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Introduction

Let L/K be a finite extension of number fields. Denote by d L/K the relative discriminant of L/K and by c the number of complex infinite places of L which lie above a real place of K.

The absolute norm of an ideal a of K is a positive rational denoted N K/Q (a); it is the positive generator of N K/Q (a), where N K/Q is the arithmetic norm. If α ∈ K × , we define the absolute norm of α (or (α)) by N K/Q (α) := | N K/Q (α) | (this has some importance in class field theory).

In [Ma], J. Martinet proved the following result about N K/Q (d L/K ): Proposition 1. If K contains a primitive 2 m+1 th root of unity (m ≥ 0) and if L/K is not ramified at 2, then (-1) c N K/Q (d L/K ) ≡ 1 mod (4 • 2 m ).

In [Pi], S. Pisolkar proved, in connection with the previous result:

Proposition 2. Let p ≥ 2 be any prime number. Let K v be the completion of K at a place v | p (or any finite extension of Q p ); we suppose that K v contains a primitive p h+1 th root of unity, h ≥ 0. Let K v ( p √ α ), α ∈ K × v , be an unramified Kummer extension of K v . Then N Kv/Qp (α) ≡ 1 mod (p h+2 ).
In this paper we give a synthetic proof of these results with some generalization of the hypothesis (especially for the case p = 2); see Theorem 2.

Prerequisites on discriminants

Classical proofs of Stickelberger's congruences make use of the fact that any odd discriminant ideal d L/K is canonically associated with the discriminant of a quadratic extension of K, unramified at 2. This essential reduction is summarized in the following proposition (see [START_REF] Martinet | Les discriminants quadratiques et la congruence de Stickelberger[END_REF][START_REF]Use the computation of N K/Q (c) 2 at the end of Sections 3, then Theorem 1 for the computation of N Kv /Q 2 (α) for v | 2 in these particular cases[END_REF]).

Proposition 3. Let L/K be a finite extension of number fields and let α K ×2 , in K × /K ×2 , be the image of the discriminant α of a K-base of L. Then:

(i) The class α K ×2 does not depend on the choice of the K-base.

(ii) Let K ′ := K( √ α ); then there exists an integral ideal a of K such that d L/K = d K ′ /K a 2 . (iii) If 2 is unramified in L/K it is unramified in K ′ /K and we have d K ′ /K = (α) b 2 , hence d L/K = (α) c 2
, where b and c are ideals of K.

We suppose in the sequel that d L/K is odd; thus we can choose, modulo K ×2 , an odd α, which implies that c is odd. We then have to compute N K/Q (c) 2 and N K/Q (α).

Computation of

N K/Q (c) 2 .
From class field theory over Q we get N K/Q (c) ∈ A K , the Artin group of K which is that of K ab , where K ab is the maximal abelian subextension of K.

So we see that to obtain nontrivial congruences modulo a power of 2 we must suppose that this Artin group is roughly a ray group mudulo a power of 2 in the following way.

Let Q(µ 2 ∞ ) be the field generated by all roots of unity of order a power of 2. The best hypothesis is that

K does contain a subfield k of Q(µ 2 ∞ ) of degree 2 m , m ≥ 0.
For m = 0 we get k = Q (which is also Q (0) in the description below) and for any m ≥ 1, the field k is equal to one of the following three fields, for which we indicate its Artin group as a subgroup of [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]II.5.5.2]):

A Q := {u Z, u ∈ Q × , u odd } (see e.g.
• k = Q (m) is the subfield, of degree 2 m , of the cyclotomic Z 2 -extension of Q; its Artin group is: A Q (m) = {u Z, u ∈ Q × , u > 0, u ≡ ±1 mod (4 • 2 m )} ;
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3 • k = Q ′(m) , m ≥ 1, is the subfield of Q(µ 4•2 m ) of relative degree 2, distinct from Q(µ 4•2 m-1
) and from Q (m) ; its Artin group is

A Q ′(m) = {u Z, u ∈ Q × , u > 0, u ≡ 1 or -1 + 4 • 2 m-1 mod (4 • 2 m )} ; • k = Q(µ 4•2 m-1 ), m ≥ 1; its Artin group is A Q(µ 4•2 m-1 ) = {u Z, u ∈ Q × , u > 0, u ≡ 1 mod (4 • 2 m-1 )} . So this yields N K/Q (c) 2 ∈ {u Z, u ∈ Q × , u > 0, u ≡ 1 mod (4 • 2 m )} , except if k = Q (m) , in which case N K/Q (c) 2 ∈ {u Z, u ∈ Q × , u > 0, u ≡ 1 mod (4 • 2 m+1 )} ;
in other words, taking absolute norms:

N K/Q (c) 2 ≡ 1 mod (4 • 2 m ), if k = Q ′(m) or Q(µ 4•2 m-1 ), m ≥ 1, N K/Q (c) 2 ≡ 1 mod (4 • 2 m+1 ), if k = Q (m) , m ≥ 0. 4. Computation of N K/Q (α).

The best way is to use local class field theory by computing N

K/Q (α) = v|2 N Kv/Q 2 (α), where K v is the completion of K at the place v | 2 of K and N Kv/Q 2 the local norm.
The result is given by the following generalization of the result of [Pi].

Let p ≥ 2 be a prime number, let K v be the completion of the number field K at v | p (or any finite extension of Q p ); we suppose that K v contains µ p and a subfield k (v) of Q p (µ p ∞ ) of degree p m over Q p (µ p ), m ≥ 0 (if p = 2, the context is that of the previous section for which the hypothesis are satisfied for all v | 2, with k

(v) = k v := Q 2 k and [k (v) : Q 2 ] = [k : Q] = 2 m , independently of v | 2, since k/Q is totally ramified at 2). 1
The local norm group of k (v) , restricted to the norms of units, is the following subgroup of

Z × p = µ p-1 ⊕ (1 + p Z p ) for p = 2 or of Z × 2 = -1 ⊕ (1 + 4 Z 2 ) for p = 2: • p = 2, k (v) = Q p (µ p m+1 ), m ≥ 0; the norm group is 1 + p m+1 Z p ; • p = 2, k (v) = Q (m) 2 , m ≥ 0; the norm group is -1 ⊕ (1 + 4 • 2 m Z 2 ); • p = 2, k (v) = Q ′ 2 (m) , m ≥ 1; the norm group is -1 + 4 • 2 m-1 Z 2 ; • p = 2, k (v) = Q 2 (µ 4•2 m-1 ), m ≥ 1; the norm group is 1 + 4 • 2 m-1 Z 2 . 1 Take care that if k = K ∩ Q(µ 2 ∞ ), kv may not be equal to Kv ∩ Q 2 (µ 2 ∞ ) (for instance K = Q( √ -17 ) for which k = Q, kv = Q 2 , m = 0); but Theorem 1 applies to k (v) = Kv ∩ Q 2 (µ 2 ∞ ) = Q 2 ( √ -1 ) with m = 1.
We then have:

Theorem 1. Let K v be the completion of a number field K at v | p; sup- pose that K v contains µ p and a subfield k (v) of Q p (µ p ∞ ) of degree p m over Q p (µ p ), m ≥ 0. Let K v ( p √ α ), α ∈ K × v , be an unramified Kummer exten- sion of K v (modulo K ×p v we can suppose that α is a local unit). Then we have N Kv/Qp (α) ≡ 1 mod (p m+2 ). Moreover, if p = 2 and k (v) = Q (m)
2 , m ≥ 0, and if at least one of the following two conditions holds:

(i) α ∈ K ×2 v , (ii) the index of ramification e v (K v /k (v) ) of K v /k (v) is even, we then have N Kv/Q 2 (α) ≡ 1 mod (4 • 2 m+1 ).
Proof. We consider the following diagram:

K nr v K v ( p √ α) . K v k nr (v) k (v) . F v F v ( p √ α ′ ) Q p (µ p ) p m Q p (µ p ) nr
where for any field L, L nr is the maximal unramified pro-extension of L; we know that we have for instance L nr = L Q nr p (see e.g. [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]II.1.1.5]). Put F v := K v ∩ Q p (µ p ) nr . All horizontal extensions are unramified and all vertical extensions are totally ramified.

Consider the intersection [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]I.6.3,(ii)]):

K v ( p √ α) ∩ Q p (µ p ) nr as a Kummer extension of F v ; thus there exists a suitable local unit α ′ ∈ F × v such that α = α ′ x p with x ∈ K × v . Then N Kv/Qp (α) = N Kv/Qp (α ′ ) • N Kv/Qp (x) p ; since F v ( p √ α ′ )/F v is unramified we have (see e.g.
α ′ = x ′p (1 + p (1 -ζ) y ′ ) , x ′ , y ′ ∈ F × v , v(y ′ ) ≥ 0, where ζ is a primitive pth root of unity (for p = 2 we have p (1 -ζ) = 4). Then: N Kv/Qp (α) = N Kv/Qp (1 + p (1 -ζ) y ′ ) • N Kv/Qp (x x ′ ) p ;
but (see the above list of norm groups of k (v) ), we have N Kv/Qp (x x ′ ) p ≡ 1 mod (p m+2 ) , and in the particular case when p = 2 and k

(v) = Q (m) 2 , N Kv/Q 2 (x x ′ ) 2 ≡ 1 mod (4 • 2 m+1 ) ,
and

N Kv/Qp (1 + p (1 -ζ) y ′ ) = N Fv/Qp (1 + p (1 -ζ) y ′ ) [Kv:Fv] ≡ 1 mod (p m+2 ) since [K v : F v ] is a multiple of p m , which implies first that (1 + p (1 -ζ) y ′ ) [Kv:Fv] = 1 + p m+1 (1 -ζ) y ′′ ,
and then that

N Fv/Qp (1 + p m+1 (1 -ζ) y ′′ ) ∈ 1 + p m+2 Z p ;
hence we have the congruence

N Kv/Qp (α) ≡ 1 mod (p m+2 ) . (i) If p = 2, k (v) = Q (m) 2 , m ≥ 0, and α ∈ K ×2 v , then we obtain N Kv/Q 2 (α) ≡ 1 mod (4 • 2 m+1 ). (ii) If p = 2, e v (K v /k (v)
) is even, the above computation yields

N Fv/Q 2 (1 + 4 y ′ ) [Kv:Fv] ≡ 1 mod (4 • 2 m+1 ); if moreover k (v) = Q (m) 2 , since N Kv/Q 2 (x x ′ ) 2 ≡ 1 mod (4 • 2 m+1 ) in that case, we obtain N Kv/Q 2 (α) ≡ 1 mod (4 • 2 m+1 ) .
This completes the proof of the theorem.

Statement of the main result

We return to the case p = 2. In Sections 3 and 4, we have computed N K/Q (d L/K ), making use of N K/Q (c) 2 (absolute norm) and of N K/Q (α) (arithmetic norm) from the N Kv/Q 2 (α), taking into account that the congruence

N Kv/Q 2 (α) ≡ 1 mod (4 • 2 m ) is independent of v with the choice of k (v) := k v = Q 2 k for all v | 2. To determine N K/Q (α) we note that N K/Q (α) = (-1) ρ N K/Q (α)
, where ρ is the number of conjugates of α which are negative in the real embeddings of K; from [START_REF] Martinet | Les discriminants quadratiques et la congruence de Stickelberger[END_REF][START_REF]Use the computation of N K/Q (c) 2 at the end of Sections 3, then Theorem 1 for the computation of N Kv /Q 2 (α) for v | 2 in these particular cases[END_REF], the numbers ρ and c have same parity.

Thus we have obtained in general:

Theorem 2. Let L/K be a finite extension of number fields, unramified at 2. Denote by d L/K the discriminant of L/K, by c the number of complex places of L which lie above a real place of K, and by N K/Q (d L/K ) the absolute norm of d L/K . Let k be the maximal subfield of Q(µ 2 ∞ ) contained in K and put [k : Q] =: 2 m , m ≥ 0.

Then we have the congruence (-1) c N K/Q (d L/K ) ≡ 1 mod (4 • 2 m ).

Remark 1. We have the following improvement in two particular circumstances: if k = Q (m) , m ≥ 0, then under at least one of the following two conditions: (i) 2 splits totally in K( √ α )/K, 2

(ii) the indices of ramification of v | 2 in K/k are all even, we obtain the congruence (-1) c . N K/Q (d L/K ) ≡ 1 mod (4 • 2 m+1 ). 3