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Abstract—A subproblem technique is applied on dual formu-
lations to the solution of thin shell finite element models. Both
the magnetic vector potential and magnetic field formulations are
considered. The subproblem approach developed herein couples
three problems: a simplified model with inductors alone, a thin
region problem using approximate interface conditions, and a
correction problem to improve the accuracy of the thin shell
approximation, in particular near their edges and corners. Each
problem is solved on its own independently defined geometry and
finite element mesh.

I. INTRODUCTION

The solution by means of subproblems provides clear ad-

vantages in repetitive analyses and can also help in improving

the overall accuracy of the solution [1], [2]. In the case of thin

shell (TS) problems the method allows to benefit from previous

computations instead of starting a new complete finite element

(FE) solution for any variation of geometrical or physical

characteristics. Furthermore, It allows separate meshes for

each subproblem, which increases computational efficiency.

In this paper, a problem (p = 1) involving massive or

stranded inductors alone is first solved on a simplified mesh

without thin regions. Its solution gives surface sources (SSs)

for a TS problem (p = 2) through interface conditions (ICs),

based on a 1-D approximation [3], [4]. The TS solution is

then considered as a volume source (VSs) of a correction

problem (p = 3) taking the actual field distribution of the

field near edges and corners into account, which are poorly

represented by the TS approximation. The method is validated

on a practical test problem using a classical brute force volume

formulation.

II. DEFINITION OF THE SUBPROBLEM APPROACH

A. Canonical magnetodynamic or static problem

A canonical magnetodynamic or static problem p, to be

solved at step p of the subproblem approach, is defined in a

domain Ω, with boundary ∂Ωp = Γp = Γh,p ∪Γb,p. Subscript

p refers to the associated problem p. The equations, material

relations and boundary conditions (BCs) of the subproblems

(p = 1, 2, 3) are:

curlhp = jp , div bp = 0 , curl ep = −∂tbp , (1)

hp = µ−1
p bp + hs,p , jp = σpep + js,p , (2)

n× hp|Γh,p
= jsu,p , n · bp|Γb,p

= bsu,p , (3)

n× ep|Γe,p⊂Γb,p
= ksu,p , (4)

where hp is the magnetic field, bp is the magnetic flux density,

ep is the electric field, js,p is the electric current density, µp

is the magnetic permeability, σp is the electric conductivity
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and n is the unit normal exterior to Ωp. In what follows the

notation [·]γp
= |γ+

p
− |γ−

p
expresses the discontinuity of a

quantity through any interface γp (with sides γ+
p and γ−

p ) in

Ωp, defining interface conditions (ICs).

The fields hs,p and js,p in (2) are VSs in the subprob-

lem approach which can be used for expressing changes of

permeability or conductivity (via hs,p and js,p, respectively).

Indeed, changing from µ1 and σ1 in a given subregion for

problem p = 1 to µ2 and σ2 for problem p = 2 leads to the

associated VSs

hs,2 = (µ−1
2 − µ−1

1 )b1 , js,2 = (σ2 − σ1)e1 . (5)

B. Constraints between subproblems

The constraints for the problems (p = 2, 3) are respectively

SSs and VSs. The TS model (p = 2) [4] is written as a

subproblem following the inductor source field calculation of

problem (p = 1). Its SSs are defined via ICs of impedance-

type boundary conditions (IBC) combined with contributions

from problem (p = 1). The b-formulation uses a magnetic

vector potential a = ac + ad (such that curla = b). The

h-formulation uses a similar decomposition, h = hc + hd.

Fields ac, hc and ad, hd are respectively continuous and dis-

continuous through the TS. The weak b- and h-formulations

involve the SSs in surface integral terms, respectively

〈[n× h2]γ2
,a′

c + a′
d〉γ2

, 〈[n× e2]γ2
,h′

c + h′

d〉γ2
(6a-b)

with ad and hd defined as equal to zero on the side γ−

2 of

the shell and γ = γ±

1 = γ±

2 ; a′
d , h′

d , a′
c and h′

c are test

functions. To explicitly express the field discontinuities, (6a-b)

are rewritten as

〈[n× h2]γ2
,a′

c〉γ2
+ 〈n× h2,a

′
d〉γ2+

, (7)

〈[n× e2]γ2
,h′

c〉γ2
+ 〈n× e2,h

′

d〉γ2+
. (8)

The involved tangential fields in (7) and (8) are given by the

TS model but some have to be corrected. The discontinuities

in the first terms do not need any correction because solution

(p = 1) presents no such discontinuities, i.e. [n× h1]γ1
= 0

and [n× e1]γ1
= 0. The tangential fields in the second terms

have to be corrected with the opposite tangential contributions

from solution (p = 1), i.e. −n× h1|γ2
and −n× e1|γ2

. The

resulting surface integral terms are correctly expressed via the

weak formulations of problem (p = 1), thus rather via volume

integrals, i.e.

〈n× h1,a
′
d〉γ+

2

= −(µ−1
1 curla1, curla′

d)Λ+

1

− (σ1∂ta1,a
′
d)Λ+

1

(9)

〈n×e1,h
′

d〉γ+

2

= −(µ−1
1 ∂ths,h

′

d)Λ+

1

−(µ−1
1 ∂th1,h

′

d)Λ+

1

(10)

with the volume integrals limited to a single layer of FEs

Λ+
1 touching γ+

2 = γ+
1 , because they involve only the traces

n×a′
d|γ+

2

and n×h′

d|γ+

2

. Once obtained, the TS solution (p =
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2) is then corrected by problem (p = 3) that overcomes the TS

assumptions [4]. It has to suppress the TS representation, via

VSs in the added volumic shell that account for the volumic

change of µp and σp in problem (p = 3) that characterized

the ambient region (using (5) with µ2 = µ0, µ3 = µvolume,

σ2 = 0 and σ3 = σvolume). This correction will be shown

to be limited to the neighborhood of the shell, which allows

to benefit from a reduction of the extension of the associated

mesh.

III. APPLICATION EXAMPLE

The test problem is a shielded induction heater. It comprises

two inductors (stranded or massive), a plate (µr,plate = 100,

σplate = 1MS/m) in the middle, and two screens (µr,screen =
1, σscreen = 37.7MS/m) (Fig. 1). It is first considered via

a stranded inductor model (Fig. 2, top left, a1), adding a

TS FE model (Fig. 2, bottom left, a2) that does not include

the inductor anymore. Finally, a correction problem replaces

the TS FEs with classical volume FEs (Fig. 2, top right,

a3). The complete solution is shown as well (Fig. 2, bottom

right, a1 + a2 + a3). Errors on the magnetic flux with the

TS model between classical solution and (p = 1 + 2) for

both b- and h-formulations are shown in (Fig. 3); they can

nearly reach 65% in the end regions of the plate. Accurate

local corrections can then be obtained, reducing the errors to

less than 0.01% (Fig. 4). Significant TS errors are achieved

for the eddy current as well (Fig. 5), up to 50% and 60%

near the screen ends for (δ = 0.918mm, µr,plate = 100,

f = 3kHz) and (δ = 0.65mm, µr,plate = 200,f = 3kHz)

respectively, with d = 4mm and σplate = 1MS/m in both

cases. The proposed technique for TS FE and correction have

been presented via a subproblem approach. It leads to accurate

eddy current and magnetic flux distributions at the edges and

corners of thin regions. All the steps of the method will be

detailed, illustrated and validated in extended paper for both

b- and h- formulations in 2D and 3D cases.

Fig. 1. Shielded induction heater (Lpl = 2.2m, Ls = 2m, Hs = 400mm,
Cdz = 800mm, Cdx = 10mm, Cy = 200mm, Cz = 50mm, d = 5mm)
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Peng and L. Krähenbühl, “Finite Element Magnetic Models via a
Coupling of Subproblems of Lower Dimensions,” IEEE Trans. Magn.,
vol. 46, no. 8, pp. 2827–2830, 2010.
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Fig. 2. Flux lines (real part) for the total solution (a1+a2+a3), the stranded
inductor model (a1), thin shell added (a2) and volume solution (a3) with
the different meshes used (d = 4mm, f = 1 kHz)
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Fig. 3. Errors on the magnetic flux before correction along the plate with
different thicknesses and effects of µr , σ and frequency f
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Fig. 4. Errors on the magnetic flux along the plate after correction with
different thicknesses and effects of µr , σ and frequency f
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Fig. 5. Errors on the eddy current along the screen for b− formulation with
effects of µr , σ and frequency f


