
HAL Id: hal-00579516
https://hal.science/hal-00579516

Submitted on 21 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Analysis and Classification of Phytoplankton
Based on data from an Automated Flow Cytometer
Anthony Malkassian, David Nerini, M. A. van Dijk, Melilotus Thyssen,

Claude Manté, Gérald Grégori

To cite this version:
Anthony Malkassian, David Nerini, M. A. van Dijk, Melilotus Thyssen, Claude Manté, et al.. Func-
tional Analysis and Classification of Phytoplankton Based on data from an Automated Flow Cytome-
ter. Cytometry Part A, 2011, 79A, pp.263-275. �10.1002/cyto.a.21035�. �hal-00579516�

https://hal.science/hal-00579516
https://hal.archives-ouvertes.fr


Functional Analysis and Classification of Phytoplankton

Based on Data from an Automated Flow Cytometer

Anthony Malkassian,1* David Nerini,1 Mark A. van Dijk,2 Melilotus Thyssen,3

Claude Mante,1 Gerald Gregori1

� Abstract
Analytical flow cytometry (FCM) is well suited for the analysis of phytoplankton com-
munities in fresh and sea waters. The measurement of light scatter and autofluorescence
properties of particles by FCM provides optical fingerprints, which enables different
phytoplankton groups to be separated. A submersible version of the CytoSense flow cy-
tometer (the CytoSub) has been designed for in situ autonomous sampling and analy-
sis, making it possible to monitor phytoplankton at a short temporal scale and obtain
accurate information about its dynamics. For data analysis, a manual clustering is usu-
ally performed a posteriori: data are displayed on histograms and scatterplots, and
group discrimination is made by drawing and combining regions (gating). The purpose
of this study is to provide greater objectivity in the data analysis by applying a nonman-
ual and consistent method to automatically discriminate clusters of particles. In other
words, we seek for partitioning methods based on the optical fingerprints of each parti-
cle. As the CytoSense is able to record the full pulse shape for each variable, it quickly
generates a large and complex dataset to analyze. The shape, length, and area of each
curve were chosen as descriptors for the analysis. To test the developed method, numer-
ical experiments were performed on simulated curves. Then, the method was applied
and validated on phytoplankton cultures data. Promising results have been obtained
with a mixture of various species whose optical fingerprints overlapped considerably
and could not be accurately separated using manual gating. ' 2011 International Society for

Advancement of Cytometry

� Key terms
phytoplankton; automated flow cytometry; functional data analysis; multivariate statis-
tics; clustering

IN the euphotic layer of the ocean, oxygenic photosynthesis is responsible for vir-

tually all biochemical production of organic matter, resulting in an annual flux of 4

3 1015 moles of carbon (1). This biological pump constitutes the most important

carbon sink at the oceanic scale, keeping the atmospheric carbon dioxide concentra-

tion 150 to 200 ppmv lower than it would be without phytoplankton in the ocean

(2). Marine primary production represents 45% of the bulk primary production on

Earth (1) whereas the marine phytoplankton biomass only accounts for 2% of the

global photosynthetic biomass. The high productivity shown by this taxon can be

explained by high potential growth rates and short life cycles (3). Biological absorp-

tion of carbon is almost entirely realized by small-sized phytoplankton communities

(\10 lm) under the control of light, nutrients (4), grazing, and viral lysis.

Because of the complex origin of the chloroplast, the phytoplankton is a poly-

phyletic taxon (5,6). This deep taxonomic diversity induces a highly functional diver-

sity (7): as the result of evolutionary processes that have led to the optimization of

light harvesting, different sets of chlorophyll and accessory pigments (carotenoids,

phycobiliproteins, etc.) can now be observed (8). Phytoplankton communities are

also morphologically diverse, varying in shape and size, as a result of adaptation to
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physical processes (such as hydrodynamics, irradiance), graz-

ing (formation of colonies, extracellular spikes), nutrient

uptake (variation of the volume/surface ratio) (9–13).

To understand the complex dynamics within the phyto-

plankton community and how the biotic and abiotic factors

control them, it is necessary to obtain accurate information at

various spatial (from the cell to the ocean) and temporal

(from hours to years) scales. Taxonomic analysis by optical

microscopy has reached its limit as it is time consuming and

requires experienced people (14). Consequently, high fre-

quency analysis (typically several times per hour) is still out of

reach. Therefore, other faster techniques such as high pressure

liquid chromatography (HPLC) or spectrofluorimetry have

been developed and successfully applied to aquatic environ-

ment studies. However, they only provide a bulk measure-

ment. Analytical flow cytometry (FCM) has become an attrac-

tive alternative as it can perform measurements at high fre-

quency and at the single particle level. For each particle

passing through a light source (typically one or several laser

beams), a set of real values related to light scattering and fluo-

rescence (natural or induced) are recorded.

Although being an ataxonomical method, FCM allows

the discrimination of particle clusters within an aquatic sam-

ple based on their optical fingerprints (fluorescence signatures

and scattering properties). In the last 20 years, flow cytometers

have been designed to marine applications (10). This is the

case for the CytoSense instrument (Cytobuoy B.V.). A particu-

lar feature of this instrument is its capacity to record the full

pulse shape along each particle for both scatter and fluores-

cence signals (15). This way of scanning cells sequentially pro-

vides more information on the morphological variability

within the phytoplankton community. By monitoring the

phytoplankton clusters at high frequency, unexpected dynam-

ics have been revealed, with respect to strong wind events and

physicochemical conditions (16). Additionally, studies by

Thyssen et al. demonstrated the capability of this flow cytome-

ter to identify groups that were not discernable using more

conventional instruments (16,17).

After collecting data with the CytoSense, the usual

approach is to reduce each pulse into classical descriptors

(inertia, fill factor, asymmetry, number of peaks, length, etc)

using the Cytoclus� software (Cytobuoy B.V., The Nether-

lands). Data are displayed by means of scatterplots and histo-

grams that facilitate the visualization and identification of par-

ticle clusters defined by similar optical properties. The clusters

are usually created by manually drawing and combining

regions (gating). This way of defining arbitrary groups is not

always objective and can lead to errors, in particular when

clusters overlap, shift positions or when different pulse shapes

lead to similar classical descriptors. The aim of this study is to

provide a observer-independent and consistent method to

automatically analyse the data and define clusters (Fig. 1). De-

spite the large quantity of approved tools available for multi-

variate analysis, few researchers have worked on the automa-

tion of FCM data processing. The major advances have been

obtained with Artificial Neural Networks (18–23), mixture

Figure 1. General scheme of the proposed method. (MDS: Multidimensional scaling). Data collected by the CytoSub (top right) lead to a

large and complex set of data (top left): five pulse shape signals (forward and sideward light scatter, FWS and SWS, respectively; red, orange,

and yellow fluorescences, FLR, FLO, and FLY, respectively). From the raw signals pulse lengths and amplitudes (conventional descriptors)

and pulse shapes (functional descriptors) are computed. Based on distance matrices computation, classification methods are then applied in

order to find the various clusters (bottom right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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represented in a reduced dimensional space, by using multidi-

mensional scaling methods. This enables data to be visualized,

which wasn’t possible before as each individual event was

defined by five curves.

Computation of the Distance Between the

Conventional Descriptors

For each particle (individual), extraction of AUP and

Length matrices is performed with CytoClus� software and the

values are logarithmically transformed. For a sample composed

of n individuals, both the curve length (i.e., width of the signal)

and AUP are recorded as real and positive values on p channels,

forming a n 3 2p table of observations (here p 5 5 real vari-

ables). The curve length and AUP are separated in two blocks:

block A with p real variables for AUP values, and block L with p

real variables for the length of the curve. Similarities within each

block are measured by means of the Euclidean distance. For two

individuals i and j the distance between AUP values and between

lengths (respectively A and L) is defined as:

d2ðxki ; xkj Þ ¼ xki � xkj

��� ���2¼ Xp
l¼1

ðxkil � xkjlÞ2; k ¼ A; L: ð1Þ

For a sample one can then build distance matrices DL and DA,

which are n 3 n matrices where entries are respectively the

distances between the lengths and the AUPs of two individuals

as defined in equation (1).

The Distance Between Functional Descriptors

Let us consider, for instance, a collection of FWS signals

E 5 {y1(t),. . .,yn(t)} collected in a marine sample. Each curve

is a sampled function where the argument t varies in a

compact interval s of R. The function takes values in a Hilbert

space H of functions on s where :; :h iH denotes its inner

product. The distance between two random curves yi and yj is

the Hilbertian distance between the functions:

d2ðyi ; yjÞ ¼ yi � yj
�� ��2

H
¼ yi � yj ; yi � yj

� �
H
¼

Z
s
ðyi � yjÞ2dt :

ð2Þ
However, stretched by the fluid acceleration, particles are sup-

posed to become orientated along their longest axes, parallel

to the flow direction (32). It is therefore possible for a non-

symmetrical particle to cross the laser beam both ways, which

leads to the recording of two opposite fingerprints. In this

way, similar particles randomly lined up in the fluid stream

can provide different pulse shapes while having the same opti-

cal properties. It is necessary to describe this process in terms

of distance computation, as applied in Khelil et al. (33). A dis-

tance called invariant to orientation is then computed, consid-

ering that the rotational effect comes down to a 1808 rotation
of the pulse with respect to the ordinate axis.

D2
invðyi; yjÞ ¼ minfd2ðyi; yjÞ; d2ðyi; y�j Þg

where yj
� denotes the symmetrical version of yj with respect to

the ordinate axis. For a sample composed by n objects, one

models approach (24,25,26) or discriminant analysis (27,28).
As longitudinal information related to the particle morphol-

ogy clearly appears through the pulse shapes, one of our goals
is to verify to what extent the statistical analysis of functions
(29) i.e., the shapes of the full raw pulses can offer an advan-
tage over using only usual descriptors. The shape, length and
area of the various recorded curves have therefore been chosen
as descriptors and then used in this study. Several tests have
been performed on simulated pulses to test the efficiency of
the clustering method. The model has then been validated on
biological data collected from phytoplankton cultures.

MATERIALS AND METHODS

The Autonomous Flow Cytometer
The flow cytometer used in this study is a CytoSub oper-

ating in bench top mode (Cytobuoy B.V., The Netherlands). It
has been designed to analyze phytoplankton in situ, over a
large size range (up to 800 lm in width and a few mm in 
length). The sample is pumped by a peristaltic pump at a flow
rate between 0.4 and 9.6 lL s21. The sheath fluid is made of
0.2 lm filtered seawater supplemented by �1% formaldehyde

solution in order to prevent any bacteria development. The
sheath fluid and the sample do not mix together as they
behave as laminar flow until the outflow of the flow cell. After
this point they are mixed together and then filtered over 0.45
and 0.2 lm porosity filters to recycle the sheath fluid for the 
next analyses. In the flow cell, each particle is intercepted by a
blue laser beam produced by a solid-state laser (Coherent
Saphyre, 488 nm, 15 mW). The forward angle light scatter sig-
nal (FWS) is collected via a PIN photodiode. The sideward
angle light scatter (SWS), the red (FLR, 734–668 nm), orange
(FLO, 668–601 nm) and yellow (FLY, 601–536 nm) fluores-
cence signals are separated by a concave holographic grating
and collected on Hybrid Photomultiplier tubes. FWS was used
as trigger signal for data recording. All signals are recorded at
a frequency of 4 MHz (i.e., four times per microsecond) and
stored in a data grabber before being transferred to the
computer. Particles flow through the 5 lm wide focal point of 
the laser beam at a flow rate of 2 m s21, and therefore the 
pulses of a 1 lm particle approximately contain 12 points. In 
order to monitor the stability of the instrument, several
fluorescent microsphere solutions have been used for quality
control.

Programming of the algorithms (statistical analysis) and
displaying of the data have been performed using R software
(30). For the convenience of readers who would like to repeat
this work, the R codes and datasets are available on the website
http://www.com.univ-mrs.fr/�malkassian/ (Anthony Malkas-

sian Home Page). The clustering methods have been adapted
to handle the fingerprints, considering the most important

features: shape, length and area under the pulse (AUP). The
method (Fig. 1) entails computing the distance matrices for
the three descriptors. The three resulting matrices are then
combined into a single one, called the global distance matrix.

From the patterns of similarity thus obtained, clustering
methods (31) are applied. In addition, the data can also be
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can build the n 3 n pulse shape distance matrices for the five

channels: Dinv
FWS , Dinv

SWS , Dinv
FLR, Dinv

FLO, Dinv
FLY .

The previous distance matrices can then be combined to form

the n 3 n global distance matrix:

Dglobal ¼ P1DL þP2DA þP3D
FWS
inv þP4D

SWS
inv

þP5D
FLR
inv þP6D

FLO
inv þP7D

FLY
inv

where P1,. . .,P7 are arbitrary positive weights.

From the Raw Pulse to the Functional

Pulse Shape Descriptors

Two problems remain unsolved: (i) How to generate the

functional pulse shape descriptors from the raw pulses (output

data of the CytoSense) to compute distances between pulse

shapes and (ii) how to explicit the way to compute a distance

invariant to orientation.

The distance in equation (2) involves integral computa-

tion. A comfortable way to approximate this distance is to

consider that any function can be expressed in terms of linear

combinations of known basis functions (31,34) such that:

yðtÞ ¼
XK
k¼0

ck/kðtÞ ¼ c0UðtÞ

where K denotes a fixed number of basis functions, F(t) 5
(/0(t),. . .,/K(t))

0 the K-vector of basis functions, and c 5
(c0,. . .,cK)

0 the K-vector of associated coefficients. We have

chosen a Fourier basis decomposition, because the pulses are

periodic functions.

Moreover, the Fourier functions form an orthonormal

basis such that /k;/lh iH¼ dkl ¼ 1 if k ¼ l

0 else

�
, and jj/k jj2H

5 1, k 5 1,. . .,K, l 5 1,. . .,K, which simplifies the distance

computation.

In practice, a raw pulse y is recorded in the form of a dis-

crete set of m points {y(tj), j 5 1, . . .,m}. The coefficients esti-

mation is then performed by least squares regression when

minimizing the following criterion:

SSEðc1; . . . ; cK Þ ¼
Xm
j¼1

yðtjÞ �
XK
k¼1

ck/kðtjÞ
" #2

:

The matrix form is given by:

SSEðcÞ ¼ ðy � UcÞ0ðy � UcÞ

where F 5 {/k(tj), k 5 1, . . .,K, j 5 1, . . .,m}. This criterion is

minimized by making the first derivative equal to zero:

@SSEðcÞ
@c

¼ 2U0Uc� 2U0y ¼ 0:

The least squares estimate ĉ of c is solution of the latter equa-

tion: ĉ 5 (F
0
F)21F

0
y.

By construction, the number of coefficients cannot be

higher than the number of sampled points. However, all the

functions are sampled on a mesh of equally spaced points (at a

fixed frequency of 4 MHz). The maximum number of coeffi-

cients (i.e., the dimension of the whole basis) is conditioned

by the length of the shortest particle crossing the laser beam.

In most cases, this number, while controlling the global

smoothness of the curve, is not sufficient to describe the whole

variation of complex particle shapes. For this reason, before

estimating the coefficients, we have proposed a regularization

step provided by a cubic smoothing spline (35) in order to

obtain a smooth version of y that can be valued at any t [ s.
A pulse can then be considered such that: y(t) 5 g(t) 1

e(t), t [ s where g(t) is the smooth version of y(t) for which

the expression

1

m

Xm
j¼1

ðgðtjÞ � yðtjÞÞ2 þ k
Z
s
ðg 00ðuÞÞ2 du

is minimum. The residual variation e(t) can be referred to as

noise and will be considered as negligible. The smoothing pa-

rameter k controls the tradeoff between the smoothness of the

solution as measured by the norm of the second derivative of

g : $s(g@(u))
2du and the empirical mean squares error of the

data computed by 1
m

Pm
j 5 1(g(tj) 2 y(tj))

2. The parameter k is

commonly estimated by cross-validation (31). Once the func-

tion g(t) has been found, the sampling mesh can be refined

since the spline can be valued at any t [ s. This allows to

increase the number of basis functions for curves having the

most complex shape variations. This also insures that varia-

tions in shapes for less complex pulses will be handled as well.

Moreover, one can use more points for regression than the

sampled data values (K[m) and still achieves a good fit.

As defined by Dryden (29), the shape is all the geometri-

cal information that remains when location, scale and rota-

tional effects are filtered out from an object. To measure the

similarities between pulse shapes, length is normalized, and it

is imposed that t1 5 0 and tm 5 1 (i.e., s 5 [0,1]) with y(t1)

5 0 and y(tm) 5 0. The curve intensity is then normalized

dividing all the ck by c0. This coefficient represents the area

under the pulse: c0 5
1
T
$0
T y(t)dt, here T 5 1.

By following these steps, we get a registered version of

each curve. The distance between shapes of yi and yj is then

easily computed by comparing their coefficients:

d2ðyi; yjÞ ¼ yi � yj
�� ��2

H
¼ ðci � cjÞ0U0Uðci � cjÞ ¼ ci � cj

�� ��2
H

ð3Þ
where ci and cj are the K-vectors of the normalized

coefficients.

The Computation of the Distance

Invariant to Orientation

In order to explicit the invariance to orientation, we

remind that the Fourier basis decomposition provides a sum

of sines and cosines:
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yðtÞ ¼
XK
k¼0

ck/kðtÞ ¼ c0 þ c1 sinðxtÞ þ c2 cosðxtÞ

þ c3 sinð2xtÞ þ � � � þ cK cosðKxtÞ:

The formula of y�(t), the symmetrical version of y(t) with

respect to the ordinate axis, is straightforwardly obtained by

inverting the sign of each sine function:

y�ðtÞ ¼
XK
k¼0

ck/
�
kðtÞ

where

/�
kðtÞ ¼

/�
0ðtÞ ¼ 1

/�
2r�1ðtÞ ¼ � sinðrxtÞ

/�
2rðtÞ ¼ cosðrxtÞ

8><>:
Once the decomposition into the Fourier basis has been

achieved for every observation, it is easy to compute the over-

all distance matrix Dglobal.

The Classical Multidimensional Scaling

Considering the relationship between n individuals

through the global distance matrix Dglobal computation, we

seek to represent the set of observations in a reduced dimen-

sional space Rd, with typically d 5 2 or 3. To obtain the coor-

dinates of the individuals, a multidimensional scaling method

(36), also known as Torgerson scaling, has been used. The rela-

tionships between individuals is specified using distance com-

putation. Supervised classification methods are applied to

define the various groups.

The Classification Method

The clustering objective is to classify the data in q groups

The Optimal Partition Estimator

The major questions to address are: how to determine the

optimal number of clusters and what is the best clustering

method? It is often difficult to identify clusters that are over-

lapping and with various sizes and shapes (25). However,

when the number of classes is unknown, it is necessary to get a

criterion that evaluates the partition validity and enables the

selection of an appropriate number of groups. The silhouette

coefficient (SC) is a measure of the amount of clustering

structure that has been discovered by the classification algo-

rithm (37). This is a dimensionless value computed over all

possible partition numbers. The highest value provides an

appropriate partition number for the given data set.

The Test of Partition Robustness

The robustness of the clusters constituting the sample S

has been tested through the construction of a bootstrap aggre-

gated predictor (called bagging, Fig. 2). This method consists

of combining multiple versions of the classification model

based on bootstrap samples of the data to test the effects of

sampling changes on the structure of clusters (38,39).

Phytoplankton Cultures

For a first experiment, various phytoplankton cultures

from the Culture Collection Yerseke (CCY, NIOO Centre for

Estuarine and Marine Ecology, Yerseke, The Netherlands) have

been used to apply the method described above on real data.

They are obviously not species that normally would be found

together in a natural sample as they originate from fresh,

brackish, and marine waters. Actually, these strains have been

chosen as (i) their optical properties lead to different degrees

of overlap according to the conventional flow cytometry

Figure 2. The bootstrap aggregated predictor method (bagging).

The sample S is splitted in: a test set (TS) containing about 1/3 of the

data and a learning set (LS) with the remaining data. The bootstrap

samples LSb, b 5 1,. . .,B are replicated datasets each consisting of
card (LS) individuals randomly drawn from LS with replacement.

The partition in j classes is constructed over each bootstrap sample
and the centroids (i.e., representative objects): fbxbj ; j ¼ 1; . . . ; pg
are computed for each class. A class predictor is constructed and

the classification success is evaluated on the test sample TS. In this

shematic example, the number of classes j is fixed to j5 3.

{C1, . .  ., Cq} with a fixed value of q and q � n (with n the
number of objects), so there is the strongest similarity between
objects belonging to the same group. Following the work of
Kaufmann and Rousseeuw (37) two clustering methods have
been tested and compared: Partition Around Medoids1 and

Fuzzy analysis2 algorithms.

1
The partition around medoids (PAM) algorithm proceeds in two steps:
In the Build step q objects are sequentially selected, in order to be used
as initial medoids. In the Swap step, the aim is to reduce an objective
function (for instance, the intergroup variance) by interchanging an ini-
tial medoid with an unselected object. This step is recursively repeated
until a stopping rule is applied (the objective function can no longer be
decreased).
2
In opposition to hard clustering method, where each individual is assigned
to one class (i.e., a clear-cut decision), in FANNY (Fuzzy analysis) method

(37), each individual can belong to more than one class. The degree of
belonging to different classes is quantified by means of membership coeffi-
cients, ranging from 0 to 1 for each class and summing to one over the
whle set of classes.
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descriptors (see Supporting Information), (ii) they were available

in the collection of the NIOO. Mixing these cultures allowed not

only to get a mixture of sizes and shapes, but also various pig-

ment contents as the species belong to several taxonomic groups.

A total of 20 different strains of phytoplankton (Table 1) were

selected and grown as mono-cultures on their corresponding nu-

trient-rich media in the lab at room temperature under a 14:10-h

light dark cycle, Fresh culture material was analyzed with the

CytoSub flow cytometer, working in bench-top mode in the lab-

oratory (i.e., CytoSense). In a second experiment, we focused on

the flow cytometry data of two specific strains with very similar

fingerprints. One being toxic and the other not:

� Amphidinium carterae, a dinoflagellate well known for his

toxicity and is responsible for a foodborne disease called

Ciguatera (also known as CFP3).
� Tetraselmis tetrathele, a eurythermic Prasinophyceae found

in the temperate/tropical regions (40).

RESULTS

The Numerical Experiments: Simulation

of Cytometric Pulses

The choice to work on simulated curves as a preliminary

step was driven by the need to test the efficiency of the

method. The numerical experiments on simulated cytometric

pulses allow creating controlled samples where the variability

and abundance of each group can be easily tuned. We aim to

classify functions for which the shape, or at least the family of

shapes, is known in advance. We propose to construct a learn-

ing sample L composed of n curves belonging to p classes. The

number p of classes is firstly fixed to the value p 5 6. In the

same way, the proportion of individuals belonging to class j

into the sample L is fixed to 1/6th, but other ratios will be

tested later on. A class Cj, j 5 1, . . . , 6 is characterized with a

reference function fj, j5 1, . . . , 6, which is a density:

fjðxÞ � 0;

Z
fjðxÞdx ¼ 1; j ¼ 1; . . . ; 6 8x 2 R:

Choosing probability densities provides the opportunity to

deal with positive curves such as those recorded by the Cyto-

Sub flow cytometer.

These curves are already normalized. Finally, the con-

struction of a random sample of such curves is easily con-

ducted thanks to the strong connections between a sample of

realizations of a random variable and the associated density.

The construction of class Cj containing nj 5 n/6 individuals is

achieved by kernel density estimation of nj random samples of

size m drawn from the reference density fj associated to that

class. Figure 3 shows how the kernel density estimate approxi-

mates a reference density (here a centered Gaussian curve).

Table 1. Classification results on a sample of 2,000 individuals composed with a mixture of 20 phytoplankton cultures (100-fold bagging

with fuzzy clustering method)

SPECIES

CLASSIFICATION SUCCESS RATE

T-TEST (T)

USUAL DECRIPTORS USUAL DESCRIPTORS AND PULSE SHAPES

MEAN SD (%) MEAN SD (%)

Anabaena cylindrica 0.490 0.396 0.685 0.383 21.994*

Ankistrodesmus acicularis 0.996 0.017 0.902 0.240 2.313**

Aphanizomenon sp. 0.970 0.079 0.928 0.194 1.240

Chaetoceros muelleri 0.991 0.042 0.951 0.160 1.342

Chlorella sp. 1.000 0.000 1.000 0.000 –

Ditylum brightwellii 0.149 0.105 0.177 0.069 1.314

Emiliania huxlyei 0.982 0.111 0.895 0.278 1.864

Gloeothece sp. 0.077 0.080 0.197 0.248 22.715**

Hemiselmis sp. 0.000 0.000 0.855 0.325 214.184***

Isochrysis sp. 0.889 0.311 0.946 0.223 20.917

Melosira sp. 0.450 0.429 0.597 0.452 21.332

Monoraphidium sp. 1.000 0.000 1.000 0.000 –

Nodularia sp. 0.077 0.131 0.078 0.138 20.0134

Pavlova sp. 0.000 0.000 0.000 0.000 –

Porphyridium sp. 0.294 0.223 0.386 0.481 21.0203

Pseudanabaena sp. 1.000 0.000 0.925 0.238 2.029*

Pediastrum sp. 1.000 0.000 1.000 0.000 –

Rhodomonas sp. 1.000 0.000 1.000 0.000 –

Skeletonema costatum 0.411 0.281 0.278 0.406 1.624

Thalassiosira pseudonana 1.000 0.000 1.000 0.000 –

Comparison between classification successes obtained using usual descriptors versus usual descriptors and pulse shapes (Student

t-test, *: p\0.05, **: p\0.01, ****: p\0.001).

3Ciguatera Fish Poisoning.
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for the others. The classification success that has been mea-

sured at each step with the bagging method was found to

decrease during the alteration from about 100% to about

80%. This was due to the clustering method which did not

always converge to the right partition, but rather introduced a

splitting within the most abundant class C6. As the number of

wrong splits increased at each step the misclassification rate

also increased. At the end of the destabilization, only the indi-

viduals belonging to the class C6 are classified with success.

The second alteration consisted of adding noise to the

curves. Figure 7 displays an example with either a low or high

degree of heterogeneity. The results of the clustering methods

have been compared. On the two-dimensional dotplots cre-

ated from the distance matrices by multidimensional scaling

the data structure can be observed. An increase in the intra

class heterogeneity resulted in an increase of their overlap and

a decrease in the classification success regardless the clustering

method. The shapes become less detectable. However, the clus-

tering methods did not react with the same intensity at this

overlap. The fuzzy method presented a better classification

success when the overlap was high.

Experiments Using Phytoplankton Cultures

For the first experiment, datasets coming from 20 differ-

ent strains have been selected and artificially mixed. Particles

with a very low red fluorescence intensity (total FLR below 50

mV) were removed from each dataset. These particles are con-

sidered as background noise (cellular debris, dead cells or bac-

teria contamination of the culture). The mixture dataset was

constructed by randomly selecting 2 3103 individuals from

each of the 20 individual datasets. The classification results are

presented in Table 1. Please note that these results can present

slight variations due the construction of the bagging test sam-

ple which depends on the random sampling. A first analysis

was performed with the usual descriptors only (length and

AUP) and in a second analysis the shape descriptors were also

taken into account. The classification method, based on con-

ventional descriptors only, often mixed up Hemiselmis sp.

with Porphiridium sp. Considering pulse shape descriptors led

to a better distinction. The same was true for Skeletonema cost-

atum, Melosira sp., and Ditylum brightwellii clusters. Thanks

to the discriminant information included in the shape, in

most cases the method was able to distinguish strains for

which clusters solely defined by conventional descriptors over-

lapped considerably. For instance, the classification success

strongly increased for Hemiselmis sp. (from 0 to 85.5 %).

However the classification success for species Nodularia sp.,

Pavlova sp. and Gloeothece sp. remained very weak even if the

shape decriptor was considered. A slight degradation of the

classification success has been sometimes observed for Ankis-

trodesmus acicularis and Pseudanabaena sp.

The second experiment consisted of focusing on two spe-

cific strains with very similar fingerprints (Fig. 8): the toxic

Amphidinium carterae and nontoxic Tetraselmis tetrathele. The

goal was obviously to distinguish the toxic species from the

other one. The classical cytometric analysis performed with

the usual descriptors showed a high level of overlap between

Figure 3. Example of three kernel estimates (grey bolded curves) 
of a centered Gaussian density (black bolded curve). The rough-
ness of the estimates is controlled by a smoothing parameter. 
Each density is estimated on the same dataset composed of 50 
values of x randomly drawn from the Gaussian distribution.

Figure 4 displays an example of reference densities (black
lines) and their realizations (gray lines) for p 5 6 classes. The
roughness of the estimated curve is controlled both by the
number m of sampled points and by a bandwidth parameter

which in our case can be chosen by cross-validation. Thus,
changing the sample of points randomly drawn according to a
reference density provides a new estimated curve which can be
considered as a random version of that reference function.
This is how the different classes are constructed (see Appendix
for more details).

From the mix of these six families of curves, we expected
to find four real classes. The optimal SC is equal to 0.68 for a
partition in 6 groups when the simple distance is computed

(Fig. 5, left panel). When the distance invariant to orientation
was computed, the optimal partition provides four groups,
with a SC value of 0.8 (Fig. 5, right panel).

The fuzzy clustering method was performed on the latter
distance matrix and four groups of interest were found with-
out error. The bagging test of robustness provides a classifica-
tion success of 100%. However, this example can be consid-
ered too simple as each family contains the same number of
individuals. Moreover, within each class the individuals pres-
ent similar fingerprints (i.e., high homogeneity intra classes).
This case is unlikely to occur in natural samples, thus the next
step consists of altering the test sample by modifying the vari-
ability among the pulse shapes and the relative abundance of
each class.

In Figure 6, we started with close relative abundances of
16.5% for each class. At the same time the intra class variabili-
ty was kept weak with a high number of observations m. A

destabilization was created in 50 steps by successively increas-
ing the relative abundance of C6 and decreasing the other five
classes. This finally led to a proportion of 75% for C6 and 5%
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their respective flow cytometric clusters (Fig. 8). The two spe-

cies were not manually discernable with the CytoClus soft-

ware. Nevertheless, their pulse shapes are slightly different and

could contain some discriminatory information. Three analy-

ses were therefore performed: (i) First by taking into account

the usual descriptors only, then (ii) taking into account the

pulse shape only and finally (iii) combining both descriptors.

The results obtained from 200 bagging samples are pre-

sented in boxplot form (Fig. 9). When the analysis was based

on the length and AUP descriptors only, about 71% of the

Figure 4. The six families of curves including the reference density for each class (black bolded curves) and a sample of kernel density

estimates. Each random function in class Cj is estimated using 50 points randomly drawn from the reference density fj.

Figure 5. The Silhouette Coefficient (SC) plots, where the maximum value indicates the optimal number of clusters. On the left panel, the

invariance by symmetry is not applied to compute the distance matrix. On the right panel, the invariance by symmetry is taken into

account for the distance matrix computing. The real number of classes (4) is retrieved in that case.
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Figure 6. The modification of abundances experiment: The black dots, representing the mean classification success over 20-fold bagging,

show the decrease of the classification success by modification of the number of individuals in each class. These results are obtained in 50

steps, the alteration of the relative abundance of class C1 to C6 is represented by the barplots.

Figure 7. Effect of noise over the classification success. Starting from a sample of six families of curves corrupted by noise (a) and its 3D

display obtained from the distance matrices with multidimensional scaling (b), the classification are realized using PAM and FANNY meth-

ods (c). The results show the classification success over 10-fold bagging. FANNY gives better results for a higher noise. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

271



individuals were successfully classified on average with a small

standard deviation. When the pulse shape descriptor was con-

sidered, the classification success ranged from 60 to 66%.

Finally, by combining the descriptors, the average range of

classification efficiency reached 78% and varied only slightly.

Combining both descriptors arose to a gain of about 10

points, demonstrating that there is discriminating information

in the shape descriptors.

DISCUSSION AND CONCLUSION

Analysis of aquatic microorganisms performed by flow

cytometry is currently used to address their abundance, diver-

sity, and dynamics (10). Data analysis for conventional flow

cytometers is based on a set of real values (peak, area, pulse

width) corresponding to the light scatter and fluorescence sig-

nals recorded for each single particle as it is intercepted by the

light source. The clusters are drawn from various histograms

and dotplots. The interpretation of these clusters is based on

the operator expertise. This way of analysis is particularly well

suited for specific observations in samples with known groups

(cultures, previously analyzed samples). As far as aquatic

environmental studies are concerned, the main purpose of

conventional flow cytometric analysis is to define these

groups, count the cells, and get information at the group level

(basic statistics for light scatter and fluorescence signals:

mean, median, mode, and standard deviation for instance). In

aquatic environments, phytoplankton diversity is huge, gath-

ering thousands of species with various shapes and covering

four decades in size. Some of the species are harmful and need

to be monitored at high frequency to detect as fast as possible

any sanitary risk.

The advances in electronics and computing contribute to

the development of more compact instruments able to record

a growing number of variables (10). Some instruments are

even able to collect pictures of the particles as they flow

through the flow cytometer. Particular models such as the

CytoSub (15) and the Flow Cytobot (Heidi Sosik and Rob

Olson, WHOI) have been especially developed for the marine

field (41). Once deployed in situ (moored or in a buoy) these

instruments can perform automated analyses of the phyto-

plankton cells at a scheduled sampling frequency. With the

CytoSub, up to six analyses per hour can be scheduled, quickly

generating a huge quantity of data. This high frequency analy-

sis opens the way to new information out of reach when using

Figure 8. Scatterplots of two phytoplankton culture datasets, Amphidinium carterae (red symbols) and Tetraselmis tetrathele (black sym-
bols), artificially mixed. The display shows a strong overlap between culture datasets (SWS: sideward scatter, FWS: forward scatter, FL:

fluorescence, TOF: time of flight). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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abundance. In this case, the clustering does not converge to

the proper cutting. In other words, the predominance of a

group in a natural sample could prevent identification of other

groups in lower abundances.

In aquatic environments, natural samples contain a smal-

ler abundance of large phytoplankton cells (i.e., [20 lm or

chain-forming species) and a larger abundance of small phyto-

plankton (42,43). It will be essential to consider this phenom-

enon. Thanks to the modification experiments on the variabil-

ity within families, it was possible to get different results for

the tested clustering methods. A gain was induced by testing

several methods and comparing them. However, one approach

cannot be considered to be better than another, but more or

less adapted to a particular case. In this study, the fuzzy clus-

tering fitted better with the type of data generated by the

CytoSub, providing higher classification success than the K-

medoids method. This result is due to the specificity of the

fuzzy method, which enables a better separation of overlap-

ping groups.

To handle the complex data collected with the CytoSub

(i.e., the optical fingerprints corresponding to the five raw

pulses), it was necessary to find a way to deal with descriptors

of different types such as length, AUP, and functional shape of

the various optical fingerprints. The distance matrices of each

descriptor were first computed individually and then success-

fully combined. While looking for the most efficient clustering

method, our primary focus was to find out whether using the

functional shape could be more efficient than the classical

method (i.e., based on real numbers). To do so, two particular

datasets of phytoplankton cultures (Amphidinium carterae and

Tetraselmis tetrathele) were selected and artificially mixed into

a single data file. By analyzing both species with the CytoClus

software, i.e., the software dedicated to the CytoSub data anal-

ysis using the classical method with conventional descriptors,

the toxic and nontoxic species could not be adequately distin-

guished. Their optical fingerprints were too similar to form

distinct clusters in the classical two-dimensional dotplots pre-

venting any efficient manual separation. On the contrary, the

autonomous clustering method was clearly efficient (Fig. 9).

The classification success reached about 78%, and the two spe-

cies were well discriminated. Another aim was to test the con-

tribution of the shape related information compared to the

classical descriptors. In this case the gain was about 10 points

between the classical descriptors and the combination of func-

tional shape descriptors and classical descriptors, a weak

improvement but significant. The shape related information

appeared useful when particles presented morphological mod-

ification or typical features such as the repetition of a similar

pattern (for instance chain-forming cells), or the presence of

appendages usually linked to an environmental adaptation.

Adversely, shape related information was less efficient for

small particles because their shape tends typically to a sphere

and thus the corresponding optical fingerprints are dominated

by a Gaussian shaped curve (16). However, the use of full

pulse shapes is surprisingly applicable for cells that are smaller

than the height of the focused laser (5 lm). From the analysis

of very small particles (2 to 6 lm in size) the following state-

Figure 9. Classification success for three different analyses (200-
fold bagging). Coupling conventional descriptors and functional 
pulse shapes gives accurates classification.

the classical methods (16). The automation of analysis there-
fore becomes critical. To some extent, performing such analy-
ses by an operator would become impossible (time consum-

ing, lack of objectivity in the clustering, etc).
Phytoplankton analysis with the CytoSub flow cytometer

is innovative in the way that it is based on the pulse shape re-
cording along each particle. It is a compromise between the
taxonomical complexity and conventional flow cytometry. It
provides information on phytoplankton diversity without
fully addressing the complexity of the taxonomical identifica-
tion. Shape analysis becomes relevant when the recognition
and the differences between different shapes are surrounded
by mathematical laws.

This study purposes data processing automation in order
to provide efficient tools for objective analysis of the full fin-
gerprints of phytoplankton. To test and validate the clustering
methods, we have started with some numerical experiments to
work on simulated objects known a priori: the classes are
defined in advance and the dataset is tunable (heterogeneity
within classes; number and relative abundance of each class).
Moreover, an infinite number of situations can then be gener-
ated (from easy cases to more complex ones). After test and
validation of the clustering methods, experiments have been
performed with real data collected from the flow cytometry

analysis of several cultures (20 different strains belonging to
various taxa). Important features can be discussed about the
results obtained with the numerical experiments and the phy-
toplankton cultures. The distance invariant to orientation acts
as a deformation of the functional space, gathering shapes
similar by symmetry. The experiments carried out with the six
simulated families have proven the effectiveness of the distance
invariant to orientation computation. When classes present
great deviations in their relative abundance (Fig. 6), the parti-
tion occurs within the group presenting the predominant
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ments can be made: (i) By considering observations as

‘‘curves’’ (actually ‘‘densities’’ would be more appropriate) one

takes into account all moments of all orders and not only

mean and variance, (ii) most of the signals look like bell

shaped but there is a great variability between the signal

shapes due to the difference in skewness (data not shown),

(iii) moreover the position of the maximum is not always cen-

tral leading to asymmetrical curves and this is potentially

linked to cell morphology, (iv) considering the entire optical

fingerprint (i.e., the whole five variables) these slight varia-

tions in signal shapes induce a decoupling between signals.

This constitutes an additional information with regards to

classical method handling only with length, height or area

under the signal.

Through all experiments described in this study, with nu-

merical simulations and real data from more than 20 cultures,

a new method of analysis has been validated. It is a new

method as it combines conventional descriptors with the pulse

shapes. This is complementary to the previous works by

Boddy and collaborators who considered the peak integrated

values and pulse widths (18). The main known difficulty with

unsupervised classification methods is to choose the number

of clusters: thanks to the Silhouette coefficient computation,

the optimal number of groups can also be found without any

human interference. The robustness or consistency of the asso-

ciated partition is also provided by the maximum of the Sil-

houette coefficient values. It provides also a visual display of

the data with a rational criteria proposed to select splits. But

this display is limited by the initial number of observations

which must be reasonable. That is not the case when dealing

with datasets coming from CytoSub and its large number of

observations (several thousands of cells). It is however possible

to use subsampling methods to evaluate the number of final

clusters with clearer displays. Another original and interesting

feature of the described method is that the analysis remains

flexible due to the system of weights that can be associated

with the distance matrices of each descriptor. The operator

can tune the weight applied to the various variables depending

on their respective interest and therefore decide to adjust the

method to any particular case. By handling the raw pulse

shape as a functional descriptor, the potential of the CytoSub

flow cytometer is fully utilized. It is true that this study does

not present any results of an analysis on natural sample,

needed to consider all the complexity that can occur in the

field (various clusters, large biodiversity, background noise,

etc). The major reason therefore is that to test the efficiency of

the clustering methods, it was necessary to have a knowledge

of the sample composition. It was mandatory to control the

clustering efficiency by comparing the results with what was

expected. The work with natural samples is ongoing and will

be addressed in other studies.

The automation of sampling acquisition as well as the

data analysis and clustering open the way to the spatiotem-

poral analysis at high frequency, which has previously been

out of reach because of physical constraints (need for opera-

tor(s), work onboard depending on the ship availability and

meteorology, etc). Oceanographic cruises, for instance, are

characterized by their limits both in space, whether or not

their track covers a long distance, and mainly in time, failing

to provide the spatial coverage and temporal resolution

required to determine a realistic picture of the marine envir-

onment and detect changes within it. To face such challenges,

many efforts have been dedicated to the automation of meas-

urements and the autonomy of instruments in order to pro-

duce monitoring systems delivering sufficient online data.

This is the impetus of the Global ocean observing system

(GOOS) endorsed by the United Nations (UNESCO) and in

Europe by the European GOOS initiative EuroGOOS. The

International Council for the Exploration of the Sea (ICES)

and the Mediterranean Science Commission (CIESM) are also

developing such activities (see TRANSMED: http://www.ciesm.

org/marine/programs/transmed.htm, CIESM pilot project). The

high frequency survey should bring new information, which is

essential to better understanding the complex dynamics of phy-

toplankton communities in relation to their environment.

ACKNOWLEDGMENTS

A.M. is a recipient of a fellowship from the Council of the

region PACA (Provence Alpes Côte d’Azur). We thank the tech-
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APPENDIX

Reference densities f1 and f2 are Gaussian densities N(lj,
rj
2), j 5 1, 2 with mean population parameter l and variance

r2. These functions get similar shapes with one maximum,

but they differ in their spread. Reference densities f3 and f4 for

classes 3 and 4 are Gaussian mixture densities of the form

fj ¼ cjNðl1j ; r21jÞ þ ð1� cjÞNðl2j ; r22jÞ; j ¼ 3; 4

where cj denotes a mixture coefficient, lj are mean param-

eters and rj
2 are variance parameters. These functions pos-

sess two maxima whose ordinates differ according to the

value of the mixture coefficient. For well-chosen mixture

coefficients, f3 is the symmetrical version of f4 with respect

to the ordinate axis. Reference density f5 is a Gumbel den-

sity G(a, b) and f6 its symmetrical version with respect to

the ordinate axis. The location parameter a controls the

position of its single maximum and scale parameter b con-

trols the distribution spread. These functions get an asym-

metrical shape. Here are the settings of parameter values

according to each class:

C1 l1 ¼ 0; r21 ¼ 1:5

C2 l2 ¼ 0; r22 ¼ 3

C3 c3 ¼ 3=5; l31 ¼ �1; l32 ¼ 1; r231 ¼ 1=2; r232 ¼ 1=2

C4 c4 ¼ 2=5; l41 ¼ �1; l42 ¼ 1; r241 ¼ 1=2; r242 ¼ 1=2

C5 and C6 a ¼ �3; b ¼ 1

The choice of the above reference densities has been con-

ducted in order to mimic simple shapes (Figure 4). These

densities also present the advantage of covering the main

problems encountered when trying to classify curves on

cytometry signals. Following the different families of curves

described above, the sample of curves S is constructed as

follows:

1. Do for j5 1, . . . , p
2. Select a class Cj with reference density fj
3. Draw randomly m points from reference distribution fj
4. From this sample of points, compute a random curve by

kernel density estimation, choosing the bandwith by cross-

validation

5. Repeat nj times steps 3) and 4) to form a sample of nj ran-

dom curves which belong to class Cj

6. Go to step 1)

Once these operations have been achieved, merge classes

C1 to C6 to form the sample S.
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