

A (1)

Giant coercivity of dense nanostructured spark plasma sintered barium hexaferrite

F. Mazaleyrat, A. Pasko, A. Bartok, M. LoBue

SATIE, CNRS, École Normale Supérieure de Cachan

F. Mazaleyrat, A. Pasko, A. Bartok, M. LoBue Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

Introduction

- Features of current hard magnets
- RE subtitutions in hexaferrites
- Nanostructured hexaferrites

2 Synthesis of Ba nano-ferrite

- Sol-gel
- Thermal treatment

3 Results

- X ray diffraction
- electronic microscopy
- Magnetic properties

Conclusion

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

Outline

1 Introduction

• Features of current hard magnets

- RE subtitutions in hexaferrites
- Nanostructured hexaferrites
- 2 Synthesis of Ba nano-ferrite
 - Sol-gel
 - Thermal treatment

3 Results

- X ray diffraction
- electronic microscopy
- Magnetic properties

4 Conclusion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

SmCo Magnets

- High coercivity; high Curie point
- Medium remanence; high cost

< 日 > < 同 > < 三 > < 三 >

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

SmCo Magnets

- High coercivity; high Curie point
- Medium remanence; high cost

NdFeB

- High coercivity; high remanence;
- Low Curie point; medium price.

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

SmCo Magnets

- High coercivity; high Curie point
- Medium remanence; high cost

NdFeB

- High coercivity; high remanence;
- Low Curie point; medium price.

Hexaferrite

- Medium coercivity; low remanence
- Positive thermal coefficient of coercivity; low cost

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

Outline

1 Introduction

- Features of current hard magnets
- RE subtitutions in hexaferrites
- Nanostructured hexaferrites
- 2 Synthesis of Ba nano-ferrite
 - Sol-gel
 - Thermal treatment

3 Results

- X ray diffraction
- electronic microscopy
- Magnetic properties

4 Conclusion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

Image: A mathematical states and a mathem

La and Co substitution in Sr ferrite

Composition

 $Sr_{1-x}La_xFe_{12-y}Co_yO_{19}$

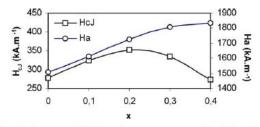


Fig. 1. Anisotropy field H_a and intrinsic coercivity H_{cJ} of $Sr_{1-x}La_x$ $Fe_{12-x}Co_xO_{19}$ ferrite magnets measured at room temperature.

F. Mazaleyrat, A. Pasko, A. Bartok, M. LoBue Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

Outline

1 Introduction

- Features of current hard magnets
- RE subtitutions in hexaferrites
- Nanostructured hexaferrites
- 2 Synthesis of Ba nano-ferrite
 - Sol-gel
 - Thermal treatment

3 Results

- X ray diffraction
- electronic microscopy
- Magnetic properties

4 Conclusion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

Néel or Stoner-Wohlfarth model

- perfectly oriented isotropic magnet $\mu_0 H_C = \frac{2K}{J_S} = \mu_0 H_K = 1.7 \text{ T}$
- isotropic magnet $\mu_0 H_C = 0.48 \mu_0 H_K = 0.85~{\rm T}$ and $J_R = J_S/2 = 0.25~{\rm T}$

(日) (同) (三) (三)

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

Néel or Stoner-Wohlfarth model

- perfectly oriented isotropic magnet $\mu_0 H_C = \frac{2K}{J_s} = \mu_0 H_K = 1.7 \text{ T}$
- isotropic magnet $\mu_0 H_C = 0.48 \mu_0 H_K = 0.85~{\rm T}$ and $J_R = J_S/2 = 0.25~{\rm T}$

Problem

- works not badly loose nano-powders $\mu_0 H_C \gtrsim 0.55~{
 m T}$
- sintering yields grain growth \Rightarrow nucleation field $\mu_0 H_C = \mu_0 H_N = 4\mu_0 \frac{\sqrt{AK}}{J_5 D} \approx 0.25 \text{ T}$

Features of current hard magnets RE subtitutions in hexaferrites Nanostructured hexaferrites

Néel or Stoner-Wohlfarth model

- perfectly oriented isotropic magnet $\mu_0 H_C = \frac{2K}{J_s} = \mu_0 H_K = 1.7 \text{ T}$
- isotropic magnet $\mu_0 H_C = 0.48 \mu_0 H_K = 0.85$ T and $J_R = J_S/2 = 0.25$ T

Problem

- works not badly loose nano-powders $\mu_0 H_C \gtrsim 0.55$ T
- sintering yields grain growth \Rightarrow nucleation field $\mu_0 H_C = \mu_0 H_N = 4\mu_0 \frac{\sqrt{AK}}{J_S D} \approx 0.25 \text{ T}$

Solution

Use spark plasma sintering to densify without grain growth

Sol-gel Thermal treatment

Outline

Introduction

- Features of current hard magnets
- RE subtitutions in hexaferrites
- Nanostructured hexaferrites
- 2 Synthesis of Ba nano-ferrite

Sol-gel

Thermal treatment

3 Results

- X ray diffraction
- electronic microscopy
- Magnetic properties

4 Conclusion

同 ト イ ヨ ト イ ヨ ト

Sol-gel Thermal treatment

sol-gel citrate precursor method

starting material

- High purity iron(III) nitrate + barium hydroxide;
- citric acid \rightarrow molar ratio of citrate to metal ions 2:1.;

- 4 同 ト 4 ヨ ト 4 ヨ ト

Sol-gel Thermal treatment

sol-gel citrate precursor method

starting material

- High purity iron(III) nitrate + barium hydroxide;
- citric acid \rightarrow molar ratio of citrate to metal ions 2:1.;

Iron hydroxide preparation

- Iron(III) nitrate dissolved in water, precipitated with ammonia \rightarrow iron(III) hydroxide
- filtering and washing

Sol-gel Thermal treatment

sol-gel citrate precursor method

starting material

- High purity iron(III) nitrate + barium hydroxide;
- citric acid \rightarrow molar ratio of citrate to metal ions 2:1.;

Iron hydroxide preparation

- Iron(III) nitrate dissolved in water, precipitated with ammonia \rightarrow iron(III) hydroxide
- filtering and washing

Sol-gel

- iron(III) hydroxide dissolved in citric acid at 60-70°C
- barium hydroxide additon
- chelation of metal ions at pH6

Sol-gel Thermal treatment

Outline

Introduction

- Features of current hard magnets
- RE subtitutions in hexaferrites
- Nanostructured hexaferrites

2 Synthesis of Ba nano-ferrite

- Sol-gel
- Thermal treatment

3 Results

- X ray diffraction
- electronic microscopy
- Magnetic properties

Conclusion

同 ト イ ヨ ト イ ヨ ト

Introduction Synthesis of Ba nano-ferrite

Sol-gel Thermal treatment

Compound formation

F. Mazaleyrat, A. Pasko, A. Bartok, M. LoBue Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

Sol-gel Thermal treatment

Compound formation

• evaporation $(80-90^{\circ}C) + drying (150-170^{\circ}C)$

< 🗇 > < 🖃 >

- ∢ ≣ →

Sol-gel Thermal treatment

Compound formation

- evaporation (80-90°C) + drying (150-170°C)
- elimination of organic matter at 450°C for 2 hours in air

- **→** → **→**

Sol-gel Thermal treatment

Compound formation

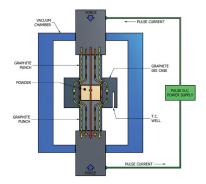
- evaporation (80-90°C) + drying (150-170°C)
- elimination of organic matter at 450°C for 2 hours in air
- calcination in air at different temperatures between 700 and 1000°C

・ 同 ト ・ ヨ ト ・ ヨ

Sol-gel Thermal treatment

Compound formation

- evaporation (80-90°C) + drying (150-170°C)
- elimination of organic matter at 450°C for 2 hours in air
- \bullet calcination in air at different temperatures between 700 and 1000°C
- choice of optimal treatment for smaller grain size fully formed compound \Rightarrow 900°C/1 h



伺 ト イ ヨ ト イ ヨ ト

Sol-gel Thermal treatment

Spark Plasma Sintering

- Heating rate 160 Kmin⁻¹
- Temperature 800°C
- Duration 0 to 20 min
- Cooling rate 160 Kmin⁻¹
- Pressure 50 MPa

- 4 同 2 4 日 2 4 日 2

X ray diffraction electronic microscopy Magnetic properties

Outline

Introduction

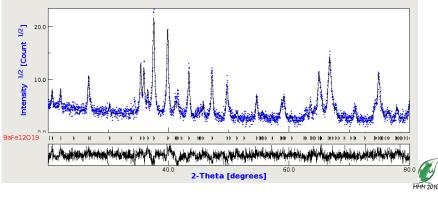
- Features of current hard magnets
- RE subtitutions in hexaferrites
- Nanostructured hexaferrites
- 2 Synthesis of Ba nano-ferrite
 - Sol-gel
 - Thermal treatment

3 Results

• X ray diffraction

- electronic microscopy
- Magnetic properties

Conclusion



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

X ray diffraction electronic microscopy Magnetic properties

Refinement of XRD spectra

- M phase Ba hexaferrite is formed after calcination
- example: sample SPS0 (0 min)

Computation made using Rieveld based MAUD software Computation made using Rieveld based MAUD software Computed and Compute

X ray diffraction electronic microscopy Magnetic properties

Quantitative results of XRD analysis

Sample	Sintering	Lattice constants			Cr. size	Density
Ref.	time (min)	<i>a</i> (nm)	<i>c</i> (nm)	v (nm ³)	<i>D</i> (nm)	(%)
Lit*	single cryst.	0.5892	2.3183	0.6970	-	100
Com^\dagger	coarse grain	0.5893	2.3201	0.6977	>1000	>95
CP	as calcinated	0.5895	2.3219	0.6987	60	-
SPS0	0	0.5888	2.3238	0.6976	70	76
SPS5	5	0.5890	2.3237	0.6981	84	94
SPS13	13	0.5886	2.3222	0.6967	74	88
SPS20	20	0.5889	2.3226	0.6976	77	86

* litterature values from data base

- 4 同 ト 4 ヨ ト 4 ヨ ト

X ray diffraction electronic microscopy Magnetic properties

Outline

Introduction

- Features of current hard magnets
- RE subtitutions in hexaferrites
- Nanostructured hexaferrites
- 2 Synthesis of Ba nano-ferrite
 - Sol-gel
 - Thermal treatment

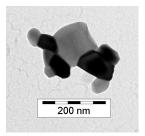
3 Results

• X ray diffraction

electronic microscopy

Magnetic properties

Conclusion

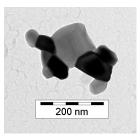


▲ □ ▶ ▲ □ ▶ ▲ □ ▶

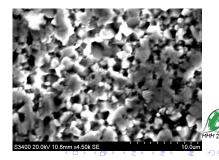
X ray diffraction electronic microscopy Magnetic properties

TEM — Calcinated powder

Particles are nearly equiax with size matching XRD analysis with relatively large distribution (50-200 nm)


▲ 同 ▶ → ● 三

X ray diffraction electronic microscopy Magnetic properties


TEM — Calcinated powder

Particles are nearly equiax with size matching XRD analysis with relatively large distribution (50-200 nm)

SEM — Sintered

The material is composed of 1μ m nano-grains with several 100 nm pores

Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

X ray diffraction electronic microscopy Magnetic properties

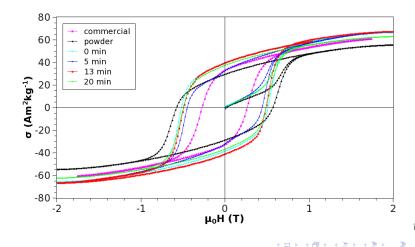
Outline

Introduction

- Features of current hard magnets
- RE subtitutions in hexaferrites
- Nanostructured hexaferrites
- 2 Synthesis of Ba nano-ferrite
 - Sol-gel
 - Thermal treatment

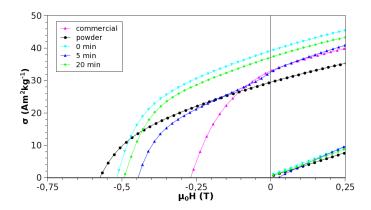
3 Results

- X ray diffraction
- electronic microscopy
- Magnetic properties


Conclusion

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

X ray diffraction electronic microscopy Magnetic properties


Hysteresis loops

X ray diffraction electronic microscopy Magnetic properties

The role of grain size homogeneity

The double-phase behavior of sample SPS5 is due to the presence of big particles

F. Mazaleyrat, A. Pasko, A. Bartok, M. LoBue Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

X ray diffraction electronic microscopy Magnetic properties

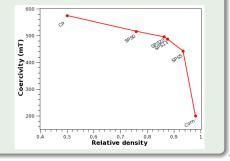
Correlation coercivity/structure

Grain size

No clear correlation is found with the grain size, due its small change and accuracy

・ 同 ト ・ ヨ ト ・ ヨ

X ray diffraction electronic microscopy Magnetic properties

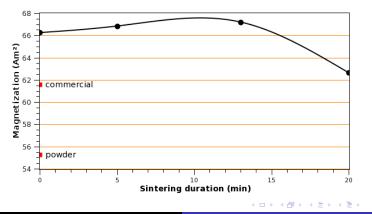

Correlation coercivity/structure

Grain size

No clear correlation is found with the grain size, due its small change and accuracy

Density

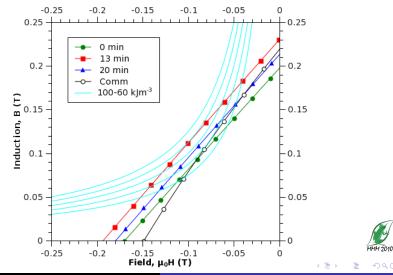
Density seems to play the leading role through exchange at interface and internal demagnetization. For the powder (CP) d is arbitrarily set to 0.5



Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

X ray diffraction electronic microscopy Magnetic properties

Saturation magnetization


- sintering presumably changes Fe^{3+} positions in the different sites $\Rightarrow M_S \nearrow$ (lattice parameter $c \nearrow$)
- 2 reduction of Fe³⁺ into Fe²⁺ \Rightarrow *M*_S \searrow

F. Mazaleyrat, A. Pasko, A. Bartok, M. LoBue Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

X ray diffraction electronic microscopy Magnetic properties

Functional properties

F. Mazaleyrat, A. Pasko, A. Bartok, M. LoBue Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

Conclusion and prospects

Conclusion

F. Mazaleyrat, A. Pasko, A. Bartok, M. LoBue Giant H_C of SPS Ba-ferrite — MMM 2010 Atlanta

Image: A mathematical states and a mathem

- ∢ ⊒ →

Conclusion and prospects

Conclusion

SPS combines very fine grain size and high density

___ ▶ <

Conclusion and prospects

Conclusion

- SPS combines very fine grain size and high density
- Ocercivity of calcinated powder 0.5 T is preserved

Conclusion and prospects

Conclusion

- SPS combines very fine grain size and high density
- Ocercivity of calcinated powder 0.5 T is preserved
- BH product of anisotropic magnet is enhenced by 30%

Conclusion and prospects

Conclusion

- SPS combines very fine grain size and high density
- Ocercivity of calcinated powder 0.5 T is preserved
- BH product of anisotropic magnet is enhenced by 30%

Prospects

Conclusion and prospects

Conclusion

- SPS combines very fine grain size and high density
- Ocercivity of calcinated powder 0.5 T is preserved
- BH product of anisotropic magnet is enhenced by 30%

Prospects

Second text and te

Conclusion and prospects

Conclusion

- SPS combines very fine grain size and high density
- Ocercivity of calcinated powder 0.5 T is preserved
- BH product of anisotropic magnet is enhenced by 30%

Prospects

- Evolution of saturation magnetization has to be cleared-up
- Anisotropic magnets have to be produced

Conclusion and prospects

Conclusion

- SPS combines very fine grain size and high density
- Ocercivity of calcinated powder 0.5 T is preserved
- BH product of anisotropic magnet is enhenced by 30%

Prospects

- Evolution of saturation magnetization has to be cleared-up
- Anisotropic magnets have to be produced

Problem

Orientation of nano-particles is difficult

Acknowledgements

• EU foundation of FP7 project SSEEC # NMP-SL-2008-274864

- ENS Cachan International Scolarship program (A. Bartok)
- Pr Pierre AUDEBERT, ENS Cachan chemistry department

Thank you for your attention!

