

1− x2y
+

1 + x2y

1− xy − x2y
.

�
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Corollary 5.17. For all n, k with n > k ≥ 1,

`n,k =
(

k

n− k

)
+

(
k − 1

n− k − 1

)
+ εn,k (5.4)

where

εn,k =


−1 if n = 2k,

1 if n = 2k + 1,
0 otherwise.

Furthermore, `0,0 = `1,0 = 1, `n,0 = 0 for n > 1 and

`n,n =
{

2 if n is even (n ≥ 2),
0 if n is odd.

Proof. By the previous theorem,

`(x, y) =
1

1− xy − x2y
+

x2y

1− xy − x2y
+

1
1 + xy

− 1− x

1− x2y
.

We will analyse each term of this sum separately.

1
1− xy − x2y

=
∑
b≥0

(xy(1 + x))b =
∑
b≥0

xbyb
b∑

a=0

xa

(
b

a

)

=
∑
b≥0

b∑
a=0

xa+byb

(
b

a

)
=

∑
n≥0

n∑
k=0

(
k

n− k

)
xnyk (5.5)

x2y

1− xy − x2y
= x2y

∑
b≥0

(xy(1 + x))b = x2y
∑
b≥0

b∑
a=0

xa+byb

(
b

a

)

=
∑
b≥0

b∑
a=0

xa+b+2yb+1

(
b

a

)
=

∑
n≥2

n−1∑
k=1

(
k − 1

n− k − 1

)
xnyk. (5.6)

The third term of the sum is

1
1 + xy

=
∑
b≥0

(−xy)b =
∑
n≥0

(−1)nxnyn. (5.7)

Finally, the last term will be decomposed as follows:

− 1− x

1− x2y
=

x

1− x2y
− 1

1− x2y
,

x

1− x2y
= x

∑
a≥0

(x2y)a =
∑
k≥0

(x2k+1)yk, (5.8)
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and the second sub-term

−1
1− x2y

= −
∑
a≥0

(x2y)a = −
∑
k≥0

(x2k)yk. (5.9)

Equations (5.5), (5.6), (5.8) and (5.9) give us the desired result when k 6=
0, k 6= n.255

When k = 0, equation (5.5) contributes with 1 when n = 0; equation (5.7)
contributes with 1 when n = 0; equation (5.8) contributes with 1 when n = 1
and equation (5.9) contributes with −1 for n = 0.
When k = n ≥ 1, equation (5.5) contributes with 1 and equation (5.7)
contributes with (−1)n. �260

Notice that for n ≥ 2,

n∑
k=0

`n,k =
n−1∑
k=1

[(
k

n− k

)
+

(
k − 1

n− k − 1

)]
+ εn,bn

2 c + `n,0 + `n,n,

where
εn,bn

2 c = (−1)n+1, `n,0 = 0 and `n,n = 1 + (−1)n.

Therefore,

n∑
k=0

`n,k =
n∑

k=0

(
k

n− k

)
+

n−2∑
k=0

(
k

n− 2− k

)
= Fn+1 + Fn−1 = Ln = |V (Λn)|.
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