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We show that it is possible to generate an infinite set of solvable rational extensions from every
exceptional first category translationally shape invariant potential. This is made by using Darboux-

Bäcklund transformations based on unphysical regular Riccati-Schrödinger functions which are ob-
tained from specific symmetries associated to the considered family of potentials.

PACS numbers:

I.

II. INTRODUCTION

In the recent years, several notable progresses have been made in the research and characterization of new closed-
form exactly solvable systems in quantum mechanics [4–21]. The obtained systems are regular rational extensions
of some shape-invariant potentials [1–3] and are associated to families of exceptional orthogonal polynomials (EOP)
built from the Laguerre or Jacobi classical orthogonal polynomials. In all the considered cases, the initial potentials
belong to the second category (as defined in [22]) of primary translationally shape-invariant potentials (TSIP): the
extended potentials of the J1 and J2 series (associated to the Jacobi EOP) are obtained from the generic second
category potentials (Darboux-Pöschl-Teller or Scarf of the hyperbolic or trigonometric types), as for the extended
potentials of the L1, L2 and L3 series, they are obtained from the unique exceptional second category potential which
is the isotonic one.
If we except the specific case of the harmonic oscillator which has been extensively treated [4, 20, 23–27], the solvable

extensions of first category potentials have been much less studied. Refering to the classification established in [22],
the exceptional first category primary TSIP are the one-dimensional harmonic oscillator (HO), the Morse potential
and the effective radial Kepler-Coulomb (ERKC) system, whereas the generic first category primary TSIP include the
trigonometric and hyperbolic Rosen-Morse potentials as well as the Eckardt potential. A general study of the possible
extensions of a large number of exactly solvable potentials from the point of view of conditionally solvable potentials
has been made by Junker and Roy [35]. The case of the Morse potential has been also considered by Gomez-Ullate
et al [4] who have determined the algebraic deformations of this system which are solvable by polynomials.
In [21] we have developped a new approach which allows to generate an infinite set of regular exactly solvable

extensions starting from every TSIP in a very direct and systematic way without taking recourse to any ansatz. This
approach is based on a generalization of the usual SUSY partnership built from excited states. The corresponding
Darboux-Bäcklund Transformations (DBT), which are covariance transformations for the class of Riccati-Schrödinger
(RS) equations [22], are based on regularized RS functions which are obtained by using discrete symmetries acting
on the parameters of the considered family of potentials. Considering the isotonic oscillator, we have obtained the
three infinite sets L1, L2 and L3 of regular rationally solvable extensions of this potential and have given a simple
and transparent proof of the shape-invariance of the potentials belonging to the L1 and L2 series. In the present
paper we show that the same approach can be applied to generate infinite towers of solvable rational extensions from
every exceptional first category potential. As shown in [22], the first category primary TSIP can be reduced into a
harmonic one by a change of the variable which satisfies a constant coefficient Riccati equation. The exceptional cases
correspond to the cases where this equation degenerates into a linear equation or a Riccati equation with a double
root in the right-hand member, namely the HO, the Morse and ERKC potentials. In this cases the bound states are
expressible in terms of generalized Laguerre Polynomials (GLP) [1, 2].
The paper is organized as follows. After recalling briefly the basic elements of our approach, we test its efficiency on

the simple and exhaustively studied case of one-dimensional HO, retrieving very simply the results already obtained
in [4, 20, 23–27]. In the second and third parts, we treat successively the Morse and ERKC systems, building the
associated towers of solvable regular extensions and characterizing their eigenstates. For the Morse potential we
recover the algebraic deformations described by Gomez-Ullate et al [4], the extensions being not strictly isospectral
to the primary potential. For the ERKC potential we obtain two disctinct regimes with respect to the value of the
”angular momentum” parameter. In the first regime the extensions are strictly isospectral to the primary potential
whereas in the second regime they are not.
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Contrarily to the case of the second category potentials the extensions of the exceptional first category potentials
do not inherit of the shape invariance properties of the primary potential.

III. DARBOUX-BÄCKLUND TRANSFORMATIONS (DBT) AND REGULAR EXTENSIONS

A. General scheme

Consider a family of one-dimensional hamiltonians indexed by a multiparameter a

Ĥ(a) = −d2/dx2 + V (x; a), a ∈ R
m, x ∈ I ⊂ R

If ψλ(x; a) is an eigenstate of Ĥ(a) associated to the eigenvalue Eλ(a), then its logarithmic derivative wλ(x; a) =
−ψ′

λ(x; a)/ψλ(x; a), that we will call a Riccati-Schrödinger (RS) function, satisfies a particular Riccati equation of
the following form

− w′

λ(x; a) + w2
λ(x; a) = V (x; a)− Eλ(a). (1)

Eq(1) is called the Riccati-Schrödinger (RS) equation [22] for the level Eλ(a). The RS function wλ(x; a) presents
a simple pole at each node of the eigenstates ψλ(x; a).
It is a well-known fact that the set of general Riccati equations is invariant under the group G of smooth SL(2,R)-

valued curves Map(R, SL(2,R)) [28, 29]. The particular of Riccati-Schrödinger equations is, as for it, preserved by
a specific subset of G. These transformations, called Darboux-Bäcklund Transformations (DBT), are build from any
solution wν(x; a) of the initial RS equation Eq(1) as [22, 28, 29]

wλ(x; a)
A(wν)→ w

(ν)
λ (x; a) = −wν(x; a) +

Eλ(a)− Eν(a)

wν(x; a)− wλ(x; a)
, (2)

where Eλ(a) > Eν(a). Then w
(ν)
λ is a solution of the RS equation:

− w
(ν)′
λ (x; a) +

(
w

(ν)
λ (x; a)

)2
= V (ν)(x; a)− Eλ(a), (3)

with the same energy Eλ(a) as in Eq(1) but with a modified potential

V (ν)(x; a) = V (x; a) + 2w′

ν(x; a). (4)

The corresponding eigenstate of Ĥ(ν)(a) = −d2/dx2 + V (ν)(x; a) can be written

ψ
(ν)
λ (x; a) = exp

(
−
∫
dxw

(ν)
λ (x; a)

)
∼ 1√

Eλ (a)− Eν(a)
Â (wν)ψλ(x; a), (5)

where Â (a) is a first order operator given by

Â (wν) = d/dx+ wν(x; a). (6)

From V , the DBT generates a new potential V (ν) (quasi) isospectral to the original one and its eigenstates are
directly obtained from those of V via Eq(5). If the initial system is exactly solvable, which is the case of the
translationally shape invariant potentials (TSIP), this scheme allows to build new exactly solvable potentials.
Nevertheless, in general, wν(x; a) and then the transformed potential V (ν)(x; a) are singular at the nodes of ψν(x; a).

For instance, if ψn(x; a) (ν = n) is a bound state of Ĥ(a), V (n) is regular only when n = 0, that is when ψn=0 is

the ground state of Ĥ , and we recover the usual SUSY partnership in quantum mechanics. Starting from an excited
state, that is for n ≥ 1, the transformed potential presents exactly n second order poles and a priori we cannot use
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A (wn) to build a regular potential. We can however envisage to use any other regular solution of Eq(1) as long as it
has no zero on the considered real interval I, even if it does not correspond to a physical state. As shown in the case
of the isotonic oscillator, we can obtain such solutions by using specific discrete symmetries Γa which are covariance
transformations for the considered family of potentials. Γa acts on the parameters of the potential and transforms
the RS function of a physical eigenstate wn into a non singular but unphysical RS function vn(x; a) = Γa (wn(x; a))

associated to the eigenvalue Ẽn(a) = Γa (En(a)). For a solvable TSIP, wn and vn are known in closed form and the
regular extended potential (see Eq(4) and Eq(5))

Ṽ (n)(x; a) = V (x; a) + 2v′n(x; a) (7)

is then (quasi) isospectral to V (x; a) with eigenstates given by (see Eq(2))





w
(n)
λ (x; a) = −vn(x; a) + Ek(a)−Ẽn(a)

vn(x;a)−wk(x;a)

ψ
(n)
k (x; a) = exp

(
−
∫
dxw

(n)
k (x; a)

)
∼ 1√

Ek(a)−Ẽn(a)
Â (vn)ψk(x; a)

, (8)

for the energy Ek(a).
Interestingly, such combinations of Darboux-Bäcklund transformations and discrete symmetries appears as natural

covariance groups for Painlevé equations [30]. Very recently another type of discrete symmetries have been also
considered by Plyushchay et al [31, 32] in a different context.

B. One dimensional harmonic oscillator

To illustrate this general scheme we consider the well studied example [4, 20, 23–27] of the 1D HO which is simplest
exceptional first category TSIP. The corresponding potential with zero ground level (E0(ω) = 0) is given by

V (x, ω) =
ω2

4
x2 − ω

2
. (9)

Its spectrum is well known

En (ω) = nω; ψn (x) ∼ Hn

(√
ω/2x

)
exp

(
−ωx2/4

)
(10)

and the corresponding RS functions wn(x) can be written as terminating continued fractions [22] as

wn(x, ω) = w0(x, ω) +Rn(x, ω), (11)

where
{

w0(x, ω) =
ω
2 x

Rn(x, ω) = − nω
ωx− � ... � (n−j+1)ω

ωx− � ... � 1
x = −

(
logHn

(√
ω/2x

))′
.

(12)

The unique parameter transformation which preserves the functional form V (x, ω) is the ω inversion

ω
Γω→ (−ω) ,

{
V (x;ω)

Γω→ V (x;ω) + ω

wn(x;ω)
Γω→ vn(x;ω) = wn(x;−ω),

(13)

vn(x;ω) satisfying

− v′n(x;ω) + v2n(x;ω) = V (x;ω)− E−(n+1) (ω) , (14)

that is, En (ω)
Γω→ E−(n+1) (ω). From Eq.(11) and Eq.(12) we deduce

vn(x;ω) = v0(x;ω) +Qn(x;ω), (15)
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with

v0(x;ω) = −ω
2
x (16)

and

Qn(x;ω) = − nω

ωx+
� ... �

(n− j + 1)ω

ωx+
� ... �

1

x
(17)

= −
(
logHn

(
i
√
ω/2x

))′
.

Clearly, Qn(x;ω) does not present any singularity on the real line, except possibly one at the origin. Indeed the
terminating continued fraction has only positive terms which implies that there is no positive singularity and then,
since the potential has a even parity, any singularity on the whole real axis, except one at the origin when the
number n of denominators is odd. This can be recovered more directly from the expression of Qn in terms of Hermite
polynomials of imaginary argument since the Hermite polynomials have all their zeros on the real line, with a zero at
the origin for odd n. Using the correspondence between Hermite and Laguerre polynomials given by

Hn

(
i
√
ω/2x

)
=

{
(−1)

m
22mm!L

−1/2
m

(
−ωx2/2

)
, n = 2m

(−1)m 22m+1m!i
√
ω/2xL

1/2
m

(
−ωx2/2

)
, n = 2m+ 1,

(18)

the regularity properties of are direct consequences of the Kienast-Lawton-Hahn theorem [33, 34] which establishes
Kienast-Lawton-Hahn’s Theorem

Suppose that α /∈ {−n, ...,−1}. Then L
(α)
n (z) admits

1) n positive zeros if α > −1
2) n+ [α] + 1 positive zeros if −n < α < −1 ([|α|] means the integer part of α)
3) No positive zero if α < −n

The number of negative zeros is always 0 or 1.
1) 0 if α > −1
2) 0 if −2k − 1 < α < −2k and 1 if −2k < α < −2k + 1, with −n < α < −1
3) 0 if n is even and 1 if n is odd, with α < −n

Only when α ∈ {−n, ...,−1} , we have a zero of L
(α)
n (z) at the origin with multiplicity |α|. If α decreases

through an odd value in {−n, ...,−1}, a negative zero is gained and a positive one is lost. If the crossed value is even,
simultaneously two zeros, one negative and one positive, disappear.
Applying the DBT A (vn) to wk (see Eq(2)), we obtain

wk(x;ω)
A(vn)→ w

(n)
k (x;ω) = −vn(x;ω) +

En+1+k(ω)

vn(x;ω)− wk(x;ω)
, (19)

where w
(n)
k (x;ω) is an RS function at energy Ek(ω) for the extended potential

V (n)(x;ω) = V (x;ω) + 2v′n(x;ω) = V (x;ω)− ω + 2Q′

n(x;ω). (20)

We recover here the results obtained in [4, 20, 23–27]. In particular, for n = 1 Ṽ (1)(x) is the l = 1 isotonic potential

V (1)(x;ω) = V (x;ω)− ω +
2

x2
=
ω2

4
x2 +

2

x2
− 3ω

2
(21)

and for n = 2, V (2)(x;ω) is the CPRS [27] potential

V (2)(x;ω) =
ω2

4
x2 + 4ω

ω2x2 − 1

(ω2x2 + 1)2
− 3

2
ω. (22)
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For every n ≥ 0, V (n)(x;ω) is (quasi)isospectral to V (x;ω)

V (n)(x;ω) ≡
iso

V (x;ω). (23)

and regular on the real line R if n is even and on the positive half real line R+∗ if n is odd. To keep the same definition
domain for the initial and extended potentials, we then must consider only even values of n = 2m.
The isospectrality established above is not strict. Indeed, we have clearly

v′n(x;ω) + v2n(x;ω) = V (n)(x;ω)− E−(n+1) (ω) , (24)

that is, −vn(x;ω) is a regular RS function for the extended potential V (n)(x;ω), associated to the eigenvalue
E−(n+1) (ω) < 0. Then

ψ
(2m)
− (x;ω) ∼ exp

(
+

∫
v2m(x;ω)dx

)
=

exp
(
−ωx2

4

)

H2m

(
i
√
ω/2x

) ∼
exp

(
−ωx2

4

)

L
−1/2
m (−ωx2/2)

(25)

is a physical eigenstate of Ĥ(2m) and more precisely its fundamental state. Consequently the superpartner of the
extended potential V (2m)(x;ω) is

Ṽ (2m)(x;ω) = V (2m)(x;ω)− 2v′2m(x;ω) = V (x;ω), m ≥ 1 (26)

and we recover the fact that the DBT A (vn) is a backward SUSY partnership.

The eigenfunctions of Ĥ(2m)(ω) = −d2/dx2 + V (2m)(x;ω) corresponding to the energies Ek(ω) are given by

ψ
(2m)
k (x;ω) = exp

(
−
∫
dxw

(2m)
k (x; a)

)
∼ 1√

E2m+1+k(ω)
Â (v2m)ψk(x;ω), (27)

that is, using Eq(18)

ψ
(2m)
k (x;ω) ∼ P(m,k)(x)

exp
(
−ωx2/4

)

L
−1/2
m (−ωx2/2)

, (28)

where the polynomials

P(m,k)(x) =
1

2
L−1/2
m

(
−ωx2/2

)
Hk+1

(√
ω/2x

)
+
√
ω/2xL

1/2
m−1

(
−ωx2/2

)
Hk

(√
ω/2x

)
(29)

of respective degrees 2m+ k+1 constitute, with the constant 1, an orthogonal family on the real line with respect to
the weight

wm(x) =
exp

(
−ωx2/2

)
(
L
−1/2
m (−ωx2/2)

)2 . (30)

Note that for k = 2l, l ∈ N, we have

P(m,2l)(x) ∼
√
ω/2x

(
L−1/2
m

(
−ωx2/2

)
L
1/2
l

(
ωx2/2

)
+ L

1/2
m−1

(
−ωx2/2

)
L
−1/2
l

(
ωx2/2

))
(31)

=
√
ω/2xL

1/2
l

(
ωx2/2

)

where L
1/2
l (z) is an EOP of the L1 series [7]. This is coherent with the fact that the 1D HO on is obtained as the

singular limit at a→ 0 of the isotonic potential
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V (x;ω, a) =
ω2

4
x2 +

a(a− 1)

x2
− ω

(
a+

1

2

)
. (32)

For a > 0 the presence of the centrifugal barrier restricts the definition domain to the positive half line x > 0 and
the energy spectrum include only the level Ek (ω) = kω associated to an even quantum number k = 2l. The L1 series
of rational extensions of V (x;ω, a) is then built using DBT based on RS functions actually regularized via the same
ω inversion Γω that we used above for the HO [21].
Finally, for the odd values of the quantum number k = 2l+ 1 we can write

P(m,2l+1)(x) ∼ (l + 1)L−1/2
m

(
−ωx2/2

)
L
−1/2
l+1

(
ωx2/2

)
−
√
ω/2xL

1/2
m−1

(
−ωx2/2

)
L
1/2
l

(
ωx2/2

)
. (33)

IV. MORSE POTENTIAL

The Morse potential with zero ground level (E0(a, b) = 0) is the second exceptional primary TSIP of the first
category [22]. It is given by [1, 2, 36]

V (y; a, b) = b2y2 − 2
(
a+

α

2

)
by + a2, a, b > 0 (34)

where y = exp (−αx) > 0, x ∈ R. It possesses exactly [a] bound states ( [a] being the integer part of a) which are
given by

ψn (x; a, b) ∼ ya/α−ne−by/α
L
2(a/α−n)
n (2by/α), n ∈ {0, ..., [a]− 1} , (35)

with the corresponding energies En(a) = a2 − a2n, where ak = a− kα.
In terms of the y variable, the associated RS equation is

αyw′

n(y; a, b) + w2
n(y; a, b) = V (y; a, b)− En (a) (36)

and its solutions associated to the physical eigenstates Eq(35) are

wn(y; a, b) = w0(y; a, b) +Rn(y; a, b), (37)

where

w0(y; a, b) = −by + a (38)

and

Rn(y; a, b) = − En (a)

a+ a1 − 2by− � ... �
En (a)− Ej−1 (a)

aj−1 + aj − 2by− � ... �
En (a)− En−1 (a)

an−1 + an − 2by
(39)

= −nα+ αy
(
logL2(a/α−n)

n (2by/α)
)′
.

The only parameters transformation under which the Morse potential Eq(34) is covariant, is

(a, b)
Γa,b→


−a− 1︸ ︷︷ ︸

−a−1

,−b


 ,

{
V (x; a, b)

Γa,b→ V (x; a, b)− E−1 (a)

wn(x; a, b)
Γa,b→ vn(x; a, b) = wn(x;−a−1,−b),

(40)

where
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αyv′n(y; a, b) + v2n(y; a, b) = V (y; a, b)− E−(n+1) (a) , (41)

since ak
Γa,b→ a−(k+1) and En (a)

Γa,b→ a2−1 − a2
−(n+1) = E−(n+1) (a)− E−1 (a).

From Eq.(38) and Eq.(39), we deduce

vn(x; a, b) = v0(x; a, b) +Qn(x; a, b), (42)

where

v0(y, a, b) = by − a−1 (43)

and

Qn(y, a, b) = −
E−(n+1) (a)− E−1 (a)

− (a−1 + a−2) + 2by− � ... �
E−(n+1) (a)− E−j (a)

− (a−j + a−j−1) + 2by− � ... �
E−(n+1) (a)− E−n (a)

− (a−n + a−n−1) + 2by
(44)

= −nα+ αy
(
logL−2(a/α+1+n)

n (−2by/α)
)′
.

The Kienast-Lawton-Hahn’s theorem ensures that for even values of n, Qn(y, a, b) and then vn(x; a, b) are regular
for every y > 0, that is, every x ∈ R. Applying the DBT A (vn) (see Eq(2)) to wk gives

wk(x; a, b)
A(vn)→ w

(n)
k (x; a, b) = −vn(x; a, b) +

Ek (a)− E−(n+1) (a)

vn(x; a, b)− wk(x; a, b)
, (45)

where w
(n)
k (x;ω) satisfies

− w
(n)′
k (x; a, b) +

(
w

(n)
k (x; a, b)

)2
= V (n)(x; a, b)− Ek (a) , (46)

with

V (n)(x; a, b) = V (x; a, b) + 2v′n(x; a, b) = V (y; a−1, b) + E−1 (a)− 2αyQ′

n(y; a, b). (47)

In the following we consider the case where n takes even values n = 2m. V (2m)(x; a, b) is then regular on the
positive half line and isospectral to V (x; a, b)

V (2m)(x; a, b) ≡
iso

V (x; a, b) (48)

Again, as in the preceding case, the isospectrality is not strict since

v′n(x; a, b) + v2n(x; a, b) = V (2m)(x; a, b)− E−(n+1) (a) , (49)

that is, −vn(x; a, b) is a regular RS function for the extended potential V (2m)(x; a, b), associated to the eigenvalue
E−(n+1) (a) < 0. The asymptotic behaviour of the corresponding eigenstate is

ψ
(2m)
− (x; a, b) = exp

(
+

∫
v2m(x; a, b)dx

)
∼

x→±∞
e−(a+(2m+1)α)x exp

(
− b

α
e−αx

)
(50)

from which we deduce that ψ
(2m)
− is the fundamental state for H(2m). The superpartner of the extended potential

V (2m)(x; a, b) = V (x; a, b) + 2v′2m(x; a, b) is then defined as
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Ṽ (2m)(x; a, b) = V (2m)(x; a, b) + 2 (−v′2m(x; a, b)) = V (x; a, b), n ≥ 1 (51)

and the DBT A (v2m) is a backward SUSY partnership. We recover here the results obtained by Gómez-Ullate,
Kamran and Milson [4] in a different way.

The excited physical eigenstate of Ĥ(2m)(a, b) = −d2/dx2 + V (2m)(x; a, b) at the energy Ek (a) , k ≥ 0, is given by
(see Eq(8))

ψ
(2m)
k (x; a, b) = exp

(
1

α

∫
dy
w

(2m)
k (y; a, b)

y

)
∼ 1√

Ek (a)− E−(2m+1) (a)
Â (v2m)ψk(x; a, b). (52)

Inserting Eq(43), Eq(44) and Eq(35) into Eq(52) and using the following identities for GLP

{
L
(β)
n (z) + L

(β+1)
n−1 (z) = L

(β+1)
n (z)

zL
(β+1)
n−1 (z) = (n+ β)L

(β)
n−1 (z)− nL

(β)
n (z) ,

(53)

we obtain (in order to simplify the expressions we fix the x scale such that α = 1)

ψ
(2m)
k (x; a, b) ∼M

(2m)
a,k (z)

za−ke−z/2

L
−2(a+1+2m)
2m (−z)

, ψ
(2m)
− (x; a, b) ∼ za+1+2me−z/2

L
−2(a+1+2m)
2m (−z)

(54)

where z = 2by and

M
(2m)
a,k (z) = 2 (m+ a+ 1)L

−2(a+2m+1)
2m−1 (−z)L2(a−k)

k (z)− (k + 1)L
2(a−k)
k+1 (z)L

−2(a+2m+1)
2m (−z) (55)

which is a polynomial of degree 2m+ k + 1 with

M
(2m)
a,k (0) = − (2a+ 2m+ 2)2m (2a− 2k + 1)k

(2m)!k!
, (56)

(a)n being the usual Pochhammer function (a)n = a(a+ 1)...(a+ n− 1) [34].

From the orthonormality conditions < ψ
(2m)
k (x; a, b) | ψ(2m)

k′ (x; a, b) >= δk,k′ we deduce that the polynomials

{
B

(2m)
− (z, a) = 1

B
(2m)
k (z, a) = zk+2m+1M

(2m)
a,k

(
1
z

)
, k ∈ {0, ..., [a]− 1} ,

(57)

are orthogonal on the positive half line with respect to the weight

w(2m) (z, a) =
e−1/z

z2(a+2m)+3
(
L
−2(a+1+2m)
2m (−1/z)

)2 . (58)

V. RADIAL EFFECTIVE KEPLER-COULOMB

The effective radial Kepler-Coulomb (ERKC) potential with zero ground level (E0(a) = 0) is the third and last
exceptional primary TSIP of the first category [22]. It is defined on the positive half line as

V (x; a) =
a(a− 1)

x2
− γ

x
+ V0 (a) , γ > 0, a > 1 (59)

where x > 0 and V0 (a) = γ2/4a2.
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Its bound states are given by

ψn (x; a) = exp

(
−
∫
dxwn(x; a)

)
∼ xae−γx/2anL

(2a−1)
n (γx/an), n ≥ 0, (60)

with the corresponding energies En(a) = V0 (a)− V0 (an), where ak = a+ k.
The associated RS equation is

− w′

n(x; a) + w2
n(x; a) = V (x; a)− En (a) (61)

The solutions of eq(61) corresponding to the physical eigenstates are given by

wn(x; a) = w0(x; a) +Rn(x; a), (62)

where

w0(x; a) = −a
x
+ γ/2a (63)

and

Rn(y; a) = − En (a)

w0(x; a) + w0(y; a1)−
� ... �

En (a)− Ej−1 (a)

w0(x; aj−1) + w0(x; aj)−
� ... �

En (a)− En−1 (a)

w0(x; an−1) + w0(x; an)
(64)

=
γ

2an
− γ

2a
−
(
log
(
L
(2a−1)
n (γx/an)

))′
.

The only covariance transformation for the ERKC potentials is given by

a
Γa→ 1− a︸ ︷︷ ︸

−a−1

,

{
V (x; a)

Γa→ V (x; a) − E−1 (a)

wn(x; a)
Γa→ vn(x; a) = wn(x;−a−1),

(65)

with

ak
Γa→ 1− a+ k = −a−(k+1), En (a)

Γa→ γ2/4

(
1

a2
−1

− 1

a2
−(n+1)

)
= E−(n+1) (a)− E−1 (a) . (66)

We then have

− v′n(x; a) + v2n(x; a) = V (x; a)− E−(n+1) (a) (67)

and from Eq.(63) and Eq.(64), we deduce

vn(x; a) = v0(x; a) +Qn(x; a), (68)

where

{
v0(x, a) =

a−1

x − γ
2a−1

Qn(x, a) = − γ
2a−(n+1)

+ γ
2a−1

−
(
log
(
L
(1−2a)
n (−γx/a−(n+1))

))′
.

(69)

If the argument of the GLP is positive, that is, if a < n+1 the Kienast-Lawton-Hahn theorem ensures that Qn(x, a)
is regular for x > 0 if 1− 2a < −n, that is, if

n+ 1

2
< a < n+ 1 (70)
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Another possibility to ensure the regularity of Qn(x, a) is to consider values of a such that a > n + 1, where the
argument of the GLP is now negative. From the Kienast-Lawton-Hahn theorem, we then deduce that in this case for
each even value of n = 2m, Q2m(x, a) is regular.
The DBT A (vn) applied to wk gives

wk(x; a)
A(vn)→ w

(n)
k (x; a) = −vn(x; a) +

Ek (a)− E−(n+1) (a)

vn(x; a) − wk(x; a)
, (71)

where w
(n)
k (x; a) satisfies

− w
(n)′
k (x; a) +

(
w

(n)
k (x; a)

)2
= V (n)(x; a) − Ek (a) , (72)

with

V (n)(x; a) = V (x; a) + 2v′n(x; a) = V (x; a−1) + E−1 (a) + 2Q′

n(x; a). (73)

In the cases where

{
n+1
2 < a < n+ 1 (i)

n = 2m, a > n+ 1, (ii)
(74)

V (n)(x; a) is regular on the positive half line and isospectral to V (x; a)

V (n)(x; a) ≡
iso

V (x; a). (75)

We have also

v′n(x; a) + v2n(x; a) = V (n)(x; a) − E−(n+1) (a) , (76)

that is, −vn(x; a) is a regular RS function for the extended potential V (n)(x; a), associated to the eigenvalue
E−(n+1) (a) < 0, when n+1

2 < a. Moreover

ψ
(n)
− (x; a) = exp

(
+

∫
vn(x; a)dx

)
∼
xa−1 exp

(
− γ

2a−(n+1)
x
)

L
(1−2a)
n (−γx/a−(n+1))

. (77)

In the case (ii) (see Eq.(74)), a−(2m+1) > 0 and ψ
(2m)
− is a physical eigenstate for Ĥ(2m) with the lowest eigenvalue.

In other words, ψ
(2m)
− is the fundamental state for Ĥ(2m) and, as for the two preceding exceptional primary TSIP of

the first category, the isospectrality is not strict. On the other hand, in the case (i) (a−(n+1) < 0), ψ
(n)
− is not in the

physical spectrum and in this regime the isospectrality between Ĥ(n) and Ĥ becomes strict.
Consider first the case (ii). The superpartner of the extended potential V (2m)(x; a) = V (x; a) + 2v′2m(x; a) is given

by

Ṽ (2m)(x; a) = V (2m)(x; a) + 2 (−v′2m(x; a)) = V (x; a) (78)

and the DBT A (v2m) corresponds to a backward SUSY partnership.

The fundamental eigenstate of Ĥ(2m)(a) = −d2/dx2 + V (2m)(x; a) at the energy E−(2m+1) (a) is

ψ
(2m)
− (x; a) ∼

xa−1 exp

(
− γx

2|a−(2m+1)|

)

L
(1−2a)
2m (−γx/

∣∣a−(2m+1)

∣∣)
(79)
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and the excited eigenstates at energy Ek (a) , k ≥ 0 are (see Eq.(5))

ψ
(2m)
k (x; a) ∼ 1√

Ek (a)− E−(2m+1) (a)
Â (v2m)ψk(x; a), (80)

that is,

ψ
(2m)
k (x; a) ∼ xa−1e−γx/2ak

N
(2m)
a,k (x)

L
(1−2a)
2m (−γx/

∣∣a−(2m+1)

∣∣)
, (81)

where

N
(n)
a,k (x) = (1− 2a)L

(2a−1)
k (γx/ak)L

(1−2a)
n (−γx/a−(n+1)) (82)

+

(
a− n+ 1

2

)
L
(2a−1)
k (γx/ak)L

(−2a)
n (−γx/a−(n+1)) +

(
a+

k − 1

2

)
L
(2a−2)
k (γx/ak)L

(1−2a)
n (−γx/a−(n+1))

+
k + 1

2
L
(2a−1)
k+1 (γx/ak)L

(1−2a)
n (−γx/a−(n+1))−

n+ 1

2
L
(2a−1)
k (γx/ak)L

(−2a)
n+1 (−γx/a−(n+1)),

is a polynomial of degree n+ k+1. From the orthonormality condition of the eigenstates of Ĥ(2m)(a) we obtain that

the functions C
(2m)
− (x, a) = 1 and

C
(2m)
k (x, a) = e−γx/2akN

(2m)
a,k (x) , k ≥ 0, (83)

constitute an orthogonal family on the positive half line with respect to the weight

w(2m) (x, a) =
x2(a−1)

(
L
(1−2a)
2m (−γx/

∣∣a−(2m+1)

∣∣)
)2 . (84)

In the case (i), the situation is quite different since the ground state of V (n) is associated to the RS function

w
(n)
0 (x; a) and the superpartner of the extended potential V (n)(x; a) is now given by

Ṽ (n)(x; a) = V (n)(x; a) + 2w
(n)′
0 (x; a), n ≥ 0, (85)

as for the L1 and L2 extensions of the isotonic oscillator [21] but in the ERKC case V (n) does not inherit of the shape
invariance properties of the initial TSIP.

The physical eigenstates for the energies Ek (a) , k ≥ 0 of Ĥ(n)(a) are given by

ψ
(n)
k (x; a, γ) ∼ xa−1e−γx/2ak

N
(n)
a,k (x)

L
(1−2a)
n (γx/

∣∣a−(n+1)

∣∣)
, (86)

and the functions

C
(n)
k (x, a) = e−γx/2akN

(n)
a,k (x) , k ≥ 0, (87)

are orthogonal on the positive half line with respect to the weight

w(n) (x, a) =
x2(a−1)

(
L
(1−2a)
n (γx/

∣∣a−(n+1)

∣∣)
)2 . (88)
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VI. CONCLUSION

In this paper we have shown that the method previously developed for the isotonic potential [21], can be used to
generate in a direct and systematic way the solvable regular rational extensions for all the exceptional first category
TSIP. This approach is based on DBT transformations built from excited states RS functions regularized via the use
of discrete symmetries of the initial potential.
The results are quite different from those obtained for the isotonic oscillator (which is the unique exceptional

second category TSIP). Each exceptional first category TSIP admits only one series of regular rational extensions.
Generally, as for the L3 series of rational extensions of the isotonic potential, it can be obtained only from regularized
excited states associated to even quantum numbers and the DBT can be viewed as a backward SUSY partnership.
The isospectrality is not strict and the spectrum of the extended potential presents a supplementary lower level. The
ERKC potential constitutes an exception since extended potentials can be also obtained from regularized excited states
RS functions associated to odd quantum numbers for some range of values of the ”angular momentum” parameter a.
They are in this case strictly isospectral to the original potential.
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