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Abstract. We address the problem of constructing an approximate con-
tinuous representation of a digital contour with guarantees on the Haus-
dorff error between the digital shape and its reconstruction. Instead of
polygonalizing the contour, we propose to reconstruct the shape with
circular arcs. To do so, we exploit the recent curvature estimators. From
their curvature field, we introduce a new simple and efficient algorithm
to approximate a digital shape with as few arcs as possible at a given
scale, specified by a maximal admissible Hausdorff distance. We show
the potential of our reconstruction method with numerous experiments
and we also compare our results with some recent promising approaches.
Last, all these algorithms are available online for comparisons on arbi-
trary shapes.

1 Introduction

Digital curve representation or approxima-
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tion by simple primitives is useful for further
shape analysis (recognition, matching, etc). Many
methods approximate digital curves by a polyg-
onal contour, using corner points or multi-scale
analysis [6]. We propose here to work with higher
order primitives like arcs of circle. This represen-
tation is more efficient for curved shapes like the
one illustrated on the following floating figure
and captures better its geometry.

In a previous work [11] we have explored the potential of different curvature
estimators for corner detection. Together with a scale parameter, the obtained
polygonal reconstructions were able to represent the contour by adapting the
number of points according to the local value of curvature (see for example
the polygon (a) of the upper floating figure). However as shown in figure (b),
the circle arc primitive is much more efficient to represent numerous shapes.
The previous example shows how arcs based representation gives a more com-
pact description for the same accuracy (same Hausdorff error δH , more faithful
normals). In this paper we investigate curvature based arc reconstruction by
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introducing a simple reconstruction algorithm which exploits different recent
curvature estimators.

Among previous works about reconstruction of digital contours with higher
order primitives, we can mention the work of Rosin et al. [16], who constructed
firstly a polygonal description and detected fitting arcs by grouping connected
lines. Horng et al. [8] and Tortorella [18] introduced curve-fitting methods with
an approach based on dynamic programming. Bodansky [4] presented a method
for the approximation of a polyline with straight segments, circular arcs and free
curves. It contains two steps. The first step is the segmentation of polygonal lines
into fragments (short polygonal lines) and the second step is the approximation
of the fragments by geometric primitives. If some fragments can not be approxi-
mated by geometric primitives with acceptable precision, they are recognized as
free curves.

It is obvious that curvature information is meaningful for curve reconstruc-
tion by circle arcs and segments. A circle arc corresponds to a constant part
in the curvature profile of the studied curve. Some methods have exploited this
measure for curve reconstruction. Chen et al. [2] proposed a method for segment-
ing a digital curve into lines and arcs from curvature profile in which the number
of primitives is given. This procedure contains two stages. The first stage com-
putes a starting set of break points and determines an initial approximation by
arcs and lines based on this set. This stage relies on the detection of significant
changes along the curvature profile. The second stage is an optimization phase
which adjusts the break points until the fitting error is locally minimized. After-
wards, Horng [7] proposed an adaptive smoothing approach for decomposition
of a digital curve into arcs and lines. The input curve is segmented into arcs and
lines according to the smoothed curvature representation. The curvature pro-
file is determined by Gaussian filtering. Then, it is smoothed with an adaptive
smoothing technique. Similarly, Salmon et al. [17] presented a method for de-
composing a curve into arcs and segments according to the curvature profile too.
They used a notion of discrete curvature which is related to the circumscribed
circle induced by blurred segments. Their main idea is to extract key points on
the curvature profile, which are then used for reconstruction. However the in-
stability of this curvature estimator induces some complex curvature processing
which adds new parameters and reduce the applicability of the approach.

We propose here to examine the potentiality of three recent curvature estima-
tors in the context of reconstruction with circle arcs. Their main properties (sta-
bility wrt noise especially) are briefly described in Section 2. The reconstruction
algorithm is presented in Section 3, and uses indifferently two of these estimators.
We finally validate our reconstruction technique with several experimentations
in Section 4. The visual curvature reconstruction [13] and the method of [15] act
as reference reconstruction methods.
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2 Recent Curvature Estimators

An overview of different curvature estimators are given in the following and
more details can be found in their respective reference (see also the comparative
evaluation in [11]).

Global Minimization Curvature (GMC). Curvature estimation is very
problematic since infinitely many shapes have the same digitization. The idea of
the GMC estimator [9] is to determine, among all possible shapes that have the
same digitization as the digital object under study, the shape which minimizes
its squared curvature. This shape is the most probable or expected shape if only
a digital object is given, since it is the smoothest possible. Then the curvature
field estimation is simply the curvature field of the minimal shape.

It is not a trivial task to determine this minimal shape. A phase-field approach
is proposed in [1]. In [9], the proposed approximate optimization method provides
a piecewise constant curvature field, so as the reconstructed shape boundary is
made of circular arcs with tangent continuity. Furthermore it takes into account
possible noise in the input data, with the use of blurred segments as a preprocess
[3]. This estimator determines a curvature field with the smallest possible number
of inflexion points. It is also almost rotation invariant due to processing with
maximal digital straight segments. Its stability makes it particularly suitable to
our reconstruction algorithm.

Binomial Convolution Curvature (BCC). This estimator was proposed by
Malgouyres et al. [5, 14] as a discrete alternative to the Gaussian smoothing
technique for estimating the curvature of a digital contour. Differential oper-
ators of order n are obtained as successive convolutions of m (say) binomial
kernels and n difference kernels. The authors have shown that this differential
estimator is multigrid convergent for well-chosen m (m depends on the sam-
pling rate and other parameters like maximal curvature), even in the presence
of noise. The main problem with this method is how to choose this m for a
given input shape, since there is an ad hoc balance to be made between accuracy
and smoothness, and some parameters are tricky to estimate. This method is
also computationnaly costly for large m. We will nevertheless use it to show
that our reconstruction method is relatively independent of the curvature field
estimation.

Visual Curvature (VC). The visual curvature has been introduced by Liu,
Latecki and Liu [13]. Its principle is to measure the number of extreme points of
the height function along several directions, within a given window around each
point. It is thus clear that points on the shape boundary that are also vertex of
its convex hull are always extreme points. Furthermore, they introduced a scale
parameter which keeps only extreme points surrounded by big enough concave
or convex parts. This process filters non-significant features at a given scale.
Keeping only the vertices with a non-zero multiscale visual curvature defines a
simplified polygon. The sequence of polygons obtained by increasing the scale
parameter from 0 to 1 creates a natural filtration of polygons, the simplest one
being the convex hull. A drawback of the method is that the visual curvature
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is only a qualitative estimation of the curvature in the general case. Further-
more, the simplified polygons are not controlled by an error measure. Lastly,
this method requires four parameters. The visual curvature technique is recog-
nized as a good feature detector and multiscale contour polygonalizer. Since the
estimator is not suitable for our circle arc reconstruction (no distinction between
concave/convex area), we will use it only for comparison purpose to assess the
quality of our reconstruction method.

3 Contour Reconstruction with Circle Arcs

We propose a simple strategy to reconstruct a digital contour with the circle arc
primitive. The main idea is to decompose the curvature estimation profile so as
to find the significant curved areas which can be approximated by a circle arc.
For this purpose a split/merge strategy is proposed. Split/merge is governed by
a given maximal Hausdorff error Emax with respect to the input digital contour.
This parameter acts as a scale for the reconstruction. It also induces specific
parametrizations of curvature estimators, which will be described in the multi-
scale reconstruction paragraph.

Algorithm 1 gives an overview of the main reconstruction process. First the
curvature profile is decomposed into constant curvature parts. Then the set of
local maxima/minima is extracted to define the initial regions as circle arcs.
Since the circle arc estimation does not guarantee an error smaller than Emax, a
split process is first proposed to reduce the error between the circle arc and the
curve until it becomes less than the maximal allowed value. The merge phase
extends them with their neighborhood regions while the associated circle arc
gives an error lower than Emax. Before describing the error measure we focus on
the problem of arc reconstruction from a contour region.

Arc reconstruction. Given a contour region Ri
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there are several ways to reconstruct a circle arc Ai

from two endpoints Cbi
and Cfi

. A first solution is
to use the curvature information to determine the
different possible solutions if there exist. Such a re-
construction is illustrated on the following figure by
assuming a constant curvature value κi = 1

R
esti-

mated on the contour between Cbi
and Cfi

. The
two possible centers of the osculating circles of ra-
dius R are represented with the intersections I1 and
I2 of the two dotted circles of center Cbi

and Cfi
. From these two points I1 and

I2, four circle arcs A1, A
′
1 and A2, A

′
2 are deduced as potential candidates for

the reconstruction. Then the sign of the curvature retains only the circle arcs of
same convexity. To select the final solution, we compute the distance between
each middle arc point with the middle contour point Cci

. In the previous illus-
trating example, the final arc will be A2 since the euclidean distance between
Cci

and CA2
is less than the one between Cci

and CA1
.
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A second method of reconstruction simply assumes that the circle arc should
interpolate the middle point Cci

of the contour region. In this case the center of
the circle arc can be determined if the center point is not collinear with the two
other points Cbi

and Cfi
. By referring to the previous example the reconstructed

circle arc is given by A′
3. The two approaches have been experimented and the

latter one gives the best results.

Error measure. Through the reconstruction process we need to evaluate the
precision of the approximation by computing the error made between the re-
constructed circle arcs (Ai) of extremities (Cbi

, Cfi
) and the pieces of digital

contour (Ci) defined between the two points. We propose to use the Hausdorff
distance δH(Ai, Ci) defined as:

δH(Ai, Ci) = max{max
b∈Ci

{min
a∈Ai

d(a, b)}, max
a∈Ai

{min
b∈Ci

d(a, b)}}

The first term maxb∈Ci
{mina∈Ai

d(a, b)} is computed in linear time by taking
into account for each point Cj the angle θAi

of the circle arc and the angle θCj

of the contour point Cj with the segment OiCfi
where Oi is center of the circle

arc Ai. Two cases need to be considered (see Fig. 1(a)). If θCj
< θAi

then the
minimal distance to the arc can be defined as the distance between Cj and the
projection C ′

j of Cj on the this circle. The minimal distance between Cj to any
point of Ai is thus given by R − ||OiCj || where R is the radius of the circle of
center Oi. If θCj

is greater than the circle arc angle θAi
then the projection C ′

j

is not located on the circle arc and the error is then defined by the minimal
distance between ||CjCfi

|| and ||CjCbi
||.

θAi
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θCl
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k

Cl
C′

l

Ai

Cbi Cfi

Oi Ck

P4
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Fig. 1. Illustration of the evaluation of the Hausdorff distance between the circle arc
and the digital contour.

The second term of the Hausdorff error measure implies a O(N2) complexity
since for any point of the arc, the minimum distance with the N points of the
contour part Cbi

Cfi
is required. We therefore only approximate this measure, by

computing the minimal distance only for some sampling points on the circle arc.
They are defined so as to obtain at least one sampling point on each quadrant
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(worst case for a circle arc with angle close to 2π). Thus four points are used to
define the error (illustrated on Fig. 1(b)).

Merging process. The first merging process is initiated from the constant plot
areas which are a local minima/maxima. The advantage of such strategy is to
be independent of the choice of the initial contour point. Note that a precision
parameter ǫ can be used to consider that two curvature values are equal. Then
in order to avoid the presence of inconsistent circle arc, merging is allowed only
between two contour regions with the same sign of curvature (definition included
in the function isExtendable). It is also necessary to have a strategy for selecting
in which order neighboring regions are merged with the considered central region.
Here, the region whose mean curvature is closest is selected as first candidate to
be merged. Such strategy is associated to the functions selectFirstNearest,
selectSecondNearest and extendFrontFirst from Algorithm 3.

As described in Algorithm 1 the merging process is applied in a second phase
in order to merge the potential arc regions located between two local max-
ima/minima. Finally, after this process, the function selectMinErrPrimitive

is called to optionally verify if the straight segment could improve the recon-
struction error. In order to favor circle arc reconstruction the straight segment
is chosen only if it implies an error decrease at least equal to Emax/2.

Algorithm 1: Reconstruction with arcs and segments

Data: C = {Ci}
n
i=0 digital curve, κ = {κi}

n
i=0 curvature estimation,

float maxArcError;
Result: curve represented by a set of arcs and segments.
begin

Decompose κ into a set of constant curvature interval S defined by:
{(b0, f0), ..., (bi, fi), ..., (bM , fM )}.
For each contour point Ci, store in regionIndex[i] the index k ∈ {0, ..M} of
its region S[k].
Extract from S the set Sm containing all the regions which are a local
maxima/minima.
Stmp = S;
while nbElements(Stmp)! = 0 do

Stmp = SPLIT REGIONS(Stmp, S, regionIndex, maxArcError);

// First extension from mini/maxima regions:
while nbElements(Sm)!=0 do

Sm = EXTEND PLOT REGIONS(Sm, S, regionIndex, κ, maxArcError);

// Second extension from all others regions Su:
Su= set of index of valid non maxima/minima regions of the current regions.
while nbElements(Su)!=0 do

Su = EXTEND PLOT REGIONS(Su, S, regionIndex, κ, maxArcError);

// Verify or change primitive for region which are better approximate
// by a straight segment:
checkBestPrimitive(S, tabRegionIndex, maxArcError);

end
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Algorithm 2: SPLIT REGIONS

Data: The set setToCheck of region index to be checked for splitting.
The set S of all curve PlotRegions.
The rIndex associating each point Ci to its region S[k].
maxArcError: the maximal error allowed for splitting.
Result: A set containing all new index of splitted region.
for i = 0; i < sizeOf(setToCheck); i + + do

PlotRegion plotReg = S[i];
float error = ComputeError(plotReg);
if error > maxArcError then

// Split the considered region
PlotRegion newRegion1, newRegion2;
newRegion1.b = plotReg.b;
newRegion1.f = (plotReg.b+size(plotReg)/2)mod (rIndex.size());
newRegion2.b = (plotReg.b+size(plotReg)/2+1)mod (rIndex.size());
newRegion2.f = plotReg.f;
add(S, newRegion1); add(S, newRegion2);
add(splitSet, newRegion1); add(splitSet, newRegion2);
InvalidAndUpdateReg(S[i], rIndex); updateRegs(newRegion1,
newRegion2, rIndex);

return splitSet ;

Multi-scale reconstruction. The reconstruction process is governed by a max-
imal error, which naturally induces a multi-scale reconstruction. To speed up the
process and enhance the detection of significant points, the curvature estimator
should also be tuned to take into account this error. This is easily done for the
GMC curvature estimator, whose thickness parameter ν corresponds nicely with
the Hausdorff error Emax. Fig. 2(a) illustrates the blurred segment of width ν
used in the GMC curvature estimator. When using the GMC estimator, the
maximal error and the thickness ν are simply set to the chosen scale value. For
the reconstruction with the BCC estimator its mask size has a linear dependence
with the chosen scale value (although the initial mask size must be somehow de-
termined by the user it was set as the contour size for the following experiment),
while the maximal error is set equal to the chosen scale.

Time complexity. The global reconstruction complexity is first dependant of
the curvature estimator. Since the error measure is computed in linear time, the
complexity for the split/merging process is in the worst case equal to O(n2) when
the contour (composed of n points) is reconstructed with a final arc obtained by
adding one point at each step. On average the complexity is equal to O(nlog(n)).

Beside the difference in quality of the reconstructions, which is described in
the next section, the choice of GMC or BCC estimator influences the efficiency
of the merging process. Fig. 2(b) shows the number of region merges obtained
for both estimators. The resulting plot shows that GMC is around 7 times more
efficient than BCC for the merging process. The main reason of this difference
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Algorithm 3: EXTEND REGIONS

Data: The set setToExtend of region index to be checked for merging.
The set S of all PlotRegions.
The rIndex associating each point Ci to its region S[k].
The curvature estimation κ = {κi}

n
i=0,

maxArcError: the maximal error allowed after a merge.
Result: The set of region indexes which were updated: resultSet

for i = 0; i < nbElements(setToExtend); i++ do
PlotRegion reg = SetToExtend[i];
PlotRegion regBack = getBackRegion(reg, S, rIndex);
PlotRegion regFront = getFrontRegion(reg, S, rIndex);
PlotRegion regFirst = selectFirstNearest(regBack, reg, regFront, κ);
PlotRegion regSec = selectSecondNearest(regBack, reg, regFront, κ);
bool frontFirst = extendFrontFirst(regBack, reg, regFront, κ);
if is Extendable(reg, regFirst, κ) then

PlotRegion tmp = MERGE(reg, regFirst, frontFirst);
float error = COMPUTE ERROR(tmp);
if error < maxArcError then

add(resultSet, tmp); add(S, tmp);
InvalidAndUpateReg(reg, rIndex);
InvalidAndUpateReg(regFirst, rIndex);

if is Extendable(reg, regSec, κ) then
PlotRegion tmp = MERGE(reg, regSec, !frontFirst);
float error = COMPUTE ERROR(tmp);
if error < maxError then

add(resultSet, tmp); add(S, tmp);
InvalidAndUpateReg(reg, rIndex);
InvalidAndUpateReg(regSec, rIndex);

return resultSet ;
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Fig. 2. Illustration of the blurred segment recognition of width ν illustrated in blue
(a). A resulting arc detection at the scale Emax = ν is illustrated in red. Comparison
of the number of merges of circle arcs when the reconstruction is defined with GMC
estimator or with BCC estimator by using different scales (horizontal axis) (b).
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comes from the stability of the GMC estimator (see [11] for detailed compar-
isons).

4 Experiments and comparisons

In this section, the experiments and comparisons were performed on a MacBook
Pro running Mac OS X 10.6.4, with a processor 2.8 GHz Intel Core 2 Duo and
4GB of memory. Note that most of the experiments presented here are available
online [12]: the reader may here tests and compares the different methods with
its own shapes. First, we reconstruct the kangaroo shape of Fig. 4. Images (a-d)
show the reconstructions obtained with the GMC estimator. For all experiments
of the figure, resulting arcs are represented alternatively in blue and green color
while straight segments are represented in red. The comparison between GMC
and BCC (images (e-h)) curvature estimators shows a relative equivalence of
the reconstructions: approximately the same accuracy with the same number of
primitives (slight advantage of accuracy for GMC). However BCC is much slower,
especially at large scale. Note that the initial constant curvature intervals were
defined from the same precision parameter ǫ set to 10e − 6 for both GMC and
BCC estimator.

We also compare our proposed method with the NASR method of Nguyen,
who proposed a linear time algorithm for approximate circle arc recognition
(chapter 4, page 133) [15]. The method is based on the representation of the
contour in the tangent space and shares with the GMC estimator the preprocess
with blurred segments (thickness is used as a scale parameter for comparisons).
NASR method is faster than GMC and BCC approach (Fig. 4, images (i-l)),
but is much less accurate at a comparable scale (i.e. for the same number of
primitives). The Fig. 3 displays the number of primitives (segments and arcs)
according to the scale. GMC and BCC show comparable evolution while circle
arc primitives disappear in NASR at large scales.

As mentioned in Section 2, we also perform comparisons with the classical
visual curvature reconstruction ( [13], see Fig. 5), later called VC. Depending on
its parameters, VC is generally faster than GMC, especially at large scale. How-
ever, for a given number of primitives, the GMC reconstruction always achieves
better accuracy than VC (Hausdorff distance about 6-7 times smaller). Note
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Fig. 3. Primitive evolution through the change of scale of the shape of Fig. 4.
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(c) GMC: A = 17, S = 3 (g) BCC A = 20, S = 9 (k) NASR A = 1, S = 16
464 ms. δH = 10.2849 15596 ms. δH = 10.5289 171 ms. δH = 19.6977
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(d) GMC: A = 14, S = 2 (h) BCC A = 15, S = 8 (l) NASR A = 0, S = 14
619 ms. δH = 17.2402 33420 ms. δH = 17.7125 190 ms. δH = 32.8938

Fig. 4. Results and comparisons using the Hausdorff distance δH of the same recon-
struction process by using GMC and BCC curvature estimators (a-h). Images (i-l) show
for comparison, the result with NASR method by using the same scale parameter.
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that arcs and segments represent the same cost since each reconstructed arc
interpolates the middle region point CCi

(second method of arc reconstruction
described in Section 3). To conclude the experimentation, a last comparison was
performed on a real photography of a drawing (Fig. 4) with the three different
methods GMC, NASR and VC. The resulting representations confirm that GMC
is always more precise for a given number of primitives.

5 Conclusion

This paper has proposed a simple method to reconstruct a digital contour with
circular arcs, given a scale parameter that is simply the maximal Hausdorff
error. Although the method is not specific to one curvature estimator, the GMC
estimator has shown the best adequacy with our algorithm, since it gives precise
results while keeping a reasonable execution time. The comparisons with the
recent works demonstrate the quality of the proposed reconstruction. In future
works, we plane to integrate more information in the reconstruction process,
namely the automatic noise detection and the information on flat/curve contour
parts [10], in order to obtain a parameter free contour reconstruction.
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(e) GMC: A = 23, S = 10, δH = 14.9788 (j) VC: S = 33 , δH = 81.6241
1817 ms. 508 ms.

Fig. 5. Reconstruction results of the proposed method (a-e) at different scales. Com-
parisons with the Visual Curvature based approach.
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(a
)

G
M

C

scale = 2, Eh = 1.99 scale = 5 Eh = 4.87 scale = 10 Eh = 9.81 scale = 20 Eh = 19.85

A = 81, S = 3, 304 ms. A = 40, S = 6, 642 ms. A = 24, S = 2, 975 ms. A = 19, S = 4, 1578 ms

(
b
)

N
A

S
R

scale = 2, Eh = 5.10575 scale = 5, Eh = 11.77 scale = 10 Eh = 11.95 scale = 20 Eh = 51.53

A = 25, S = 44, 227 ms. A = 8, S = 31, 294 ms. A = 4, S = 22, 338 ms. A = 1, S = 20, 391 ms

(
c
)

V
C

scale = 1e − 4, Eh = 3.03 scale = 0.01, Eh = 4.24 scale = 0.03 Eh = 11.88 scale = 0.399 Eh = 58.20

S = 315, 294 ms. S = 161, 296 ms. S = 116, 290 ms. S = 37, 290 ms.

Fig. 6. Experiments and comparisons of three methods applied on a photography of a
flower drawing. For GMC and NASR, the resulting circle arcs are represented alterna-
tively with blue and green color while straight segments are represented in red.
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