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Introduction

Congenital bilateral absence of the vas deferens (CBAVD), an autosomal recessive disorder, is a frequent cause of obstructive azoospermia and accounts for approximately 2-3% of male infertility in Caucasian populations. In 90% of cases, CBAVD is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. 1 2 To date, more than 1,600 genetic changes have been identified in this gene. A combination of severe mutations on both alleles of a patient usually leads to severe forms of classical Cystic Fibrosis (CF). 3 4 Other mutations that retain residual CFTR function (above 10%), result in mild CF or incomplete phenotypes. CBAVD patients carry two mild mutations or are compound heterozygous for a severe and a mild alterations of the CFTR gene. 1 5 Despite extensive testing for point mutations and large rearrangements [START_REF] Audrezet | Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms[END_REF][START_REF] Hantash | Characterization of a recurrent novel large duplication in the cystic fibrosis transmembrane conductance regulator gene[END_REF][START_REF] Taulan | Large genomic rearrangements in the CFTR gene contribute to CBAVD[END_REF][START_REF] Taulan | A novel double deletion underscores the importance of characterizing end points of the CFTR large rearrangements[END_REF] , a small proportion of alleles still remains unidentified in CBAVD patients. 1 10 Interestingly, we have detected two novel rare (TAAA) n repeats in the IVS9 of the CFTR gene in two CBAVD patients, heterozygous for a variation in the minimal promoter (-33G>A) [START_REF] Romey | First putative sequence alterations in the minimal CFTR promoter region[END_REF] or for the common CBAVD variant (TG12T5).

Microsatellites, also known as Short Tandem Repeats (STRs), are distributed throughout the genome [START_REF] Li | Microsatellites within genes: structure, function, and evolution[END_REF] . Since the last decade, scientists suggested that alterations in the length of simple DNA repeat sequences might be responsible for diseases, such as myotonic dystrophy type 2 [START_REF] Ranum | RNA-Mediated Neuromuscular Disorders[END_REF] and gynecomastia. [START_REF] Czajka-Oraniec | Association between gynecomastia and aromatase (CYP19) polymorphisms[END_REF] Accumulating data evidenced that microsatellite variations including tetranucleotides affect regulation of gene expression by inhibiting the transcription of these genes implicated in diseases 15 16 or by altering RNA processing [START_REF] Hedjran | Control of alternative pre-mRNA splicing by distributed pentameric repeats[END_REF] for STRs detected close to some intron/exon boundaries.

Several microsatellites have been identified in non-coding regions of the CFTR gene. [START_REF] Chehab | A dimorphic 4bp repeat in the cystic fibrosis gene is in absolute linkage disequilibrium with the delta F508 mutation: implications for prenatal diagnosis and mutation origin[END_REF][START_REF] Xu | Human CFTR gene sequences in regions flanking exon 10: a simple repeat sequence polymorphism in intron 9[END_REF][START_REF] Elce | Three novel CFTR polymorphic repeats improve segregation analysis for cystic fibrosis[END_REF] Whereas most are dinucleotides, two tetranucleotides (TAAA) n and (GATT) n repeats have been reported in intronic regions. [START_REF] Chehab | A dimorphic 4bp repeat in the cystic fibrosis gene is in absolute linkage disequilibrium with the delta F508 mutation: implications for prenatal diagnosis and mutation origin[END_REF] [START_REF] Xu | Human CFTR gene sequences in regions flanking exon 10: a simple repeat sequence polymorphism in intron 9[END_REF] Except for the (TG)mTn polymorphism tracts in the CFTR IVS8, known to dramatically alter the CFTR exon 9 skipping 18 21-25 , the role of repeats in the regulation of CFTR function and expression remains poorly defined.

The aim of this study was to evaluate whether the uncommon -33G>A promoter variant and the (TAAA) 6 and (TAAA) 8 tetranucleotide repeat alterations located deeply within intron 9 may contribute to the CBAVD phenotype. We were also interested in understanding the molecular mechanism by investigating the potential regulatory function of Forkhead box (FOX) transcription factors in the presence of these variants.

Material and methods

Haplotyping IVS9(TAAA)n repeats.

PCR reactions were carried out on 100 ng of human DNA (see primers in Supplementary Table 1). Aliquots of the amplicons [(TAAA)n units] were separated by multicapillary electrophoresis on an ABI 3130xl Genetic Analyzer running GeneMapper v4.0 for allele identification as previously described. [START_REF] Bareil | Comprehensive and rapid genotyping of mutations and haplotypes in congenital bilateral absence of the vas deferens and other cystic fibrosis transmembrane conductance regulator-related disorders[END_REF] Expression plasmids, gene reporter vectors and hybrid minigene constructs.

To perform gene reporter assays, the pGL3B-33A plasmid was generated from pGL3B-WT, pGL3-Basic reporter vector containing the wild-type human CFTR minimal promoter [START_REF] Romey | A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression[END_REF] For hybrid minigene assays, constructs containing the (TAAA) n repeats of the CFTR intron 9 were created as depicted in figure 3. The human CFTR genomic regions encompassing the exons 9 and 10 with their flanking intronic sequences were amplified in two separated PCRs.

The PCR products were subcloned into the XhoI/NheI digested pSPL3 plasmid, kindly gift by Dr. S. Tuffery-Giraud (Laboratory of Molecular Genetics, Montpellier, France). As positive controls, minigenes containing either a T5 or a T3 allele [START_REF] Disset | A T3 allele in the CFTR gene exacerbates exon 9 skipping in vas deferens and epididymal cell lines and is associated with Congenital Bilateral Absence of Vas Deferens (CBAVD)[END_REF] were generated by directed mutagenesis (Stratagene).

To prepare the gene reporter vectors pGL3C-(TAAA) n , a 1222-base pair fragment spanning the CFTR intron 9 region was generated by PCR from genomic DNA of individuals with (TAAA) 9 , (TAAA) 8 or (TAAA) 6 repeat. The PCR products were restricted with NheI and BglII endonucleases and then ligated into the pGL3-Control reporter vector (Promega) upstream the SV40 promoter.

To evaluate CFTR mRNA levels, expression plasmids containing either the wild-type or the mutated CFTR minimal promoter upstream the CFTR cDNA (pcDNA3.1-WT and pcDNA3.1-33A, respectively) were constructed. The full-length human CFTR cDNA was excised from the pTG5985 vector, generously given by Transgene SA, with ApaI/XhoI and ligated into the pcDNA3.1(-) expression vector. To drive the expression of the CFTR cDNA, the SV-40 promoter was replaced by the CFTR minimal promoter. For the (TAAA) n repeat, the (TAAA) n intron 9 region is inserted upstream the CFTR minimal promoter in the pcDNA3.1(-) expression vector containing the CFTR cDNA. All the primers are listed in Supplementary Table 1. All the constructs were verified by direct sequencing.

Cell culture and transient transfections.

HVP (SV40 ori-transformed epithelial vas deferens) cells, maintained in CMRL-1066 medium (Gibco, Invitrogen) and kindly provided by Dr. A. Harris (Weatherall Institute of Molecular Medecine, Oxford University, UK). HeLa (human cervical carcinoma) cells were cultured as previously reported. [START_REF] Taulan | First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding[END_REF] For transient transfections, cells, seeded at a density of about 10,000 cells/100 µl of medium in 96-well plates, were transfected with 60 ng of indicated reporter vector and 6 ng of internal control pRL-SV40 containing Renilla luciferase (Promega), to normalize for transfection efficiency, by using Fugene®6 transfection reagent (Roche). In transient co-transfection experiments, 4 ng of either pcDNA3(-) or pcDNA3-FOXI1 vector were also transfected. Similar transfections were performed in 6-well plates for protein extracts. For siRNA assays, transfections of cells with 40 nM FOXI1-targeting siRNAs (Santa Cruz, Clinisciences) were performed using Interferin reagent (PolyPlus, Ozyme). Non-targeting siRNA purchased from Santa Cruz (Clinisciences), served as a negative control. Dual Glo Luciferase Assay System (Promega) was used according to the manufacturer's recommendations.

To analyse the hybrid minigene expressions, 1-1.5x10 6 cells were platted into Nunclon® 35 x 10 mm cell culture dishes. After 24 hours, cells were transiently transfected with 6 μg of either pSPL3 empty vector or one minigene plasmid using Polyfect® transfection reagent (Qiagen). For the CFTR mRNA level analyses, 6 μg of the indicated pcDNA3.1 expression vectors alone or with 2.5 μg of FOXI1 expression vector or 40 nM of FOXI1-targeting siRNA were transfected. After 48 hours, the cells were lysed for RNA extraction. All hybrid minigene, expression vector and gene reporter data represented the result of at least three independent experiments performed in triplicates with independently purified plasmid DNA preparations.

Establishment of stable cell lines.

For chromatin immunoprecipitation assays, HVP cells were seeded at a density of about 300,000 cells in 35-mm culture dishes and were co-transfected with 80 ng of pCI-neo vector and 2 μg of indicated reporter vector by Polyfect® transfection reagent. Stably transfected clones were selected in medium containing G418 antibiotic (Promega). Clones of G418resistant cells were screened by direct sequencing.

Reverse-transcriptase PCR and RT-qPCR.

Total RNAs were extracted by using the RNeasy Plus Mini kit (Qiagen). RT were performed as previously described [START_REF] Rene | Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway[END_REF] , and cDNAs were amplified with either SD6/SA2/β-actin primers (hybrid minigene) or CFTR/GAPDH (expression vector), by using classical PCR or the LightCycler® 480 Real-Time PCR System (Roche), respectively. All PCR reactions were performed in triplicate in three independent experiments.

Chromatin Immunoprecipitation assays (ChIP)

ChIP assays were performed according to protocols previously described with minor modifications. [START_REF] Rene | Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway[END_REF] Prior to harvest, stably transfected HVP cells were cross-linked with formaldehyde. Purified crosslinked chromatin was immunoprecipitated using 3µg of either anti-FOXI1 antibody (AbCam) or anti-HA antibody (Roche), used to control for non-specific binding of DNA. Input and immunoprecipitated DNAs were analyzed using either primers specific of the CFTR minimal promoter or primers amplifying the CFTR intron 9 region containing the (TAAA) n repeat (Supplementary Table 1), with the LightCycler® 480 Real-Time PCR System (Roche). All PCR reactions were performed in triplicate. Experiments are repeated at least three times, averaged and expressed relative to the input signal and to negative control.

Immunoblot analyses

Total whole-cell proteins from transfected HVP cells were analyzed by western blot as previously described. [START_REF] Rene | Binding of serum response factor to cystic fibrosis transmembrane conductance regulator CArG-like elements, as a new potential CFTR transcriptional regulation pathway[END_REF] The membranes were incubated overnight with 1:1,000 diluted anti-FOXI1 (Ab-Cam) primary antibody in 5% skim milk. The protein levels of the β-actin housekeeping gene were assayed for internal control of protein loading.

Statistical analyses.

Data are expressed as the mean ± SE. Paired comparisons were made using student's t-test using InStat (GraphPad Software, version 3.0). Data were considered statistically significant at p<0.05. Relative intensities of equal areas were compared using Quantity One® quantification analysis software (Bio-Rad).

Results

The -33G>A transition in the CFTR minimal promoter leads to a decreased promoter activity

We first investigated the putative effect of a rare promoter substitution, -33G>A, on both the CFTR transcriptional activity and mRNA levels. As this sequence variation has been identified only in a patient with CBAVD, wild-type (pGL3B-WT) and mutated (pGL3B-33A) promoter constructs were tested in epithelial cell lines derived from tissues where spatial and temporal regulation of the CFTR expression is functional (HVP: vas deferens) or not (Hela: cervix). Compared to the wild-type, the promoter activity of the mutant construct was significantly reduced by approximately 54% (p<0.05) in HVP cell line whereas no significant variation was observed in Hela cells (Figure 1A). To ensure that the -33A variant is responsible for the observed inhibition, RT-quantitative PCR (qPCR) assays were performed from HVP and Hela cells. Since RNA transcripts of the patient were not accessible, we transfected these cell lines with expression vectors containing the CFTR cDNA under the control of the CFTR promoter (pcDNA3.1-WT or pcDNA3.1-33A). The results confirmed a diminution in the CFTR mRNA level in HVP cell line whereas no difference was observed in Hela cells (Figure 1B). Collectively, these findings established that the promoter -33A variant influences the CFTR transcription in a cell-specific manner.

The -33A variant affects promoter activity through allele-specific binding of the FOXI1 transcription factor

We then evaluated whether this single-nucleotide substitution perturbs the DNA binding affinity for transcription factors. In silico analyses, using TFsearch and Consite softwares, indicated that the CFTR minimal promoter region contains a binding site for FOX proteins overlapping the -33 position. Since FOXI1 (Forkhead Box I1) has been reported as a key regulator of genes involved in male fertility in epididymal epithelial cells 30 31 , we hypothesized that FOXI1 could participate to male infertility due to CBAVD by regulating the CFTR gene in HVP cell line. First, to test whether this factor is capable of binding in vivo to the endogenous CFTR promoter sequence, ChIP assays were carried out. The DNA immunoprecipitated with a non-specific antibody did not show any PCR signal (Figure 2A, lane 3). As negative control, we used the promoter of Caspase 8 gene, which lacks FOX binding sites. As observed in figure 2A (lane 2), FOXI1 binds to the CFTR minimal promoter.

We next employed quantitative ChIP analyses to obtain evidence that FOXI1 proteins bind differentially to the mutated CFTR promoter sequence. Because we could not have access to the patient's tissue, ChIP assays were performed using stable HVP cells expressing either the wild-type or the mutated CFTR promoter reporter construct (pGL3B-WT and pGL3B-33A).

The qPCR results reveal that FOXI1 binds to the minimal CFTR promoter in HVP cells with a higher avidity for the mutated promoter (Figure 2B).

To assess the functional activity of the FOXI1 factor, we transiently co-transfected the FOXI1 expression vector with either the wild-type (pGL3B-WT) or the mutated (pGL3B-33A) reporter plasmid in HVP cells. Our results show that the over-expression of FOXI1 proteins reduces the activity of the CFTR promoter, which is more significant in mutated context than in wild-type context (51% versus 37%) (Figure 2C, grey bars). To confirm the role of FOXI1 in the regulation of the CFTR transcription, we transiently co-transfected the reporter plasmids along with a FOXI1-specific small interfering RNA (siRNA). This resulted in a weak but significant activation of the luciferase activity in HVP cells (Figure 2C, white bars). The efficiency of the over-expression and the siRNA knockdown of the FOXI1 proteins were verified by immunoblotting experiments. Transient transfections of FOXI1-siRNA reduced FOXI1 protein levels by approximately 50% compared to a non-specific siRNA control (Figure 2D). RT-qPCR experiments were performed to analyse the CFTR mRNA levels in both wild-type and mutated contexts after FOXI1 over-expression (Figure 2E).

Although the effect of FOXI1 repression on the -33A allele versus the -33G allele is attenuated with RT-qPCR assays (Figure 2E), probably due to variation in constructs and approaches, both results suggested a markedly decrease of the CFTR expression for the mutated allele whereas only one nucleotide is changed. In addition, to confirm the negative role of FOXI1, we performed transient co-transfection experiments with either the AE4-promH1 or the AE4-promH3 reporter construct along with either the FOXI1 expression vector or FOXI1 specific siRNA in HVP cells. Our data demonstrated the strong activator role of FOXI1 on AE4-promH1 and AE4-promH3 transcription (Figure 2F) as previously reported. 30 32 Collectively, these data established that FOXI1 inhibits the CFTR promoter activity with a marked effect on the -33A allele.

Genetic analysis of previously undescribed (TAAA)n repeats sequence DNA motif in CFTR IVS9

By scanning microsatellite variability in the CFTR IVS9, in a sample of 254 control chromosomes and 86 chromosomes from CBAVD patients with 1 or 0 CFTR mutation, we identified five tetranucleotide (TAAA) n repeat tracts with number of motifs ranging from 9 to 13. This study showed that the 9-repeats allele is the most frequent (Table 1). In addition, analysis of DNAs, from CF patients homozygous for the p.Phe508del mutation and from CBAVD patients heterozygous for the p.Phe508del mutation and the [TG12T5] variant, revealed that the p.Phe508del mutations is mainly associated with the (TAAA) 11 tract (Table 1). Interestingly, we detected two previously undescribed variants, (TAAA) 8 and (TAAA) 6 , in two CBAVD patients carrying a (TAAA) 9 tract on the other chromosome. The patient with the 6-repeat allele is heterozygous for the -33G>A promoter variation [START_REF] Romey | First putative sequence alterations in the minimal CFTR promoter region[END_REF] ; the patient with the 8-repeat allele is heterozygous for the [TG12T5] variant. Accurate assignation of haplotypes was impossible (DNA from parents not available for segregation analyses). These two novel variants in IVS9 were not detected in a panel of 254 control chromosomes and 122 DNAs from the CBAVD subjects with the p.Phe508del and the TG12T5 alterations, and from the CF patients homozygous for the p.Phe508del mutation (Table 1). We hypothesized that these tetranucleotide repeats, located deeply within intron 9, could influence gene expression. 15 16 33 34 Also, we evaluated the functional importance of the new CBAVD (TAAA) 6 and (TAAA) 8 alleles compared to the most frequent (TAAA) 9 allele in general population.

The (TAAA) n repeat motif does not influence the splicing of CFTR exon 10

To investigate the putative impact of the IVS9 (TAAA) microsatellite on the RNA processing, CFTR exons 9-10 hybrid minigene constructs (Figure 3A) were transiently transfected into HVP and Hela cells, and the pattern of splicing was analyzed by RT-PCR with the SD6/SA2 primers. In the two tested cell lines, all PCR reactions produced one band of the expected size for wild-type mRNA transcript containing exons 9 and 10 (Figure 3B).

As positive controls, hybrid minigenes containing either a T5 or a T3 allele showed a significant decrease of correctly spliced transcript with the appearance of an aberrantlyspliced transcript containing only the exon 10. As previously reported [START_REF] Mastro | Mechanistic role of a disease-associated genetic variant within the ADAM33 asthma susceptibility gene[END_REF] , the same constructs with variable size containing (TAAA) n motif were also created to ensure that enclosed sequences to the motif repeats do not contain silencer or enhancer elements. No modulation of the spliced transcript has been observed (data not shown). Our findings indicated that the (TAAA) 6 and (TAAA) 8 repeats has no effect on exon 10 splicing.

The (TAAA) n repeat motif alters the CFTR transcription

In a second set of experiments, we speculated that the variation in the (TAAA) number might alter the activity of the CFTR promoter as previously reported for other genes. 16 34 To explore this possibility, we transfected in both HVP and Hela cells, Because tissues from patients are inaccessible, we used artificial vectors even if the constructions differ from the CFTR gene organization, in order to evaluate the impact of the (TAAA) n repeat on the CFTR transcription. Our results showed that the (TAAA) 8 and

(TAAA) 6 intronic variants significantly decrease the CFTR transcription suggesting the presence of a silencer element in the intron 9 (TAAA) n repeats of the CFTR gene. The decrease was not dependent on the location of the (TAAA) n repeat. We next hypothesized that this intronic transcriptional repression might reflect altered binding of one or more regulatory factors located within the (TAAA) microsatellite.

The (TAAA) n motif corresponds to DNA binding motif for FOX family factors

In silico analyses predicted binding sites for FOX proteins overlapping the (TAAA) n repeat. For the same reason that previously underlined in this paper, we assessed the possibility that FOXI1 factor could also regulate the CFTR transcription through these sequences in HVP cells. Transient co-transfection assays results indicated that enforced expression of FOXI1 protein induced a significant inhibition of the luciferase activity in the context of the CFTR intron 9 (Figure 5A). Results of siRNA assays confirmed the inhibitory role of the FOXI1 factor. We next confirmed the role repressor of FOXI1 at the CFTR mRNA level (Figure 5B).

To judge the FOXI1 binding ability on the (TAAA) n repeats, qChIP assays were performed using HVP cells stably transfected with (TAAA) 9 , (TAAA) 8 , or (TAAA) 6 allele.

Quantitative PCR realized with specific primers for a 350 bp-region encompassing the (TAAA) n repeat, revealed that the FOXI1 proteins bind to these intronic sequences (Figure 5C). Interestingly, we observed an increasing binding activity associated with the loss of (TAAA) repeats. Although our findings evidenced that the FOXI1 transcription factor negatively influenced the CFTR transcription, this attenuation seems to be independent of the loss of (TAAA) repeats suggesting that the CFTR repression is mediated by another unknown molecular mechanism.

Discussion

Because polymorphisms in the promoter region may modulate gene transcription by interacting with trans-acting elements, we set out functional analyses including in silico analyses, promoter reporter assays, and ChIP experiments, to explore the role of the -33G>A nucleotide change in promoter activity.

We demonstrated that the -33A allele inhibits significantly the CFTR promoter activity and alters the binding of the FOXI1 trans-acting factor and that the enforced FOXI1 protein expression negatively modulates the CFTR transcription. As FOXI1 proteins are here described as repressors for the first time, we confirmed our data by using reporter vectors containing promoter sequences of genes known to be positively transactivated by FOXI1. 30 32 Interestingly, the inhibitory effect of FOXI1 is stronger on the -33A allele than on the wildtype allele. Our findings suggest the contribution of FOXI1 in the physiopathology of CBAVD disorder through alteration of the CFTR promoter activity. The winged helix/forkhead box (FOX) gene family encodes a large class of nuclear proteins, characterized by a highly conserved forkhead DNA-binding domain. [START_REF] Katoh | Human FOX gene family (Review)[END_REF] The FOX proteins are involved in a wide range of developmental processes through regulation of tissue-specific expression of target genes during morphogenesis and differentiation. 38 39 Among the FOX transcription factors, recent attention have been drawn to FOXI1 (also known as HFH3, Fkh10 and FREAC6). Although FOXI1 was originally identified as a kidney-expressed forkhead gene 40- 42 , recent data indicated its pivotal regulatory role for normal sperm function. [START_REF] Blomqvist | Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility[END_REF] [START_REF] Cornwall | New insights into epididymal biology and function[END_REF] Blomqvist and collaborators showed that mice lacking FOXI1 fail to generate offspring. FOXI1 has been reported to function as a regulator of genes, important for the epididymal dependent maturation and storage of spermatozoa. [START_REF] Blomqvist | Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility[END_REF] In parallel, we provided experimental evidences showing that the (TAAA) n repeat sequence within the CFTR intron 9 has a functional role in the CFTR transcriptional regulation by using gene reporter assays, confirmed by CFTR mRNA expression.

Microsatellites have been described to alter the activity of genes when located in the promoter 15 34 or in introns. 16 33 In addition, Phylactides and coll. have previously reported that cis-acting elements located deep within CFTR introns promote the CFTR expression. [START_REF] Phylactides | Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene[END_REF] To determine the molecular mechanism that might explain the transcriptional impact of the STR, we conducted in silico analyses and functional assays. The results of in silico analyses revealed that the deletion of 1 or 3 (TAAA) repeats alter the putative binding for the tissuespecific FOX factors family. Using over-expression and RNA interference assays, we demonstrated that the FOXI1 factor inhibits the CFTR transcription, with similar extent in both wild-type and mutated context. However, ChIP analyses showed that the (TAAA) repeat shortening positively affects the affinity of FOXI1 transcription factor.

The role of the (TAAA) n alterations in regulating the CFTR transcription remains enigmatic. As the loss of (TAAA) repeat increased the ability of the FOXI1 binding and that enforced FOXI1 expression did not alter the CFTR promoter activity, a possible explanation is that microsatellite variation might form an alternative DNA structure that may affect gene transcription. FOX transcription factors regulate gene expression in virtue of their ability to bend or loop DNA, thereby facilitating communication between cis-element and trans-acting proteins. [START_REF] Cirillo | Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4[END_REF] Interestingly, FOXI1 is capable of remodelling chromatin structure and to maintain its DNA interactions in condensed chromatin. [START_REF] Yan | The forkhead transcription factor FoxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure[END_REF] In addition, the presence of the -33A nucleotide putatively creates another regulatory site through reinforcing the FOXI1 DNA binding that might affect the CFTR gene activity, with a markedly effect when both mutant alleles [-33A and (TAAA) 6 ] are considered. Recent investigations demonstrated that the CFTR gene regulation is modulated by interactions between promoter and intronic sequences. [START_REF] Ott | Novel regulatory mechanisms for the CFTR gene[END_REF] To conclude, this work suggested that the -33G>A promoter variant and (TAAA) with either the FOXI1 expression vector or the FOXI-specific siRNA are shown. Luciferase activities obtained from AE4-promH1 and AE4-prom H3 constructs was defined as 100%.

Other relative luciferase activities were expressed from this value. (* p < 0.05). 
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Table 1 : (TAAA) allele frequencies in control, CF and CBAVD subjects

 1 

		% control	% CBAVD patients	% CF patients
				Mutations:	Mutations:
			0 or 1 identified	p.Phe508del/	p.Phe508del/
	Number of		mutation	TG12T5	p.Phe508del
	(TAAA)				
	repeats	n=254	n=86	n=56	n=66
	13	2.75	1.20	0	0
	12	2.36	1.20	0	0
	11	8.66	10.46	50	94
	10	11.40	9.30	3.60	0
	9	74.80	75.60	46.40	6
	8	0	1.20	0	0
	6	0	1.20	0	0
	'n' the total number of chromosomes		
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