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1 Introduction

In this review are presented several results of spectral analysis, based for most
of them on the min-max variational principle . These are mainly Weyl-type
asymptotics for some ”non generic” Schrödinger operators. In the appropri-
ate setup, the Weyl formula describes the asymptotic relationship between
the number of eigenvalues less than some fixed value λ and the volume, in
phase space, of trajectories with energy less than λ for the corresponding
classical problem. To be more precise, let us consider a continuous positive-
valued potential V on Rm, and let us make the following assumption for
V (x) :

V (x) → +∞ when |x| → +∞ (1.1)

(we call such a V (x) a non degenerate potential). Then for any value of the
parameter h in ]0, 1], the operator Hh = −h2∆ + V defined on L2(Rm) is
essentially self-adjoint and has a compact resolvent [50]. Moreover, denoting
by N(λ,Hh) the number of eigenvalues less than some fixed value λ, we get
the following semi-classical asymptotic behaviour, when h→ 0 :

N(λ,Hh) ∼ h−m(2π)−mvm

∫

Rm

(λ− V (x))
m/2
+ dx . (1.2)

In this so-called semi-classical Weyl asymptotic formula, vm denotes the
volume of the unit ball in Rm, and by W+ we mean that we take the positive
part of W .

If we take h = 1 in the previous formula we get the asymptotics for large
energies of the operator H1 = −∆+ V :

N(λ,H1) ∼λ→+∞ (2π)−mvm

∫

Rm

(λ− V (x))
m/2
+ dx . (1.3)

The right-hand side of the formula (1.2) can be seen more generically as
the volume, in phase space, of the set {(x, ξ),H(x, ξ) ≤ λ}, where H(x, ξ) =
ξ2+V (x) is the principal symbol ofHh and the Hamiltonian of the associated
dynamics .

A naturel question is then the following : what can be said of a Schrödinger
operator which has a discrete spectrum but does not verify the non-degeneracy
condition (1.1) ? In that case the volume of {(x, ξ), ξ2+V (x) ≤ λ} may hap-
pen to be infinite, so that the formula (1.2) becomes irrelevant. This is the
case for instance for the following potential ( in R2)
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Figure 1: The potential V (x, y) = (1 + x2) y2 .

V (x, y) = (1 + x2) y2 ( Figure 1) .
The problems presented below discuss precisely this question for various sit-
uations, and the estimates obtained will be called Weyl-type asymptotics.

First we recall the results obtained in ([39], [41]), for a class of degenerate
potentials in the sense we previously defined. These potentials can be seen
as a generalization of the preceding example ; they are of the form

V (x) = f(y)g(z), x = (y, z) ∈ Rn × Rp,
f ∈ C(Rn;R∗

+) g ∈ C(Rp;R+), g homogeneous of degree a.
Then we consider Schrödinger operators with magnetic field Hh(A) =

((h∇− iA))2. One can call them degenerate in the sense that the principal
symbol of Hh(A), which is H(x, ξ) = (ξ − A(x))2, annihilates on a non
compact manifold of T ∗(Rm). If the magnetic field B = dA is such that the
counting function N(λ,Hh(A)) can be defined, then we can look for some
alternative to Weyl formula. In particular, when the magnetic field B = dA
satisfies some so-called magnetic bottles conditions :

‖B(x)‖ → +∞ quand |x| → +∞ , (1.4)

Hh(A) is essentially self-adjoint and has a compact resolvent on L2(Rm)
[3]. The spectral asymptotics for large energies were computed by Y. Colin
de Verdière [6]. Here are discussed the semi-classical version of this result
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[60], and the case of magnetic bottles in the hyperbolic context ([42] for
the Poincaré half-plane, [43] for geometrically finite hyperbolic surfaces).
These Weyl-type asymptotics can be seen as the expression of an integrated
density of states on the whole space. For a constant magnetic field B =∑r

j=1 bjdxj ∧ dyj, b1 ≥ b2 ≥ ... ≥ br > 0, the density of states is given by,
(for some universal constant Cr) :

νB(λ) = Crb1b2...br
∑

nj≥0

(
λ−

r∑

j=1

(2nj + 1)bj

)d/2−r

+

.

In the hyperbolic context r(x) = 1 for any x and the intensity b(x) is defined
in a slightly different way according to the hyperbolic geometry.

We discuss also another ”degenerate” problem in the framework of the
superconductivity theory. In order to minimize the associated Ginzburg-
Landau functional associated to a given open set Ω in R3, we study of the
spectral properties of the magnetic Laplacian H = ((∇ − iA))2, with the
so-called magnetic Neumann condition at the boundary :

ν(x) · (∇− iA)u(x) = 0 ∀x ∈ δΩ .

This comes from the fact that (0, σA) is a trivial critical point for the func-
tional (σ is a parameter related to the magnetic intensity); the magnetic
Laplacian previously defined is precisely the Hessian computed at this point.

The magnetic field B = dA is assumed to be constant, and the spectrum
contains an absolutely continuous part, which is the whole interval [b,+∞[.
(b = ‖B‖ is the magnetic intensity). However, if we consider the case of the
half-space, e.g. for (t, x, y) in Ω = R+ × R2, the Neumann realization of the
magnetic Laplacian

H = (Dt − A1)
2 + (Dx −A2)

2 + (Dy − A3)
2,

with Ds = −i( ∂
∂s
), and if we assume that the magnetic field is not orthogonal

to the boundary δΩ = {(0, x, y), (x, y) ∈ R2}, we get that the lower bound
of the spectrum is strictly less than b, [36], [24] . It can be proved that the
part of the spectrum less than b consists of a finite number of eigenvalues,
each one having an infinite multiplicity [40].

Furthermore, this number tends to infinity as the angle between the mag-
netic field and the boundary δΩ tends to zero, and this leads to a Weyl-type
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description of the number of eigenvalues less than a fixed real number less
than b [40].

The last section is devoted to a problem of magnetic bottle, but in the
classical context [59]. This problem is indeed at the origin of the results
proved in the semi-classical and quantum mechanics context. The magnetic
field considered here is axially symmetric in R3 and verifies the condition
(1.4). Are there bounded trajectories , as suggested by numerical simula-
tions? The operator associated to the Hamiltonian by the Weyl quantifica-
tion has a discrete spectrum : we are in the case of the magnetic bottles
defined previously. However in the classical setup we have to use the results
of the KAM theory. The conditions needed to apply Moser’s twist theorem
have to be checked and then we can conclude that there exists an open set
of initial conditions such that the trajectory is bounded. The interesting
fact is that the Hamiltonian can be described as a perturbation of an effec-
tive Hamiltonian, which is precisely the principal symbol of the Schrödinger
operator with the degenerate potential

V (x, y) = B2(x, 0) y2 .

2 Degenerate potentials

2.1 The Tauberian approach

There are a lot of works on the subject, and we refer to [61] for a review.
However for the reader’s convenience we recall briefly the main results in this
approach. Roughly speaking, the Tauberian technique consists on studying
the asymptotic behaviour of the Green’s function of the operator H1 and
applying a Tauberian theorem. [12] is the first result where (1.3) is proved
for a class of non degenerate potentials, then refinements can be found in
[57], [33] , [31] and [52], where the formula (1.3) is proved under minimal
conditions on V .

In [54] Solomyak makes the following remark :

Lemma 2.1 Let V be a positive a-homogeneous potential :
V (x) ≥ 0; V (tx) = taV (x) for any t ≥ 0 ( a > 0).
If moreover V (x) is strictly positive (V (x) 6= 0 if x 6= 0) the spectrum of

H1 is discrete and the formula (1.3) takes the form :
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N(λ,H1) ∼ γm,aλ
2m+am

2a

∫

Sm−1

(V (x))−m/adx (2.1)

(γm,a is a constant depending only on the parameters m and a.)

From that lemma comes out naturally the idea of investigating the spec-
trum whithout the condition of strict positivity (and thus in a case of degen-
eracy of the potential) ; the two main results are [54] :

Theorem 2.2 The formula (2.1) still holds for a positive a-homogeneous
potential such that J(V ) =

∫
Sm−1(V (x))

−m/adx is finite.

The second result deals with a case where J(V ) is infinite :

Theorem 2.3 Let V (x) = F (y, z), y ∈ Rn, z ∈ Rp, n + p = m, m ≥ 2,
such that F (sy, tz) = sbta−bF (y, z) (with 0 < a < b) and F (y, z) > 0 for
|z||y| 6= 0. Denote by λj(y) the eigenvalues of the operator −∆z + F (y, z) in
L2(Rp) and let s = 2b

2+a−b
, then :

If
n

b
>
m

a
N(λ,H1) ∼ γn,sλ

2m+am
2b

∫

Sm−1

Σ(λj(y))
−n/sdx

if
n

b
=
m

a
N(λ,H1) ∼ a(a+ 2)

2b(a− b)
γm,aλ

2m+am
2b lnλ

∫

Sn−1Sp−1

F (y, z)−m/adx.

The proof is based on variational techniques and spectral estimates of [52].
In [51] D.Robert extends the theory of pseudodifferential operators to

pseudodifferential operators with operator symbols. It is thus possible to
study cases where the operator has a compact resolvent but the condition
lim∞ V (x) = +∞ is not fulfilled. As an example it gives the asymptotics of
N(λ,H1) for the 2-dimensional potential V (y, z) = y2k(1 + z2)l, where k et l
are strictly positive. The asymptotics are the following :

Theorem 2.4

if k > l N(λ,H1) ∼ γ1λ
l+k+1

2l

if k = l N(λ,H1) ∼ γ2λ
2k+1

2k lnλ

if k < l N(λ,H1) ∼ γ3λ
2k+1

2k .

7



The constants γi depend only on k and l, but the first one γ1 takes into
account the trace of the operator (−∆z + z2k)−(k+1)/2l in L2(R).

In the 2-dimensional case let us mention the results of B.Simon [53]. He
first recalls Weyl’s famous result : let H be the Dirichlet Laplacian in a
bounded domain Ω in R2, then the following asymptotics hold :

N(λ,H) ∼ 1

2
λ|Ω|

and then he considers domains Ω for which the volume (denoted by |Ω|) is
infinite but the spectrum of the Laplacian is still discrete. These domains
are of the type : Ωµ = {(y, z); |y||z|µ ≤ 1}.

Actually the problem can be derived from the study of the asymptotics of
Schrödinger operators with the homogeneous potential : V (y, z) = |y|α|z|β .

In order to compute Weyl-type asymptotics, he uses the Feynman-Kac
formula and the Karamata-Tauberian theorem, but the main tool is what
he calls “sliced bread inequalities”, which can be seen as a kind of Born-
Oppenheimer approximation. More precisely letH = −∆+V (y, z) be defined
on Rn+p, and denote by λj(y) the eigenvalues of the operator −∆z + V (y, z)
in L2(Rp). (If the z’s are electron coordinates and the y’s are nuclear coordi-
nates, the λj(y) are the Born- Oppenheimer curves). He proves the following
lemma :

Tre−tH ≤ Σje
−t(−∆y+λj(y))

(when the second term exists).
Thus he gets the two following coupled results :

Theorem 2.5 If H = −∆+ |y|α|z|β and α < β, then

N(λ,H) ∼ cνλ
2ν+1

2 (ν =
β + 2

2α
)

Corollary 2.6 if H = −∆Ωµ
(µ > 1), then N(λ,H) ∼ cµλ

1

2µ+1 .

Theorem 2.7 If H = −∆+ |y|α|z|α, then N(λ,H) ∼ 1
π
λ1+

1

α lnλ

Corollary 2.8 if H = −∆Ωµ
(µ = 1), then N(λ,H) ∼ 1

π
λ lnλ .

The constant cµ depends only on µ, and the constant cµ takes in account
the trace of the operator (−∆z + |z|β)−ν in L2(R).
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2.2 The min-max approach

The result presented in this section [39] is based on the method of Courant
and Hilbert, the min-max variational principle. .

Thanks to this method, which requires only to study the associated
quadratic form, (using appropriate partitions and simplified models) no as-
sumptions on the evolution semi-group are needed, and we get Weyl-type
asymptotics for a large class of degenerate potentials, namely potentials of
the following form :

V (x) = f(y)g(z), x = (y, z) ∈ R
n × R

p, n + p = m, m ≥ 2

f ∈ C(Rn;R∗
+), g ∈ C(Rp;R+),

∃ a > 0 t.q. g(tz) = tag(z) ∀t > 0, g(z) > 0 ∀z 6= 0. (2.2)

This class contains the potentials studied in [51], [53] and [54].
According to the assumption (2.2) the spectrum of the operator −∆z +

g(z) sur L2(Rp) is discrete and positive. Let us denote by µj its eigenvalues.
We have moreover :

Remark 2.9 If f(y) → +∞ when |y| → +∞, then
Hh = −h2∆+ V has a compact resolvent.

Of course if f was assumed to be homogeneous, the asymptotics would
be given by Theorem 2.3. But here the only additional assumption made on
f is a locally uniform regularity :

∃ b, c > 0 t.q. c−1 ≤ f(y) and (2.3)

|f(y)− f(y′)| ≤ cf(y)|y − y′|b, ∀(y, y′) t.q. |y − y′| ≤ 1

.

Theorem 2.10 Let us assume the previous conditions on f and g. Then
there exists σ, τ ∈]0, 1[ such that, for any λ > 0, one can find h0 ∈]0, 1[,
C1, C2 > 0 in order to have

(1−hσC1)nh,f(λ−hτC2) ≤ N(λ;Hh) ≤ (1+hσC1)nh,f(λ+h
τC2) ∀h ∈]0, h0[

with nh,f(λ) = h−n(2π)−nvn

∫

Rn

Σj∈N[λ− h2a/(2+a)f 2/(2+a)(y)µj]
n/2
+ dy .
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Provided some additional conditions on f , the previous result can be
refined as follows :

Theorem 2.11 If moreover one can find a constant C3 such that, for any
µ > 1 :

∫

{y,f(y)<2µ}

f−p/a(y)dy ≤ C3

∫

{y,f(y)<µ}

f−p/a(y)dy ,

then one can take C2 = 0 in Theorem 2.10 :

(1− hσC1)nh,f(λ) ≤ N(λ;Hh) ≤ (1 + hσC1)nh,f(λ) ∀h ∈]0, h0[ .

Remark 2.12 If f−p/a ∈ L1(Rn) and g ∈ C1(Rp\{0}), then the formula
(1.3) holds.

The proof of Theorem 2.10 is based on a suitable subdivision of Rn into
cubes {Qr(rγ), γ ∈ Zn} . According to the min-max variational principle we
are then reduced to study Dirichlet and Neumann problems in cylinders of
Rm :

N(λ,HD
h,γ) ≤ N(λ,Hh) ≤ N(λ,HN

h,γ)

HD,N
h,γ = −h2∆y − h2∆z + f(y)g(z) on Qr(rγ)× R

p ,

with Dirichlet (or Neumann) condition at the boundary.
In each cube Qr(rγ) f(y) is bounded from above by f(y∗γ) where y

∗
γ is a

minimum for f .
Using the homogeneity of g one gets that the eigenvalues of the operator

−h2∆z + f(y∗γ) g(z) are of the form {(haf(y∗γ))α µj } ( α = 2/(2 + a)).
One gets then a lower bound for N(λ,Hh) by taking the sum, for all

cubes, of the sum for all j’s of N(λ− (haf(y∗γ))
α µj , −h2∆D

Qr(rγ)
).

One gets the upper bound following the same procedure.
Concerning the proof of Theorem 2.11, the main tool is an asymptotic

formula of the moment of eigenvalues of−h2∆z+g(z), which is again obtained
using the min-max principle.

As a conclusion, let us notice that if there is some information on the
growth of f at infinity, then the asymptotics can be computed in terms of
power of h:
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Remark 2.13 If there exist k > 0 and C > 0 such that
1
C
|y|k ≤ f(y) ≤ C|y|k for |y| > 1, then

if k > a N(λ,Hh) ≈ h−m

if k = a N(λ,Hh) ≈ h−m ln 1
h

if k < a N(λ,Hh) ≈ h−n− pa
k

Remark 2.14 The Weyl-type formula of the theorem 2.10 gives us a hint
of what can be said about the behaviour of the eigenvalues themselves. Ac-
tually this question is answered precisely by using Born-Oppenheimer-type
methods in [41], where we compute first order approximations for low ener-
gies and middle energies, and apply the results to a potential vanishing on a
hypersurface.

3 Magnetic bottles

3.1 General setting

We are now interested in magnetic Laplacians, in various situations when it
is possible to look for Weyl-type estimates. This leads us to give a definition
of magnetic bottles in a general Riemannian context.

Let us denote by (M, g) a connected Riemannian manifold of dimension
d and by A =

∑d
j=1 ajdxj a real one-form on M . For any h ∈ ]0, 1[ we can

define the semi-classical magnetic Laplacian

Hh(A) = (ih d+ A)⋆(ih d+ A) ,
(ih d+ A)u = ih du+ Au , ∀ u ∈ C∞

0 (M) .
(3.1)

The magnetic field is the exact two-form B = dA .
The two-form B is associated to a linear operator LB on the tangent space
defined by

B(X, Y ) = g(LB.X, Y ) ; ∀ X , Y ∈ TM × TM . (3.2)

The magnetic intensity b is given by

b =
1

2
tr
(
(B⋆B)1/2

)
. (3.3)
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It is possible to define Hh(A) more geometrically, using the Hermitian con-
nection ∇ on a complex-line bundle L over M with curvature equal to iB.
This connection exists provided that the cohomology class of B/2π is an in-
teger .
It is defined by ∇Xf = df(X)− iA(X)f , where A is a real one-form verify-
ing B = dA. One introduces on C∞

0 (M ;L) the quadratic form q(f) =∫
M
‖∇f‖2dx , and by Friedrich’s process one gets an operator, which is

Hh(A).

Remark 3.1 Gauge invariance
If A′ = A+dφ is another magnetic potential associated to B, the operators

Hh(A) and Hh(A
′) are unitarily equivalent.

This property implies that Hh(A) and Hh(A
′) have the same spectrum.

Therefore we give the following definition, which does not depend from the
choice of the magnetic potential A :

Definition 3.2 (M,h,B) is called a magnetic bottle if
1) Hh(A) is essentially self-adjoint with domain C∞

0 (M ;L)
2) Hh(A) has a compact resolvent

In [3], which is the first paper on the subject, and also in [14], [30] one can
find necessary conditions or sufficient conditions forHh(A) to have a compact
resolvent.

3.2 The Euclidean case

3.2.1 The results

Let us take for (M, g) the Euclidean space Rd. The operator defined in (3.1)
is

Hh(A) =

d∑

j=1

(
h

i

∂

∂xj
− aj)

2 .

Furthermore there exists, for any x ∈ Rd, an orthonormal basis (ej(x)) of R
d

such that B(x) has the following expression

B(x) =

r(x)∑

j=1

bj(x)dxj ∧ dyj, b1(x) ≥ b2(x) ≥ ... ≥ br(x) > 0 . (3.4)
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The magnetic intensity is equal to the norm of the vector B(x) = (bj(x))j .
The bj(x) are the moduli of the non zero eigenvalues of the endomorphism
LB associated to B(x) and 2r(x) is the rank of LB. For odd dimension
in particular 0 is always an eigenvalue. We assume moreover the following
properties for B :

• (B1) lim‖x‖→∞ ‖B(x)‖ = ∞

• (B2) there exists C > 0 such that, for every x and x′ verifying :

‖x− x′‖ ≤ 1, ‖B(x)‖ ≤ C‖B(x′)‖

• (B3) M(x) = o(‖B(x)‖ 3

2 ) when ‖x‖ → ∞
where M(x) = max|β|=2

(
sup‖x−x′‖≤1 ‖DβA(x′)‖

)
.

The high energy behaviour of N(λ,H1(A)) , ( h = 1, λ→ +∞ ), is given by
Y. Colin de Verdière in [6] :

Theorem 3.3 Under the conditions (B1−B3), (R
d, 1, B) is a magnetic bottle

and

Nas
B [λ(1− o(1))] ≤ N(λ,H1(A)) ≤ Nas

B [λ(1 + o(1))] (λ→ +∞) .

The expression for Nas
B is the following :

Nas
B (λ) =

[d/2]∑

r=1

Ck,r

∑

(n1,...nr)∈Z
+
r

∫

Ar

(λ−
r∑

i=1

(2ni + 1)bi(x))
k/2
+

r∏

i=1

bi(x)dx .

We used the following notations :

• Ar = {x ∈ Rd; r(x) = r}

• Ck,r =
γk

(2π)k+r , γk = volume of the unit ball of Rk.

In [60] we give an equivalent of N(E,Hh(A)) for a fixed energy E when h
tends to zero. This is the semi-classical version of the previous asymptotics.

We first notice that Hh(A) = h2H1(A/h). H1(A/h) is the (non semi-
classical) Schrödinger operator associated to the magnetic field B

h
:

H1(A/h) =

d∑

i=1

(
1

i

∂

∂xj
− aj
h
)2 . (3.5)
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Consequently, we get N(E,Hh(A)) = N( E
h2 , H1(A/h) ) for any fixed energy

E.
Using an adaptation of the method explained in [6], we get the following

asymptotics [60] :

Theorem 3.4 Under the conditions (B1−B3), (R
d, h, B) is a magnetic bottle

and we have, for any energy E:

1

hd
Nas

hB[E(1− o(1))] ≤ N(E,Hh(A)) ≤
1

hd
Nas

hB[E(1 + o(1))] (h→ 0) .

Remark 3.5 The expression for Nas
B becomes more explicit when d = 2. We

have then
b1(x) = ‖B(x)‖ = b(x), and :

1

hd
Nas

hB(E) =
1

2πh2

∫

R2

b(x)
∑

n∈N

[E − (2n+ 1)hb(x)]+0 dx . (3.6)

[ρ]0+ is the Heaviside function :

[ρ]0+ =

{
1 , if ρ > 0
0 , if ρ ≤ 0 .

Remark 3.6 H.Matsumoto recovers the conclusions of this theorem by study-
ing the semi-group exp(−tHh) [38]. The following equivalent is obtained :

Tr( exp(−tHh) ) =
1

hd
ZhB(t)

where ZhB(t) = (4πt)−d/2
∫
Rd

∏r(x)
i=1

htbi(x)
sinhhtbi(x)

dx is the Laplace transform of

the function Nas
hB(λ) introduced previously. In the 3-dimensional case Tamura

[56] obtains a result of the same kind , involving only the norm of the mag-
netic field. However they both require stronger conditions for B, in order
to make sure that exp(−tHh) is a trace semi-group. This comes from the
philosophy of the min-max method, which does not deal with the evolution
semi-group but requires only to study the quadratic form, using partitions
and asymptotic formulas for simplified operators (namely here for constant
fields in cubes), so that we can get a formula with the minimal assumptions.

Remark 3.7 The operators verifying the assumptions of the theorem are
special examples of the hypoelliptic operators

∑d
i=1X

∗
kXk introduced by L.

Hörmander [25], in the case of real vector fields Xk .
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Remark 3.8 Let us set

νB(x)(λ) = Ck,r

∑

(n1,...nr)∈Z
+
r

(
λ−

r∑

i=1

(2ni + 1)bi(x)

)k/2

+

r∏

i=1

bi(x) .

(In this definition, the numbers k et r depend on x.) The function Nas
B (λ)

has then the following expression :

Nas
B (λ) =

∫

Rd

νB(x)(λ)dx .

In the case of a constant magnetic field, the function νB(λ) can be seen as a
density of states for the Schrödinger operator in Rd.

The proof consists of two main parts which we develop in next sections : the
asymptotic spectral estimate for the Dirichlet problem in the cube [0, R]d in
the case of a constant field , and the appropriate subdivision in cubes which
makes possible the reduction to the simplified problem .

3.2.2 The Dirichlet problem in a cube for a constant magnetic
field

When the field B is constant, the function νB(λ) is used to estimate NB,R(λ),
the counting function of the spectrum concerning Dirichlet problem for the
Schrödinger operator with the magnetic field B in the cube [0, R]d. We recall
the precise estimate, given in [6]:

Theorem 3.9 There exists a constant c depending only on d such that, for
any A with 0 < A < R/2, the following inequalities hold :

• NB,R(λ) ≤ Rd νB(λ).

• NB,R(λ) ≥ (R− A)d νB(λ− C/A2).

The proof of this result uses the spectrum for constant fields on a torus,
and a method due to Polya, which consists in subdividing Rd into cubes and
taking an approximation by a “large” torus ([6], [8] and [9]).

To be more precise we have :
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Lemma 3.10 Constant field on a torus
Let B =

∑r
j=1 bjdxj ∧ dyj, b1 ≥ ... ≥ br > 0 on the torus M = Rd/Γ,

where d = r + k and Γ0 is a lattice on Rk.
It is assumed that Γ =

⊕r
j=1 ρjZ

2 ⊕ Γ0 and that bjρ
2
j ∈ 2πZ. Then

1) the cohomology class of B/2π is an integer,
2) the spectrum of Hh(B) is constituted of the eigenvalues
λ =

∑r
i=1(2ni + 1)bi + µ , where ni ∈ N∗ , and µ is an eigenvalue of the

Laplacian on Rk/Γ0,
3) the multiplicity of λ is equal to the sum of the multiplicity of µ and of∏r

i=1
biρ

2
i

2π
.

3.2.3 A subdivision of Rd into appropriate cubes

Lemma 3.11 Under the assumptions (B1−B3), and for a fixed ε > 0 , there
exists for any h a subdivision of Rd in cubes (Ωi)i≥0 of sides ri, and numbers
(ai)i≥1 (0 < ai ≤ ri/2) such that, if we setMi = max‖β‖=2 supx∈Ωi

‖Dβa(x)‖,
the following inequalities hold, for any x in Ωi and for any integer i ≥ 1 :

i) r2iMi ≤ εh‖B(x)‖1/2
ii) Mi ≤ ε3‖B(x)‖3/2
iii) 1/a2i ≤ Mx,ε = max(4ε‖B(x)‖

h
, 1/ε).

3.3 The hyperbolic half-plane

3.3.1 The setup

Now, we consider the case where M = H is the hyperbolic plane : H =

R×]0,+∞[ , endowed with the hyperbolic metric g =
dx2 + dy2

y2
. We have

ρB = b̃ dv, , where dv = y−2dxdy is the Riemannian measure on M .
Thus we have b̃ = y2 (∂xA2 − ∂yA1) and

H1(A) = y2(Dx −A1)
2 + y2(Dy − A2)

2 , (3.7)

We define b = |b̃| .
The hyperbolic framework has been used mainly for studying the Maass

Laplacian , which corresponds to the constant magnetic field case. This case
has been studied by many authors [21], [15], [11] [13]. In [27] Y.Inahama and
S.Shirai consider asymptotically constant magnetic fields and in [29] they
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deal with Pauli operators. In [26] N.Ikeda studies the relationship between
Maass Laplacian and Schrödinger operators with Morse potentials.

From an other point of view , the asymptotic distribution of large eigen-
values in the hyperbolic context has already been studied for Schrödinger
operators (without magnetic field) [28] . The method is based on Feynman-
Kac representation of the heat kernel and the Tauberian theorem. As already
mentioned our own method involves only min-max techniques so it does not
require to study properties of the evolution semigroup. We get the asymp-
totic distribution of large eigenvalues for a certain type of magnetic bottles
following the method used in the euclidean case, but replacing cubes by
rectangles adapted to the hyperbolic geometry.

The result is very similar to (3.6), according to the hyperbolic definition

of the intensity b̃ of the magnetic field. Moreover the techniques are local, so
they have been successfully applied to geometrically finite hyperbolic surfaces
of infinite area [43].

We give first the basic results in the case of a constant magnetic field.

3.3.2 The Maass Laplacian

The first paper on Maass Laplacian is due to J. Elstrodt [15]

We consider the case where b̃ = y2(∂xA2(x, y)− ∂yA1(x, y)) is constant.

We choose a gauge such that A2 = 0 , so A1(x, y) = b̃y−1 . We can assume
that A1(x, y) = by−1 , by eventually performing the change x → −x ,
which is a unitary operator on L2(H) . The operator we are interested in is

H1A
b = y2(Dx − by−1)2 + y2D2

y , with b ≥ 0 constant. (3.8)

Let U be the unitary operator

U : L2(H) → L2(R× R+) , Uf = y−1f ; (3.9)

R× R+ is endowed with the standard Lebesgue measure dxdy . Then

Pb = U(−∆Ab)U⋆ = (Dx − by−1)y2(Dx − by−1) + Dyy
2Dy . (3.10)

Using partial Fourier transform we get that sp(Pb) =
⋃

ξ∈R

sp(Pb(ξ)) , where

Pb(ξ) is the self-adjoint operator on L2(R+) defined by

Pb(ξ)f = (yξ − b)2f(y) +Dy(y
2Dyf)(y) ; ∀ f ∈ C∞

0 (R+) . (3.11)
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Moreover we have

sp(Pb(ξ)) = sp(Pb(1)) , if ξ > 0 .

sp(Pb(ξ)) = sp(Pb(−1)) , if ξ < 0 .

This leads to the well-known following theorem:

Theorem 3.12 The spectrum of Pb(±1) is formed by its absolutely contin-
uous part and its discret part, and

sp(Pb(−1)) = spac(Pb(−1)) = spac(Pb(1)) = [b2 +
1

4
,+∞[

sp(Pb(1)) = spac(Pb(1)) , if b ≤ 1

2

spd(Pb(1)) = {(2j + 1)b− j(j + 1) ; j ∈ N , j < b− 1

2
} if b >

1

2
.

Corollary 3.13 The spectrum of −∆Ab is essential: sp(−∆Ab) = spes(−∆Ab) .
Its absolutely continuous part is given by spac(−∆Ab) = [b2 + 1

4
,+∞[ .

The remaining part of its spectrum is empty if 0 ≤ b ≤ 1/2 , otherwise it is
formed by a finite number of eigenvalues of infinite multiplicity given by

spp(−∆Ab) = {(2j+1)b− j(j +1) ; j ∈ N , j < b− 1

2
} , (if

1

2
< b .)

3.3.3 Weyl-type asymptotics (high energy)

Let us assume that

Aj(x, y) ∈ C2(H;R) , ∀ j . (3.12)

It is well known that H1(A) defined by (3.7) is then essentially self-adjoint
on L2(H) , see for example [55]. We assume moreover the following magnetic
bottles-type assumptions.

•
b(x, y) → +∞ as d(x, y) → +∞ , (3.13)

(d(x, y) denotes the hyperbolic distance from (x, y) to the point (0, 1)).
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• ∃ C0 > 0 such that, for any vector field X on H ,

|Xb̃| ≤ C0(|b̃|+ 1)
√
g(X,X) ; (3.14)

Theorem 3.14 Under the assumptions (3.12), (3.13) et (3.14)
1) the operator H1(A) has a compact resolvent.

2) for any δ ∈ ]1
3
, 2
5
[ , there exists a constant C > 0 such that

1

2π

∫

H

(1− C

(b(m) + 1)(2−5δ)/2
)b(m)

+∞∑

k=0

[λ(1−Cλ−3δ+1)−1

4
−(2k+1)b(m)]0+ dv

≤ N(λ,H1(A)) ≤ (3.15)

1

2π

∫

H

(1+
C

(b(m) + 1)(2−5δ)/2
)b(m)

+∞∑

k=0

[λ(1+Cλ−3δ+1)−1

4
−(2k+1)b(m)]0+ dv

Remark 3.15 Comparing this result with the one obtained in [6] and in
particular with the formula (3.6), it turns out that they differ only by the
additional term −1

4
, which comes from the geometry of the problem . This

term becomes really significant in the following corollary :

Corollary 3.16 Under the assumptions of Theorem 3.14 and if the function
ω(µ) =

∫
H
[µ− b(m)]0+dv verifies

∃ C1 > 0 s.t. ∀ µ > C1 , ∀ τ ∈ ]0, 1[ , ω ((1 + τ) µ)− ω(µ) ≤ C1 τ ω(µ) ,
(3.16)

then

N(λ;H1(A)) ∼ 1

2π

∫

H

b(m)
∑

k∈N

[λ− 1

4
− (2k + 1)b(m)]0+ dv . (3.17)

The assumption (3.29) is satisfied for example when ω(λ) ∼ αλk lnj(λ)
when λ→ +∞ , with k > 0 , or k = 0 and j > 0 .
For example this allows us to consider magnetic fields of the type

b(x, y) =

(
x

y

)2j

+ g(y) , with j ∈ N⋆ and g(y) = p1(y) + p2(1/y),
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where p1(s) and p2(s) are, for large s, polynomial functions of order ≥ 1 .

The function ω(λ) indeed verifies in that case

ω(λ) ∼ αλ
1

2j ln(λ) when λ→ +∞ . and

N(λ;H1(A)) ∼ C

2π
λ1+1/2j ln(λ) .

In next section we give an outline of the proof of theorem 3.14, by de-
scribing the techniques specific to the hyperbolic context : definition of a
diffeomorphism from R2 to H, control of the magnetic field by a constant
one in a suitable rectangle, partition of R2 into such appropriate rectangles,
so that we can apply the min-max variational method.

3.3.4 Outline of the proof

• A diffeomorphism from R2 to H

Let us consider the diffeomorphism

φ : R2 → H

(x, y) = φ(x, t) := (x, et)
which induces a unitary operator
Û : L2(H; dv) → L2(R2; dxdt)

(Ûf)(x, t) = e−t/2f(x, et) for any f ∈ L2(H).

The quadratic form associated to H1(A) is given by ( ∀u ∈ L2(H))

q(u) =

∫

H

[
|y(Dx − A1)u|2 + |y(Dy − A2)u|2

] dxdy
y2

.

Writing Ãi(x, t) = Ai(x, e
t), i = 1, 2, and w = Ûu, we get after compu-

tation

q(u) = q̂Ã(w) =

∫

R2

[
|et(Dx − Ã1)w|2 + |(e−t/2Dte

t/2 − etÃ2)w|2
]
dxdt .

The operator associated to q̂Ã is Ĥ(Ã) = ÛH1(A)Û
−1.

This gives Ĥ(Ã) = e2t(Dx − Ã1)
2 + (Dt − etÃ2)

2 + 1/4.

The additional term 1/4 appears here naturally as a by-product of the
transformation which allows us to deal with a problem in R2 instead of
the initial problem in H.
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• Gauge

We want to work with a gauge such that A2 = 0. Since

b̃ = y2 (∂xA2 − ∂yA1)

one can take

A1(x, y) = −
∫ y

1

b̃(x, s)

s2
ds

The associated quadratic form is

q̂Ã(w) =

∫

R2

[
|et(Dx − Ã1)w|2 + |Dtw|2 + 1/4|w|2

]
dxdt .

• Localization

According to the assumption (3.14) we can control the magnetic field
by a constant one on an appropriate rectangle :

We set Ω(x0, y0, a, ε0) := {(x, y) / |x− x0| ≤ aε0 y0, |y − y0| ≤ ε0y0} .
( a > 0 and ε0 > 0 small enough )

Lemma 3.17 There exists C1 > 0 such that, for any (x0, y0) ∈ H

with b(x0, y0) > 1 , the following holds

1

C1
b(x0, y0) ≤ b(x, y) ≤ C1 b(x0, y0) ∀ (x, y) ∈ Ω(x0, y0, a, ε0).

• Partition of R2

For any α ∈ Z2 , let us denote by K(α) the rectangle

K(α) = ]− eα2

2
+ eα2α1 , e

α2α1 +
eα2

2
[×]− 1

2
+ α2 , α2 +

1

2
[ . (3.18)

Therefore R
2 = ∪αK(α) and K(α) ∩K(β) = ∅ for any α 6= β .

According to lemma 3.17, it is possible to subdivide each K(α), (if
necessary), into M(α) rectangles:

K(α) = ∪M(α)
j=1 Kα,j (3.19)

Kα,j = ]− ǫα,je
tα,j

2
+xα,j , xα,j +

ǫα,je
tα,j

2
[×]− ǫα,j

2
+ tα,j , tα,j +

ǫα,j
2

[ ,
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-2

1
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0

-4

Figure 2: Partition of R2 by the rectangles K(α)

with

1

a0(1 + bδ0(xα,j, etα,j ) )
≤ ǫα,j ≤ a0

(1 + bδ0(xα,j , etα,j ) )
, (3.20)

and such that Kα,k ∩Kα,j = ∅ if k 6= j .

This lemma is the hyperbolic version of the lemma 3.11 for the euclidean
case.
The partition R2 = ∪αK(α) and the partition on H obtained after
applying the diffeomorphism φ are represented on figures 2 and 3.
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Figure 3: Partition of H by the cubes φ(K(α))

3.4 Geometrically finite hyperbolic surfaces

3.4.1 Introduction

Concerning magnetic bottles in hyperbolic geometry the min-max method
can be generalized to the geometrically finite hyperbolic surfaces, in the case
when these manifolds are of infinite volume. Such manifolds contain cusps
and funnels [43].

Actually, when the hyperbolic manifolds are compact the result is given
by [7] in the more general context of compact Riemannian manifolds, where
it is shown that the Weyl asymptotics hold. For the case of non compact
manifolds of finite volume we refer to [20], where the authors study examples

for which the Weyl formula is still valid : N(λ) ∼+∞
λ

4π
|M| .

It seems to be the standard result in this context.
In the case of the Poincaré half-plane, M = H , we have seen previously

that the Weyl formula does not hold : lim
λ→+∞

λ−1N(λ) = +∞ .

For example when b(z) = a20(x/y)
2m0+a21y

m1+a22/y
m2 , aj > 0 andmj ∈ N⋆ ,
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then
N(λ) ∼+∞ λ1+1/(2m0) ln(λ)α(m0, m1, m2) .

It turns out [43] that it is still the case when M has an infinite area and
is geometrically finite, and if we adapt the preceding example to this new
situation, i.e. m0 is absent, m1 appears in the cusps and m2 in the funnels,
we get

N(λ) ∼+∞ λ1+1/m2α(m2) :

The interesting point is that the cusps do not contribute to the leading part
of N(λ) .
Let us explain the result, and first what is such a surface.

3.4.2 Definition

If (M, g) is a smooth connected Riemannian manifold of dimension two, it
is called a geometrically finite hyperbolic surface of infinite area if it can be
decomposed in the following way :

M =

(
J1⋃

j=0

Mj

)
⋃
(

J2⋃

k=1

Fk

)
; (3.21)

where the Mj and the Fk are open sets of M, such that the closure of M0 is
compact, and if J1 > 0 , the other Mj are cuspidal ends of M, and the Fk

are funnel ends of M.
This means that, for any j, 1 ≤ j ≤ J1, there exist strictly positive constants
aj and Lj such thatMj is isometric to S×]a2j ,+∞[ , equipped with the metric

ds2j = y−2( L2
j dθ

2 + dy2 ) ; (3.22)

(S = S
1 is the unit circle.)

In the same way, for any k, 1 ≤ k ≤ J2 , there exist strictly positive constants
αk and τk such that Fk is isometric to S×]α2

k,+∞[ , equipped with the metric

ds2k = τ 2k cosh
2(t)dθ2 + dt2 . (3.23)

Moreover, for any two integers j, k > 0 , we have Mj ∩ Fk = ∅ and
Mj ∩Mk = Fj ∩ Fk = ∅ if j 6= k .
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3.4.3 Assumptions on the magnetic field

Let us choose some z0 ∈ M0 and let us define

d : M → R+ ; d(z) = dg(z, z0) ; (3.24)

dg( . , . ) denotes the distance with respect to the metric g.
We assume the smooth one-form A to be given such that the magnetic field
b̃ satisfies

lim
d(z)→∞

b(z) = +∞ . (3.25)

If J1 > 0 , there exists a constant C1 > 0 such

|Xb̃(z)| ≤ C1(b(z) + 1)ed(z)|X|g ; (3.26)

∀ z ∈ Mj , ∀ X ∈ TzM and ∀ j = 1, . . . J1 .

There exists a constant C2 > 0 such

|Xb̃(z)| ≤ C2(b(z) + 1)|X|g ; (3.27)

∀ z ∈ Fk , ∀ X ∈ TzM and ∀ k = 1, . . . J2 .

3.4.4 Asymptotics for large energies

Theorem 3.18 Under the above assumptions, −∆A has a compact resol-
vent and for any δ ∈ ]1

3
, 2
5
[ , there exists a constant C > 0 such that

1

2π

∫

M

(1− C

(b(m) + 1)(2−5δ)/2
) N (λ(1− Cλ−3δ+1)− 1

4
,b(m)) dm

≤ N(λ,−∆A) ≤ (3.28)

1

2π

∫

M

(1 +
C

(b(m) + 1)(2−5δ)/2
) N (λ(1 + Cλ−3δ+1)− 1

4
,b(m)) dm

where

N (µ,b(m)) = b(m)
+∞∑

k=0

[µ− (2k + 1)b(m)]0+ if b(m) > 0 ,

and
N (µ,b(m)) = µ/2 if b(m) = 0 .
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[ρ]0+ is the Heaviside function:

[ρ]0+ =

{
1 , if ρ > 0
0 , if ρ ≤ 0 .

The Theorem remains true if we replace

∫

M

by

J2∑

k=1

∫

Fk

, due to the fact

that the other parts are bounded by Cλ .

Corollary 3.19 Under the assumptions of Theorem 3.18 and if the function

ω(µ) =

∫

M

[µ− b(m)]0+dm

satisfies, ∃ C1 > 0 s.t. ∀ µ > C1 , ∀ τ ∈ ]0, 1[ ,

ω ((1 + τ) µ)− ω(µ) ≤ C1 τ ω(µ) , (3.29)

then

N(λ;−∆A) ∼ 1

2π

∫

M

N (λ− 1

4
,b(m)) dm . (3.30)

For example this allows us to consider magnetic fields of the following type:

on Fk , b(θ, t) = pk( 1/ cosh(t) ) ,
and on Mj , j > 0 , b(θ, y) = qj(y) ,

where the pk(s) and the qj(s) are, for large s, polynomial functions of order
≥ 1 . In this case, if d is the largest order of the pk(s) , then

N(λ;−∆A) ∼ αλ1+1/d ,

for some constant α > 0 , depending only on the funnels Fk where the order
of pk(s) is d .
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4 A Neumann problem with magnetic field

4.1 A problem arising from super-conductivity

In super-conductivity theory the following question has to be answered :
can we minimize, for a given open set Ω of Rd, and a given potential A ∈
H1(Ω;Rd), the Ginzburg-Landau functional :

G(ψ, Ã) =
∫

Ω

|(∇− iκÃ)ψ|2 + κ2

2
(|ψ|2 − 1)2 dx...

...+ κ2
∫

Ω

|−→rotÃ− σ
−→
rotA|2 dx

on the set (ψ, Ã) ∈ H1(Ω;C)×H1(Ω;Rd). κ and σ denote parameters related
to the intensity of the magnetic field , and the dimension d considered is either
2 or 3. (0, σA) turns out to be a trivial critical point of G(ψ, Ã); in order to
study the Hessian matrix of the functional at this point we are then reduced
to investigate the spectral properties, (modulo the parameters κ et σ) of the
magnetic Laplacian Hh = ((h∇ − iA))2, with the Neumann-type boundary
conditions :

ν(x) · (h∇− iA)u(x) = 0 ∀x ∈ δΩ .

A lot has been done to understand the properties of this operator . In
particular it is known from the works by K.Lu et X.B.Pan [34]-[36] and
by B.Helffer et A.Morame [22]-[24] that unlike the Dirichlet case, the lower
bound of its spectrum can be less than hb = h infΩ ‖B‖ if B = dA denotes
the magnetic field. This comes from the following fondamental fact, which
makes the basic difference between Dirichlet and Neumann problems :
If we consider the Neumann operator on L2(R+) defined by
Qx = D2

t + (t− x)2 , and if we denote by µ(x) its first eigenvalue, then

inf
x∈R

µ(x) = µ(x0) = Θ0 < 1 .

If we consider the Dirichlet operator the corresponding quantity is equal to
1.

As a consequence, in the case where b ≥ Θ0 b
′, (with b′ = infδΩ‖B‖),

we get that the lower bound of the spectrum for the Neumann problem is
hΘ0 b

′.
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Furthermore, for a constant non zero B , any normalized fondamental
eigenfunction is localized exponentially (for h going to 0) in the neighbour-
hood of points of the boundary with maximal curvature ( see [22] for dimen-
sion 2 and [23] for dimension 3). Superconductivity comes precisely from
this crucial feature . We should also mention the papers by B.Helffer et
S.Fournais, in particular [16] for asymptotic estimates of low eigenvalues in
dimension 2, and [17] about the “critical fields”, which are responsible for
the transitions from superconducting states to normal states. This list of
papers on the subject is far from being exhaustive...

4.2 The spectrum in the case of the half-space, for a

constant field and for h=1

Let us consider, for (t, x, y) in Ω = R+ ×R2, the Neumann realization of the
magnetic Laplacian

H = (Dt −A1)
2 + (Dx − A2)

2 + (Dy −A3)
2

where Ds = −i( ∂
∂s
).

Let us denote by b the norm of B, and by θ the angle between B = dA, seen
as a 3-dimensional vector field, and the boundary ∂Ω.
This implies that a suitable choice for the gauge A is the 1-form

A = b(x sin θ − t cos θ)dy

so that the operator H can be written as

Hb
θ = D2

t +D2
x + (Dy − b(x sin θ − t cos θ))2 .

By homogeneity we get :
σ(Hb

θ) = bσ(Hθ)

with
Hθ = D2

t +D2
x + (Dy − (x sin θ − t cos θ))2 .

• θ = 0

The spectrum of the Neumann operator H0 is absolutely continuous.
More precisely one has :

σ(H0) = σac(H0) = [bΘ0,+∞[ . (4.1)
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• θ = π
2

The spectrum of Hπ
2
is still absolutely continuous but

σ(Hπ
2
) = σac = [b,+∞[ . (4.2)

• θ ∈ ]0, π
2
[

The spectrum of Hθ is no longer absolutely continuous as proved by
K. Lu and X-B. Pan [35], (see also [23] ).

We prove in [41] the following :

Theorem 4.1

If θ ∈ ]0,
π

2
[, σ(Hb

θ) ∩ ]−∞, b [ = {bν1(θ), bν2(θ), . . . , bνj(θ), bνj+1(θ), . . .} .
(4.3)

(Each bνj(θ) is an eigenvalue of infinite multiplicity of Hθ ).

To prove this result we first observe that σ(Hθ) =
⋃

τ∈R

σ(Hθ,τ) , where Hθ,τ

denotes the Neumann realization in the half plane F = R+×R of the operator
Hθ,τ = D2

t +D2
x + (τ − (x sin θ − t cos θ))2 .

Furthermore using for any τ the change of coordinates x→ x− τ

b sin θ
,

we see that σ(Hθ,τ) = σ(Pθ), with

Pθ = D2
t +D2

x + (t cos θ − x sin θ)2 ,

and thus the spectrum of Hθ is essential and given by :

σ(Hθ) = σess(Hθ) = σ(Pθ). (4.4)

In [35], (see also [23] ), it was proved that

inf σ(Pθ) = ν(θ) < 1 = inf σess(Pθ), (4.5)

so there exists a countable set of eigenvalues (νj(θ))j∈I , (I ⊂ N), contained
in [ν(θ), 1[ .
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4.3 Weyl-type asymptotics when the field is nearly
tangent to the boundary

For any d ≤ 1 let us denote by N(d, Pθ) the number of eigenvalues of Pθ

in ]−∞, d[ :

N(d, Pθ) = Tr(E]−∞,d[(Pθ)) = ♯{j; νj(θ) < d} . (4.6)

We prove the following results [41] :

Theorem 4.2 For any θ ∈ ]0, π
2
[ , Pθ admits a finite number of eigenvalues

in ]−∞, 1[ , and there exists a constant C ≥ 1 such that

N(1, Pθ) ≤
C

sin θ
. (4.7)

It can be noticed that the upper bound of N(1, Pθ) goes to infinity when the
angle θ between the magnetic field and the boundary tends to zero. Therefore

we can consider θ (or more precisely
sin θ√
cos θ

) as a semi-classical parameter,

and using once more min-max techniques we give a Weyl-type asymptotic
estimate of N(d, Pθ) for d < 1 [41] :

Theorem 4.3 If d ∈ ]Θ0, 1[,
there exists a constant Cd > 0 such that

∣∣∣∣N(d, Pθ) − 1

2π sin θ

∫

R

[d− µ(x)]1/2+ dx

∣∣∣∣ ≤ Cd . (4.8)

In this expression clearly appears an ”effective” potential, as in the previous
case of degenerate potentials. This is not so surprising, since the operator
we finally study is

Pθ = D2
t +D2

x + (t cos θ − x sin θ)2 ,

which turns out to be a Schrödinger operator with the degenerate potential
Vθ(x, t) = (t cos θ − x sin θ)2. The ”effective” potential here is the function
of one variable µ(x) previously introduced , which is responsible for the
superconductivity.
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5 A problem of magnetic bottle in classical

mechanics

5.1 The Lorentz equation

The motion in R3 of a particle of mass m and charge e in a magnetic field ~B
can be described by Lorentz equation :

mẍ = eẋ ∧ ~B .

To this equation corresponds the following Lagrangian (for m = e = 1) :

L(x, ẋ) = 1

2
ẋ2 + ẋ ·A(x) , (5.1)

where A denotes a magnetic potential :
−→
rotA = ~B. To obtain the associated

Hamiltonian , we compute the conjugate momenta

ξj =
∂L
∂ẋj

(5.2)

which writes ξ = ẋ+ A(x) so we get :

H(x, ξ) = ξẋ− L(x, ẋ) =
1

2
(ξ −A(x))2 . (5.3)

When ~B is a constant field (in time and position) the Hamiltonian is in-
tegrable, the trajectories are helicoidal and the axis of the motion is the
direction of the field. There are three numbers conserved during the motion
(the integrals of motion) which are the energy (e.g. the Hamiltonian itself),

the Larmor radius ρ = v⊥
B

and the magnetic moment I =
v2
⊥

2B
. We denote

respectively by v⊥ the orthogonal component (to field lines) of the velocity

and by B the norm of ~B.

Remark 5.1 Applying Weyl quantification to H(x, ξ) we obtain the Schrödinger
operator defined on L2(R3) by

Hh(A) =
3∑

j=1

(
h

i

∂

∂xj
− A(xj))

2 .

In the case when ~B is a constant vector field the spectrum of the operator
Hh(A) is composed of eigenvalues of infinite multiplicity, which are the Lan-
dau levels λj(h) = h (2j + 1) B.
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5.2 Adiabatic invariants

Let us consider a magnetic field slowly varying in position so that it is almost
constant throughout a whole rotation of the particle : the motion is approx-
imatively a circle and the center of this circle (the guiding center) is slowly
moving along the direction of the field, with a very small rotation period.

Under the previous conditions the Hamiltonian slowly depends on the
position variables, except for one (denoted by x0); it can be written as
H = H(x, ǫx0, ξ, ξ0), where ǫ is a small parameter.

Let us assume that, for the Hamiltonian H0(x, ξ) obtained by fixing the
value of ǫx0 et ξ0, there exist closed trajectories in phase space (with a non
vanishing frequency). Then one can introduce the action-angle variables
(I, φ). The action variable I((x, ǫx0, ξ, ξ0) corresponds to the magnetic mo-
ment ; it is not an integral of motion as it is in the constant case, but it turns
out from the method of moyennisation [1] that it is an adiabatic invariant,
which means more precisely :

∃c > 0 t.q. |I((x(t), ǫx0(t), ξ(t), ξ0(t))− I((x(0), ǫx0(0), ξ(0), ξ0(0))| < c ǫ

for 0 ≤ t ≤ 1/ǫ.
Performing symplectic transformations one can get the invariance of I to

all orders ([32],[46]). Furthermore, if the magnetic field is a convex function
along the field lines (seen as a function of the arc length s) there exists

another invariant, which is longitudinal and given by J =

∮
v2‖
B
ds. The

trajectory is actually reflected at the points s1, s2 verifying IB(si) = H, and
the integral ist computed on a whole oscillation [48].

M.Gardner [18] proves the invariance of this quantity to all orders.
V.I.Arnold [2] considers the following question : is it possible to get the

particles not only adiabatically but really confined? Considering a magnetic
field with symmetry axis he wrotes the corresponding Hamiltonian, with two
degrees of freedom, as a perturbation of an integrable one, for which the
motion in phase space is on a torus.

Under a non-degeneracy condition (the ratio of frequencies varies in time)
he applies KAM theorem to get that the invariant tori are not all destroyed
under the perturbation and he concludes by a dimension argument that the
action I is a perpetually adiabatic invariant.

The difficult point here is to check the non-degeneracy condition, ac-
cording to the fact that the ratio of frequencies is of small order. Arnold
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checks that condition only in the special case when the Hamiltonian writes
H = 1

2
(ξ21 + ξ20) + U(x1, x0) with : U(x1, x0) =

1
2
x21(1 + ǫ2x20).

Another method consists in applying a theorem of J.Moser [44] which
gives the existence of periodic solutions for systems next to an integrable
one. M.Braun [5] proves by this way the existence of a region where the
particles submitted to the earth magnetic field are indefinitely retained.

In [59] we apply Moser’s theorem in the case of a magnetic field which is
linear and symmetric in position

~B(x, y, z) = (x, y,−2z) , (5.4)

and we get an open set of initial conditions for which the motion remains
bounded.

This field is actually of the“magnetic bottle ” type, since its norm tends
to infinity as position tends to infinity. As already mentioned, the operator
obtained from the Hamiltonian by Weyl’s quantification has a compact re-
solvent . The result of quantum mechanics seems to be stronger compared
with the classical one. This is a well-known fact that it is harder to get
informations on the classical motion than on the spectrum of the quantum
operator...

5.3 Bounded trajectories

5.3.1 The Hamiltonian in cylindrical coordinates

According to the symmetry of the magnetic field (5.4), we introduce cylin-
drical coordinates. Considering B as a 2-form we have B = d(−r2z) ∧ dθ,
so we can choose the following gauge A = (Ar, Aθ, Az) = (0,−rz, 0).
The field lines are characterized by θ = constant et r2z =constant.
The conjugate moments, (defined by (5.2)) have the following expression

(ξr, ξθ, ξz) = (ṙ, r2(θ̇ − z), ż) ,

so we get, using formula (5.3)

H(r, θ, z, ξr, ξθ, ξz) =
1

2
(ξ2r + ξ2z) +

1

2r2
(ξθ + r2z)2 . (5.5)

Writing the second equation of Hamilton

ξ̇θ = −∂H
∂θ

(5.6)
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one gets the existence of an integral of motion, which is ξθ.
Dimension has been reduced according to the symmetry of the problem.

We have to study a Hamiltonian with 2 degrees of freedom which is defined
as follows :

HM(r, z, ξr, ξz) =
1

2
(ξ2r + ξ2z) +

(M + r2z)2

2r2
. (5.7)

5.3.2 The reduced Hamiltonian and the magnetic field lines

The value of M = ξθ is fixed by the initial conditions, so is the energy E ( E
is the value taken by the Hamiltonian, and it is a constant of motion too).
M may be negative. let us consider the magnetic field line (LM) defined
by r2z = −M . There exists a unique point ΩM such that the norm B at
that point is minimal on (LM). Thus, to any point P (r, z) we associate new
coordinates (u, v) as follows :

• v is the distance from P (r, z) to the magnetic field line (LM)

• u is the arc length between the projection of P on (LM) to ΩM .

We denote by k(u) the curvature of (LM) at the point (u, 0) and we set :

H0(u, v, ξu, ξv) =
1

2

(
ξ2u

[1 + vk(u)]2
+ ξ2v +B2(u, 0)v2

)
. (5.8)

According to the new coordinates the Hamiltonian HM(u, v, ξu, ξv) obtained
from the expression (5.7) can be reexpressed as a perturbation ofH0(u, v, ξu, ξv)
in the following way :

Proposition 5.2 For any initial conditions satisfying

E < 2|M |4/3 et E <
ǫ2

16
|M |2/3 (CI)

• the distance v from the trajectory to the magnetic field line (LM ) is less
than ǫ

• there exists a constant C (depending only on E and M) such that

|HM(u, v, ξu, ξv)−H0(u, v, ξu, ξv)| < Cǫ3
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Remarks
1) The first condition is a consequence of the second one for ǫ small

enough.
2) The proposition comes from the fact that according to the inequality

(M+r2z)2

2r2
< E the motion has to remain inside a strip B around (LM ) (see

figure 4).

-1

x

65432

y

1

3

0

2

1

0

Figure 4: The strip B and the magnetic field line (LM)

3) Since v is small the original Hamiltonian can be seen indeed as a
perturbation of the Hamiltonian 1

2
(ξ2u + ξ2v +B2(u, 0)v2) which corresponds

quantically to an operator with a degenerate potential, precisely of the form
described in section 2.2.

4) The Hamiltonian Hu = 1
2
(ξ2v +B2(u, 0)v2) represents for a fixed value

of u the energy of a harmonic oscillator. The point (v, ξv) moves along
the ellipse Hu = constant for some constant depending on u and the
corresponding action, which is (up to a factor 2π) the area enclosed by the
ellipse, has the following expression

Iu =
ξ2v +B2(u, 0)v2

2 B(u, 0)
.

35



5) Conditions (CI) entail the following inequality

B(u, 0)Iu <
ǫ2

16
|M |2/3 + Cǫ3 .

As a consequence, if Iu is bounded from below by a constant independent of
time, we get an upper bound for B(u, 0) and hence for the trajectory itself
since B(u, 0) is an increasing function of u.

5.3.3 Action variables

We set
u = ǫu1, v = ǫv1, ξu = ǫ ξu1

, ξv = ǫ ξv1 , HM = ǫ2 KM , E = ǫ2E ′ .
We perform some symplectic transformations (in the language of mechan-

ics, we perform some changes of canonical variables) in order to get explicit
action-angle coordinates (I, J, φ, ψ) such that

Theorem 5.3

KM(u1, v1, ξu1
, ξv1) = KM(I, J, φ, ψ) = E ′ +B(ǫu1, 0) [I + c(ǫJ) +O(ǫ)] ,

(5.9)
where the second derivative of the function c(ǫJ) does not vanish on an
interval of the type ]A,+∞[.

The action variable I is, up to a multiplicative factor ǫ−2, the variable Iu we
defined previously. For the points of the motion situated on the magnetic

field line, we recognize the magnetic moment I =
v2
⊥

2B
mentioned in the intro-

duction. The second action variable is a function J(c), which represents the
area enclosed by the curve Cc defined as follows : 1

2
ξ2u1

− c B(ǫu1, 0) = E ′.
If we denote by BM the minimal value of B on (LM ), Cc is a closed curve for
c ∈]− E′

BM
, 0[ (see Figures 5 , 6).

We have

J(c) =

∮

Cc

ξu1
du1 = ǫ−1

∫ umax

umin

√
2[E ′ + cB(u, 0)]du

. To obtain (5.9) it remains to check that (ǫJ)(c) is an increasing function
on ] − E′

BM
, 0[, and that its derivative is also increasing on an interval of the

type ]a, 0[. This is due to the asymptotic behaviour of B(u) at infinity. On
figure 6 we set E ′ = BM = 1; it can be seen that the area enclosed by the
curve Cc is increasing as c grows from −0, 9 to −0, 1.
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Figure 5: The function B(u)
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The theorem (5.3) entails that c′′(ǫJ) vanishes only on a finite number of
values J1, ...Jp. It is possible then to apply Moser’s theorem on each annulus
of the type A(ǫJk, ǫJk+1) and on each annulus exterior to the circles J = J1
et J = Jp.

On such an annulus the action J can be expressed as a function of the new
time φ . One shows that the diffeomorphism of the annulus (J(0), ψ(0)) →
(J(2π), ψ(2π)) verifies Moser’s condition ( see [44], [45]). In fact this condi-
tion expresses the fact that c′′(ǫJ) does not vanish. Let us notice that Moser’s
condition can be shown to be equivalent to the weak non-degeneracy condi-
tion introduced by Arnold in [2]. The interesting fact is that it is possible to
check it explicitly in this setup.

Therefore we obtain the existence of an infinite number of curves which
are invariant by this diffeomorphism. The curves generate invariant tori ;
they foliate the surface of energy H = E so that any trajectory starting
between two tori remains between those tori. Consequently the quantity Iu
is a perpetual adiabatic invariant.

1
0,5

16

1,5 0

12

8

1 -0,5

z(t)

4

y(t)0,5

0

-1x(t) 0 -1,5-0,5

Figure 7: A trajectory

According to Remark 5 of the previous section we get then the following
result :
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Theorem 5.4 Let M be fixed. There exist ǫ0 > 0 and K > 0 such that the
trajectory of the solution is bounded, provided the following conditions are
fulfilled

(CI) E <
ǫ2

16
|M |2/3

(CI)′ Iu(0) > 2Kǫ3

for an ǫ < ǫ0.

The conditions (CI) et (CI)′ are compatible. They express the fact that
the velocities have to be small compared with positions whereas the com-
ponent of the velocity normal to the magnetic field line has to be not too
small compared with the total energy. In particular this excludes the case
z(0) = ż(0) = θ̇(0) = 0, which corresponds to a particle starting on the mag-
netic field line (L0) (defined by θ = θ(0), z = 0) with a velocity parallel to
this line. Obviously in that case the motion is not bounded since the particle
rolls up along the line (L0), which can be seen as the bottom of the well for
the degenerate potential V (u, v) = B(u, 0) v2.

The figures 7 and 8 represent the motion of a particle computed by nu-
merical simulation. The initial conditions are M0(1, 1, 0) and
V0(0, 15;−0, 25; 0, 25). When the particle goes away from the origin, the strip
B in which it is contained ( considering a vertical section) clearly appears.
The numerical simulation seems to suggest that the motion downwards is
bounded : the radius of the helix decreases but the motion is stabilized
and reflected and the particle is returning towards the origin to an other
helicoidal-like motion .

The figures 7 and 8 represent the motion of a particle computed by nu-
merical simulation. The initial conditions are M0(1, 1, 0) and
V0(0, 15;−0, 25; 0, 25). When the particle goes away from the origin, the strip
B in which it is contained ( considering a vertical section) clearly appears.
The numerical simulation seems to suggest that the motion downwards is
bounded : the radius of the helix decreases but the motion is stabilized
and reflected and the particle is returning towards the origin to an other
helicoidal-like motion .
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Figure 8: The same trajectory, continued

6 Open problems and conclusion

• The last work presented gives of course only a partial answer. The
symmetry argument is crucial, because the invariant tori generated
by the unperturbed Hamiltonian prevent the particle to go away. In
the non symmetric case the phase space has dimension 6, the energy
surface has dimension 5 and the tori do not play a limitative role any
longer. It would be of real interest to investigate if there exists a drift
exponentially small for that situation, as suggested by the works of
Nekhoroshev and Georgilli [47],[19]. There is a paper by G.Benettin et
P.Sempio [4] which goes in that direction, requiring three time scales
for such a motion.

• Concerning the magnetic Neumann operator there exist asymptotics
for the first eigenvalue in the case of a constant magnetic field. If the
domain Ω is an open set of R2 one gets ([16] [22]) the estimate

λ1(h) = Θ0bh− kmaxC1h
3/2 +O(h7/4) .

In this formula Θ0 denotes the minimum of the function µ(x) defined

40



in section 4.1, b is the norm of the magnetic field, C1 is a universal
constant and kmax is the maximal value taken by the curvature on the
boundary ∂Ω . But what is the situation for a variable magnetic field?
Here is the result given in [22] : in the case b > Θ0b

′ (keeping the
definitions of the section 4.1 and assuming that there is a unique non
degenerate minimum on the boundary) :

λ1(h) = Θ0b
′h +O(h3/2) .

More recently N. Raymond in [49] improved that result by computing
the term of next order in the expansion. This term contains the curva-
ture , the normal derivative of B and the tangential derivative of order
2. Is it still the case in dimension 3?

• Concerning magnetic bottles in hyperbolic geometry, we gave a gen-
eralization to the geometrically finite hyperbolic surfaces, in the case
when these manifolds are of infinite volume.

Another generalization of the result would be to investigate the 3-
dimensional case. What properties should we require on the magnetic
field to get a Weyl-type estimate in the hyperbolic half-space?

Finally, from a more geometrical point of view it would be nice to
understand what term is replacing the additional term 1/4, which is a
feature of the hyperbolic geometry, when another metric is considered.

• Another natural problem about magnetic bottles has been considered
in [10].

Let us consider a particle in a domain Ω in Rd (d ≥ 2) in the presence
of a magnetic field B. The topological boundary ∂Ω of Ω is assumed
to be compact. At the classical level, if the strength of the field tends
to infinity as x approaches the boundary ∂Ω, the charged particle is
expected to be confined and never visit the boundary: the Hamiltonian
dynamics is complete. At the quantum level the fact that the parti-
cle never feels the boundary amounts to saying that the magnetic field
completely determines the motion, so there is no need for boundary
conditions. At the mathematical level, the problem is to find condi-
tions on the behavior of B(x) as x tends to ∂Ω which ensure that the
magnetic operator HA is essentially self-adjoint on C∞

o (Ω). These con-
ditions will not depend on the gauge A, but only on the field B. This

41



question may be of technological interest in the construction of toka-
macs for the nuclear fusion [58]. The ionized plasma which is heated is
confined thanks to magnetic fields.

The result is the following: under some continuity assumption on the
direction of B(x) at the boundary, for any ǫ > 0 and R > 0, there
exists a constant Cǫ,R ∈ R such that, ∀u ∈ C∞

o (Ω), the quadratic form
hA satisfies the quite optimal bound

hA(u) ≥ (1− ǫ)

∫

Ω∩{x| |x|≤R}

|B|sp |u|2 |dx| − Cǫ,R ‖u‖2 . (6.1)

Here |B(x)|sp is a suitable norm on the space of bi-linear antisymmetric
forms on Rd, called the spectral norm. This implies that HA is essen-
tially self-adjoint if |B(x)|sp ≥ (1 + η)D(x)−2 where η > 0 and D is
the distance to the boundary of Ω.

Examples of such magnetic bottles are given in the following cases:

– The domain Ω is a polytope

– The boundary is smooth and the Euler characteristic vanishes
(toroidal domain)

– The boundary is smooth and the Euler characteristic does not
vanish (non toroidal domain)

– Monopoles and dipoles in Ω = R3 \ 0

For any ǫ > 0 and when Ω is the unit disk, an example of a non
essentially self-adjoint operator HA is given with |B(x)|sp ∼ (

√
3/2 −

ǫ)D(x)−2 showing that the previous bound is rather sharp.

The following questions seem to be quite interesting:

– What are the properties of a classical charged particle in a con-
fining magnetic box? Are almost all trajectories not hitting the
boundary?

– What is the optimal constant C in the estimates |B(x)|sp ≥
CD(x)−2? (We know that the optimal constant lies in the in-
terval [

√
3/2, 1]].
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• In conclusion, we tried in this paper to highlight the relationship be-
tween magnetic bottles and degenerate potentials, as well in the clas-
sical mechanics context as in the quantum mechanics one. The Weyl
asymptotics have to be revisited in both cases , and the classical Hamil-
tonian induced by a magnetic bottle can be seen as a perturbation of
the Hamiltonian derived from an operator with a degenerate potential.
It could be nice to go further in that comparison, by trying to express
the Weyl-type asymptotics in a unified way.
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magnétique linéaire. Annales de l’IHP (Physique théorique) 64 (1996),
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