Optical flow and viewpoint change modulate the perception and memorization of complex motion.
Résumé
Participants observed a point-light character (PLC) performing a gymnastic movement. They either memorized the final PLC orientation from the initial viewpoint, to match it to a test posture (memory task), or judged whether the biological motion appeared continuous (perceptual task), despite a viewpoint change. The observer could be either static or virtually in motion (pan or track) while looking at the movement from the initial viewpoint. The presence of a spatial layout during virtual self-motion induced a global optical flow specifying the translational component of the PLC movement, rendering the event more predictable for the participants. A representational momentum effect was observed in the memory task, suggesting that when a visual stimulation, such as a PLC motion, is abruptly stopped, its dynamics survive. In contrast, structural and transformational invariants specifying the PLC motion were sufficient to solve the perceptual task accurately. Finally, both the remembering of the final posture and the perception of continuity degraded with an increase in viewpoint change due to tilt/slant posture orientation matching, indicating that orientation processes interfered with event perception.