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ABSTRACT
Hierarchical clustering of graphs is a useful strategy to mine,
explore and visualize graphs. Popular approaches define ad
hoc procedures to decide how subgraphs are subdivided or
nested. The popularity of graph hierarchies certainly relates
to the relevance of multilevel models appearing in the na-
tural and social sciences. For instance, current models in
biology (genomics and/or proteomics) try to capture the
multilevel nature of networks formed by various biological
entities; cities and worldwide city systems in geography can
also be described as multilevel networks.

In our opinion, a theory supporting these multilevel cluste-
ring approaches is yet to be developed. Indeed, to the best
of our knowledge there are no known optimization multilevel
criteria guiding the construction of a hierarchy of clusters:
the hierarchy basically is an artefact of an iterative proce-
dure. The main results of this paper contribute to such
a multilevel clustering theory, by designing and studying a
multilevel modularity measure for hierarchically clustered
graphs, explicitly taking the nesting structure of clusters
into account.

The multilevel modularity we propose generalizes a modula-
rity measure introduced by Mancoridis et al. in the context
of reverse software engineering. The measure we designed re-
cursively traverses the hierarchy of clusters and computes a
one-variable polynomial encoding the intra and inter-cluster
densities appearing at all levels in a hierarchical clustering.
The resulting polynomial reflects how the graph combines
with the hierarchy of clusters and can be used to assess
the quality of a hierarchical clustering. We discuss archety-
pal examples as proof-of-concept. We also look at how this
multilevel modularity acts on a popular real world example.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering; G.2.1 [Discrete
mathematics]: Combinatorics

General Terms
Graph clustering, graph hierarchies, hierarchical clustering,
multilevel modularity

1. INTRODUCTION
Identifying community structures and outliers remains a cen-
tral task when mining graphs [9]. Numerous graph cluste-
ring strategies and algorithms have been developed, where
a majority of them aim at modularity maximisation (see for
instance recent survey papers [8], [7] and [25]). The results
in this paper precisely relate to the situation where opti-
mal modularity is assessed using a quality measure. Can-
didate measures have been introduced by several authors.
The Newman’s Q modularity [21] measures the difference
between the observed proportion of links within clusters and
its expected value in a random graph with the same degree
sequence [15]. Other clustering quality measures have been
studied and used to benchmark algorithms, such as the ave-
rage Normalized Cut [24].

This paper focuses on a clustering quality measure inspired
by Mancoridis et al. [18] (denoted as MQ) defined in terms
of intra-cluster density versus inter-cluster connectivity ra-
tios. In a manner similar to Newman and Girvan using
modularity together with edge betweenness [21], Auber et
al. [3] used Mancoridis’ MQ quality measure combined with
an edge statistics in an effort to identify bridges between
communities and obtain multilevel clustering for small world
networks. Examples successfully clustered using MQ are
(sub)graphs of the Internet movie database (IMDB), the
worldwide air passenger traffic [1] or the co-citation network
built from the IEEE InfoVis proceedings [11].

Two main strategies are used to produce a hierarchy of
clusters (nested subgraphs). Divisive approaches usually
first produce a clustering of a graph (a set partition of its
vertices), and then iterate over each subgraph until some
stopping condition is met. Agglomerative approaches first
consider clusters formed of single vertices and merge them
into larger groups following some criteria or objective func-
tion. After such a hierarchy of clusters is produced, either
the hierarchy can be preserved and manipulated as is, or a
“cut”must be decided, based on some other criteria to find a
best possible clustering out of the hierarchy. Deciding of an
optimal cut, or deciding of the optimal depth for the hierar-
chy is a difficult question. In our view, the main reason why
iterative (divisive or agglomerative) strategies cannot rea-
sonably guide the overall nesting process is clear. They fail



to evaluate the very hierarchical character of the clustering
they produce. This is the question we address here: find a
criteria evaluating the relevance of the hierarchy. Applying
a modularity measure to obtain clusters C1, C2, . . . and then
independently re-apply the measure on each cluster, and so
forth, does not explicitly take the nesting structure into ac-
count. That is, even if a best possible clustering is sought for
at each iteration step, the overall quality of the multilevel
clustering needs to be measured or assessed. To the best of
our knowledge, although many authors designed ad hoc al-
gorithms producing hierarchical clusterings of a graph, none
of them provided an accompanying multilevel modularity.
There is one exception however [16], where the authors com-
pute a multilevel classification of concepts into categories
based on a numerical evaluation of the resulting hierarchies.
Their approach however does not transfer in the context of
multilevel graph clustering.

Our results can be seen as a contribution to theoretical foun-
dations for hierarchical graph clustering. A multilevel pre-
sentation of information through quotient graphs provides
a useful abstraction of the initial data. More importantly,
current studies confirm the absolute presence of hierarchies
either in nature itself or in abstract human construction such
as language. Current evolutionary models in biology try to
capture the multilevel nature of networks formed by various
biological entities [27]. The same holds for cities and city
systems in geography [23]. Obviously, approaches claiming
to unfold such structures in networks should rely on sound
principles and methodology for hierarchical graph clustering.

Fig. 1 gives an example of such a “natural” hierarchy. The
overall image (a) shows a graph describing flows of daily
commuters between towns and cities in the South-West of
France. Nodes correspond to towns and cities and are po-
sitioned using their geospatial coordinates, while edges are
drawn using edge bundling [17]. This type of graphs is of
interest to study polycentrism in urban systems [22]. The
application of a hierarchical clustering algorithm enables
the identification of denser activity regions and leads to a
multilevel representation of the overall network as shown
in (b). Our experience working with geographers validates
this three level clustering as being relevant, and in a sense
as being better than the flat clustering one could consider
either by taking only lowest level and smaller clusters, or
larger top level clusters1.

The multilevel criteria we present and discuss in this paper
generalizes a one level criteria first introduced by Mancoridis
et al. [18]. We focused our effort on Mancoridis’ MQ mo-
dularity measure for several reasons, one being that it pos-
sesses interesting statistical properties [10], the other being
that it nicely admits a multilevel generalization, making it a
good candidate quality measure among others. Our multi-
level measure collects values along a traversal of all clusters
and sub-clusters ending into a polynomial whose coefficients
reflect how the graph combines with the hierarchy of clus-
ters. We borrowed ideas from standard techniques in al-
gebraic combinatorics where such polynomials appear when
enumerating recursive discrete objects. The idea is to exploit
a variable q to keep track of the intrinsic depth of objects. In

1The data used here is unfortunately not publicly available.

(a) Network of daily commuters in the
South-West of France. The underly-
ing colored boxes suggest the presence
of a hierarchy in the data.

(b) A hierarchy has been identified and allows
to recursively decompose the original data into
a hierarchy of nested subgraphs.

Figure 1: The network of daily commuters (a) has
been hierarchically decomposed using an iterative
approach (b).

most cases, the objects can be described by formal languages
generated by algebraic grammars, generally called attribute
grammars after a counting variable q is introduced [12, 19].
A first attempt at defining this multilevel measure was con-
jectured in [10] but did not lead to any substantial results.

Section 3 motivates the design this one variable multilevel
modularity. The whole discussion incrementally builds to-
wards the full generalization by going through a careful ex-
amination of MQ and its underlying mechanism. Looking
at archetypal case studies, section 4 provides a rationale for
such an adaptation of Mancoridis’ original formulation. In
section 5, we look at a real world example that has been
the focus of previous work, to assess of the relevance of our
multilevel modularity. Some concluding remarks point at
potential directions for future work.



2. MANCORIDIS’ MODULARITY
Mancoridis et al. [18] proposed a modularity measure they
called MQ (standing for Modularity Quality) evaluating the
quality of a clustering (of a graph) as a difference between
internal and external connectivity ratios. Obviously, MQ

applies to any graph and clustering although it was first
introduced in the context of reverse software engineering to
cluster graphs induced from references between source code
files.

Let G = (V,E) be a graph where V and E respectively
denote the set of nodes (also called vertices) and edges of G.
Let C = (C1, . . . , Ck) be a clustering, that is, the subsets
Ci ⊂ V are pairwise disjoint and cover V = ∪k

i=1Ci. Given
two clusters Ci, Cj , we define eij as the number of edges
connecting vertices of Ci to vertices of Cj (or vice versa). In
this context, eii denotes the number of edges within Ci.

The modularity measure M̃Q we now define slightly extends
Mancoridis’ original modularity, and involves internal and
external connectivity ratios for each cluster Ci, respectively
denoted as αi and βi. We also need to specify upper bounds
δi and δij on the number of edges lying within Ci or bet-
ween Ci and Cj (depending on a reference graph model,
see forthcoming examples and sections). Moreover, we as-
sign a weight xi associated with each cluster Ci and we set
X =

∑k

i=1 xi. In a sense, the quantity X can be seen as a
weight associated with the whole graph G, or more precisely
to the set of vertices V . We furthermore require that these
weights to be additive, meaning that if Ci is decomposed
into (pairwise disjoint) sub-clusters Ci1, . . . , Ciki

, we then

have xi =
∑ki

p=1 xip.

Definition 1. The internal connectivity ratio of the cluster
Ci ∈ C is defined as the relative amount of internal edges in
cluster Ci and equals:

αi =
eii

δi
(1)

Remark 1. A natural upper bound δi for subgraph density
is
(
|Ci|
2

)
when dealing with simple graphs (undirected, no

loops). This definition implicitly sets the complete graph as
a reference model where cluster density is measured against
a clique of comparable node size. However, finding a subset
of nodes Ci ⊂ V maximizing αi in this case is a NP-hard
problem. This has motivated the use of alternate definitions
for edge density [26]. Finally, we do not consider here the
particular case where the δ are null. The situation could
however arise when computing the density of a singleton.

Definition 2. The external connectivity ratio of the clus-
ter Ci ∈ C is defined as a weighted mean of the relative
amount of external edges between Ci and the other clusters
and equals:

βi =
1

X − xi

∑

j 6=i

xjeij

δij
(2)

Remark 2. A natural upper bound δij for external den-
sity subgraph density, which furthermore matches the inter-
nal density δi =

(
|Ci|
2

)
discussed in the previous remark, is

δij = |Ci| · |Cj |. This definition implicitly sets the complete
bipartite graph as a reference model.

Definition 3. Let G be a graph, and C = (C1, . . . , Ck)
be a clustering of G. The generalized modularity (denoted

M̃Q) is defined as:

M̃Q(G;C) =
1

X

k∑

i=1

xi(αi − βi) (3)

The quantity in Eq. (3) should be seen as a weighted ave-
rage of the ratio difference (between the quantities defined
in Eq. (1) and Eq. (2)). That is, larger cluster have a higher
ratio xi

X
and correspondingly have more impact on the final

value computed in Eq. (3).

Example 1. Let us briefly show how Mancoridis’ original
definition can be recovered from Eq. (3). First set uniform
weights for all clusters, that is xi = 1, for all i = 1,. . . ,k.
We consider directed graphs and allow loops. Take as re-
ference graphs the (directed) complete graph, and the di-
rected bipartite graph. Accordingly set δi = |Ci|

2 and δij =
2|Ci||Cj |. Eq. (3) then unfolds as the original MQ mea-
sure [18]:

MQ(G;C) =
1

k

k∑

i=1


 eii

|Ci|2
−

1

k − 1

∑

j 6=i

eij

2|Ci||Cj |


(4)

Example 2. We now consider simple graphs (undirected,
no loops) and use the size of a cluster Ci as its weight (xi =
|Ci|). Take as reference graphs, the complete graph and

bipartite complete graphs, and accordingly set δi =
(
|Ci|
2

)

and δij = |Ci||Cj |. We then get:

M̃Q(G;C) =
1

n

k∑

i=1


 2eii

|Ci| − 1
−

1

n− |Ci|

∑

j 6=i

eij


(5)

additionally assuming |Ci| ≥ 2, ∀i = 1,. . . ,k, and where we
set n = |V |. Mancoridis’ original definition (as used in [3])
considers clusters to be of equal importance and simply av-
erages the density of all clusters, while the identity we use
here computes a weighted average again giving more impact
to larger clusters (see also [6] who pointed at this improve-
ment).

Roughly speaking, M̃Q (as defined in Eq. (5)) seeks at find-
ing dense subgraphs assigning a maximum score to cliques

(complete subgraphs). As a result, M̃Q tends to prefer
small cliques to larger but less dense subgraphs. Using the
de Moivre-Laplace theorem, one can show that when G is a
random Erdös-Rényi graph [13] with link probability p, and
for a fixed clustering C, the quantity defined in (5) can be
approximated by a Gaussian distribution of zero mean (we
also need to assume i > 1). This observation corresponds to
the idea that the probability of finding a clustering of ran-
dom graph where clusters have a much larger inner connec-
tivity ratio than external connectivity ratio is rather small.



3. MULTILEVEL MODULARITY
3.1 Basic idea
The extension of M̃Q to hierarchical graph clustering re-
lies on a recursive definition involving a variable q. Observe

first that M̃Q in Eq. (3) can be computed by going through
each individual edge, testing whether it connects nodes be-
longing to a same cluster or to different ones. The terms
in Eqs. (1) or (2) can then be seen as positive or negative
weights assigned to edges of the graph.

When dealing with multilevel clustering, our goal is to take
the depth at which an edge acts into account. It may oc-
cur that an edge remains internal as we drill down the hie-
rarchy over several levels. The intuition here is that this
edge should be assigned a positive weight 1 + q + · · · + qr

depending on the depth r of the deepest cluster it resides
in. Conversely, an external edge joining two different clus-
ters should be assigned a negative weight depending on the
depth of the two clusters it connects in the hierarchy. Now,
the situation becomes intricate since an edge might well be
internal starting from the root down to some level of the hie-
rarchy, while it becomes external and connects two distinct
lower level clusters. It is this combinatorial complexity we
need to capture here.

3.2 Multilevel recursive definition
Let T be a rooted tree, that is a directed graph where leaf
nodes have no successors, and each node has a unique parent
node, except for the root node. Let σ(t) denote the set of all
siblings having t as common parent node in T. We denote
by h(T) the height of T, that is the length of a longest path
from the root to a leaf node.

A hierarchically clustered graph G = (V,E,T) comes equip-
ped with a cluster tree T where each node t ∈ T corresponds
to a subset V (t) ⊂ V , subject to V (t) =

⋃
t′∈σ(t) V (t′) and

V (t′) ∩ V (t′′) = ∅ for any two siblings t′, t′′ ∈ σ(t). By defi-
nition, all (subsets associated with) siblings Ci (i = 1,. . . ,k)
having the root node as direct ancestor provide a flat clus-
tering of the graph. Some of these subsets then refine into
hierarchically clustered graphs G(Ci) = (Ci, E(Ci),T(Ci)),
where G(Ci) = (Ci, E(Ci)) denotes the subgraph induced
from Ci and T(Ci) denotes the hierarchy induced from the
subtree rooted at Ci. That is, G(Ci) = (Ci, E(Ci),T(Ci))
itself recursively decomposes into a lower level hierarchical
clustering. Note that we do not require that the lowest level
clusters be single nodes v ∈ V . For sake of simplicity, we
shall write Gi and Ti to denote G(Ci) and T(Ci) respec-
tively. We also identify clusters Ci with the subtree Ti

rooted at Ci.

Definition 4. Let G = (V,E,T) be a hierarchically clus-
tered graph with top level clusters C1, . . . , Ck. For any real
number q ∈ [0, 1], its multilevel modularity is defined as:

M̃Q(G;T; q) = (6){
1
X

∑k

i=1 xi(αi − βi)
(
1 + qM̃Q(Gi;Ti; q)

)
if k > 0

0 otherwise

Note that when Ti is a flat clustering of G, we then have

M̃Q(Gi;Ti; q) = 0 since Ti is a leaf node in T. As a con-

sequence, M̃Q does coincide with Eq. (3) for flat clustering
(a cluster tree of depth one).

The reasons for the bounds on q are obvious. On the one
hand, allowing q < 0 would bring a negative contribution
from internal edges, while external edges would contribute
positively. On the other hand, choosing q > 1 would lead to
an odd situation where bottom clusters of T may contribute

more to M̃Q(G;T; q) than the first level clusters although
they represent a refinement of their parent clusters.

3.3 M̃Q as weighted paths in a tree
Although Def. 4 introduces a recursive pattern to compute

M̃Q(G;T; q) as a polynomial in q, we can provide a com-
binatorial formula to directly compute the coefficient of qp.
Now, assume sibling nodes are labeled using distinct inte-
gers 1, 2, . . . Any path going from the root node to any other
node in the tree can then be described as an integer sequence
w = i1 . . . ir. We shall call such a sequence a word over the
alphabet {1, 2, . . .}. Fig. 2 illustrates this construction: the
word encoding the path from the root node is depicted for
each node in the tree. Now, given a word w = i1 . . . ir, a
prefix of w is a word u = i1 . . . is with s ≤ r. Note that
prefixes incrementally build as we traverse the path from
the root and visit all intermediate nodes. We shall write
u ≺ w when the word u is a prefix of the word w. This hap-
pens to be an order relation on words which coincides with
the (inverse) set inclusion order on clusters in the hierarchy,
so words w uniquely map to a cluster C in the hierarchy.
We write |w| to denote the length of the integer sequence w

(which also equals the depth of the corresponding cluster in
the hierarchy) and LT to denote the set of leaf nodes in T.

Figure 2: A labeled tree encoding a hierarchical clus-
tering. All paths from the root to a cluster Cw are
described using words.

Property 1. We have:

M̃Q(G;T; q) =
1

X

∑

w∈LT

xw

∑

v≺w

q
|v|−1

(
∏

u≺v

αu − βu

)
(7)

A crucial ingredient to Eq. (7) is the identity xi =
∑ki

j=1 xij ,
which holds since we assumed the xi’s are additive. The
Prop. 1 thus provides a natural interpretation for the coeffi-

cient of qp, we denote [M̃Q(G,T, q); qp]. Indeed, let C be a
cluster inT with depth p+1. We need to multiply differences
between inner and outer connectivity ratios for each cluster

sitting on the path to C. The coefficient [M̃Q(G,T, q); qp]



is then obtained by summing this quantity over all clusters
at depth p+ 1, as given in Prop. 2.

Property 2. Let Dp = {w ∈ T, |w| = p+1} be the the set
of clusters at depth p in T. We have:

[M̃Q(G,T, q); qp] =
1

X

∑

w∈Dp

xw

∏

u≺w

(αu − βu) (8)

Eq. (8) provides an alternative way to compute M̃Q(G,T, q).
Assuming all quantities (αu, βu)u∈T are given, the time com-

plexity for computing M̃Q(G,T, q) is however O(n log(n)2)
(where n = |V | denotes the number of vertices in G). This is
to be compared against a O(n log(n)) time complexity when
using recursion as in Eq. (6).

3.4 Interpreting values of M̃Q

Observe that M̃Q(G;T; q) achieves our goal since internal
edges will be visited several times, once as edges in G, then
as edges in G(Ci) and so forth, each time collecting a dif-
ferent power of q as the recursion goes down the hierarchy.
The same type of “depth dependent weight” is achieved for
external edges. The case where q is close to 1 corresponds to
the extreme situation where the weight of an (internal) edge
equals its depth in the hierarchy. On the other hand, a value

of q close to 0 corresponds to the one-level M̃Q value (Eq. 3)
applied on the first level of T. As we shall see (section 4),
the value assigned to q actually plays a role in determining
whether one should favor a clustering extending to more or
less levels. Roughly speaking, a denser cluster may have a
smaller contribution than a cluster sitting at a lower level
while being less dense, depending on the value of q (and the
depth of the cluster).

Given a hierarchically clustered graph (G,T), and q being

considered as a variable, the expression M̃Q(G;T; q) can be
seen as a polynomial in q. Obviously, two different clustering
trees T,T′ of a same graph return different polynomials,
that may only slightly differ when these two clusterings are
“close”. Similarly, we expect a larger graph G′ equipped with
a hierarchical clustering structurally similar to that for G to
return a similar polynomial. That is, when plotted as curves
over [0, 1], the two polynomials should correspond to similar
and close curves. Note that this is more likely to happen
when T and T′ share the same (non labeled) tree structure,
so the polynomials will only vary in their coefficients but
will involve the same recursive expansions and powers of q.

Comparing two hierarchical clusterings based on polynomial
expressions may be unsatisfactory or insufficient to take de-
cisions. While there is no obvious way to determine the
right value for q to run such a comparison, a heuristic is

to take the average of M̃Q(G;T; q) over q ∈ [0, 1]. This

can easily be accomplished by computing M̃Q(G;T) as an
integral using Eq. (8):

M̃Q(G;T) =

∫ 1

0

M̃Q(G;T; q)dq (9)

=
1

X

h(T)−1∑

p=0

1

p+ 1

∑

v∈Dp

xv

∏

u≺v

(αu − βu)

4. PROOF OF CONCEPT: ARCHETYPAL

CASE STUDIES
We now look at special and simple cases in order to under-

stand how M̃Q(G,T; q) actually works. We shall also look
at more complex examples later on. We will only consider
simple graphs (undirected, no self-loops). We shall use the
complete and bipartite complete graphs as reference graphs
(cf. Section 2, Ex. 2). Recall that we use the size of a cluster
Ci as its weight (xi = |Ci|).

4.1 A simple case study
Our multilevel modularity can be used to decide whether to
further subdivide a cluster or not. Observe that two trees
sharing the same structure on nodes of depth ≤ p will have

equal coefficients [M̃Q; qr] with r ≤ p. Hence, these cluster
trees may only be compared based on local criterion.

A simple example will illustrate this idea. Assume G is a
graph formed of three distinct cliques C1, C2, C3 (taken as
the archetype of a cluster) of size n. Assume also there are
bn2 edges (0 ≤ b ≤ 1) connecting C1 to C2, but that there
are no edges between C3 and either C1 or C2. Write cluster
trees as parenthesized expressions, and consider cluster trees
T = [C1∪2, C3] and T′ = [[C1, C2], C3] (see Fig. 3). That is,
T is a flat clustering with a first cluster containing the union
of C1 and C2, while T′ further divides this cluster into sub-
clusters [C1, C2].

V

C1∪2 C3

(a) T

V

C1∪2 C3

C1 C2

(b) T’

Figure 3: Two different hierarchical clusterings of a
graph built from three cliques.

Since both trees coincide on the first level, comparing their
modularity amounts to decide whether there is any benefit
to further divide C1∪2 into [C1, C2]. The tree T is flat, its

modularity M̃Q is constant (as a polynomial in q). We can
furthermore evaluate this situation by letting n increases
toward ∞ to obtain expression solely depending on b:

M̃Q(G;T; q) =
2

3
+

b

3

M̃Q(G;T′; q) =
1

3

(
1 + (1 + b)

[
1 + q(1− b)

])



Note that we indeed have M̃Q(G;T; 0) = M̃Q(G;T′; 0), as
expected. The comparison of these two clusterings relies on
the value of

[M̃Q(G;T′; q), q] =
q(1− b2)

3

This positive quantity is a decreasing function of b, which
confirms an obvious phenomenon: as long as C1 and C2

are not too densely interconnected, it makes sense to divide
C1∪2 into two sub-clusters, while they should be kept as a
single cluster when their inter-connectivity ratio approaches
higher values.

4.2 More complex cluster trees
We now consider cluster trees built from four different clus-
ters and show how M̃Q helps predict which is the most rele-
vant hierarchical clustering, depending on the inter-cluster
connectivity ratios.

We will here compare four different cluster trees: the flat
tree, the 3-2 tree, the complete tree and the linear tree
(see Fig. 4). Comparing the modularity of these hierarchical
clusterings should help to decide on the appropriate tree
structure, since all of these trees have the same leaf clusters.
We assume all bottom clusters C1, C2, C3, C4 to be cliques
of equal size n, and we write bij for the external connectivity
ratio between Ci and Cj . We consider four different cases
(see Fig. 5) and always assume b14 = 0 = b24 = 0 (cluster
C4 never connects with clusters C1 or C2):

Ratios Case 1 Case 2 Case 3 Case 4
b12 0.4 0.8 0.8 0.8
b13 0.4 0.0 0.0 0.5
b23 0.4 0.0 0.0 0.5
b34 0.4 0.0 0.8 0.0

Fig. 5 shows the curves of the four polynomials we get. Table
1 collects the averaged modularities (see Eq. (9)) for each of
these hierarchical clusterings. Based on these elements, we
can conclude:

• When b12 is much greater than all others bij , the mo-

dularity M̃Q ranks the 3-2 tree as the best option.
This obviously is the best possible case between all
considered trees.

• When b12 and b34 are much greater than all others bij ,
then the complete tree is the best available option.

• The linear tree becomes the best candidate tree when
b12 ≫ b13 ≃ b23 ≫ others bij .

• Note that, for all values q ∈ [0, 1], the M̃Q curve of the
flat clustering does not indicates it as a good option,
even in case 1. However, its averaged modularity (see
Table 1) does show it as a reasonable candidate for
case 1.

5. APPLICATION ON A COLLEGE FOOT-

BALL NETWORK
In this section we show how multilevel modularity M̃Q can
be used to compare hierarchical clusterings of real world

V

C1 C3C2 C4

(a) Flat

V

C1 C3C2 C4

C1∪2 C3∪4

(b) Complete

V

C1

C3

C2

C4C1∪2

(c) 3-2

V

C1

C3

C2

C4

C1∪2

C1∪2∪3

(d) Linear

Figure 4: Different clusterings of size 4.

networks. We consider an example borrowed from [14] de-
scribing the organization of the American College Football
season schedule of Division IA. Nodes of this graph represent
teams and edges connect teams that played together along
the season. This graph comes with an obvious clustering cri-
teria since the teams are divided up into 11 conferences (we
do not consider the independent teams here). The graph is
of limited size and contains 110 vertices and 568 edges. Al-
though games are more likely to occur within a conference,
they also seem to depend on the geographical proximity of
the teams’ hometowns.

The College Football graph has been clustered using four
different algorithms. Three of them actually produce flat
clusterings and have been iterated over clusters in order to
obtain multilevel clusterings. We used the Strength Clus-
tering algorithm [3], Newman’s Fast Agglomerative algo-
rithm [20] and the MLR-MCL algorithm [24]. We also used
the Louvain algorithm [4] that actually produces a hierar-
chical clustering. We directly used the source code provided
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Figure 5: M̃Q curves for flat (Blue), 3-2 tree
(Green), Complete (Black) and Linear (Red) cluster
trees.

Tree Case 1 Case 2 Case 3 Case 4
Flat 0.73 0.86 0.73 0.7
3-2 0.69 0.99 0.86 0.77

Complete 0.64 0.87 0.98 0.54
Linear 0.65 0.82 0.45 0.92

Table 1: Averaged modularities. The value for the
best hierarchical clustering is given in bold.

by the respective authors, then ran the algorithm and vi-
sualized the results using the Graph Visualization frame-
work Tulip [2].

The complete and bipartite complete graphs were used as
reference graphs for inter and intra connectivity ratios. Our
goal was to compare the grouping of teams into conferences
with the different hierarchical clusterings output by the dif-
ferent algorithms. As far as the clustering into conferences
is concerned, it made sense to set all clusters to have equal
weights xi = 1, and be considered equally important what-
ever their size (number of teams in a conference). As a
consequence, weights of leaf clusters in all other hierarchi-
cal clusterings were also set to xi = 1. Because we need to
insure additivity of these weights, we had to set

xw =

{
1 if w ∈ L
|Lw| otherwise

where Lw is the set of T leaves having w as ancestor node.

A visualisation of the results is provided in Fig. 6 using
nested graphs. To ease the comparison with the grouping
of teams/nodes into conferences, teams/nodes are colored
according to the conference they belong to. As one could
expect, the five hierarchical clusterings agree on a majority
of groups, which can be easily explained by the fact that

teams of a same conference play together more often.

Newman’s Agglomerative (Fig. 6(a)) and Louvain (Fig. 6(b))
algorithms tend to group conferences located in a same re-
gion. In both cases, the Louisiana part of the Sun Belt con-
ference is merged with the South Eastern conference. The
Strength (Fig. 6(c)) and MLR-MCL (Fig. 6(d)) algorithms
produce hierarchies that are close to the division into con-
ferences. Both algorithms refine some of the conferences
into denser sub-clusters which makes sense geographically,
although they disagree on the Sun Belt conference. They
agree on splitting the Mid-American conference into two
cliques, one gathering teams closer to Ohio and the other
gathering teams closer to Michigan. These five hierarchies

can be compared using M̃Q. Fig. 7 and Table 2 report the
resulting polynomials and averaged modularities.
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Figure 7: M̃Q curves for Conferences partition
(Blue), Agglomerative clustering (Red), Strength
clustering (Green), MLR-MCL clustering (Violet)
and Louvain clustering (Black).

Algorithm M̃Q(G,T, q) M̃Q(G,T)
MLR-MCL 0.815374 + 0.154301q 0, 8925245
Strength 0.755885 + 0.126473q 0, 8191215
Louvain 0.713722 + 0.179126q 0, 803285
Divisions 0.749428 0.749428

Agglomerative 0.649202 + 0.13588q 0, 717142

Table 2: Polynomials and averaged modularities for
the five clusterings of the Football network.

The modularity M̃Q ranks the hierarchical clustering pro-
duced by MLR-MCL as best. The algorithm is indeed able
to split teams within a conference into very dense subgroups.
The first level of the hierarchies obtained from the Strength
algorithm recovers the organization into conferences. As a
matter of fact, this algorithm behaves similarly to MLR-
MCL, which have been both ranked as the best available
options. It confirms the relevancy of a two level subdivision
of conferences into smaller geographical regions. The lowest
level clusters of the Louvain hierarchies match the division
into conferences. The higher value of the slope for its poly-
nomial compensates the loss in quality in the first level. This
is however not the case with the Agglomerative algorithm
due to a lower quality grouping of teams on the first level.



(a) Agglomerative (b) Louvain

(c) Strength (d) MLR-MCL

Figure 6: Nested graph representations of the College Football conferences during the season fall 2000 using
several clustering algorithms. Meta-edges width represents the number of games between two groups.

6. CONCLUSION AND FUTURE WORK
We introduced a multilevel modularity in order to assess
the relevancy of a hierarchical clustering of a graph. The
measure we defined explicitly takes the hierarchical structure
into account and computes a polynomial expression whose
degree reflects the depth of the hierarchy. This multilevel
modularity naturally extends a clustering quality measure
that was previously defined and used to cluster graphs [18].
Coefficients of the polynomial associated with a hierarchy
can alternatively be described and computed in terms of
weighted paths in a tree representing this hierarchy.

Archetypal case studies provide arguments to validate the
concept of a multilevel modularity. Simple case studies can
be used to reveal how the measure is influenced by connec-
tivity ratios acting at different levels in the hierarchy. Limi-
ted cases reveal the relative sensibility of the measure and

compares it to traditional plain clustering modularity.

Other modularity measures could allow multilevel extensions
by using a depth-based variable q to keep track of how edges
interact with the hierarchy. Because of their combinatorial
properties, Newman’s modularity [20], the average Norma-
lized Cut [24] or edge density criterion (see [5], for instance)
are potential candidates we plan to look at.

For now, the multilevel modularity can be used to decide
whether to iterate a clustering algorithm and further divide
already computed clusters; or it can be used to guide an
agglomerative process. There might however be more com-
plex computing patterns to follow in order to optimize the

M̃Q value. In this context, the variable q can be tuned to
favor or to restrain deeper hierarchical clustering. These are
obvious issues we need to address.
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mondiaux. M@ppemonde, 79(3-2005), 2005.

[2] D. Auber. Tulip - a huge graph visualization
framework. In P. Mutzel and M. Jnger, editors, Graph
Drawing Software, Mathematics and Visualization
Series. Springer Verlag, 2003.

[3] D. Auber, Y. Chiricota, F. Jourdan, and G. Melançon.
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