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Thin solid shell contrast agents bubbles are expected to undergo different volume oscillating behav-
iors when the acoustic power is increased: small oscillations when the shell remains spherical, and
large oscillations when the shell buckles. Contrary to bubbles covered with thin lipidic monolay-
ers that buckle as soon as compressed, solid shell bubbles resist compression, making the buckling
transition abrupt. Numerical simulations that explicitly incorporate a shell bending modulus give
the critical buckling pressure and post-buckling shape, and show the appearance of a finite number
of wrinkles. These findings are incorporated in a model based on the concept of effective surface
tension. This model compares favorably to experiments when adjusting two main parameters: the
buckling tension and the rupture shell tension. The buckling tension provides a direct estimation
of the acoustic pressure threshold at which buckling occurs.

PACS numbers: 43.25.Yw Nonlinear acoustics of bubbly liquids, 43.35.Ei Acoustic cavitation in liquids,

46.32.+x Static buckling and instability

I. INTRODUCTION

Bubbles act as powerful contrast agents in ultra-
sound echography1. Current models for coated con-
trast agents bubbles incorporate the response of the
coating2–6. These models explore small amplitude vibra-
tion, with a linear visco-elastic response from the spher-
ical coating, subjected to alternating compressions and
tensions because of the radius oscillation. However, the
large amplitude vibration regime is of importance for
cases where a non-linear response of contrast agents is
wished in order to discriminate them from the surround-
ing tissue. In addition to non-linear elasticity7, two pro-
cesses can lead to a strong non-linear response: buckling8

or destruction of the coating9,10.

Buckling was observed in the specific case of lipidic
contrast agents, coated with a single layer (monolayer) of
lipid molecules sitting at the bubble interface. This coat-
ing can lead to peculiar oscillations, named compression-
only11,12, because only compression is significant while
hardly no expansion occurs, the reason being that lipid
monolayer, one molecule thick, does not undergo in-plane
compression. The bending modulus of the monolayer is
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very small, so it is energetically more favorable to bend
the membrane that to compress it.

In the present manuscript, we focus on a different kind
of contrast agents: bubbles coated with solid membranes,
whose thickness is large in front of molecular compo-
nents. These coatings are made of proteins (albumin
for instance) and polymers13. Because of their thickness,
such coatings can be described using continuum theories.
Contrary to lipid monolayers, spherical solid shells14 sus-

tain more easily in-plane compressions, which stabilizes
bubbles against dissolution15. This holds for limited com-
pressions though: contrast agents also undergo buckling
if the compressive constraint is large enough. Contrary
to lipidic agents that develop very tiny wrinkles around
a globally spherical shape11, solid shell bubbles display a
globally non-spherical shape.

Here we explore the periodic buckling and unbuckling
of these solid shells, thus extending the solid shell mod-
els designed to treat spherical oscillations with a limited
amplitude2,8. The appearance of wrinkles was reported
on bubbles undergoing dissolution16, here they occur af-
ter buckling in each sound cycle. The shape of the wrin-
kles is modeled with 3D numerical simulation, and re-
trieves the experimental observations thanks to the use
of a bending modulus under the assumption of quasi-
static deformation, while membrane computations17 usu-
ally neglect this bending to obtain the onset of buckling
in a dynamical situation.

We also address the destruction of bubble shells. De-
struction phenomena have been applied successfully to
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image tissue perfusion and perfusion defects, leading to
effective techniques for myocardial perfusion imaging af-
ter intravenous injection. The destruction of gas mi-
crobubbles is the basis of triggered or intermittent imag-
ing methods18. Microbubble destruction is found in
the destruction-replenishment methods to estimate blood
perfusion19. Extensive research has also been carried out
based on the bubble destruction mechanism toward drug
and gene delivery20,21. The destruction of coated micro-
spheres showed to be a promising method for the delivery
of drugs and other active agents to various organs in the
body22–24. These investigations opened new perspectives
for therapeutic applications but the use of contrast gas
microspheres toward such applications brings the need
for a thorough understanding of the processes involved in
their destruction. In order to select the ultrasound pa-
rameters and the scanning strategies for an optimal use
in drug and gene delivery, understanding the destruction
process is essential.

The manuscript is organized as follows: section II
presents detailed numerical simulations of the buckling
of initially spherical shells, in order to explicit the inner
pressure during compression, as well as the shell shape.
Based on these findings, an analytical model for pulsa-
tion of the bubble is introduced in section III. The main
feature of the model, an abrupt appearance of buckling or
break-up at two distinct thresholds in acoustic pressure,
is presented in section IV. Finally section V compares
these findings with experimental data.

II. BUCKLING OF A SPHERICAL SHELL: INNER

PRESSURE DURING DEFLATION

A. Numerical methods for the quasi-static simulation of an

elastic surface with bending and compression moduli

To understand the effect of an applied pressure on a
solid shell we model it by a closed surface, initially spher-
ical. We present in this subsection numerical simulations
of its 3D shape, when the enclosed volume V decreases
(“deflation”). At the end of this subsection and in Ap-
pendix A we present the link between the 2D parameters
of the numerical surface and the 3D parameters of thin
shells.

The deformation energy of an homogeneous elastic sur-
face comprises a bending contribution, with a bending
constant κ, and an in-plane contribution for which, in a
linear approximation, only two parameters are required,
e.g. the compression (or stretch) modulus χ2D, and the
Poisson ratio ν2D.

For a given volume, the numerical shape is found
by minimizing the integral of the surface energy that
writes25:

Eel =

∫

S

{

1

2
κ (c1 + c2 − 2c0)

2−(1−ν)κ (c1 − c0) (c2 − c0)

+
1

2
ǫijKijklǫkl

}

dS (1)

where the first and second term in the integrand reflect
the bending energy: c1 and c2 are the principal curvature,

c0 = 1/R0 the initial curvature with R0 = (3V0/4π)1/3

the radius of the initial unstrained sphere, and V0 its
unstrained volume. The first term is associated with
total curvature, while the second is associated Gaus-
sian curvature25. This second term was usually ne-
glected in simulation of shells, but recent work carried
out by the authors pointed out that it does not van-
ish for geometries with initial spontaneous curvatures,
which is the case here. The third term in the integrand
is the in-plane Hookean deformation energy, with ǫkl is
the in-plane Cauchy-Green strain tensor, and the non-
zero terms of the two-dimensional elasticity tensor are
Kiiii = 1

ν2D
Kiijj = 1

1−ν2D
Kijij = 2

1+ν2D
χ2D.

A detailed presentation of the numerical method can
be found in26. We recall it here briefly. The surface is
discretized in a 2D randomized triangular mesh (made
of 4764 nodes) fine enough in front of the topographi-
cal changes; then the volume is decreased by small steps
(with a relative volume decrease of dV/V0 = 6.36×10−3),
while at each step the shape is evolved, using the finite
element freeware Surface Evolver27, until a minimiza-
tion of its energy (given by Eq. 1) is reached. Simu-
lations showed that the spherical surface deforms with
different shapes during the deflation, that depend on two
nondimensional parameters: the relative volume varia-
tion ∆V

V = V −V0

V0
and the Föppl-von Kárman parameter28

γ = 2(1−ν2D)χ2DR2

κ .
Using these simulations in order to interpret experi-

ments requires to make the link between the 2D param-
eters of the model surface (namely κ, χ2D and ν2D) and
the 3D parameters of the shell, which are the shell thick-
ness d and the bulk shear modulus G, assuming the ma-
terial as incompressible (ν = 1/2).

The bending modulus κ can be expressed through the
integration of the local compression or elongation of the
incompressible material when the sheet bends, leading
to29:

κ =
1

3
G d3 (2)

The general expression for the compression modulus χ2D

is displayed in Appendix A. For an incompressible ma-
terial, it leads to:

χ2D = 3 G d. (3)

We may now understand why the bending of a very
thin monolayer is energetically favored compared to com-
pression. One can show that the ratio between out-
of-plane (bending) energy Eb and in-plane compression
energy Es in a typical deformation25,29 is of the order
Eb/Es ∼ κ/χ2DR2, revealing the key parameter of the
system, the non-dimensional Föppl-von Kárman param-

eter γ = χ2DR2

κ , see erratum of26. Eq. 2 and 3 lead
to

γ =
9

(d/R)2
, (4)

meaning that γ−1/2 simply reflects the relative shell
thickness d/R. This relation explains why a bending
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deformation is energetically more favorable than a com-
pression for thin shells: Eb/Es becomes very small when
d/R decreases.

For the deformations studied here, Poisson ratios are
equal in 2D and 3D (see Appendix A), so that ν2D = ν =
1/2.

B. Deformation modes and the inner pressure

The results from the simulations are now described.
Several computations are performed for shell with differ-
ent relative thickness, that are imposed through the nu-
merical 2D factor γ. The typical behavior of a shell under
deflation is the following. For small deflations the surface
keeps a spherical shape (see fig. 1a). For higher volume
deflations, shells undergo a first-order (i.e. discontinuous
and abrupt) buckling transition: an inverted spherical
cap appears, making an axisymmetrical depression (fig
1b). Then, axisymmetry is broken through polygonal
deformation of the depression (fig. 1c), for small enough
values of d/R (typically d/R < 0.1).
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FIG. 1. Numerical simulation of the quasi-static deflation
of an elastic shell (a) V/V0 = 1, (b) 0.85, and (c) 0.48.
(d) The inner pressure when decreasing the volume. Pres-
sure here is nondimensional by the theoretical value for buck-
ling Pb = 3G(d/R)2. The continuous line is the prediction
from Eq. 5, while the dash-dotted line delimits the wrin-
kled / axisymmetric transition. Here the Föppl-von Kárman
parameter is γ = 16796 and ν2D = 1/2, corresponding to
d/R = 0.0231.

The numerical pressure (i.e. Lagrange multiplier of
the volume) is displayed on figure 1d. It is the numerical
equivalent of the pressure difference ∆Pm = Pint − Pext

between pressure Pint inside of the membrane, and the
exterior pressure Pext. This pressure difference follows
from the conservation of mechanical energy during a com-
pression: the increase in elastic energy is generated by
the work of pressure forces on the membrane, so that

dEel = −PextdV + PintdV . The pressure is thus inferred
by ∆Pm = ∂Eel/∂V . Note that this equality holds be-
cause we assumed that no kinetic energy is generated,
which we justify here because the mass of the shell is
small and assumed to have negligible inertia. We will see
later that the mass of fluid around is dominant.

1. Spherical compression

In this deformation mode, the pressure varies rapidly
and can be predicted analytically.

By considering the energy of a sole in-plane com-
pression (there is no first-order bending contribution in

this geometry), Eel = 1
2 χ2D

(

A−A0

A

)2
, one gets from

∆Pm = ∂Eel/∂V the over-pressure inside:

∆Pm = 4
χ2D

R0

∆R

R
, (5)

with ∆R = R−R0, assuming ∆R ≪ R0. In a bulk 3D
model, the integrated contribution of the internal elastic
stress over the shell thickness lead Church2 to obtain:

∆Pm = 12G
d

R

∆R

R0
. (6)

One retrieves the relation χ2D = 3G d obtained in Ap-
pendix A for flat sheets. Numerical data are consistent
with this prediction, showing a linear part in fig. 1 for
small amplitude compressions, with the predicted slope.

2. Buckling

Under compression, the linear variation into the nega-
tive pressure range (meaning a compressive state of the
membrane), is limited to a short range. According to29

an elastic spherical shell submitted to a smaller pressure
inside will become unstable and buckle, and this as soon
as the pressure ∆Pm reaches a critical value of

∆P buckling
m ∼ −3G

(

d

R

)2

, (7)

this expression is obtained after replacing the Young’s
modulus by 2G(1 + ν) = 3G for incompressible material.
It corresponds to the pressure at which it is more ad-
vantageous to create a fold rather than compressing the
shell. This order of magnitude, is effectively retrieved in
numerical simulations, see figure 1 and 2.

For instance for Albunex(R) contrast agents made with
an albumin shell, G = 88 MPa, d = 15 nm, R = 1µm8,30,
meaning ∆P buckling

m ≃ 6×104 Pa. This pressure is easily
achieved by acoustic means. Solid shell contrast agents
are expected to buckle during insonification if their shell
is not too thick.

After buckling, the bubble shape suddenly departs
from a sphere, the stretching stresses within the shell be-
come much smaller, while bending stresses are localized
on the edge of bulge29. The pressure difference therefore
drops considerably and plateaus with volume variation
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as can be seen on figure 1-d. The corresponding value
∆P post−buckling

m was measured at its lower absolute value.
(Note that for the shells thinner than d

R < 0.0145, a slight
re-increase is observed when ∆V/V approaches 1). It is
displayed on fig 2 as a function of d/R, together with
the buckling pressure. The pressures are scaled by the
bulk shear modulus G = 1

9

√

χ3
2D/κ which imposes the

energy scale. The post-buckling pressure is much smaller
than the buckling pressure, especially for thin shells. For
shells with a thickness smaller than d/R = 10−2, the
ratio of these pressures is 0.1. This ratio decreases for
smaller thickness, meaning that the thinner the shell, the
lower the remaining pressure after buckling. Correspond-
ing theoretical calculations can be found in Appendix B.
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FIG. 2. Simulation results for the post-buckling pres-
sure ∆P post−buckling

m (squares), evaluated in the plateau re-
gion of Fig. 1d, as a function of the relative shell thick-
ness. The continuous line stands for a power-law fit with
∆P post−buckling

m /G = 1.193× (d/R)2.27±0.06. The value of the
exponent is in total agreement with theoretical predictions of
post-buckling pressure derived in Appendix B. For compari-
son, we also plot the buckling pressure ∆P b

m from simulations
(diamonds giving the range where simulation value is located),
and the theoretical prediction (dashed line) from Eq. 7.

3. Wrinkles

At larger compression amplitude, the buckled state
looses its axi-symmetry, and periodic wrinkles appear in
the buckling depression. This post-buckling transition
is smooth and cannot be detected on the pressure itself.
The number of wrinkles W depends on the relative thick-
ness, see figure 3. Actually variations of typically ±1 (up
to ±2 for high W ) wrinkles are observed in the course of
compression, so the average number of wrinkles has to
be considered.

The number of wrinkles approximately follows an evo-

lution of the type:

〈W 〉 ≃ 0.83

(

d

R

)−1/2

. (8)

This power law can be retrieved with the consideration
that

√
dR is the typical size for the deformations of a

thin shell29. On an equator of length proportional to R,
the number of wrinkles of size ≈

√
dR scales like

√

R/d.
At re-inflation the number of wrinkles diminishes by

the coarsening of neighbour wrinkles.
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FIG. 3. Simulation of the number of wrinkles hold by the
single depression of a deflating elastic spherical surface, as a
function of the relative shell thickness for a thin shell of incom-
pressible material. This number is an average for important
deflations, i.e. when the size of the depression approaches one
hemisphere, and before autocontact ; practically we averaged
for ∆V /V ∈ [0.53, 0.76]. Points are dispersed but compati-

ble with the power-law in (d/R)−1/2 observed in26. Here the
line is a fit with Eq. 8. Inserted snapshots are taken from
simulations of shells with 10, 8, 6 and 5 wrinkles, from left to
right.

III. DYNAMICAL MODEL FOR LARGE AMPLITUDES

OSCILLATIONS

We extrapolate the numerical results obtained for the
static case, to describe dynamical oscillations of bubbles.
It is reasonable here because the material equilibrates at
the speed of sound in the elastic material (typically of
several thousands of meters per second) which is very
large compared to the bubble velocity (ωR0, of the order
of meters per second).

A. Effective membrane tension: negative at the onset of

buckling and then suddenly vanishing

The presence of the shell accounts for a pressure dif-
ference ∆Pm. By analogy with a Laplace pressure, we
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rather express the solid shell contribution as due to an
effective membrane tension σm(R) = R∆Pm/2 such that

∆Pm =
2σm(R)

R
. (9)

The advantage is that membrane tension reflects the av-
erage of plane stresses within the membrane, which will
be useful when searching for a criteria for shell rupture.
This tension depends on the bubble inflation or deflation
(here monitored by R with respect to a rest radius R0),
and can even become negative, sign of compression state,
when the volume decreases.

Inspired by the numerical simulation of the previous
section, we model the solid shelled bubble response under
several states: elastic, buckled (axisymmetric or wrin-
kled), to which we add the ruptured state. The model
is summarized on figure 4. The main difference from the
lipid shell model11 is that the buckled state occurs after
a negative membrane tension, while in the the lipid shell
model it occurs as soon as the membrane tension starts
to become negative.

bubble radius

R
0

m
e

m
b

ra
n

e
 t

e
n

s
io

n
 σ

m

0
buckled

elastic

ruptured

break−up

buckling

FIG. 4. Model for the shell membrane tension under large
volume variation. As soon as the surface tension is negative
enough to reach the buckling value (full circle), buckling oc-
curs (large arrow) and the membrane tension vanishes (thick
dashed line). The elastic state is recovered when the volume
gets back to its rest value (open circle). When the rupture
point is reached (cross), membrane tension saturates to the
water value (dash dotted).

In the elastic state, the membrane tension varies (thick
line on figure 4) as indicated by Eqs. 5 and 9 along:

σm(R) = 2χ2D
∆R

R0
. (10)

For the instance of Albunex(R) contrast agents we find
χ2D = 3G d = 4 N/m. This linear relation holds here
because we are considering small amplitude variations in
this regime.

The buckling occurs abruptly when the tension is low
enough. As soon as the membrane tension becomes neg-
ative enough to reach the critical buckling value

σbuckling
m ∼ −1

6
χ2D

d

R
(11)

the shape becomes unstable and buckles. The critical
buckling value we get for Albunex is σbuckling

m ∼ −0.01
N/m. It corresponds to a relative compression of only
(∆R/R)buckling = −1/12 × d/R0 (around 0.1% for Al-
bunex). The membrane tension fades out to a much lower
value when the bulge indentation grows, as observed on
simulations (figure 2) and computed theoretically in ap-
pendix B. Here we therefore assume that membrane ten-
sion instantly vanishes at buckling (thick dashes on figure
4).

The membrane stays on this state, as long as it reaches
again the stress free point, where the shape becomes
spherical again and where the elastic regime is recov-
ered. Note that the notion of a bubble radius disappears
in the buckled state with a nonspherical shape: however
the bubble volume stays continuous. For the dynamical
equations we will keep the radius as a variable, and in
the buckling state it will have to be considered as an ef-
fective quantity, such as Reff = (3V/4π)1/3, reflecting the
volume and useful to provide an estimate of the average
size of the bubble.

On the reverse, if the pressure difference becomes
strongly positive the shell becomes tensed, until it reaches
rupture. The material of the shell cannot support infinite
elongation, it is expected to break apart at a few percent
of positive inflation of the shell area, meaning at a crit-
ical value (∆R/R0)

break−up. Indeed material resistance
is usually defined by a maximum deformation amplitude.
A positive peak in surface tension and in bubble radius
can reach the break-up value: at this point a part of the
shell opens and a bare interface of air is exposed to liquid.
Being ruptured, the surface tension is therefore bounded
to a saturation value σwater, the surface tension of the
water/gas interface.

Note that the membrane can sustain a positive ra-
dius increase (∆R/R0)

break−up independent of the shell
thickness, while the maximum radius decrease without
buckling is (∆R/R)buckling = −1/12 × d/R0 (from Eqs.
11 and 10) and thus proportional to the shell thickness.
Considering a harmonic excitation of small amplitude,
the bubble response is harmonic (sinusoidal) as well with
positive and negative radius excursions of equal ampli-
tudes. Under these conditions, buckling will occur be-
fore rupture if |(∆R/R)buckling| < (∆R/R)break−up , or
if d/R < 12 (∆R/R0)

break−up. We therefore expect thin

solid shells to buckle before they rupture, and the reverse
for thick shells.

B. Dynamics of the coated bubble

We then model the dynamics of the pulsation, follow-
ing the same line as the model for a lipidic membrane11,
where a variable tension is introduced in the dynamical
evolution for a free bubble. We nonetheless recall here
these equations, and add the new modeling for the effec-
tive tension.

From the balance of normal stresses at the interface,
assuming a polytropic gas law and a assuming modified
Rayleigh-Plesset equation for the hydrodynamic pres-
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sure, we obtained:

ρl

(

RR̈ +
3

2
Ṙ2

)

=

(

P0 +
2σm(R0)

R0

) (

R

R0

)−3κ (

1 − 3κ

c
Ṙ

)

− P0 −
2σm(R, state)

R
− 4µṘ

R
− 4κsṘ

R2
− Pac(t), (12)

with R0 the equilibrium radius of the bubble, with no
membrane stress, P0 the ambient pressure, Pac(t) the
acoustic pressure, and c the velocity of sound in the liq-
uid. Dissipation is introduced with µ the surrounding
liquid viscosity and κs the surface dilatational viscos-
ity from the shell. Note that, contrary to2 we neglected
the surface tension of the inner and outer solid interfaces
(their value been negligible in front of the buckling and
rupture tension): all the capillary effects are included in
the effective membrane tension.

As developed in the previous section, the membrane
tension σm(R, state) depends upon the radius and upon
the actual state (elastic, buckled, ruptured) with:

σm(R) =







2χ2D
∆R
R0

if elastic, Rbuckling < R < Rbreak−up

0 if buckled
σwater if ruptured and R > Rruptured

The transition between the elastic and the buckled state
occurs as soon as R < Rbuckling. This change is re-
versible: unbuckling occurs as soon as R > R0. The tran-
sition to the ruptured state property is not reversible and
occurs as soon as R > Rbreak−up.

IV. MODEL RESULTS

A. Abrupt appearance of compression-only behaviour

Increasing the acoustic pressure, the bubble oscillates
symmetrically in the elastic mode, until it buckles: the
bubble oscillation becomes suddenly larger in the com-
pression phase but not in the expansion phase leading
to the ”compression-only”12, see simulation of the dy-
namical equation on figure 5. A strong positive radius
excursion then appears above a critical pressure. In this
new state, the bubble oscillates as a free bubble, as the
shell is ruptured.

The different behavior are well monitored by plotting
the ratio of the positive excursion peak to the nega-
tive excursion peak, ∆R+/∆R− (see figure 6). Elas-
tic oscillations do not lead to a significant asymme-
try (∆R+/∆R− ≃ 1), while compression-only modes
lead to smaller ratios (∆R+/∆R− < 1), inversely to
the ruptured state: the non-linear behavior then fa-
vors positive excursions of the radius, as for standard
large pressure Rayleigh-Plesset dynamics of a free bub-
ble (∆R+/∆R− > 1).

The appearance of compression-only is abrupt above
the threshold (for an acoustic amplitude of 1 Pa in the ex-
emple of figure 6). Again, this in contrast to the model for
monolayer lipidic coatings, that did not allow any nega-
tive tension, and for which the transition to compression-
only was continuous.
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FIG. 5. Bubble response to repeated 2 MHz pulses, with an
increasing acoustic pressure: elastic at 0.8 × 105 Pa, buckled
at 1.5×105 and ruptured at 2.7×105 Pa. The shell parameters
are R0 = 1 µm, χ2D = 1 N/m, κs = 7.2 × 10−9 N, while the
buckling tension is σbuckling

m = −0.05 N/m, and the rupture
tension is σbreak−up

m = 0.2 N/m.

0 1 2 3 4

x 10
5

0

1

2

P
a
 (Pa)

  
  
R

+
/  

 R
−

FIG. 6. Effect of an increasing acoustic pressure on the asym-
metry of the response. Same shell parameters as in figure 5.

B. Comparison of the dynamic and static value for the

buckling pressure

From the dynamical simulations we can try to eval-
uate the thresholds for the different regimes and com-
pare them to the static thresholds described in section
III.B. The static pressure 2σbuckling

m /R0 (=1 × 105 Pa)
gives a correct estimate of acoustic pressure at which the
elastic state buckles (see figure 6). However the value
2σbreak−up

m /R0 (=4× 105 Pa) does not provide a correct
estimate for the acoustic pressure at rupture because of
the high amplitude oscillations.

Indeed, before buckling the amplitude of oscillation is
low so that Pl ≃ P0 + Pac(t) (see section III.B) and
∆Pm = Pg − Pl ≃ −Pac(t), meaning that the pres-
sure difference across the membrane is given directly by
acoustic pressure. At high amplitudes, the liquid pres-
sure incorporates dynamical terms, and has to be written

Pl = P0 +Pac(t)+ρl(RR̈+ 3
2 Ṙ2)+ R

c
dPg(t)

dt R(t): it is not
possible to induce the membrane pressure directly from
the acoustic pressure.
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V. COMPARISON WITH EXPERIMENTS

A. Phase diagram

We compare these prediction to the high-speed imag-
ing study9 of polymer based shell contrast agents (PB127
contrast agent from Point Biomedical, a bilayer poly-
mer/albumin shell encapsulating a nitrogen bubble). For
a given radius, contrast agents exhibit different behav-
ior as a function of pressure, classified in three regimes:
(i) non-destruction zone with oscillations, (ii) transient
zones with oscillation and rupture after several cycles,
(iii) destruction zone with immediate rupture of the shell
and release of the gas content.

The shell properties in the previous model can be ad-
justed to obtain the buckling transition (crosses on figure
7) and the rupture transition (circles) at the same level
as experimental transitions to regime (ii) and regime (iii)
respectively. The shape of the predicted curves of the
critical pressure are in very good agreement with the ex-
perimental ones, with the transition parameters set to
σbuckling

m = −1 N/m and σbreak−up
m = 3.5 N/m. The

model results are less sensitive on the value of 2D com-
pression modulus., We nevertheless found an optimum
around χ2D = 10 N/m, meaning a relative radius varia-
tion of -5% at buckling, and +17.5% at break-up using
Eq. 10, meaning that the linear approximation for the
elastic behaviour is still acceptable.

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Elastic

Buckled

Ruptured

R (micron)

P
 (

M
P

a
)

FIG. 7. Phase diagram of the different oscillation behaviour.
Thick lines: experimentally measured on polymer contrast
agents9 boundaries for onset of transient zone (first thick
line when increasing pressure) and onset of immediate rup-
ture (second thick line). Symbols: numerical prediction, the
shell parameters being adjusted to fit the measured bound-
aries, with the onset of buckling (crosses) and the onset of
rupture (circles). The static buckling pressure 2σbuckling

m /R0

(first dotted line when increasing pressure) provides a good
approximation of buckling, while the static rupture pressure
(second dotted line) is overestimating the dynamical value.
Shell parameters are χ2D = 10 N/m, κs = 7.2 × 10−9 N,
while the buckling tension is σbuckling

m = −1 N/m, and the
rupture tension is σbreak−up

m = 3.5 N/m, under an ultrasound
frequency of f = 1.7 MHz.

Note that transition from regime (i) to regime (ii) is

not experimentally defined as a buckling transition. How-
ever, the optical observations reported that buckling al-
lows large shell deformation, that could trigger rupture
after several cycles.

We do not model the fatigue of the material that allow
rupture after several cycles. The obtained value for the
rupture tension thus describes the initial properties of
the material, and predicts the immediate rupture only.

B. Wrinkles

(a) (b)

(c) (d)

FIG. 8. Top: Snapshots from high-speed recordings of an
encapsulated polymer/albumin at two moments during an
acoustic cycle: (a) in the inflated state, and (b) in buck-
led state with wrinkles. Bottom: Numerical simulation of
a fully deflated shell ∆V/V = 0.759 (c) and a shell under re-
inflation ∆V/V = 0.234 (d). The shell has a relative thickness
d/R = 3/

√
γ = 0.0385.

A high-speed recording of the shape of the shell pre-
viously studied reveals an interesting pattern during the
bubble compression (see pictures of figure 8). The record-
ings were performed with the camera Brandaris31, under
insonification at f = 1.7 MHz, and an acoustic pressure
of 0.3 MPa (mechanical index of 0.22) for a few cycles.
Wrinkles appear around an indentation, which is a ma-
terialization of the fact that the surface prefers to fold
rather than to compress. The number of wrinkles that
can be observed suggests that bubbles hold 6 wrinkles at
maximum. Smaller numbers appear during re-inflation.

The comparison with numerical results presented in
section II.B.3 indicates, using Eq. 8, a relative thickness
in the range d/R ≃ 0.02.

C. Other destruction experiments

Rupture experiments of solid shells were also per-
formed by32 with 100 nm thick polymeric shells, with
a radius 1.45 µm (d/R = 0.069). For these thin shells it
is very likely that they buckle before rupture, and indeed
they exhibit a ’nonspherical shape’ (quoting the descrip-
tion of32). The average number of wrinkles associated to
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this shell thickness is 4 according to Eq. 8, a number that
could be seen in figure 3-e of32, a statement that should
be taken with caution because of the limited resolution.

VI. SUMMARY AND PERSPECTIVES

In this manuscript, simulations of thin elastic shells
showed that the inner pressure difference suddenly drops
after buckling and then plateaus, which is a totally unex-
pected result allowing very practical simplifications when
modeling the deflation of elastic spherical surfaces. The
amplitude of the drop in pressure and the appearance of
wrinkles is quantified.

We translated this behavior in a model with three
states, elastic with a finite ability of resistance of shells
to compression, buckled above threshold in compression
with a vanishing pressure resistance, and finally ruptured
when bubble expansion is too large. We expressed these
behavior in terms of effective membrane tension rather
than pressure, to stress out the shell properties.

The oscillating bubble model provides a threshold in
acoustic amplitude for buckling, which can be simply pre-
dicted from the static values. The acoustic threshold for
rupture occurs at lower amplitudes than expected from
the static prediction: indeed bubbles oscillate violently
because of periodic buckling, and the inertia helps in cre-
ating membrane tensions.

The model can be used to describe the experimental
data for the buckling and rupture thresholds. The ap-
pearance of wrinkles is a side effect that we also use to
have an estimation of the shell thickness: the thinner
the shell, the larger the number of wrinkles are to be
expected.

Perspectives of this present work include a compari-
son of the model with other shells with different material
properties, in order to confirm the validity of the predic-
tion for the critical buckling pressure. On the theoretical
side, a more precise description of 3D dynamics of the
shape during the oscillations would be helpful to set the
limits of the approximation of a shape independent dy-
namic model, where only the bubble volume is modeled.
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APPENDIX A: LINK BETWEEN BULK AND 2D MODEL

ELASTIC PARAMETERS

In the linear approximation, the constitutive relation
between the deformation and stress tensors (resp. ε and
σ) of an isotropic material is the Hooke’s law29:

ε =
1

2G
σ − 1

2G

ν

1 + ν
Tr

(

σ
)

I,

where G is the material’s shear modulus, and ν the
Poisson ratio. For a flat thin sheet, e.g. in the xy plane,
a deformation is called “longitudinal” when σiz = 029.
In order to model such a thin sheet by a surface, we may

consider the constraint σ =





−P‖ 0 0
0 −P‖ 0
0 0 0



, acting as

an isotropic 2D “pressure”, and compare the deforma-
tion energy E/vol. unit. = 1

2 σ : ε to the 2D expression:

E/surf. unit = 1
2 χ2D

(

∆A
A

)2
. This provides, at first-order,

the link between a 2D and a 3D description:

χ2D =
1 + ν

1 − ν
G d (A1)

where d is the sheet thickness. A similar calculation
shows that the equivalent 2D Poisson ratio in such a lon-
gitudinal deformation boils down to its three dimensional
counterpart:

ν2D = ν.

When the normal stresses cannot be neglected any
more compared to tangential stresses, a correction δd on
the thickness d has to be taken into account in this lin-
ear model when linking 2D and 3D parameters. One can
show that δd = ν

2(1−ν)
R0

G (Pext−Pint). The relative error

done in equation A1 by considering the deformation as

longitudinal is then δd
d = ν d

R
∆Ppost−buckling

m

∆Pbuckling
m

. With simu-

lations indicating ∆P post−buckling
m of order 0.1∆P buckling

m

(cf figure 2) and d
R = 0.04 as a maximum value, one

sees that this correction, of order 1% in this paper, is
negligible.

APPENDIX B: PREDICTION OF PRESSURE AFTER

BUCKLING

After buckling, an inverted cap appears on the shell.
From the expression of the energy of a small cap (using

eq. (5) and (6) in26 in which we insert d = 3
√

κ
χ2D

), and

the model26 leads to:

∆P post−buckling
m = − 3

4
√

2
G

(

d

R

)5/2 (

∆V

V

)−1/4

which writes, with 2D parameters:

∆P post−buckling
m = −

(

3

2

)
5
2 χ

1
4

2Dκ
3
4

R
5
2

(

∆V

V

)−1/4

Or, using G ∝
√

χ3
2D/κ to adimensionalize:

∆P post−buckling
m

G
∝

(

∆V

V

)−1/4

γ−5/4

On the other hand, it was shown theoretically (resp.
numerically) that the ∆V

V values at buckling scale with

a power 3
5 (resp. 0.55) of γ26. This leads an expected
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variation of
∆Ppost−buckling

m

G that is a power-law of d
R with

an exponent between 2.2 and 2.25.

When re-inflating the shell after this buckling, an hys-
teresis can be observed, compatible with the first-order
nature of the deformation, indicated by the pressure dis-
continuity.
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