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On the Information Geometry of Audio Streams

with Applications to Similarity Computing
*Arshia Cont, Shlomo Dubnov, and Gérard Assayag

Abstract—This paper proposes methods for information pro-
cessing of audio streams using methods of information geometry.
We lay the theoretical groundwork for a framework allowing the
treatment of signal information as information entities, suitable
for similarity and symbolic computing on audio signals. The
theoretical basis of this paper is based on the information
geometry of statistical structures representing audio spectrum
features, and specifically through the bijection between the
generic families of Bregman divergences and that of exponential
distributions. The proposed framework, called Music Information
Geometry allows online segmentation of audio streams to metric
balls where each ball represents a quasi-stationary continuous
chunk of audio, and discusses methods to qualify and quantify
information between entities for similarity computing. We define
an information geometry that approximates a similarity metric
space, redefine general notions in music information retrieval
such as similarity between entities, and address methods for
dealing with non-stationarity of audio signals. We demonstrate
the framework on two sample applications for online audio
structure discovery and audio matching.

I. INTRODUCTION

MUSIC Information Retrieval (MIR) systems deal one

way or another with the information content of music

signals, their transformations, or extraction of models or

parameters from this information. A common question that

many such systems ask at their front-end is what information

is presented in the signal and to what relevancy? This question

is central in almost all music information retrieval systems

dealing either with temporal structures of audio data streams

for search applications (query-by-humming, audio matching,

music summarization etc.), or with temporal decomposition of

audio (source separation, multiple-source identification, etc.).

In this paper, we seek a comprehensive framework that

allows us to quantify, process and represent information con-

tained in temporal structure of audio streams. An audio stream

is a sequence of audio data presented to an algorithm one item

at a time, thus capable of online processing of information.

The framework introduced in this paper brings in concepts

from various literatures: music signal processing, information

geometry and machine learning. By this combination, we aim

to investigate the natural geometric structures occupied by

families of probability distributions representing audio streams

that implicitly represent the ongoing information structure of

the signal over time. Within this framework, music information

arrives in discrete analysis windows over time and occupy
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statistical points in an information manifold. These statisti-

cal points are then analyzed within a generic mathematical

framework called Music Information Geometry, that assures

the existence of an approximate similarity metric space over

data, and redefines common concepts in the MIR literature

such as similarity and metric balls.

The present work inscribes itself within the more general

framework of information dynamics measures for audio in

relation to music cognition. Dubnov has studied information

measure based on mutual information between the past and

present of audio and showed its significance compared to data

collected from listeners [1]. He later developed his method

in [2] for non-stationary audio by separating the data and

model aspects of information dynamics. One of the difficulties

with this approach is determining what consists of relevant

information between data and model. For instance, in the

data case it is assumed that individual observations carry

little information about the model, while in the model case

they are represented by cluster centers, so the information

between observations is ignored. The present work solves this

problem by explicitly defining models on statistical points and

providing mathematical tools for further processing.

Music Information Retrieval (MIR) systems mostly rely on

the notion of self-similarity measures for music and audio

[3] as a basis to compare and deduce music structures. Many

MIR techniques also rely on geometric concepts in machine

learning for building classifiers in supervised problems (genre

classification, artist identification, query by example etc.) or

clustering data in unsupervised settings (audio search engines,

structure discovery etc.). Implicit in all these considerations

is the fact that similarity measures, with all their variety

of formulations, constitute a metric space where equivalence

categories can be deduced and compared. At this stage,

there is no clear boundary in the literature between metrics

and the notion of similarity. Another drawback of common

information processing methods in MIR is the wide use of

bag of features models, where audio data is represented to

the system with no temporal order. Despite their wide use,

such techniques ignore the temporal dimensions of the data

which is an essential criteria in many retrieval processes.

The proposed Music Information Geometry framework aims

at approximating metric spaces over a wide-variaty of signal

representations and similarity measures that lie within the

generic families of Bregman divergences and exponential

family distributions, and by explicitly considering the temporal

order of audio streams.

We emphasize that our focus here is on the mathematical

properties of common distortion measures once formulated
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using methods of information geometry, and not the difficult

and open problem of characterizing which distortion measures

best address the subjective quality of particular psychoacoustic

characteristics of music. The major intent of this paper is to

lay the theoretical groundwork for forthcoming experimen-

tal results. However, we exhibit results on two major MIR

applications defined on information manifolds: online audio

structure discovery and audio matching. The goal here is not

to compare these results with the extensive literature within

each application, but to showcase the power of information

geometric formulations on complex problem sets. Details of

experimental results are thus left for dedicated publications.

This paper is organized as follows: Section II introduces ba-

sic mathematical tools and theorems of information geometry

over Bregman divergences and their relationship to exponential

distributions. Section III, refines common tools and terms

such as distortion and similarity to prepare the common

ground. Section IV introduces our Music Information Geom-

etry framework, providing tools, theorems and definitions that

permit a migration from Bregman divergences to similarity

metric spaces. Section V provides sample applications of the

proposed framework proceeded by conclusions.

II. PRELIMINARIES

In this section, we introduce the mathematical basis of our

proposal. We start by introducing basic concepts of informa-

tion geometry and move on to Bregman divergences and their

geometric properties and introducing exponential families and

their behavior in a Bregman geometry. The reader is referred

to [4]–[6] for details and proofs.

A. Information Geometry of Statistical Structures

Let us consider a family of probability distributions speci-

fied by a vector parameter p(x, ξ) where ξ is a vector constitut-

ing the model parameters of the probability distribution. This

set can be regarded as a manifold under certain regularity con-

ditions where ξ = (ξ1, . . . , ξn) would be its coordinate system.

A manifold is an abstract mathematical space in which every

point has a neighborhood which resembles a regular Euclidean

space but the global structure may be more complicated. By

defining probability distributions on a manifold, each point

would then refer to a realization of a family of probability

distribution. The manifold has a natural geometrical structure

if the geometrical structure is (1) invariant under the coordinate

system (or parameters) used to specify the distributions, and

(2) invariant under rescaling of the random variable x.

Amari [4] shows that representing statistical structures

within a Riemannian geometry equipped with the Fisher

Information measure as inner product g, and a canonic affine

connection ∆, would constitute an information geometry. This

construction allows definitions for many geometrical structures

such as distances, lines, volumes etc. Among such constructs,

the existence of dual canonic divergences or distance like

measure D between two points in the geometry is of extreme

importance to us. Alternatively, there have been attempts

to define information geometries on Riemannian manifolds

with g, directly by inducing divergences instead of affine

connections. Recently, Zhang [7] introduced a canonical form

of affine connection that deduces many types of divergence

functions which are in common use in engineering including

the well-known Bregman Divergence family [8]. Given these

findings, and within the framework introduced in [7], we can

assume a geometrical structure over probability manifolds S
using Fisher Information and Bregman Divergences.

Throughout this paper, we assume that a system under

measurement generates families of probability distributions on

a dual information manifold defined as (S, g,∆D,∆D∗

) where

its geometric properties are induced by employing Bregman

Divergence D. Also, the term point represents a family of

probability distributions that belongs to a probability simplex

X ∈ R
d. Vector mathematical constructs are notated using

boldface characters in contrast to scalar constructs.

B. Elements of Bregman Geometry

Definition 1 ( [6], [8]). For any two points p and q of X ∈ R
d,

the Bregman Divergence DΦ(., .) : X × X → R of p to q

associated to a strictly convex and differentiable function Φ
(called generator function) is defined as:

DΦ(p, q) = Φ(p) − Φ(q) − 〈∇Φ(q),p − q〉 (1)

where ∇Φ =
[

∂Φ

∂x1

, . . . , ∂Φ

∂xd

]

denotes the gradient operator

and 〈p, q〉 the inner or dot product.

The most interesting point about Bregman family of diver-

gence is that they can generate many of the common distances

in the literature. Table I shows several of these canonical

generations (see also [9]). Among common properties of

Bregman divergences, we can easily show that they are non-

negative, convex on the first argument, and linearly invariant

on Φ. The reader is referred to [5, Appendix A] for details.

TABLE I
BREGMAN DIVERGENCE GENERATION EXAMPLES

X Φ DΦ(p, q) Generic Name

R
+ x log x − x p log p

q
− p + q Kullback-Leibler Div.

R
+
∗

− log x
p

q
− log p

q
− 1 Itakura-Saito Div.

R
d ||x||2 ||p− q||2 Squared Euclidean

1) Dual Structure: An important property of information

manifolds is the existence of a dual structure based on

Legendre transformation for any geometrical structure on

S. Using statistical manifolds on Bregman divergences, this

dual structure can be entirely exploited by defining the dual

divergence that is generated by the Legendre transformation

of Φ or Φ∗ =
∫

∇−1Φ. In the sequel, we denote the dual

point of x as x′ = ∇Φ(x). The following property shows the

relationship between a Bregman divergence and its dual:

Property 1 ( [6]). DΦ∗ is also a Bregman divergence called

the Legendre dual divergence of DΦ and we have:

DΦ(p, q) = Φ(p) + Φ∗(q)− < p, q′ >= DΦ∗(q′,p′)
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2) Bregman Balls: In analogy to Euclidean geometry, we

can define a Bregman ball. Due to the asymmetric nature of

Bregman divergences, a Bregman ball can be defined as two

counterparts which are right-type or left-type. A Bregman ball

of right-type centered at µk with radius Rk is defined as:

Br(µk, Rk) = {x ∈ X : DΦ(x,µk) ≤ Rk} (2)

Similarly, the Bregman ball of left-type Bℓ(µk, Rk) is defined

by inverting the divergence in eq. 2 to DΦ(µk,x).
3) Bregman Information: Let X be a random variable fol-

lowing a probability ν that takes values in X = {xi}
n
i=1 ⊂ R

d.

Let µ = Eν [X]. Then the Bregman Information of X is:

IΦ(X) = Eν [DΦ(X, µ)] =

n
∑

i=1

νiDΦ(xi,µ) (3)

Well-known examples of Bregman Information are variance

and mutual information (see [5]).

C. Exponential Family of Distributions

Among different distribution families, the exponential fam-

ily of probability distributions are of special importance and

have found their way in many pattern recognition applications.

Their canonical definition is as follows:

p(x|θ) = exp [< θ,f(x) > −F (θ) + C(x)] (4)

where f(x) is the sufficient statistics and θ ∈ X represents

the natural parameters. F is called the cumulant function,

and fully characterizes the exponential family while the term

C(x) ensures density normalization. Many of commonly used

distribution families can be generated by proper choice of

natural parameters and sufficient statistics as demonstrated in

table II. The expectation of X with respect to p(x;θ) is called

the expectation parameter or µ = µ(θ) =
∫

x p(x;θ) dx.

TABLE II
EXAMPLES OF EXPONENTIAL FAMILY DISTRIBUTIONS

Distribution Natural Cumulant
p(x, Θ) Parameters θ function F (θ)

N (x; ν, σ2) { ν

σ2

−1

2σ2
} −

θ2

1

4θ2

+ 1

2
log(− π

θ2

)

(Univ. Gaussian)

N (x; ν,Σ) {Σ−1ν − 1

2
Σ

−1} 1

2
νT

Σ
−1ν

(Multiv. Gaussian) + 1

2
log det(2πΣ)

N !
∏

d

j=1
xj !

d
∏

j=1

q
xj

j

{

log qi

1−

∑

d

j=1
qi

}

log(1 +
∑d

i=1
exp θi)

(Multinomial)

1) Duality of natural and expectation parameters: It can

be shown [4] that the expectation and natural parameters

of exponential families of distributions have a one-to-one

correspondence and span spaces that exhibit a dual relationship

as outlined in section II-B1. Due to the convexity of F , its

dual F ∗ exists on Θ and the following important one-to-one

mappings hold between the two spaces:

µ(θ) = ∇F (θ) and θ(µ) = ∇F ∗(µ) (5)

meaning that the expectation parameter is the image of the

natural parameter under the gradient mapping and vice-versa.

2) Bijection with Bregman divergences: A natural question

to ask at this point is: What family of Bregman divergence

should be chosen for a given family of exponential distribu-

tions? The answer lies in the important property of bijection

between exponential families and Bregman divergences as

proved in [5]. This theorem implies that every regular expo-

nential family corresponds to a unique Bregman divergence

and vice versa, leading to a one-to-one mapping:

Theorem 1 ( [5]). Let p(x;θ) be the probability density

function of a regular exponential family of distribution with F
as its associated cumulant function. Let F ∗ be the conjugate

function of F . Let θ ∈ Θ be the natural parameter and µ be

the corresponding expectation parameter. Then p(x;θ) can be

uniquely expressed as

p(x;θ) = exp(−DF∗(x,µ))bF∗(x) (6)

where bF∗(x) is a uniquely determined function.

Table III shows three examples of bijection between ex-

ponential distributions and Bregman divergences with derived

expectation parameters corresponding to examples in table II.

This information suggests that the bijected Bregman diver-

gence for Multinomial distributions is the well-known KL

divergence, whereas for a spherical Gaussian it amounts to

a simple Mahalanobis distance (see [5] for more examples).

TABLE III
EXPONENTIAL DISTRIBUTIONS WITH BIJECTED BREGMAN DIVERGENCES

Distribution Expectation Parameter Bijected Bregman Div.
p(x, Θ) µ DF∗ (x, µ)

N (x; ν, σ2) ν Squared Euclidean
1

2σ2
(x − ν)2

N (x; ν,Σ) ν Mahalanobis

(x− µ)T Σ(x− µ)

Multinomial {Nqj}
d−1

j=1
Kullback-Leibler

3) Mixture Models: In machine learning and pattern recog-

nition literature, many stochastic sources are expressed as

a mixture of k densities of the same exponential family.

This yields a soft clustering where clusters correspond to the

components of the mixture model, and the soft membership of

a data point in each cluster is proportional to the probability

of the data point being generated by the corresponding density

function. Using the right side of eq. 6, the log-likelihood of an

exponential mixture model with mixture weights πi becomes:

L(x|Γ) =

k
∑

i=1

log[πibF∗(x)]DF∗(x,µi)

=
k

∑

i=1

νiDF (θi,x
′) (7)

where property 1 and relationships in eq. 5 have been em-

ployed. Note that eq. 7 is simply a reiteration of the Bregman

Information in the dual setting and up to an additive constant.

This simply states that there is a duality relationship between

exponential distributions and their mixtures. This is also true

for more general affine connections as discussed in [4].
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III. DISTORTIONS, SIMILARITY, AND METRICS

An information manifold defined on Bregman divergences

or (S, g, ∆D,∆D∗

) provides us with interesting information

theoretic tools for qualification and quantification of paramet-

ric stream information. Once such a framework exists, it is

desirable to apply it to common pattern recognition problems

such as nearest neighbor search or segmentation schemes to

name a few. Such measures of information have been widely

referred to as distortion measures in the speech and audio

processing literatures. The distortion between two entities

represents the cost resulting when the first is reproduced by the

other and is related to new information carried from one entity

to other. Distortion measures have wide variety of applications

in the design and comparison of systems [10]. Despite their

usefulness, these measures do not guarantee equivalence be-

tween entities if distortion is low. This is in contrast to most

information processing systems where a notion of metric is

required to assure equivalence between classes for clustering

or classifying data points or clusters. In this section, we study

necessary properties for metric equivalence and discuss the

behavior of Bregman distortions as metrics.

Let Ω be a nonempty set and R
+ be the set of non-negative

real numbers. A metric function on Ω is a function d : Ω×Ω →
R

+ if it satisfies the following properties [11]:

Property 2. d(x,y) = 0 iff x = y

Property 3 (Symmetry). d(x,y) = d(y,x)

Property 4 (Triangle Inequality). d(x,y) ≤ d(x,z)+d(z,y)

We are interested in a particular type of distance, the

“similarity distance”. In the field of Music Information Re-

trieval, Jonathan Foote has been credited for promoting and

using self-similarity measures for music and audio [3]. The

MIR literature on database search, structure discovery, query-

based retrieval and many more, rely on Foote’s general notion

of similarity as a basis to compare, retrieve, and discover

music structures. Nevertheless, the metrics employed in such

approaches lack one or more of the properties above, and

moreover do not necessarily address any information theoretic

aspect of the content. In this section, we study the notions of

distortions, similarity and metric spaces with a special eye on

the bijected Bregman divergences on information manifolds to

pave the way for the proposal in section IV.

A. Equivalence and Similarity

Within information entities, an ideal similarity metric d and

distortion measure D are inversely related. In other words,

two entities have high similarity when the information rate

between them is low, and vice versa. Given this intuition, we

can consider two information states similar if the information

carried from one to the other is minimal. Because signals

can have arbitrary forms, usual choices for assessing signal

difference like mean-squared error make little sense. Instead

we rely on distance measures that quantify difference between

the signals’ probabilistic descriptions. We thus append the

following definition to property 2:

Definition 2 (Similarity). Two entities θ0,θ1 ∈ X are as-

sumed to be similar if the information gain by passing from

one representation to other is zero or minimal; quantified by

D(θ0,θ1) < ǫ which depends not on the signal itself, but on

the probability functions pX(x;θ0) and pX(x;θ1).

Following the intimate relationship between exponential

families and Bregman divergences, they would naturally fit

to the above definition to detect similar entities when audio

streams are modeled parametrically as exponential family

of distributions. While property 2 is inherent for all DF ,

Bregman divergences are not necessarily metrics since they

are usually not symmetrical and the triangular inequality does

not generally hold. We now study these two missing properties

and provide the grounds to approach them in section IV.

B. Symmetrized Bregman Divergences

Bregman divergences are not necessarily symmetric and

various methods exist to make them so. A common approach

is to employ the J-divergence or

DJ
F =

1

2
[DF (x,y) + DF (y,x)] (8)

as in [12], [13], but this symmetrization scheme does not fit the

dually flat manifold [9], and requires further considerations for

use within applications that necessitate similarity computing.

C. Triangle Inequality

Among the three properties for metrics, the triangle inequal-

ity is probably the most non-trivial. The triangle inequality can

be generalized for any triple x, y, and z in X as follows:

DF (x, z) + DF (z,y) = DF (x,y) + 〈x − z,y′ − z′〉 (9)

If the underlying geometry is dually flat, which is the case with

manifolds deduced from Bregman divergences, the generalized

Pythagoras theorem states that

DF (x,y) ≥ DF (x, z) + DF (z,y) (10)

where the equality hold only if for X being a convex simplex

of x [4], z = argminq∈X DF (q,y) which is not true for ar-

bitrary entities r ∈ X , and we are left with eq. 10 which is the

inverse of property 4. Therefore special attention must be paid

in computing similarity using regular Bregman divergences.

IV. MUSIC INFORMATION GEOMETRY

Using mathematical tools introduced so far, we aim at

providing a framework for processing and qualifying the

effectiveness of audio streams. We define an affine informa-

tion geometry (S, g, ∆D,∆D∗

) using Bregman divergences

induced by the choice of statistical distribution over incoming

data and represented hereafter as DF , where F is deduced

from theorem 1. We start by presenting the general framework,

proceed to data and model information entities, and discuss

information theoretic tools useful for many pattern recognition

and information retrieval applications.
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A. General Framework

In our framework, audio data arrives incrementally to the

system as time series Xti
containing sampled overlapping

windows of audio where ti is time (in seconds) of the window

center. For simplicity, we drop the i index hereafter and use

Xt instead where t ∈ N. We assume that data underlying

Xt is generated by a family of exponential distributions

(or mixture there of). By this assumption, theorem 1 would

provide us automatically with distortion measure DF and

underlying geometrical tools discussed so far to introduce an

information processing framework. In this section, we discuss

these assumptions and their consequence in the design and

formulation of common problems in audio processing.

The choice of the exponential family distribution over time

series Xt depends on the nature of the problem to solve and

constitutes the a priori over modeling. Despite this limitation,

generic exponential distributions (or their mixtures) are widely

employed in general pattern recognition as well as audio and

speech processing systems either implicitly or explicitly. For

example many researchers choose a time-frequency represen-

tation over Xt as St(ω) such as short-time Fourier or wavelet

transforms, where each St(ω) can be treated as frequency

distributions or histograms of the corresponding Xt. Such

histogram features can be assumed, without loss of generality,

to be generated by Multinomial distributions with the well-

known KL divergence as bijected distortion measure. This

choice has been empirically proved in [12] for concatenative

speech synthesis. Other systems tend to use more compact

representations for audio signals such as Cepstral Coefficients

and/or by directly modeling through probability distributions

with sparser natural parameter space. The review of such

systems is out of the scope of this paper but existing literature

should convince the reader of the wide use of exponential dis-

tributions and their mixtures. In summary, any design process

for a given problem that involves exponential distributions (or

their mixtures) as front-end has a unique information geometry

defined by its bijected Bregman divergence.

Using exponential distributions over data streams, the time

series Xt can be represented by their equivalent distributions

p(x,θt) or by natural parameters θt ∈ Θ. θts constitute the

points of the information manifold, referred hereafter as data

points. Converting back and forth between the data in Xt (or

relevant feature representations) and θt is problem dependent

but is a one-to-one mapping (see [5] for examples). In the

following subsections, we employ information geometric tools

for information processing of underlying audio streams.

B. From Data Information Rate to Model Information Rate

The first step in any information processing system is to

introduce measures quantifying the amount of information car-

ried through the signal. Following [2], we denote such measure

as Information Rate (IR) within a transmission process over

a noisy time-channel and defined as the relative reduction

of uncertainty of the present considering the past. [2] shows

that the Information Rate at time t = T is equal to the

mutual information carried between the past {X1, · · · , XT−1}
(denoted in the sequel as XT−1

1 ) and history of the signal up to

present or XT
1 . It is further shown in [14] that for a stationary

Gaussian process, IR can be approximated asymptotically in

T using the spectral flatness measure of the time signal, or the

ratio between geometrical and arithmetical means of {St(ω)}.

We refer to this measure as Data-IR, reflecting information

rates on data points. It can be proven that this data-IR measure

is a special case of Bregman Information for Itakura-Saito (IS)

divergence, widely used in speech and audio as a distortion

measure on power spectra [10]. See [15, Ch. 4] for proof.

Using Bregman Information on information manifolds, the

Data-IR measure can thus be extended to other representa-

tional aspects of the underlying stream. Despite this theoretical

comfort, Data-IR is not useful in practice for two main

reasons: (1) the underlying assumption of stationarity on Xt

which is not true for real audio, and (2) extensive consideration

of data-points in computation specially for long streams.

To tackle both issues, we adopt the plausible hypothe-

sis that the signal is stationary in a finite and continuous

time-interval under some model θk and described through

P (x1, . . . ,xn|θk). Within our information manifold, this

draws down to the geometric intuition that a set of continuous

data points on our manifold are concentrated around a single

point representative of θk.

Definition 3 (Models). Given (S, g,∆D,∆D∗

) on a regular

exponential family formed on Xk, a model θi consists of a set

Xi = {Xk|k ∈ N ,N ⊂ N} that forms a minimum enclosing

Bregman Ball Br(µi, Ri).

A model defined and constructed on an audio stream refers

to continuous data points on the information manifold that

are self-contained in an information theoretic sense, and cor-

responds to a quasi-stationary chunk of audio in the stream.

Therefore, the distinction between data points and models on

an audio stream manifold is structural: data points refer to

micro-structures of the audio whereas models correspond to

macro-structures that give sense to the global structure of

the stream. In this manner, it makes little sense to directly

compute between data points where their model parameters

provide enough information for intra-structural comparisons.

For similarity computing, it is more useful to structurally refer

to model parameters first and if needed, refer to the data points

within the model. Therefore, providing a metric space as in

section III is crucial for between-model comparisons.

The above definition requires us to formalize the following

aspects: (1) How to form a minimum enclosing ball once

model data-points Xi are given, (2) How to quantify the

information rate carried from one model to another, and

(3) how to incrementally achieve a segmentation of audio

streams to information entities or models as defined above. The

following subsections would address each question separately.

C. Centroid Computation

An important tool in both quantizer design and cluster

analysis techniques is the generalized centroid of a cluster of

data points. Given a cluster of points, this is the best single

representative of the cluster and defined as the optimizer of the

minimum average distance for the entire set of points in the
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cluster. Banerjee et al [5] have proven the following important

theorem for Bregman centroids:

Theorem 2 ( [5]). Let X be a random variable that takes

values in X = {xi}
n
i=1 ⊂ R

d following a probability ν. Given

a Bregman divergence DF , the right type centroid of X or

cF
R(X ) = argmin

c

n
∑

i=1

νiDF (xi, c) (11)

is unique, independent of F and coincides with µ = Eν [X]

or for νi = 1/n to center of mass µ = 1

n

n
∑

i=1

xi.

It is important to notice the equivalence between eq. 11 and

that of Bregman Information on uniform distributions with

additional optimization. In other words, a computed centroid

on an information geometric framework represents a minimum

enclosing ball in terms of information content, or minimum

distortion point of the given set. Given this, we can safely

adopt the Bregman centroid computation for forming balls

representing models of our information geometric framework.

In addition to the above definition and due to general

asymmetry of Bregman divergences, we can define a left-

type centroid by reversing the order of computation in eq. 11.

Obviously, theorem 2 does not hold for the left-type centroid

and the optimization becomes non-trivial. We can however

employ the dualistic structure of our information manifold to

obtain cF
L . Combining theorem 2 and property 1 we obtain:

cF
L(X ) = (∇F )−1(

n
∑

i=1

∇F (xi)) = (∇F )−1(cF∗

R (X ′)) (12)

stating that the left-type centroid is obtained by calculating the

right-type centroid in the dual manifold using theorem 2 and

converting it back to the original space.

For asymmetric Bregman divergences, a symmetrized Breg-

man centroid on the set P = {pi}
n
i=1 ⊂ X can be defined by

the following optimization problem:

cF (P) = argmin
c∈X

n
∑

i=1

DF (c,pi) + DF (pi, c)

2
(13)

conforming to the symmetrization scheme in eq. 8. This

optimization problem has been previously addressed in [16]

for Kullback-Leibler divergences and by employing convex

optimization techniques. It is shown in [9] that it can be

extended to general Bregman divergences and simplified to

a constant-size system relying on the right-type and left-

type centroids by employing duality and a geodesic-walk

dichotomic approximation algorithm; hence, well adapted to

information manifolds of exponential distributions.

Solving eq. 13 requires an optimization framework in con-

trary to most literature that define (for example) symmetrized

KL divergence centroids as arithmetic or normalized geometric

mean of the left-type and right-type. Both approaches in

[16] and [9] empirically prove this remark on image and

audio processing applications. For our framework, we adopt

the geodesic-walk algorithm in [9] to solve for an optimal

symmetric Bregman ball. The radius of a given Bregman ball

Br with centroid cF
R on the set P = {pi}

n
i=1 ⊂ X is simply the

Bregman Information of eq. 3 on the set P . For the symmetric

construction above, it is shown that this radius is equal for the

right-sided and left-sided centroids [9, Corollary 3.3].

D. Model Comparison and Data Membership Check

In our information geoemtry, an audio stream is thus rep-

resented by Bregman Balls Bk
r (µk, Rk) which by themselves

contain continuous data points θt. Here, we study the task of

qualifying information rates within models and also member-

ship of data points to models. These operations are important

in many pattern recognition and information retrieval tasks that

require information theoretic comparisons between entities

such as similarity and nearest neighbor seach and clustering.

Following our definition of similarity, we can safely assign

the information rate for passing from one model Bi
r(µi, Ri)

to another Bj
r(µj , Rj) as the distortion between the two

representative centroids of the two clusters or DF (µi,µj)
(and similarly DJ

F (µi,µj) for symmetrized centroids). How-

ever, checking for membership of an arbitrary data point

X to a given ball Bk
r (µk, Rk) containing its own set of

points becomes non-trivial mostly due to the lack of tri-

angle inequality. Note that if the triangle inequality holds,

this membership check simply amounts to checking whether

DF (X,µk) ≤ Rk. In the absence of this property, we perform

tests by projecting X onto the Bregman ball Br(µk, Rk).
This projection is the unique minimizer XB such that XB =
argminx∈Bk

r
DF (x,µk). Once XB is established, member-

ship can be obtained by checking whether DF (X,XB) ≤ ǫ.

It can be easily shown that XB lies on the geodesic line

connecting X and µk [6], [17]. Such geodesic is characterized

as the set of points ΓXµk
= {∇−1F ((1 − λ)X ′ + λµ′

k) |λ ∈
[0, 1]}. To find XB , we can first check whether X is inside the

ball or not: DF (X,µ) > Rk. If not, then DF (X,µ) ≤ Rk

and hence the projection is the point itself. Otherwise, XB ∈
ΓXµk

for some arbitrary λB ∈ [0, 1]. Geometrically, such a

point must lie on the boundary of Br and thus combining

ΓXµk
with a bisection can approximate the placement of XB

and can be found by a linear search as proposed in [18]. Note

that this projection procedure assures an approximation of the

Pythagoras equality in eq. 10.

E. Incremental Segmentation/Change Detection

In this section we propose a simple method for online

segmentation of an audio stream to information geometric

models and through a change detection process. Given a set

of data points in S, the problem of finding models according

to definition 3 is a classical clustering problem in S where

each cluster defines a minimum enclosing Bregman ball over

data points. Offline Clustering over Bregman spaces has been

previously addressed in [5] and as an extension to EM algo-

rithms. These methods are in common use for speech and

audio clustering by considering bag of features or bag of

frames models and thus neglecting the importance of temporal

dimensions in retrieval processes. Based on our information

manifolds, we propose a simple online clustering algorithm

for incremental model formation that strongly employs the

temporal morphology of data over the information manifold.
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Following definitions 3, we base our segmentation technique

on detecting information jumps in an ongoing audio stream Xt

for forming models or minimum-information Bregman balls

over time. The information radius Rk defines the maximum

information gain around a centroid µk that model k contains

through DJ
F . Employing change detection for incremental

Bregman ball formation on continuous streams has the implicit

assumption that the models’ information gain on audio streams

is a right-continuous with left limit function of time. This

assumption is a direct consequence of our initial consideration

that the signal is stationary in a finite time-frame under a model

θk. This conforms to the intuitive nature of music information

characterized by distinct events with an information onset

implying a discontinuity with regards to the past.

The goal of model formation in our framework is thus to

search for a proper segmentation on audio streams such that

each resulting segment is quasi-stationary and homogeneous

in terms of information content. The detection of a change

is equivalent to accepting a hypothesis H1 of change for

time r ≤ n when testing against the hypothesis H0 of no

change. Algorithm 1 shows a basic online implementation of

the change detection which accepts an observation sequence

of length n, and initialized on Xn
0 with f = 0.

Algorithm 1 Online model Segmentation/Change Detection

Require: Audio stream Xt, ongoing model Bk(µk, Rk), ob-

servation window n, first index f
Ensure: t − f ≥ n (minimum observation length)

1: Initialize observation vectors {Oi}
t−f−1

i=0 to Xt
t−f

2: Detect change point r∗ in {Oi} with regards to Bk

3: if No change is detected then

4: set f = t
5: else

6: Initiate a new Bregman ball Bk+1 on {Oi}
n−1

i=r∗

7: set f = r∗, k = k + 1
8: end if

9: return next starting index f , ongoing ball Bk(µk, Rk)

The change detection algorithm proposed here is an adopted

version of the CuSum algorithm [19] which has been employed

in various segmentation schemes such as audio [20]. In a

generic CuSum algorithm, the likelihood ratio of the condi-

tional probabilities of the observations under the hypothesis

H1 and H0 is estimated, then the maximum of the sum of

the log-likelihood ratio of the sequence of observations is

compared to a threshold λ to determine whether a boundary

exists between two segments of the sequence. Concretely,

given n observations, cn = maxr

∑n
k=r ℓk where ℓk is the

log-likelihood ratio of conditional probabilities with respect

to H0 and H1, and compared to λ to assess the change point.

The CuSum algorithm assumes that the conditional proba-

bilities of observations under both hypothesis H1 and H0 are

known. While this is a difficulty for most applications, it does

not pose any in our framework. Concretely, given an ongoing

model Bk(µk, Rk) and n observations, H0 hypothesis at r
assumes that Or

0 are all members of Bk(µk, Rk) as explained

in section IV-D, and H1 at r assumes that On
r constructs a

new ball. Therefore, the likelihood ratio ℓk becomes

ℓk = DJ
F (cF

[{

µk ∪ {Ok−1
0 }

}]

, cF [{On
k }]) (14)

where cF is the symmetric Bregman centroid. The first argu-

ment of DJ
F refers to the inclusion of data points {On

k } within

Bk and the second is the hypothesis of forming a new ball.

The change point threshold λ applied to ℓk of eq. 14 has a

direct geometrical interpretation. It corresponds to the minimal

discrimination information distance between two consecutive

models on the audio stream. In other words, using the change

detection algorithm above and for two consecutive models k
and k + 1, we would always have DJ

F (µk,µk+1) ≥ λ.

Figure 1 shows the result of this segmentation on an audio

excerpt corresponding to the first theme of Beethoven’s 1st

Piano sonata performed by Friedrich Gulda. The information

geometry employed for this excerpt corresponds to amplitude

spectrum, assumed without lack of generality to be generated

by Multinomial distributions with the bijected Bregman as

Kullback-Leibler. The normalized audio waveform is super-

posed by ℓt or change point likelihoods as well as detected

model onsets. This example consists of 583 data points (analy-

sis frames) and leads to 44 disjoint and variable length models.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8
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Incremental Model Segmentation

Time (s)

1 2 3 4 5 6 7 89 10 11 12 13 1415 16171819 20 21 2223 24 25 2627 28 29 30 31 32 33 343536 37 3839404142 43 44

 

 

Audio
CuSum Likelihood
Class Onset

Fig. 1. Segmentation result on the first theme of Beethoven’s first sonata,
performed by Friedrich Gulda with λ = 0.1.

V. SAMPLE APPLICATIONS

To motivate the theoretical framework discussed above, we

present two sample applications in pattern recognition and

music information retrieval on audio streams. More results of

these sample applications (on different types of sounds and

music) can be found on our project website1.

A. Online Audio Structure Discovery

For our first sample application, we are interested in rep-

resenting the repetitions and long-term regularities within an

ongoing audio stream. Music structure analysis from acoustic

signals has been addressed previously by various methods. A

good review of existing approches can be found in [21]. We

aim at obtaining an online procedure that can quickly group

equivalent patterns and find the longest sequence of models

in the past of the audio stream. The first problem is referred

to as clustering and the second as structure discovery. We are

interested in a fast method that can address both in one shot.

1http://imtr.ircam.fr/imtr/Music Information Geometry

http://imtr.ircam.fr/imtr/Music_Information_Geometry
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The idea behind this application is the following: The

Music Information Geometry framework provides us with

information entities as minimum information Bregman balls

over the time series Xt, which can be compared to each

other using the discussed methods as in symbolic equivalence

classes but on a continuous metric and using the similarity

definition on page 4. This brings out the idea of adapting

common symbolic algorithms for the signal world.

Our algorithm for automatic discovery of audio structures

is motivated by a technique for fast indexing of symbolic data

such as text and DNA called Factor Oracle (FO) [22]. A time

series of symbols S = σn
1 in a FO is learned as a state-space

diagram, whose states are indexed by from 0 to n. There is

always a transition called the factor link labelled by symbol

σi going from state i−1 to state i. Navigating a FO from state

0 to n incrementally would generate the original sequence S.

Depending on the structure of S, other labelled factors links as

forward transitions might be created, as well as some backward

transitions called suffix links with no label.

The factor and suffix links in FO have direct structural

interpretations. A factor link going from state i to j indicates

that a (variable length) history of symbols immediately before

i is a common prefix of the sequence of symbols leading to

j. A Suffix link from state m to an earlier state k indicates

that the two states share the longest suffix. A suffix link goes

from i to j if and only if the longest repeated suffix of si
1 is

recognized in j, connecting repeated patterns in S. The length

of each repeating factor for each suffix link can be computed in

linear time and denoted as lrs(i) for each state i. This property

of suffix links alone make FOs attractive on large sequences.

Figure 2a shows schematically how maximum length repeated

factors are interconnected by suffix links. The thickness of the

chunks represents the length of the repeated factor. Following

each suffix link from the head of a Factor Oracle structure to

the very beginning provides a forest of disjoint tree structures

whose roots are the smallest and leftmost patterns appearing in

the trees, thus capturing all redundancies inside the sequence.

Figure 2b shows these linked trees associated to fig. 2a.

S
N

S
0

(a) Suffix Structure Diagram

S
N

S
0

(b) Expanded Suffix Trees

Fig. 2. The Suffix structure and Suffix Link forest of disjoint trees.

To extend Factor Oracles to music information geometry,

symbols σi are replaced by models and symbolic equivalence

to similarity as in definition 2 on bijected and symmetric DJ
F .

Following figure 2, by learning audio structures we are inter-

ested in suffix links and their corresponding lengths. Figure 3

visualizes the learned structures of the Oracle on a recording

of Beethoven’s first piano sonata, 3rd movement performed

by Friedrich Gulda (recorded in 1950s). In this example,

data points are constant-Q power spectrum on logarithmic

musical scales as reported in [23] with an analysis window of

approximately 64ms and an overlap factor of 2. Using these

histogram features, the corresponding Bregman geometry is

that of KL divergences. The information threshold for the

CuSum algorithm is set to 0.15 and the similarity threshold ǫ
for Oracle to 0.1. The three subplots show the audio waveform,

the suffix structure, and the length of repeating sequence lrs
associated to each state respectively. The suffix subplot is read

as follows: A time t on the x-axis would send a pointer back

to a time t′ (t′ < t) indicating the longest common suffix

between a factor at time t and t′. The corresponding value for

t on the lrs subplot reveals the length of the detected longest

sequence (as number of states) for that state. In this example,

we have superposed the reference structure in terms of labelled

blocks taken from explicit repetitions in the music score.

A A B B C C D D A B

C C

Fig. 3. Incrementally learned Oracle structure along with the segmented
structure in terms of blocks from the orignal symbolic music score;
Beethoven’s Piano Sonata 1-movement 3, interpreted by Friedrich Gulda.

In the classical music example of figure 3, the music

goes through various structural repetitions and recombinations

which are mostly captured by the Oracle structure. Such

repetitions in the context of a human performance of a

piece of music are never exact, but nevertheless detected.

This sample comprises an audio stream of 9500 analysis

frames that leads to 440 learned models and states. Given

this structure, we can construct a traditional similarity matrix

by substituting each found suffix link by its corresponding

distance or sim(i, j) = DJ
F (µi,µj) given that a suffix link

exist between i and j or zero otherwise. Figure 4a shows

this similarity matrix constructed out of the Oracle in figure 3

revealing the recall and similarity structure discussed above.

To compare, figure 4b provides a classical frame-based self-

similarity matrix over the same audio (and same features),

in common use in the MIR literature and as proposed in

[3]. Roughly, this measure is obtained by calculating the

distance between all analysis frames of the entire audio against

each other, using the same distortion. By segmenting the

audio stream into quasi-stationary states and using symbolic

equivalence rather than a distortion, figure 4a can be obtained

more efficiently and online where 4b requires the entire audio.

The similarity described in figure 4a also gives explicit access

to equivalent entities and continuations over time through the

structure of figure 3, whereas the similarity matrix of fig 4b

requires further processing to deduce such relations. Further-

more, the classical similarity matrix contains exhaustive basis

(9500 × 9500 versus 440 × 440 in fig 4a) for processing.

B. Similarity Queries over Information Streams

We showed in the previous section how long-term infor-

mation flows can be easily captured using our information
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Fig. 4. Structural Similarity matrix using structural segmentation on the music example of figure 3 using two different kernel values.

geometric framework. In this section we showcase the idea

of finding the most similar stream paths on a stream database

given a query. This problem is usually addressed under the

topic of audio matching. Once again, the goal here is not to

compare to all existing methods but to showcase the ease of

algorithmic programming once the problem set is projected

onto an information geometric framework.

Given a stream query Xt represented as a succession

of models Bk
X(µ, Rk), and a target stream in T as well

represented by its successive Bregman balls Bj
T , the problem

of finding the best match of Xt within T can be reduced to

finding the best sequence of balls in T that best constructs the

ball sequence in Xt. The problem then can be formulated as a

regular Approximate Nearest Neighbor search algorithm with

special considerations for temporal continuity between balls.

Given the compact state-space representation presented in the

previous section, and given its inherent temporal and disjoint

tree structures as shown in figure 2b, it would be natural to

choose this data structure instead of a regular ball-tree (such

as in [17]) for the search domain representation. Following

an Oracle representation on the target for a sequential search

has the advantage of providing results with best perceptual

continuity once synthesized since they correspond to natural

continuations and regularities in the original audio.

Bregman Ball sequence matching between a source (query)

and target can be achieved using dynamic programming and

following discussions in section IV-D. At the initialization, the

program chooses the most similar balls to B1
X over all balls in

T , resulting into the next search domain by choosing all factor

and suffix links from the found states following the Oracle of

T . This process is then repeated until either we reach the

end of query BT
X or an empty set is found during recursion.

This simple dynamic programming scheme is able to trace

multiple paths in a single run and provides partial matches

where possible. The result is a concatenative tree structure on

the target balls that are able to reconstruct Xt balls.

Figure 5 shows the resulting Concatenative tree for an

audio query corresponding to Beethoven’s Piano Sonata Nr.1’s

first musical theme (corresponding to the model sequence in

Figure 1) and the entire Piano sonatas Oracle ball sequence

obtained as in section V-A. This experiment was done using a

similarity threshold of ǫ = 0.1. Each numbered state represents

a Bregman ball in the target domain T . The tree reconstructs

the query from left to right by following existing arrows.

Among possible reconstruction paths, the path highlighted

with gray corresponds to the original theme of the exact

construction of the query (balls 1 to 37), which is naturally

expected. Parallel to this main path, two rather continuous and

alternative paths exist consisting of states 169 to 202 and 460
to 511. These paths correspond to the repetition of the main

musical theme in the middle and the end of the Piano Sonata

which is a main characteristic of Sonata form in classical

music. Other sub-paths also correspond to reappearance of

the main theme in one form or another during the development

section of the sonata form. The explosion of states around time

11 and towards the end correspond to a specific model that is

representing a cadential chord which re-appears in various

places throughout the piece as an important stylistic element.

A given path of the concatenative tree result can be easily

re-synthesized to audio by concatenating corresponding audio

frames of data points within each model (ball) using classical

concatenative synthesis techniques [24]. For more audio results

we encourage the reader to check our project website.

VI. CONCLUSION

We proposed a preliminary framework for representation of

temporal dynamics of audio streams on an information mani-

fold. The construction of our information manifold approaches

a similarity metric space where similarity is defined as control

over the rate of change of information content between con-

tinuous data streams, and requires modeling the data streams

as points on an information manifold generated by a family

of exponential distributions. The music information geometry

framework presented of section IV, provides an alternative

representation of data points by incrementally gathering quasi-

stationary data points within Bregman balls that represent

self-contained models in terms of statistical information. The

music information geometry in theory provides the following

facilities: (1) representation of audio entities as well-behaved

geometric objects with intuitive geometric properties, (2) sim-
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Fig. 5. Audio Matching concatenative tree result on Beethoven’s Piano Sonata Nr.1-Mvt.1 (target) and the first musical theme as query – Showing possible
audio reconstruction paths and best path highlighted in light-gray.

plifies optimization problems thanks to duality, (3) provides an

approximate similarity metric space, bridging the gap between

continuous and symbolic aspects of audio streams, (4) fast,

sparse and incremental treatments suitable for data stream

analysis, and (5) provides a generic mathematical framework

extensible to more intricate models and applications.

The major intent of this paper was to lay the theoretical

groundwork for forthcoming experimental results and hope-

fully, for other researchers interested in exploring the new

possibilities offered by methods of information geometry on

audio streams. We however showcased two common and

complex MIR applications using the proposed framework. The

promising sample results demonstrate the intuitive manner

by which complex problems can be addressed within the

proposed information geometry framework, and the facility

to access information entities in our framework similar to

symbolic processing. Further aspects and applications of music

information geometry will be reported in future publications.

The study of audio streams as information geometries pro-

vide a new and challenging way to address complex problems

with rather simple solutions. Besides its theoretical merit,

we believe that its solutions brings out new horizons to the

applications of multimedia information retrieval.
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