
HAL Id: hal-00578969
https://hal.science/hal-00578969

Submitted on 22 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the classical cyclotomic approach to fermat’s
last theorem

Georges Gras

To cite this version:
Georges Gras. Analysis of the classical cyclotomic approach to fermat’s last theorem. Publications
Mathématiques UFR Sciences Techniques Besançon, 2010, 2010, pp.85-119. �hal-00578969�

https://hal.science/hal-00578969
https://hal.archives-ouvertes.fr


ANALYSIS OF THE CLASSICAL CYCLOTOMIC APPROACH

TO FERMAT
′
S LAST THEOREM

by

Georges Gras

Abstract. — We give again the proof of several classical results concerning the cyclotomic
approach to Fermat ′s last theorem using exclusively class field theory (essentially the reflection
theorems), without any calculations. The fact that this is possible suggests a part of the logical
inefficiency of the historical investigations.
We analyze the significance of the numerous computations of the literature, to show how they
are probably too local to get any proof of the theorem. However we use the derivation method
of Eichler as a prerequisite for our purpose, a method which is also local but more effective.
Then we propose some modest ways of study in a more diophantine context using radicals; this
point of view would require further nonalgebraic investigations.

Résumé. — Nous redonnons la preuve de plusieurs résultats classiques concernant l’approche
cyclotomique du théorème de Fermat en utilisant exclusivement la théorie du corps de classes
(notamment les théorèmes de réflexion), sans aucun calcul. Le fait que ceci soit possible suggère
une part d’inefficacité logique des investigations historiques.
Nous analysons la signification de nombreux calculs de la littérature, afin de montrer en quoi ils
sont probablement trop locaux pour donner une preuve du théorème. Cependant nous utilisons
la méthode de dérivation d’Eichler comme préalable à notre démarche, méthode aussi locale,
mais plus effective.
Ensuite, nous proposons quelques modestes voies d’étude, dans un contexte plus diophantien,
utilisant des radicaux, point de vue qui nécessiterait d’établir de nouvelles propriétés non al-
gébriques.

Introduction and Generalities

The classical approaches to Fermat′s last theorem (FLT) are essentially of a p-adic nature in
the pth cyclotomic field; thus these studies turn to be arithmetic modulo p, in which case the
distinction between first and second case is necessary but unnatural as Wiles′s proof suggests.
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Even if the starting point is of a global nature (pth powers of ideals, classes, units, logarithmic
derivative of Eichler,. . . ), the conclusion of the study is mostly local (congruences modulo p)
as we can see for instance in Ribenboim and Washington′s books [R, Wa].

We don′t know (for instance in the first case of FLT) if p-adic investigations (Kummer′s
congruences, Mirimanoff or Thaine′s congruences, Wieferich or Wendt′s criteria,. . . ) are able,
from a logical point of view, to succeed in proving it. We think that probably not and we think
that all these dramatically numerous necessary conditions can, in some sense, be satisfied in a
very rare “ numerical setting ”, as for the question of Vandiver′s conjecture for which we have
given a probabilistic study in [Gr1, II.5.4.9.2]: the number of favourable primes less than p

(for a counterexample) can be of the form c . log(log(p)), c < 1.

This is to be relativized with the result of Soulé [S] showing (after that of Kurihara [Ku] for
n = 3) that for odd n, the real components Cℓωp−n of the p-class group (1) are trivial for any
large p. This result and the well-known relative case indicate that the probabilities are not
uniform in the following way:
For small values of odd n, the real components Cℓωp−n are trivial (deep result of [Ku, S]) and
for small values of even m, the relative components Cℓωp−m are trivial (because of the evident
nondivisibility by p of the first Bernoulli numbers B2, . . . , Bm0); so that the real compo-
nents Cℓωp−3 , . . . , Cℓωp−n0 , for a small odd n0, and the relative components Cℓωp−2 , . . . , Cℓωp−m0 ,
for a small even m0, are trivial, which implies, by reflection, that the real components
Cℓω2 , . . . , Cℓωm0 are trivial and the cyclotomic units ηω2 , . . . , ηωm0 are not local pth powers
at p. (2)

In the particular speculative case of the existence of a solution in the first case of Fermat′s
equation, from results of Krasner [Kr], [G2], and many authors, for small values of odd n′,
the last Bernoulli numbers Bp−n′ must be divisible by p, say Bp−3, . . . , Bp−n′

0
for a small odd

n′0, giving the nontriviality of the relative components Cℓω3 , . . . , Cℓ
ωn′

0
and the fact that the

cyclotomic units ηωp−3 , . . . , ηωp−n′

0
are local pth powers (but not global pth powers because of

the previous result of Soulé, at least up to min (n0, n
′
0)), which creates a significant defect for

the probabilities.

As we see from the classical literature, strong diophantine or analytic arguments are absent,
even when the p-rank of the class group is involved since this p-rank is used as a formal
variable. Moreover the second case is rarely studied.

Of course a great part of the point of view developped here is not really new (many papers of
the early twentieth century, contain overviews of our point of view) but we intend to organize
the arguments in a more conceptual and accessible way, mainly to avoid Bernoulli′s numbers
considerations, and to suggest forthcoming studies in a more diophantine or analytic context
by using radicals instead of ideal classes.

(1)Standard definitions with the character of Teichmüller ω and the corresponding eigenspaces Cℓωi , also

denoted Cℓ(i), i = 1, . . . , p− 1; see Not. 2.7, and Th. 2.8, Subsec. 2.3.
(2)The equivalence between Cℓωp−k 6= 1 and ηωk being a local pth power (k even) is given by the theory of

p-adic L-functions or the reflection theorem; see Example 2.9.
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We will see on this occasion that class field theory, in its various aspects, allows us to find
again all classical technical properties, without dreadful computations.

Some papers already go partially in this direction (e.g. Anglès [A2, A3], Granville [G1, G2],
Helou [He1, He2], Terjanian [Te], Thaine [Th1, Th2, Th3], and many others).
Finally, we must mention that all these studies strongly depend on the base field (here Q)
since it is shown in [A2] that many results or conjectures fail for the Fermat equation over a
number field k 6= Q.

In Section 1 we recall some basic facts for the convenience of the reader; they can also be
found for instance in Washington′s book [Wa].

In Section 2 we recall some very useful properties of class field theory (notion of p-primarity
which avoids painful computations, reflection theorems in the general setting developped in
[Gr1, II.5.4]) and we introduce the radical W associated to a solution in any case of the Fermat
equation.
Then we explain the insufficiency of the local study of FLT, and we put the bases of a global
approach with W which does not separate the first and second cases of FLT. We also examine
the influence of a solution of the Fermat equation on other arithmetic invariants.

In Section 3, for the first case of FLT, we study p-adically the radical W , introduced in
Section 2, and show how Mirimanoff′s polynomials are related to this radical, without use of
Bernoulli′s numbers; moreover we modify these polynomials by introducing the characters of
the Galois group, which illuminates the class field theory context.
From this, we show that the classical Kummer and Mirimanoff congruences are directly the
expression of reflection theorems.
To be complete, we revisit some p-adic studies, as those of Eichler [E1, E2], covering works of
Brückner [Br1, Br2] and Skula [Sk1, Sk2].
We then return to the well-known fact that Wieferich′s criterion is a consequence of reciprocity
law and, in an Appendix, we give a proof suggested by Quême; for this simpler proof, we
interpret, with current technics, some works of Fueter–Takagi (1922) and Inkeri (1948) (see
[R, IX.4]) which do not use reciprocity law.
Finally we give a standard proof of the Germain–Wendt theorem, and introduce some
(perhaps new) ideas to compare Mirimanoff′s polynomials and Gauss′s sums, and to study
“ Mirimanoff′s sums ” defined as sums of roots of unity.

In Section 4, we give some conclusions and prospectives in various directions.

We are aware of the futility of this attempt, but we believe that it can be helpful (or disap-
pointing) for those who wish to pursue this kind of methodologies.

1. Classical results depending on a solution of Fermat′s equation

Let p be a prime number, p > 2. Let a, b, c in Z\{0} be pairwise relatively prime integers,
such that ap + bp + cp = 0. In the second case of FLT, we suppose that p | c.
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We have the identity:

ap + bp = (a+ b)NK/Q (a+ b ζ) = −cp,
where ζ is a primitive pth root of unity, K = Q(ζ), and NK/Q is the norm map in K/Q.

Let p be the unique prime ideal (1− ζ)Z[ζ] of K dividing p. We have pp−1 = pZ[ζ].

Lemma 1.1. — Let ν be the p-adic valuation of c. If ν ≥ 1, then a + b = pνp−1cp0 and

NK/Q(a + b ζ) = p cp1, with p ∤ c0 c1 and pνc0 c1 = −c. If ν = 0 then a + b = cp0 and

NK/Q(a+ b ζ) = cp1 with c0 c1 = −c.

Proof. — If p | c, there exists i, 0 ≤ i ≤ p − 1, such that a+ b ζ i ∈ p; thus a+ b ζj ∈ p for all
j = 0, . . . , p− 1 since a+ b ζj ≡ a+ b ζ i mod p for any j.
So p | a+ b and, since p ∤ b, the p-adic valuations of a+ b and b (ζ − 1) are µ(p− 1) for some
µ ≥ 1 and 1, respectively.
Since p > 2, the p-adic valuation of a+ b ζ = a+ b+ b (ζ − 1) is equal to 1 as well as for the
conjugates a+ b ζ i, i = 1, . . . , p − 1. The p-valuation of NK/Q(a + b ζ) is thus equal to p − 1

and that of a+ b is µ(p− 1) = (νp− 1)(p − 1), and the lemma follows.

Lemma 1.2. — Let ℓ 6= p be a prime number dividing c. Then ℓ |NK/Q(a+ b ζ) if and only

if ℓ ∤ a+ b (i.e., g.c.d. (c0, c1) = 1). Any ℓ |NK/Q(a+ b ζ) is totally split in K/Q.

Proof. — If ℓ |NK/Q(a + b ζ) we may suppose that a + b ζ ∈ l for a suitable l | ℓ so that ζ is
congruent modulo l to a rational, l is totally split in K/Q, thus ℓ is congruent to 1 modulo p.
The case ℓ ∤ a+ b is clear. If ℓ | a+ b and if l | a+ b ζ for l | ℓ, we get b (ζ − 1) ∈ l (absurd since
ℓ ∤ b.). Thus ℓ ∤ NK/Q(a+ b ζ).

Corollary 1.3. — (i) We have (a+ b ζ)Z[ζ] = p c
p
1 if p | c, where c1 is an integral ideal prime

to p, and (a+ b ζ)Z[ζ] = c
p
1 if not. We have NK/Q(c1) = c1.

(ii) Moreover c1 =
∏

ℓ|c1
lνℓ , νℓ > 0, where l is, for each ℓ | c1, a suitable (unique) prime ideal

above ℓ.

Proof. — We have only to prove that if l | a + b ζ, then for any conjugate li (by mean of the
automorphism ζ −→ ζ i, i 6= 1), we have li ∤ a+b ζ; indeed, if not we would have b (ζ−i−ζ) ∈ l

(absurd). Thus the ideal
(a+b ζ

1−ζ

)
Z[ζ] or (a+ bζ)Z[ζ] is characterized by its norm cp1 and is a

pth power.

Remark 1.4. — (i) By permutation we have the following, with evident notations:

a+ b = pνp−1cp0 or cp0, NK/Q(a+ b ζ) = p cp1 or cp1, with − c = c0 c1,

b+ c = ap0, NK/Q(b+ c ζ) = ap1, with − a = a0 a1,

c+ a = bp0, NK/Q(c+ a ζ) = bp1, with − b = b0 b1,

g.c.d. (a0, a1) = g.c.d. (b0, b1) = g.c.d. (c0, c1) = 1,
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(a+ b ζ)Z[ζ] = p c
p
1 or c

p
1, with NK/Q(c1) = c1,

(b+ c ζ)Z[ζ] = a
p
1, with NK/Q(a1) = a1,

(c+ a ζ)Z[ζ] = b
p
1, with NK/Q(b1) = b1.

(ii) All the prime numbers dividing a1b1c1 are totally split in K/Q; thus any (positive) divisor
of a1b1c1 is congruent to 1 modulo p.

These computations and the proofs of FLT in particular cases suggest the following conjecture.

Conjecture 1.5. — Let p be a prime number, p > 3, and K = Q(ζ), where ζ is a primitive

pth root of unity. Put p := (1− ζ)Z[ζ].

Then for x, y ∈ Z\{0}, with g.c.d. (x, y) = 1, the equation (x + y ζ)Z[ζ] = p zp or zp

(depending on whether x + y ≡ 0 mod (p) or not), where z is an ideal of K prime to p, has

no solution except the trivial cases: x+ y ζ = ±(1− ζ) and ±(1 + ζ).

In other words, considering the two relations (a+ b ζ)Z[ζ] = pc
p
1 (or c

p
1) and a+ b = pνp−1cp0

(or cp0), equivalent to the existence of a solution of the Fermat equation, we assert that the
second is unnecessary, the first one being equivalent to N(a + b ζ) = p cp1 (or cp1). It is likely
that this conjecture has already been stated, but we have found no reference.

2. Algebraic Kummer theory and reflection theorems

This Section is valid for the two cases of FLT.

2.1. p-primarity – local pth powers. — The following Theorem 2.2 will be essential to
clarify some aspects of ramification in Kummer cyclic extensions of degree p of K. Let Kp be
the p-completion of the field K (see [Gr1, I.6.3] for the classical notion of p-primarity due to
Hasse).

Lemma 2.1. — Let α ∈ K× be prime to p and such that αZ[ζ] is the pth power of an ideal

of K. (3)

The number α is p-primary (i.e., K( p
√
α )/K is unramified at p) if and only if it is a local

pth power (i.e., α ∈ K×p
p ). This happens if and only if α is congruent to a pth power modulo

pp = (p) p.

Proof. — One direction is trivial. Suppose that K( p
√
α )/K is unramified at p; since α is

a pseudo-unit, this extension is unramified as a global extension and is contained in the p-
Hilbert class field H of K. The Frobenius automorphism of p in H/K depends on the class
of p which is trivial since p = (1− ζ); so p splits totally in H/K, thus in K( p

√
α )/K, proving

the first part of the proposition. The final congruential condition of p-primarity is well known
(see e.g. [Gr1, Ch. I, § 6, (b)]).

(3)Such numbers are called pseudo–units since units are a particular case; we will use this word to simplify.
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Warning: the general condition of p-primarity in K is “ α congruent to a pth power modulo
pp = (p) p ”, but the general condition to be a local pth power at p inK is “ α congruent to a pth
power modulo pp+1 = (p) p2 ”. The fact that “ α is a pseudo-unit of K implies the equivalence ”
is nontrivial and specific of the pseudo-units of the pth cyclotomic field (such studies are given
in [Th3], for special pseudo-units, by means of explicit polynomial computations).

We have the following consequence, due to Kummer for units, which can be generalized to
pseudo-units.

Theorem 2.2. — Every pseudo-unit η of K, congruent to a rational (respectively to a pth

power) modulo p, is p-primary, thus a local pth power at p. If moreover the p-class group of

K is trivial, η is a global pth power.

Proof. — We have, for a suitable rational ρ, ηp−1 ≡ ρp−1 ≡ 1 mod (p) in Z(p)[ζ], where Z(p)

is the localization of Z at p.
Put ηp−1 = 1+p δ, δ ∈ Z(p)[ζ], and (η) = np; taking the norm of the relation (ηp−1) = n(p−1)p

we get NK/Q(η
p−1) = n(p−1)p with np−1 ≡ 1 mod (p), hence 1 ≡ 1 + pTrK/Q(δ) mod (p2)

giving TrK/Q(δ) ≡ 0 mod (p), thus δ ∈ p, proving the first part of the theorem (see Lem. 2.1).
If η ≡ up mod (p), u =

∑
ui ζ

i ∈ Z(p)[ζ], then up ≡ ∑
upi =: ρ ∈ Z(p) modulo p; reciprocally,

η ≡ ρ mod (p) implies η ≡ ρp mod (p).
The extension K( p

√
η ) is thus unramified; so if the p-class group of K is trivial, this extension

must be trivial, which finishes the proof.

When the p-class group of K is trivial, K is said to be p-regular (in the Kummer sense), which
is here equivalent to its p-rationality; this property implies in general the above result for units.
See [MN], [JN], [GJ] for these notions in general, and [AN] where the Kummer property is
generalized. See Subsections 2.5, (a) and (b) for the study of the invariants T (K) and R2(K)

whose triviality characterizes the p-rationality and the p-regularity (in the K-theory sense),
respectively.

2.2. Introduction of some radicals. — We begin by the following remarks, from a solu-
tion (a, b, c) of the Fermat equation, which are the key of the present study.

Remark 2.3. — (i) We note that we have (a + b ζ)Z[ζ] = pc
p
1 or c

p
1 (see Cor. 1.3, (i),

or Rem. 1.4, (i)). This means that the Kummer cyclic extensions (of degree p or 1)
K( p

√
a+ b ζ i )/K, i = 1, . . . , p − 1, are p-ramified (i.e. unramified outside p). In the

same way, K( p
√
b+ c ζj )/K, K( p

√
c+ a ζk )/K, j, k = 1, . . . , p − 1, are p-ramified cyclic

extensions.

(ii) When p | c, the extensions K( p
√
b+ c ζj )/K, j = 1, . . . , p − 1, are unramified: indeed we

have b+ c ζj ≡ b mod (p), hence the conclusion with Theorem 2.2.
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But we know that these extensions must split at p which implies that necessarily c ≡ 0

mod (p2). (4)

We have c + a ζk = ζk (a + c ζ−k) with a + c ζ−k ≡ a mod (p); thus in the compositum
K( p

√
ζ , p

√
c+ a ζk ) (where K( p

√
ζ )/K is also p-ramified) we obtain the unramified extensions

K
(

p
√
a+ c ζk′

)/
K, k′ = 1, . . . , p − 1, and similarly with c+ b ζj.

(iii) If p | c, then from Corollary 1.3, (i), the pseudo-units a+ b ζi

1− ζi
are such that a+ b ζi

1− ζi
=

a+ b

1− ζi
− b ≡ −b mod (p) since a + b is of p-valuation ν p − 1 ≥ 2. Theorem 2.2 implies that

the a+ b ζi

1− ζi
are local pth powers at p and that the extensions K

(
p

√
a+b ζi

1−ζi

)/
K are unramified.

Notation 2.4. — Let Ep be the group of p-units of K. Then Ep = 〈 ζ, 1 − ζ 〉 ⊕ E+, where

E+ is the group of units of the maximal real subfield K+ de K. Put E+ = 〈 εi 〉i=1,..., p−3
2

, and

for i, j, k = 1, . . . , p − 1, put:

Ω := 〈 a+ b ζ i, b+ c ζj, c+ a ζk 〉,
Γ := 〈 ζ, 1− ζ, ε1, . . . , ε p−3

2
, a+ b ζ i, b+ c ζj, c+ a ζk 〉 = Ep ⊕ Ω,

Wc := 〈 a+ b ζ i 〉i .K×p/K×p,

Wa := 〈 b+ c ζj 〉j .K×p/K×p,

Wb := 〈 c+ a ζk 〉k .K×p/K×p,

W := Γ .K×p/K×p.

If p | c (second case of FLT), we introduce the group:

Ωprim := 〈 a+b ζi

1−ζi
, b+ c ζj, a+ c ζk 〉, for which Γ = Ep ⊕ Ωprim.

Remark 2.5. — (i) It is easy to see from Corollary 1.3, (ii), that the 3(p−1)+ p+1
2 elements

ζ, 1 − ζ, ε1, . . . , ε p−3
2
, a + b ζ i, b + c ζj, c + a ζk, i, j, k = 1, . . . , p − 1, are multiplicatively

independent and, due to their particular form, the idea is that they are largely independent
in K×/K×p (this is the main diophantine argument).

Unfortunately, this is probably very difficult to prove since it looks like Vandiver′s conjecture
(which applies to the cyclotomic p-units, generated by 1 − ζ and its conjugates, which are
not independent in K×/K×p as soon as Vandiver′s conjecture is false). But in fact we will
see below that the required condition is not the total independence of the above numbers in
K×/K×p because of analytic formulas.

(ii) It is evident that ζ, 1−ζ, ε1, . . . , ε p−3
2

are independent in K×/K×p since it is by definition
a Z-basis of Ep.

(4) We have b+ c ζ = (b+ c)
(

1+ c
b+c

(ζ − 1)
)

where b+ c = ap0. Let 1+ c
b+c

(ζ − 1) = (1+ u (ζ − 1))p locally; if

u ≡ u0 mod p, with u0 ∈ Z, then ζ−u0 (1 + u (ζ − 1)) ≡ 1 mod p2, giving 1 + c
b+c

(ζ − 1) ≡ 1 mod (p) p2, thus

c ≡ 0 mod (p) p, hence modulo p2.
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(iii) We have W = Γ .K×p/K×p and Ep .K
×p/K×p ≃ Ep/E

p
p ; then:

Γ .K×p/Ep .K
×p ≃ Γ/Γ ∩ (Ep .K

×p) ≃ Ω/Ω ∩ (Ep .K
×p)

whose order is the degree
[
K( p

√
Γ ) : K( p

√
Ep )

]
.

(iv) If p | c, then K( p
√

Ωprim )/K is unramified and K( p
√
Γ )/K( p

√
Ep ) is unramified hence

p-split of degree (Ωprim : Ωprim ∩ (Ep .K
×p)) (nonramification and decomposition propagate

by extension), which will be interpreted in Subsection 2.3.

Denote by K( p
√
W ) the extension K( p

√
Γ ). We conclude (Rem. 2.3) that the extension

K( p
√
W )/K is a Plp-ramified p-elementary abelian extension of K (i.e., abelian of exponent

p), where Plp is the set of places of K above p (here reduced to the singleton {p}).

2.3. Use of class field theory: abelian Plp-ramification. — Let HPlp be the maximal
Plp-ramified abelian pro-p-extension of K, and let CℓPlp be the generalised p-class group of K
(i.e., the direct limit of the p-ray class groups modulo rays groups of conductor a power of p);
we have:

Gal (HPlp/K) ≃ CℓPlp .
From the general reflection formula proved in [Gr1, II.5.4.1, (iii)] we obtain: (5)

rkp(CℓPlp)− rkp(CℓPlp) = |Plp |+ p− 1− p− 1

2
=

p+ 1

2
.

Recall that in this formula, CℓPlp (the Plp-class group) is the quotient of the p-class group Cℓ
by the subgroup generated by the classes of the prime ideals above p, which gives, as we have
seen, CℓPlp = Cℓ.
From the above, since K( p

√
W ) ⊆ HPlp , we get:

rkp(Cℓ) = rkp(CℓPlp)−
p+ 1

2
≥ rkp(W )− p+ 1

2
.

Now we can prove the following from a solution (a, b, c) of the Fermat equation:

Theorem 2.6. — Let W be the radical generated, in K×/K×p, by the group of p-units Ep

and the numbers a+ b ζ i, b+ c ζj , c+ a ζk, i, j, k = 1, . . . , p− 1. (6)

Then we have the inequalities rkp(W ) ≤ p+1
2 + rkp(Cℓ) ≤ p.

If moreover p is regular (i.e., if Cℓ is trivial) then W = Ep/E
p
p .

Proof. — From many authors (see e.g. [G3] for more history), we know that the relative class
number h−, i.e., the order of the relative class group C− := Ker

(
NK/K+ : C −→ C+ := CK+

)
,

is such that log(h−) < p
4 log(p) which proves that rkp(Cℓ−) ≤ p−1

4 . From classical Hecke–
Leopoldt reflection theorem, we get rkp(Cℓ+) ≤ rkp(Cℓ−) giving the (very bad) inequality
rkp(Cℓ) ≤ p−1

2 , and the first part of the theorem.

(5)For any abelian group A we denote by rkp(A) the Fp-dimension of A/Ap.
(6)In the second case of FLT with p | c, a+ b ζ is not a pseudo-unit, but a+b ζ

1−ζ
, b+ c ζ, c+ a ζ are pseudo-units;

thus W is generated by 1− ζ and pseudo-units.
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If p is regular we get rkp(W ) ≤ p+1
2 ; since W contains Ep/E

p
p which is of p-rank p+1

2 we have
the equality, proving the theorem.

In the regular case we obtain the following (see Not. 2.4):

(i) First case of FLT. From Remark 2.5, (iii), we obtain Ω ⊂ E .K×p since in the first case
the elements of Ω are pseudo-units. Then in that case, all the elements a+ b ζ i, b+ c ζj, and
c + a ζk are of the form ε . αp, ε ∈ E, α ∈ Z[ζ]. Of course, one can take for ε a cyclotomic
unit since the group of cyclotomic units is of prime to p index in E.

(ii) Second case of FLT. From Remark 2.5, (iv), and Theorem 2.2, we obtain Ωprim ⊂ K×p;
so in the second case (with p | c), all the elements a+b ζi

1−ζi
, b+ c ζj , and a+ c ζk are global pth

powers,which can perhaps simplify the usual proof.

From this we obtain easily the classical proofs by Kummer of FLT as those given in [W,
Th. 1.1 and Th. 9.3] or in [Hel, Chap. 1, § 8.4].

However, Eichler′s theorem [E1, E2] (i.e., rkp(Cℓ−) ≤ [
√
p+ 1 − 1.5 ] implies the first case of

FLT), that we will discuss and prove later (Th. 3.14), may be considered as a wide general-
ization of the regular case, but limited to the first case of FLT (see also [W, Th. 6.23] or [R,
IX.7] for similar proofs).

In the general case, the unlikely equality rkp(Cℓ+) = rkp(Cℓ−) used for the proof of Theorem
2.6 supposes the following facts (see [Gr1, II.5.4.9.2]) for which we introduce the characters
of the Galois group:

Notation 2.7. — (i) Let g = Gal (K/Q) and let ω be the character of Teichmüller of g

(i.e., the character with values in µp−1(Qp) such that for the sk ∈ g defined by sk(ζ) = ζk,

k = 1, . . . , p− 1, ω(sk) is the unique (p− 1)th root of unity in Qp, congruent to k modulo p).

We will also write ω(k) := ω(sk).

(ii) Any irreducible p-adic character of g is of the form χ := ωm, for m ∈ {1, . . . , p − 1}; we

denote by χ0 the unit character (m = p− 1).

If χ is any p-adic character of g, we put χ∗ := ωχ−1 (reflection character).

(iii) The idempotent corresponding to χ is:

eχ := 1
p−1

∑
s∈g

χ(s−1) s = 1
p−1

p−1∑
k=1

χ−1(k) sk ∈ Zp[g].

The action of eχ on a Zp[g]-module is well-defined; for a Z[g]-module M , we use instead the

Zp[g]-module M ⊗
Z
Zp or the Zp[g]-module M ⊗

Z
Fp ≃ M/Mp; by abuse of notation we write

Mχ := M eχ for the χ-component of M in the above sense.

For instance, we denote by rkp(Cℓχ) the p-rank of the χ-component Cℓχ of the p-class group Cℓ(
Cℓχ is thus the maximal submodule of Cℓ on which g acts via cs = cχ(s) for all s ∈ g and any

class c ∈ Cℓχ
)
.

For the group E of units, Eχ := Eeχ must be interpreted in E ⊗
Z
Zp or E/Ep depending on

the context.

(iv) Let Kχ be the subfield of K fixed by Ker(χ).
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To be self-contained, we recall here the main classical results which will be of constant use.

Theorem 2.8 (Prerequisites). — (i) (Kummer duality; see [Gr1, Rem. II.5.4.3]). Let H [p]

be the p-elementary p-Hilbert class field of K, A := Gal(H [p]/K), and R the radical of H [p]

(i.e., A ≃ Cℓ/Cℓp and H [p] = K( p
√
R )).

For any character χ of g and for χ∗ := ω χ−1 we have the canonical isomorphism of g-modules:

Gal(K( p
√
Rχ∗ )/K) ≃ Aχ ·

Then we have Rχ∗ ⊂ Kχ∗ and K( p
√
Rχ∗ )/K splits over Kχ ·

(ii) (Reflection theorems; see [Gr1, 5.4.9.2, “ Analysis of a result of Hecke ”]). For any even

character χ 6= χ0 and for χ∗ := ω χ−1 we have:

rkp((Y/Yprim)χ∗) = rkp(Cℓχ∗)− rkp(Cℓχ) = 1− rkp((Y/Yprim)χ),

where Y is the group of pseudo-units of K (elements equal to the pth power of an ideal prime

to p), and where Yprim is the subgroup of p-primary pseudo-units (i.e., local pth powers at p).

(iii) (Main theorem on cyclotomic fields of Thaine–Ribet–Mazur–Wiles–Kolyvagin; see [W,
§ 15.4]). For any even character χ 6= χ0 and for χ∗ := ω χ−1 we have:

• | Cℓχ | = |
(
〈 εχ 〉 : 〈 ηχ 〉

)
|−1
p , where εχ is a generator of Eχ and ηχ = (1− ζ)eχ.

• | Cℓχ∗ | = | bχ∗ |−1
p , where bχ∗ := 1

p

p−1∑
k=1

(χ∗)−1(k) k.

The use of the deep result (iii) is not really necessary in this paper but it clarifies the reasonings
since we are only interested by the logical aspects of the influence of a solution of Fermat′s
equation on these invariants and not by an optimization of the statements.

Example 2.9. — If for an even χ 6= χ0, the group Cℓχ∗ is nontrivial, there exists a nontrivial
χ∗-pseudo-unit αχ∗ (i.e., αχ∗ /∈ K×p).

If αχ∗ is p-primary then from (i) this defines a χ-unramified cyclic extension of degree p of Kχ;
so that Cℓχ 6= 1 and

(
〈 εχ 〉 : 〈 ηχ 〉

)
≡ 0 mod (p) from (iii) (counterexample to the Vandiver

conjecture).

If αχ∗ is not p-primary then from (ii) we get rkp((Y/Yprim)χ∗) = 1 and rkp((Y/Yprim)χ) = 0

which implies that all the χ-pseudo-units are p-primary, especially εχ, hence ηχ ∈ 〈 εχ 〉 is also
a local pth power at p. We have obtained a class field theory version of a result given by the
following properties of p-adic L-functions:

Lp(0, χ) ≡ Lp(1, χ) mod (p) [W, Cor. 5.13] ,

Lp(0, χ) = −bχ∗ [W, Th. 5.11] ,

Lp(1, χ) = τ(χ)
p

p−1∑
k=1

χ−1(k)log(1− ζk) = τ(χ)
p log(ηp−1

χ ) [W, Th. 5.18] ,

where the Gauss sum τ(χ) is of p-valuation ≤ p−2, giving easily bχ∗ ≡ 0 mod (p) if and only
if ηχ is a local pth power at p (see Subsec. 3.3 and 3.4).
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Then from the above, concerning the equality rkp(Cℓ+) = rkp(Cℓ−), we would have, for each
even χ such that rkp(Cℓχ∗) ≥ 1, the alternative rkp(Cℓχ∗) ≥ 2, or rkp(Cℓχ∗) = 1 and in the
writing pCℓχ∗ = 〈 cℓ(aχ∗) 〉 then a

p
χ∗ =: (α) with α p-primary; all this is of course very strong

because of the probabilistic value of rkp(Cℓ+) discussed in “ Introduction and Generalities ”.

We will return to reflection theorem in the proof of Theorems 3.7 and 3.9.

If we refer to [W, § 6.5], the value of rkp(Cℓ) is conjecturally O
( log(p)
log(log(p))

)
. With such a result,

the inequality of Theorem 2.6 would be:

rkp(W ) ≤ p+ 1

2
+O

(
log(p)

log(log(p))

)
,

noting that the principal term p+1
2 comes from the p-units; this means, from Remark 2.5, (iii),

that most of the elements of Ω (see Not. 2.4) are of the form ε . αp, ε ∈ Ep, α ∈ Z[ζ]. In case
Vandiver′s conjecture is satisfied, Theorem 2.6 reduces to:

rkp(W ) ≤ p+ 1

2
+

p− 1

4
, instead of ≤ p.

It is implausible that the p-rank of the radical W , generated by the images in K×/K×p of
the 3(p− 1) + p+1

2 multiplicatively independent elements of Γ, could be less than p.

2.4. Comparison of the local and global approaches. — Now we intend to show that
any restriction to the local case leads to the following fact, where Kp is the completion of K
at p:

rkp

(
Gal

(
Kp(

p
√
W )/Kp)

)
≤ p;

in other words, the four radicals Wa, Wb, Wc, Ep/E
p
p become largely dependent by p-

completion of the base field.
More precisely, we have Kp(

p
√
W ) = Kp( p

√
Wp ), where Wp = Γ .K×p

p /K×p
p is the local radical

generated by the image in K×
p /K

×p
p of the 3(p − 1) + p+1

2 elements ζ, 1 − ζ, ε1, . . . , ε p−3
2

,

a+ b ζ i, b+ c ζj, c+ a ζk, i, j, k = 1, . . . , p− 1.

For instance, if p | c, Wp is the local radical generated by Ep (see Rem. 2.5, (iv)).

Since p splits completely in H and is totally ramified in HPlp/H, by local class field theory the
p-rank of Gal

(
HPlp/H

)
is less than or equal to the p-rank of the inertia group of the maximal

p-ramified abelian pro-p-extension Mp of Kp = Hp, equal to the p-rank of the subgroup of
units of K×

p , thus equal to p.
Since Kp( p

√
Wp ) = Hp( p

√
Wp ) ⊆Mp, this yields as expected:

rkp(Wp) = rkp

(
Gal

(
Kp(

p
√
Wp )/Kp

))
≤ p.

Returning to the global situation and using Theorem 2.6, we obtain directly that:

rkp(Wp) ≤ rkp(W ) ≤ p+ 1

2
+ rkp(Cℓ) ≤ p,

which is surprising since the global inequality is obtained via an approximate analytic formula.
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So in the local situation we only have the following informations:

rkp(Wp) ≤ p+ 1

2
+ rkp(Cℓ),

knowing that (in a “numerical” point of view) Wp does not contain more than p independent
elements in K×

p /K
×p
p , to be compared with the global situation:

rkp(W ) ≤ p+ 1

2
+ rkp(Cℓ),

knowing that the p-rank of W in K×/K×p is only limited by 3(p − 1) + p+1
2 .

In the two directions (local or global), a contradiction (i.e., a proof of FLT) would be obtained
by proving the following inequalities:

(i) In the local case:

rkp(Wp) >
p+ 1

2
+ rkp(Cℓ),

under the fact that rkp(Wp) is p−δ(p), where the defect δ(p), in the first case of FLT, depends
essentially of the local properties of Mirimanoff′s polynomials (see Th. 3.5 and Th. 3.9), which
gives the sufficient condition to be proved:

δ(p) < p− p+ 1

2
− rkp(Cℓ) = p− 1

2
− rkp(Cℓ),

which is unusable with the analytic inequality rkp(Cℓ) ≤ p−1
2 equivalent to δ(p) = 0.(7)

In the second case of FLT, such a proof is also impossible since, as we have seen, rkp(Wp) ≤
rkp(Ep) =

p+1
2 .

(ii) In the global case, for the two cases of FLT:

rkp(W ) >
p+ 1

2
+ rkp(Cℓ),

under the fact that rkp(W ) is 3(p− 1) + p+1
2 −∆(p), where the defect ∆(p) depends on deep

diophantine properties, which gives the sufficient condition to be proved:

∆(p) < 3(p− 1) +
p+ 1

2
− p+ 1

2
− rkp(Cℓ) = 3 (p − 1)− rkp(Cℓ),

realized as soon as ∆(p) < 5 p−1
2 with the analytic inequality rkp(Cℓ) ≤ p−1

2 , which may be
provable.

Remark 2.10. — (i) In the previous analysis, one may object that in an evident way, global
radicals and class groups give equivalent informations (in spite of the fact that here we consider
generalized classes), but we insist on the fact that these radicals, hence the corresponding
classes, are of a very special nature (see for instance Conjecture 1.5, specific of this particular
case).

(ii) If we replace the fundamental units εi by the cyclotomic units, we obtain the radical
W̃ = 〈 ζ, 1− ζn, a+ b ζ i, b+ c ζj, c+a ζk 〉 .K×p/K×p, n, i, j, k = 1, . . . , p− 1, all the elements
being of the special form x+ y ζq.

(7)Note that Mirimanoff′s congruences tend to yield a large δ(p).
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The radical W̃ is of p-rank 3(p − 1) + p+1
2 − ∆̃(p), which requires to prove that ∆̃(p) <

3(p − 1) − rkp(Cℓ), with ∆̃(p) ≥ ∆(p) because of possible cyclotomic units being pth powers
of units (defect of Vandiver′s conjecture), which seems to be acceptable, even if ∆̃(p) is not
so good, to perform ∆̃(p) < 5 p−1

2 .

2.5. Links with other invariants. — Since analytic aspects are important to get good
upper bounds, it is useful to connect (or replace) the classical class group with other invariants.
Moreover, a solution of Fermat′s equation has important consequences on any arithmetic
invariant, as the following ones.

(a) Case of the torsion subgroup of Gal (HPlp/K).

Recall that Gal (HPlp/K) ≃ CℓPlp is isomorphic to Z
p+1
2

p ⊕T , where T is the (finite) p-torsion

subgroup. Thus we get rkp(W ) ≤ rkp(CℓPlp) = p+1
2 +rkp(T ), giving rkp(T ) ≥ rkp(W )− p+ 1

2
.

If G is the Galois group of the maximal Plp-ramified pro-p-extension of K, then the group G
is defined by d generators and r relations, where:

d = rkp(H
1(G,Z/pZ)) = rkp(CℓPlp) =

p+ 1

2
+ rkp(T ),

r = rkp(H
2(G,Z/pZ)),

with the duality H2(G,Z/pZ)∗ ≃ pT (see for instance [Gr1, App., Th. 2.2]), giving:

rkp(H
2(G,Z/pZ)) ≥ rkp(W )− p+ 1

2
= 3(p − 1) −∆(p).

One may expect that there exist some constraints on such cohomology groups.

The field K is said to be p-rationnal (see [MN]) if T = 1, which is equivalent to Cℓ = 1 (K is
p-regular in the Kummer sense).

From the reflection theorem (see [Gr2, Th. 10.10]), we have for any χ with χ∗ = ω χ−1: (8)

rkp(Tχ) = rkp(Cℓχ∗).

From the interpretation of the reflection principle for the groups Cℓχ recalled in the Theorem
2.8, (ii) (see also [Gr1, II.5.4.9.2]), we obtain a similar result between the groups Tχ and Tχ∗:

rkp((Y/Yprim)χ∗) = rkp(Tχ)− rkp(Tχ∗) = 1− rkp((Y/Yprim)χ),

for any even χ, where Y is the group of pseudo-units and Yprim the subgroup of p-primary
pseudo-units.

Hence, for the group T , the “ Vandiver conjecture ” is T − = 1.

Let us mention the two relations (equalities up to a p-adic unit):

| T + | = | Cℓ+ | . Reg+

Disc+
, | T − | = | Cℓ− |

(

Zp log(I−) : Zp log(P−)
)

,

(8)For a direct proof, use the fact that the relative component Cℓ−Plp
is the sum of T − and of the Galois group

of the compositum of the relative Zp-extensions giving the representation Zp[g]
−; the real part Cℓ+Plp

is the

sum of T + and of Zp with trivial character; so [Gr1, Th. II.5.4.5] gives the formula.
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where Reg+ is the p-adic regulator, Disc+ the discriminant, of K+, I the group of ideals prime
to p, P the subgroup of principal ideals, of K; if c is the complex conjugation and a an ideal
of K, let n be such that an

1−c
2 = (α), then log(a

1−c
2 ) := 1

n log(α) where log is the Iwasawa
logarithm for which log(p) = 0 (note that for the minus part, the units do not enter in the
use of log; see [Gr1, Cor. III.2.6.1, Rem. III.2.6.5] for more details and references).

As for the class group, the existence of a solution of Fermat′s equation has a great influence
on the group T , for instance on the study of the index

(
Zp log(I

−) : Zp log(P
−)

)
regarding

the relations (x+ y ζ) = p z
p
1 or z

p
1 giving:

log
(
z
1−c
2

1

)
:=

1− c

2

1

p
log(x+ y ζ) =

1− c

2

1

p
log

(
1 +

y

x+ y
(ζ − 1)

)
.

Mention also the following reasoning giving another interpretation of a result of Iwasawa [Iw],
which may have some interest (9):

For an even χ, since Zp log(P
−) = log(U−) where U is the group of principal units of Kp, we

obtain easily:

|Tχ∗| = |Cℓχ∗ |(
eχ∗ .Zplog(I) : eχ∗ . log(U)

) ·

The main theorem on cyclotomic fields (see Th. 2.8, (iii)) gives |Cℓχ∗| = |bχ∗ |−1
p (the p-part of

the corresponding generalized Bernoulli number bχ∗ ∈ Zp).

We know that for any prime ideal l of K, l 6= p, we have:

l pS = G(l)p Z[ζ],

where S := 1
p

∑p−1
k=1 k s

−1
k is the Stickelberger element (10) and G(l) the Gauss sum:

G(l) := −
∑
t∈Fl

ψ(t) ζ
tr(t)
ℓ ,

where Fl is the residue field, ψ the canonical character of order p of F×
l , ζℓ a primitive ℓth

root of unity, and tr the trace in the residual extension Fl/Fℓ. Thus taking log we obtain for
all even χ:

eχ∗ . S . log(l) = eχ∗ . bχ∗ . log(l) = eχ∗ . log(G(l)).
Then |bχ∗ |−1

p eχ∗ .Zplog(l) = eχ∗ .Zplog(G(l)), thus:

|Tχ∗ | =
|bχ∗ |−1

p(
1

|bχ∗ |−1
p
eχ∗ .Zplog (G) : eχ∗ . log (U)

) ,

where G is the group generated by all the Gauss sums G(l).

(9)From a talk given in 1982 in the University Laval, Québec; published in the mathematical series, No20

(1984), of the department of mathematics.
(10)We have eχ∗ . S = bχ∗ . eχ∗ ; this explains that we use a different definition from that of [W] for the

generalized Bernoulli numbers.
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So, the Vandiver conjecture for χ even (Cℓχ = Tχ∗ = 1) is equivalent to the fact that
eχ∗ .Zp log (G) = eχ∗ . log(U), and the whole Vandiver conjecture is equivalent to the fact
that the images of the Gauss sums in U generate the minus part of this Zp-module.

(b) Case of the regular and wild kernels.

Recall the fundamental diagram of K-theory, in which WK2(K) is called the wild kernel and
R2(K) the regular kernel in the ordinary sense. We specify the diagram recalled in [Gr1,
II.7.6] to the case of the cyclotomic field K (h is the Hilbert symbol and hreg the regular
Hilbert symbol, which is explicit):

1 −→ WK2(K) −−−→ K2(K)
h−−−→

⊕
v∈Plnc

µ(Kv)
π−−−→ µ(K) −→ 1

∣∣∣
∣∣∣

∣∣∣
∣∣∣

y↓
y

1 −→ R2(K) −−−→ K2(K)
hreg

−−−→
⊕

v∈Plnc
µ(Kv)

reg −−−→ 1 ,

since (R2 : WK2) = 1 for K = Q(ζ) (use [Gr1, II.7.6.1]).

For R2 we have a Kummer interpretation, coming from results of Tate [Ta], which is given by
the exact sequence:

1 −→ µp ⊗N2 −−−→ µp ⊗WPlp
f−−−→ pR2 −→ 1,

where WPlp is the initial radical of HPlp/K, f being defined by f(ζ ⊗ α) := {ζ , α} for all
α ∈ WPlp , and where N2 := {α ∈ K×, {ζ , α} = 1}/K×p (Tate′s kernel) is such that (as
g-modules):

µp ⊗N2 ≃ (µp ⊗ µp)⊕ µ
p−1
2

p .

We then have rkp(R2) = rkp(WPlp) − p+1
2 = rkp(Cℓ) (see [Gr1, II.7.7.2.2]). More precisely,

using characters, we have here another principle of reflection, since we must associate χ with
χ := ω−1χ = (χ∗)−1, giving for all χ:

rkp(R2, χ) = rkp(Cℓω−1χ) = rkp(Tω2χ−1).

As for the group T , we get for any even χ:

rkp((Y/Yprim)χ∗) = rkp(R2, ω2χ−1)− rkp(R2, ωχ) = 1− rkp((Y/Yprim)χ),

and “ Vandiver′s conjecture ” for R2 is R−
2 = 1.

This can be deduced from the above exact sequence by proving that the groups 〈 ζ 〉⊗
Zp
Cℓ and

pR2 are isomorphic g-modules, which is coherent with the above reflection. Another proof
uses the isomorphism proved by Jaulent [J] between WK2/(WK2)

p and 〈 ζ 〉 ⊗
Zp
C̃ℓ, where C̃ℓ is

the logarithmic p-class group, and the isomorphism C̃ℓ ≃ Cℓ for K (see [Gr1, Exer. III.7.1]).

The field K is said to be p-regular (in the K-theory sense) if the p-Sylow of the regular kernel
R2 is trivial (see [JN, GJ]); here it is the case if and only if Cℓ = 1.
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We have here a complete parallelism between regular kernel and class group (with another
Galois action), which may be interesting by studying for instance the map f on the elements
x+ y ζ of the radical W ⊆WPlp , and so on.

We know that R+
2 := R2(K

+) is given by the value at −1 of the Dedekind zeta function ζK+

of K+; more precisely, after the proof of Birch–Tate conjecture by Wiles (on this subject, see
e.g. Greither [Gre]) we get:

|R+
2 | = 24 p

2
p−1

2

∣∣ ζK+(−1)
∣∣

(see Washington′s book [Wa, Ch. IV] to compute the analytic expression of |R+
2 |). For the

minus part |R−
2 |, we don′t know convenient analytic formula as for | T − |; we only have the

isomorphism pR
−
2 ≃ (〈 ζ 〉 ⊗

Zp
Cℓ)−.

3. Some classical local considerations revisited (first case of FLT)

To study the p-rank of the radical W we begin with the partial radical Wc, in the first case
of FLT, or the radical generated by Wc and the units.

Thus in this Section we suppose that p ∤ c; so we will have similar results by permutations
of {a, b, c} with no more global informations as explained in Section 2; moreover, since
a + b ζ = ζ (b + a ζ−1), the radical W contains the conjugates of b + a ζ−1 and we can
add the transpositions of the set {a, b, c}, so that the reasonings (in the first case of FLT)
are valid for any (x, y) ∈ {(a, b), (b, a), (b, c), (c, b), (c, a), (a, c)}.

3.1. Logarithmic derivative: Mirimanoff ′s polynomials. — We need, once for all, a
convenient characterization of p-primarity; the best way is to use the method of derivation of
Eichler. Everything depends on this.

From a solution (a, b, c) in the first case of Fermat′s equation, we study the relation:
p−1∏
i=1

(a+ b ζ i)λi = α p, λi ∈ {0, . . . , p− 1}, α ∈ Z[ζ]. (11)

Since a+ b is a pth power (Lem. 1.1), it is equivalent to consider, for e := b
a+b :

p−1∏
i=1

(1 + e (ζ i − 1))λi = β p, λi ∈ {0, . . . , p − 1}, β ∈ Z(p)[ζ].

This relation is equivalent to the polynomial relation:

F (X) :=
p−1∏
i=1

(1 + e (Xi − 1))λi = G(X)p +A(X)Φp(X), G, A ∈ Z(p)[X],

where Φp(X) is the pth cyclotomic polynomial.

(11)Without any change, we can study the same relation in Zp[ζ] instead of Z[ζ]; in that case, we will obtain

a N.S.C. (see Th. 3.5).
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Lemma 3.1. — We can choose G(X) modulo Φp(X) such that:

F (X) =
p−1∏
i=1

(1 + e (Xi − 1))λi = H(X)p +B(X) (Xp − 1), H, B ∈ Z(p)[X].

Proof. — Since F (1) = 1, G(1)p + A(1) p = 1, thus G(1)p ≡ G(1) ≡ 1 mod (p) and G(1) =

1 + Λ p, Λ ∈ Z(p). Put G1(X) := G(X) − ΛΦp(X); this yields to G1(1) = G(1) − Λ p = 1.
We have F (X) = G1(X)p +A1(X)Φp(X) for some A1(X).
We obtain F (1) = 1 = G1(1)

p + A1(1) p = 1 + A1(1) p, in other words A1(1) = 0. Thus
A1(X) = (X − 1)B(X). We then put H(X) := G1(X).

By logarithmic derivation, since e 6≡ 0 mod (p) in the first case of FLT and since F (X) is
invertible modulo (p,Xp − 1), this gives:

p−1∑
i=1

λi iX
i−1

1 + e (Xi − 1)
∈ (p,Xp − 1)Z(p)[[X]]. (1)

Remark 3.2. — From this formula we deduce (taking X = 1) the necessary condition∑p−1
i=1 λi i ≡ 0 mod (p), which gives one nontrivial relation between the λi. This relation

is due to an obstruction on the ω-component (see Rem. 3.4 ).
The interest of Lemma 3.1 is that (p,Xp − 1)′ ⊆ (p,Xp − 1).

The series 1

1 + e (Xi − 1)
=

∑
j≥0

(−1)j ej (Xi − 1)j are convergent for the (X − 1)-adic topology

and, since (Xi − 1)p ∈ (p,Xp − 1) = (p, (X − 1)p), we obtain, after multiplication by X, the
equivalent condition:

p−1∑
i=1

λi iX
i
p−1∑
j=0

(−1)j ej (Xi − 1)j ∈ (p, (X − 1)p).

Thus, using (Xi − 1)j =
∑
k≥0

(−1)j−k
(j
k

)
Xik, with

(j
k

)
= 0 for k > j, this yields:

∑
k≥0

p−1∑
i=1

λi iX
i(k+1) . (−1)k

p−1∑
j=k

(j
k

)
ej ∈ (p, (X − 1)p).

Since j ≤ p− 1 and
(j
k

)
= 0 for k > j, we can limit k to the value p− 1; for k = p− 1 we get

the term
p−1∑
i=1

λi iX
ip ep−1 ≡

p−1∑
i=1

λi i ≡ 0 mod (p,Xp − 1).

Then, under the condition
∑p−1

i=1 λi i ≡ 0 mod (p), we can suppose that k varies from 0 to
p− 2. Put:

ϕk+1(X) :=
p−1∑
i=1

λi iX
i(k+1), k = 0, . . . , p − 2.

We obtain the following condition (2), equivalent to (1) under the condition
∑p−1

i=1 λi i ≡
0 mod (p):

p−2∑
k=0

ϕk+1(X) . Ak ∈ (p, (X − 1)p), with Ak := (−1)k
p−1∑
j=k

(j
k

)
ej . (2)
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Lemma 3.3. — We have Ak ≡ (−1)k ek

k! D
(k)(e) ≡

(
−b
a

)k
mod (p), k = 0, . . . , p − 2, where

D(Y ) := 1 + Y + . . . + Y p−1.

Proof. — We have A0 = D(e) = ep−1
e−1 ≡ 1 mod (p) since e 6≡ 1 mod (p) (otherwise a ≡

0 mod (p)). The first general relation giving Ak is immediate by induction, using
(j
k

)
=

j!
k! (j−k)! and D(k)(Y ) = k!

0! +
(k+1)!

1! Y + . . .+ (k+p−1−k)!
(p−1−k)! Y p−1−k.

Since D(Y ) = 1 + Y + . . . + Y p−1 = Y p−1
Y−1 ≡ (Y − 1)p−1 mod pZ[Y ], we have D(k)(e) ≡

(p− 1) . . . (p− k) . (e − 1)p−1−k ≡ (−1)k k! (e − 1)−k mod (p).
Then Ak ≡ (−1)k ek

k! D
(k)(e) ≡

(
e

e−1

)k
=

(
−b
a

)k
mod (p), hence the result.

We intend to use this formula in the case of the action of the idempotents eχ ∈ Zp[g], χ = ωm

(where g = Gal (K/Q)) on the previous pseudo-unit 1 + e (ζ − 1) (see Not. 2.7).

The formulation of the condition F (X) = H(X)p +B(X)(Xp − 1) corresponds to the choice
λi ≡ 1

p−1ω
−m(i) modulo pZp[ζ]; the necessary condition

∑p−1
i=1 λi i ≡ 0 mod (p) (see Rem. 3.2)

is satisfied for any m ∈ {1, . . . , p− 1}, except m = 1 (i.e., χ = ω).
For m 6= 1 we obtain from the above:

ϕk+1(ζ) =
1

p−1

p−1∑
i=1

ω−m(i) i ζ i(k+1) ≡ 1
p−1

p−1∑
i=1

ω1−m(i) ζ i(k+1) mod (p),

p−2∑
k=0

ϕk+1(ζ) . Ak =
p−1∑
k=1

ϕk(ζ) . Ak−1 ≡ 1
p−1

p−1∑
k=1

( p−1∑
i=1

ω1−m(i) ζ ik
)
. Ak−1 mod (p).

We have obtained the necessary condition (put j := i k modulo p):

−
p−1∑
k=1

p−1∑
j=1

ω1−m(jk−1) ζj . Ak−1 =
( p−1∑

k=1
ωm−1(k) . Ak−1

)(
−

p−1∑
j=1

ω1−m(j) ζj
)
≡ 0 mod (p),

where:

−
p−1∑
j=1

ω1−m(j) ζj =: τ(ω1−m),

is the Gauss sum of ω1−m, for which:

τ(ω1−m) . τ (ωm−1) = p, where τ(ϕ) := −
p−1∑
k=1

ϕ(k)ζ−k = ϕ(−1) τ(ϕ)

for any character ϕ.

But τ(ω1−m), as element of Zp[ζ], is of p-valuation m− 1, m ∈ {1, . . . , p− 1} (see Prop. 3.17
in Subsec. 3.4). The final necessary condition is thus, for m 6= 1:

p−1∑
k=1

ωm−1(k) . Ak−1 ≡ 0 mod pZp[ζ]. (3)
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Remark 3.4. — For m = 1 (i.e., χ = ω) a direct computation gives:

(1 + e (ζ − 1))eω =
p−1∏
i=1

(
1 + e (ζ i − 1)

)ω−1(i)
p−1 ≡

p−1∏
i=1

(
1 + eω−1(i) (ζ i − 1)

) 1
p−1

≡
p−1∏
i=1

(
1 + e (ζ − 1)

) 1
p−1 ≡ 1 + e (ζ − 1) mod p2,

using ζ i − 1 = ζi−1
ζ−1 (ζ − 1) ≡ i (ζ − 1) mod p2.

Theorem 3.5. — Let (a, b, c) be a solution in the first case of Fermat ′s equation; put e = b
a+b .

Let χ = ωm be a p-adic character of g distinct from ω.

Then the pseudo-unit (a+ b ζ)eχ or (1 + e (ζ − 1))eχ is a pth power in Kp if and only if:

p−1∑
k=1

ωm−1(k)
(
−b
a

)k ≡ 0 mod (p).

Proof. — We have to prove the sufficiency of the condition. We note that this congruential
condition is (for χ 6= ω) only equivalent to F ′(X) ∈ (p,Φp(X)) = (p, (X − 1)p−1) in Zp[X],
since (X − 1)Φp(X) = Xp − 1 ≡ (X − 1)p mod (p) (see (1), (2), (3)).

Suppose that the condition F ′(X) ∈ (p, (X − 1)p−1) is satisfied for the coefficients λi =
1

p−1χ
−1(i) in F (X) =

∏p−1
i=1 (1 + e (Xi − 1))λi .

Write F (X) =
∑p−1

n=0 un (X − 1)n + U(X) (X − 1)p in Zp[X]; since:

F ′(X) =
p−1∑
n=1

nun(X − 1)n−1+ pU(X) (X − 1)p−1 + U ′(X) (X − 1)p

is in (p, (X − 1)p−1), this yields to un ≡ 0 mod (p) for n = 1, . . . , p− 1.

Then F (ζ) ≡ u0 mod (p); from Theorem 2.2, F (ζ) being a pseudo-unit congruent to a rational
modulo p is a local pth power. Which proves the theorem obtained by Thaine [Th3] using
generalized binomial computations.

Remark 3.6. — (i) We have obtained that in our viewpoint using radicals, the p-primarity of
the pseudo-unit (1+ e (ζ −1))eχ , χ 6= ω, is directly characterized by means of the polynomial:

Mm(Z) :=
p−1∑
k=1

ωm−1(k)Zk.

As the reader can see, this polynomial is a variant of the classical polynomial of Mirimanoff

M̃m(Z) :=
p−1∑
k=1

km−1Zk and is congruent modulo p to it (see [R, VIII.1] for more information;

see [A1] for the use of Mirimanoff′s polynomials in Iwasawa theory over K; see [Th2, I] for
the definition of polynomial congruences equivalent to Mirimanoff′s congruences and giving a
direct proof of some Wieferich′s criteria).

(ii) We see that Mm(Z) comes from the Gauss sum τ(ωm−1) that we have encountered before
(put Z = ζ), and this has probably a deep signification (see Subsec. 3.4 for some insights).
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This shows that this indexation is not convenient; we observe that Mm(Z) must be denoted
Mχ∗(Z), where χ∗ = ωχ−1 = ω1−m, and more generally Mϕ(Z) :=

∑p−1
k=1 ϕ

−1(k)Zk for any
character ϕ.

Thus, to summarize:

Mχ∗(Z) :=
p−1∑
k=1

(χ∗)−1(k)Zk

Mχ∗(ζ) =
p−1∑
k=1

(χ∗)−1(k) ζk = −τ((χ∗)−1);

for convenience, we will use the two notations, the rule being Mωh =Mp−h.

We see also that by all permutations of a, b, c, the p-primarity of the corresponding pseudo-
units (x+ y ζ)eχ , χ 6= ω (i.e., χ∗ 6= χ0), is equivalent to the congruence:

Mχ∗

(
−y

x

)
=

p−1∑
k=1

(χ∗)−1(k)
(
−y

x

)k
≡ 0 mod (p).

This notation which associates χ (for (x + y ζ)eχ) and χ∗ (for Mχ∗

(−y
x

)
) anticipates the use

of reflection theorems.

(iii) The advantage of this definition of Mirimanoff′s polynomials, indexed by the characters
of g, is that they may be related to characters of some subfields of K, giving a more precise
information (use Th. 2.8, (i)), and the knowledge of the p-class groups of the subfields may
have suitable consequences for the properties of these polynomials (e.g. χ = ω

p−1
2 , χ∗ = ω

p+1
2 ).

Theorem 3.7 (algebraic form of Kummer′s congruences). — Let (a, b, c) be a solu-

tion in the first case of Fermat ′s equation.

If for an odd character χ 6= ω, Mχ∗

(
−b
a

)
6≡ 0 mod (p) (where χ∗ = ωχ−1), then the χ-

component Cℓχ := Cℓeχ of the p-class group is nontrivial.

Proof. — We have (1 + e (ζ − 1))eχ /∈ K×p since this pseudo-unit is not a local pth power
at p. Put (1 + e (ζ − 1))eχ Z(p)[ζ] = zp; if the ideal z is principal, say z = (z), then:

(1 + e (ζ − 1))eχ = ε zp, where ε ∈ Eχ := Eeχ ;

since χ is odd and distinct from ω (the character of 〈 ζ 〉), ε = 1, giving a global pth power
for (1 + e (ζ − 1))eχ (contradiction). Thus cℓ(z) ∈ Cℓχ is nontrivial.

From the main theorem on cyclotomic fields (see Th. 2.8, (iii))), the p-valuation of | Cℓχ | is
that of the generalized Bernoulli number:

bχ := 1
p

p−1∑
k=1

χ−1(k)k;

so bχ ≡ 0 mod (p) or, equivalentely since χ = ωm, m 6= 1 odd, the ordinary Bernoulli number
Bp−m is congruent to 0 modulo p (see [W, Cor. 5.15]).
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Actually Stickelberger′s theorem is sufficient to get bχ ≡ 0 mod (p); if we want the reciprocal
of “ Herbrand′s theorem ”, we can use [Ri], [Th4] to get that bχ ≡ 0 mod (p) is equivalent to
Cℓχ 6= 1.

We find again in a more precise way the classical situation of Kummer′s congruences which
are:

bχ · Mχ∗

(
−b
a

)
≡ 0 mod (p).

If Mχ∗

(
−b
a

)
6≡ 0 mod (p), then Cℓχ 6= 1 and for χ∗ (even and nontrivial), we know by reflection

(see Exa. 2.9) that the χ∗-cyclotomic unit ηχ∗ := (1 − ζ)eχ∗ is a local pth power at p. It is a
global pth power if and only if Cℓχ∗ is nontrivial (Vandiver′s conjecture false at χ∗).

Remark 3.8. — If χ 6= χ0 is even, if Mχ∗

(
−b
a

)
6≡ 0 mod (p), and if the ideal z is principal (in

the wtiting (1 + e (ζ − 1))eχ Z[ζ] = zp), we only obtain the relation (1 + e (ζ − 1))eχ = εχ z
p,

where εχ ∈ Eχ is not a local pth power at p.
The basic example for this is Cℓχ∗ = 1, thus Cℓχ = 1 (Vandiver′s conjecture true at χ); we
then have bχ∗ 6≡ 0 mod (p) thus Mχ

(
−b
a

)
≡ 0 mod (p), which implies that (1 + e (ζ − 1))eχ∗ is

a global pth power since Cℓχ = 1.
If z is nonprincipal, then Cℓχ 6= 1 (counterexample to Vandiver′s conjecture), Cℓχ∗ 6= 1, bχ∗ ≡ 0

mod (p), and Mχ

(
−b
a

)
is a priori arbitrary (see Rem. 3.11 for improvements of these reason-

ings).

Theorem 3.9 (algebraic form of Mirimanoff′s congruences: the reflection theorem)

Let χ 6= χ0 be even, and let χ∗ = ωχ−1 (χ∗ is odd distinct from ω).

Then we have Mχ∗

(−y
x

)
.Mχ

(−y
x

)
≡ 0 mod (p) for any of the six pairs (x, y) corresponding to

a solution in the first case of Fermat′s equation.

Proof. — To prove this congruence, we suppose that both Mχ∗

(−y
x

)
and Mχ

(−y
x

)
are not

congruent to 0 modulo p to obtain a contradiction.

From the Theorem 2.8, (ii), or [Gr1, II.5.4.9.2], the analysis of the reflection theorem in K

leads to the following equalities (χ even):

rkp((Y/Yprim)χ∗) = rkp(Cℓχ∗)− rkp(Cℓχ) = 1− rkp((Y/Yprim)χ),

where Y is the group of pseudo-units of K, and where Yprim is the subgroup of p-primary
pseudo-units.

The condition Mχ

(−y
x

)
6≡ 0 mod (p) is thus equivalent to (x + y ζ)eχ∗ ∈ Y \Yprim giving

rkp((Y/Yprim)χ∗) = 1, and similarly the condition Mχ∗

(−y
x

)
6≡ 0 mod(p) is equivalent to

(x+ y ζ)eχ ∈ Y \Yprim, giving rkp((Y/Yprim)χ) = 1 (contradiction).

Corollary 3.10. — Let χ 6= χ0 (i.e., χ∗ 6= ω) be even. Suppose that Cℓχ is trivial (Vandiver′s

conjecture true at χ).

If Mχ

(−y
x

)
6≡ 0 mod (p), then Mχ∗

(−y
x

)
≡ 0 mod (p) and the fundamental χ-unit εχ is p-

primary as well as the χ-cyclotomic unit ηχ := (1− ζ)eχ.
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Proof. — From Mχ

(−y
x

)
6≡ 0 mod (p) and Theorem 3.7 we get that Cℓχ∗ is of p-rank ≥ 1,

hence equal to 1 since Cℓχ = 1; so by Kummer duality (see Th. 2.8, (i)), the radical of the
corresponding unramified χ∗-extension of K is given by the fundamental χ-unit εχ which is
thus p-primary. By hypothesis, Eχ is also generated by the χ-cyclotomic unit ηχ. This is the
result obtained in [Th2, II] via congruential computations.

So, Mirimanoff′s congruences, obtained by ugly computations, are nothing but the reflection
principle in class field theory.

Remark 3.11. — Let χ be even distinct from χ0.

(i) If Mχ

(−y
x

)
6≡ 0 mod (p), then from the proof of Theorem 3.9 we have rkp((Y/Yprim)χ∗) = 1,

rkp((Y/Yprim)χ) = 0 (all the χ-pseudo-units are p-primary, especially εχ), and for the class
group we get rkp(Cℓχ) + 1 = rkp(Cℓχ∗), which means that the χ∗-class group is nontrivial.
Then (x + y ζ)eχ is p-primary (which is coherent with Mχ∗

(−y
x

)
≡ 0 mod (p)) but can be a

global pth power.

(ii) If Mχ∗

(−y
x

)
6≡ 0 mod (p), rkp((Y/Yprim)χ) = 1, rkp((Y/Yprim)χ∗) = 0 (all the χ∗-pseudo-

units are p-primary), and rkp(Cℓχ∗) = rkp(Cℓχ).
(iii) If Mχ∗

(−y
x

)
≡Mχ

(−y
x

)
≡ 0 mod (p), then (x+ y ζ)eχ and (x+ y ζ)eχ∗ are p-primary, but

we dont know if they are global pth powers or not; if for instance (x + y ζ)eχ = zp then the
ideal ceχ1 is principal. If (x + y ζ)eχ is not of the form εχ z

p, ceχ1 is not principal (the χ-class
group is nontrivial), and (x+y ζ)eχ defines the radical of a χ∗-unramified extension of K (the
χ∗-class group is of course nontrivial).
If (x + y ζ)eχ∗ is not a pth power, c

eχ∗

1 is nonprincipal (because Eχ∗ = 1) and defines the
radical of a χ-unramified extension of K, giving Cℓχ 6= 1 (Vandiver′s conjecture false at χ),
hence also Cℓχ∗ 6= 1.

(iv) If Cℓχ∗ is trivial, then the unit εχ is not p-primary and all the χ∗-pseudo-units are p-
primary (hence global pth powers); then we get Mχ

(−y
x

)
≡ 0 mod (p).

(v) For χ = χ0, we know that Cℓχ∗ = Cℓω is trivial; in this case, Mχ0

(−y
x

)
=

∑p−1
k=1

(−y
x

)k

takes always the value 0 for −y
x 6≡ 1 mod (p).

For χ = χ0, Cℓχ is trivial and in this case we obtain the supplementary Mirimanoff congruence:

Mχ∗

(
−y

x

)
=Mω

(
−y

x

)
=

p−1∑
k=1

ω−1(k)
(
−y

x

)k
≡ 0 mod (p)

since it corresponds to the p-primarity of NK/Q(x+ y ζ) = zp1 .

3.2. Derivation technics: the method of Eichler. — We begin with a particular case
of this method to analyze a global approach to the computation of the p-rank of the radicals
Wa, Wb, Wc, and W .
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We consider the necessary condition of the previous subsection, concerning the first case of
FLT, to have

∏p−1
i=1 (1 + e (ζ i − 1))λi ∈ K×p, for e := b

a+b :

p−1∑
i=1

λi iX
i−1

1 + e(Xi − 1)
∈ (p,Xp − 1).

The trick is to suppose that the support S of the set of integers λi (that is the set of indices
i such that λi 6≡ 0 mod (p)) is not too big in the expression:

∑
i∈S

λi iX
i−1

∏
j∈S,j 6=i

(1 − e+ eXj) ∈ (p,Xp − 1),

so that there is no reduction by Xp − 1 in the computation of the products:

Xi−1
∏

j∈S,j 6=i
(1− e+ eXj), for i ∈ S.

For this, the condition is that i− 1+
∑

j∈S,j 6=i
j < p, equivalent to

∑
i∈S

i ≤ p. If we suppose that

S ⊆ {1, 2, . . . , ρ := [
√
2p − 0.5]}, the condition is satisfied.

We thus have the congruence:
∑
i∈S

λi iX
i−1

∏
j∈S,j 6=i

(1− e+ eXj) ≡ 0 mod pZ(p)[X].

The (unique) term of minimal degree is obtained for the minimal value i0 of i ∈ S and gives
λi0 . (1− e)ρ−1 ≡ 0 mod (p), then λi0 ≡ 0 mod (p) (contradiction). We have obtained:

Theorem 3.12. — Let (a, b, c) be a solution in the first case of Fermat′s equation.

Then each of the three radicals Wa = 〈 b + c ζj 〉.K×p/K×p, Wb = 〈 c + a ζk 〉.K×p/K×p,

Wc = 〈 a+ b ζ i 〉.K×p/K×p, j, k, i = 1, . . . , p − 1, is of p-rank at least ρ := [
√
2p − 0.5].

Same conclusion replacing K by Kp (local radicals).

But as is always the case, the conclusion of the proof is of a local nature.

Remark 3.13. — (i) The monogenic Fp[g]-module Wc generated by a + b ζ defines a sub-
representation of the regular one; thus there exist at least ρ distinct characters χ such that
(a+ b ζ)eχ is not a global (or local) pth power.

(ii) Let (xi, yi) ∈ {(a, b), (b, c), (c, a)}, i = 1, . . . , ρ; then by the same method it is easy to
prove that the pseudo-units xi + yi ζ

i are independent in K×/K×p, giving by conjugation
many subradicals in W of p-rank ρ.

Now we give a variant of the theorem of Eichler from a solution (a, b, c) in the first case of the
Fermat equation. We study the relation, where e := b

a+b (still for the support S of the λi):
∏
i∈S

(
a+ bζ−i

a+ bζi

)λi

=
∏
i∈S

(
(1 + e (ζ−i − 1))

(1 + e (ζi − 1))

)λi

= βp, β ∈ Z(p)[ζ].

Put (a+ b ζ i)Z[ζ] = c
p
i and (a+ b ζ−i)Z[ζ] = c

p
i . From the above relation we deduce:

∏
i∈S

(
ci

ci

)λi

= (β)Z(p)[ζ].
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Reciprocally, any relation of principality
∏
i∈S

(
ci

ci

)λi

= (β′)Z(p)[ζ] gives:

∏
i∈S

(
(1 + e (ζ−i − 1))

(1 + e (ζi − 1))

)λi

= ζh ε+ β′p, ε+ ∈ E+, h ≥ 0;

we suppose that
∑

i∈S λi i ≡ 0 mod (p); this implies easily h = 0. Then the relative norm
NK/K+(ε+ β′p) must be 1, so that (ε+)2 NK/K+(β′p) = 1 giving ε+ = (η+)p for a real unit
η+; this yields the first relation with β = η+ β′.

Write (1+ e (ζ−i − 1))λi = ζ−λi i(e+ (1− e) ζ i))λi . The first relation is thus equivalent to the
relation (reutilizing by abuse the same notations for F , H, B in Z(p)[[X]]):

F (X) :=
∏
i∈S

(e+ (1− e)Xi)λi (1 + e(Xi − 1))−λi = H(X)p +B(X)(Xp − 1),

giving by logarithmic derivation, F being invertible modulo (p,Xp − 1):

(1− e)
∑
i∈S

λi iX
i−1

e+ (1− e)Xi
− e

∑
i∈S

λi iX
i−1

1 + e(Xi − 1)
∈ (p,Xp − 1),

and finally:

(1− 2e)
∑
i∈S

λi i X
i−1

(e+ (1− e)Xi)(1 + e(Xi − 1))
∈ (p,Xp − 1).

If 2e ≡ 1 mod (p) we get a ≡ b mod (p) and by circular permutations, the analogous congru-
ences would give a ≡ b ≡ c mod (p), thus 0 ≡ a + b+ c ≡ 3a mod (p) (absurd for p > 3); so
we may suppose that 2e 6≡ 1 mod (p).

As before we obtain:
∑
i∈S

λi iX
i−1

∏
j∈S,j 6=i

(e+ (1− e)Xj)(1− e+ eXj) ∈ (p,Xp − 1).

If 2
∑
j∈S

j ≤ p+1 there is no reduction modulo Xp − 1 in the computation of this expression.

Then, for S ⊆ {1, . . . , [√p+ 1 − 0.5]}, the (unique) term of minimal degree is obtained for
the minimum i0 of S, giving immediately λi0 ≡ 0 mod (p) (contradiction).

Since the classes cℓ(ci . ci−1) are relative classes, we have proved (taking in account that we
have imposed a relation on the λi):

Theorem 3.14 (Eichler′s theorem). — Let p > 2 be prime. If the p-rank of the relative

class group of K satisfies rkp(Cℓ−) ≤ ρ′ := [
√
p+ 1 − 1.5] then the first case of FLT holds for

the prime p. (12)

(12)Since cℓ
(

ci
ci

)

= si.cℓ
(

c1
c1

)

, i ∈ S, the monogenic g-module generated by cℓ
(

c1
c1

)

contains the cℓ
(

ci
ci

)

and is

contained in the regular representation Fp[g]; this means that at least ρ′ different characters χ give a nontrivial

Cℓχ and the statement is true with the index of irregularity i(p) instead of rkp(Cℓ
−).
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3.3. Some other p-adic technics. — Now we consider the Dwork uniformizing parameter
̟ in Kp which has the following characteristic properties (see e.g. [Gr1, Exer. II.1.8.3]):

(i) ̟p−1 = −p,
(ii) sk(̟) = ω(k)̟, k = 1, . . . , p− 1.

In the following lemma we suppose that 1+ e (ζ−1) is a pseudo-unit, so that p-primarity and
local pth power property are equivalent (see Lem. 2.1, Th. 2.2). We compute in Zp[ζ] = Zp[̟].

Lemma 3.15. — Let χ = ωm, m ∈ {1, . . . , p − 1}; then for e 6≡ 0 mod (p) we have the

relation (1 + e (ζ − 1))eχ = 1 +̟mϕχ, where ϕχ ∈ Zp[̟].

Then (1 + e (ζ − 1))eχ is a local pth power if and only if ϕχ ≡ 0 mod (̟).

Proof. — Suppose that (1 + e (ζ − 1))eχ = 1 +̟nv, where v is a unit of Kp and n ≥ 1; put
v ≡ v0 mod (̟), v0 ∈ Z\pZ.
Applying eχ we have:

(1 + e (ζ − 1))eχ ≡ (1 +̟nv0)
eχ ≡ 1 + eχ(̟

nv0)

≡ 1 + 1
p−1

p−1∑
j=1

ω−m(j) sj(̟
nv0) ≡ 1 + 1

p−1

p−1∑
j=1

ω−m(j)ωn(j)̟nv0

≡ 1 + ̟nv0
p−1

p−1∑
j=1

ωn−m(j) ≡ 1 +̟nv mod (̟n+1),

which is absurd except if n ≡ m mod (p − 1). Thus (1 + e (ζ − 1))eχ = 1 +̟m ϕχ.

Ifm = p−1, we know that the norm of such a pseudo-unit is of the form np with n ≡ 1 mod (p),
hence (1 + e (ζ − 1))eχ0 ≡ 1 mod (p2), proving the lemma in this case; suppose m < p− 1.

The pth power condition is ϕχ ≡ 0 mod (̟p−m−1) (apply Th. 2.2), with p−m− 1 > 0.
Suppose that ϕχ ≡ 0 mod (̟); then we get (1 + e (ζ − 1))eχ = 1 +̟m+1ϕ′

χ, for ϕ′
χ ∈ Zp[̟].

Then applying again the idempotent eχ, the first part of the proof gives ϕ′
χ ≡ 0 mod (̟),

then inductively the result up to (1 + e (ζ − 1))eχ ∈ 1 + (̟m+p−1).

The value m = 1 does not work here since we know that (1+e (ζ−1))eω ≡ 1+e̟ mod (̟2)

(see Rem. 3.4) and since we have supposed p ∤ e.

Corollary 3.16. — Write log (1 + e (ζ − 1)) = e2̟
2 + . . . + ep−1̟

p−1, ei ∈ Zp. Then the

set of characters χ = ωm, m ∈ {2, . . . , p − 1}, such that (1 + e (ζ − 1))eχ is p-primary, is

{m ∈ {2, . . . , p− 1}, em ≡ 0 mod (p)}.

Proof. — Left to the reader.

We see that the condition depends on a single congruence to 0 modulo ̟, whose probability
may be 1

p , giving another aspect of the rarity of such a condition for many values of m (at

least p−1
2 from Mirimanoff ′s congruences).
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3.4. p-adic Gauss sums and Mirimanoff ′s polynomials. — We use the context of the
previous Subsection 3.3, especially the Dwork uniformizing parameter ̟ ∈ Qp(ζ) such that
̟p−1 = −p and sk(̟) = ω(k)̟ for k = 1, . . . , p − 1.

Let χ = ωm, here indexed by m ∈ {0, . . . , p − 2}. We note that (additively):

eχ . ζ =
1

p− 1

p−1∑
k=1

χ−1(k)ζk =
−1

p− 1
τ(χ−1).

Now put:

ζ =
−1

p− 1

(
u0 + u1̟ + . . .+ up−2̟

p−2
)
,

where uk ∈ Zp, with u0 ≡ 1 mod (p). We know that eχ .̟j = 0 if j 6≡ m modulo (p− 1) and
eχ .̟

m = ̟m, so that eχ . ζ = −1
p−1um̟

m and τ(χ−1) = um̟
m, for allm ∈ {0, . . . , p−2}. (13)

Then, since for τ(χ) := χ(−1) τ(χ), we have τ(χ−1) τ(χ) = p for χ 6= χ0, we obtain for m 6= 0:

um̟
m (−1)m up−1−m̟

p−1−m = (−1)m um up−1−m (−p) = p,

giving the relation um up−1−m = (−1)m+1, for m 6= 0. For the unit character, τ(χ0) = 1 and
we find u0 = 1.

We have obtained a classical result:

Proposition 3.17. — Let χ = ωm, m ∈ {0, . . . , p − 2}, τ(χ−1) := −∑p−1
k=1 χ

−1(k) ζk the

Gauss sum of χ−1; put τ(χ) := −∑p−1
k=1 χ(k) ζ

−k = χ(−1) τ(χ).

Then we have τ(χ−1) = um̟
m, τ(χ) = χ(−1)up−1−m̟

p−1−m, which implies the relation

um up−1−m = (−1)m+1, for all m ∈ {1, . . . , p− 2}, and u0 = 1.

The modified Mirimanoff polynomial is, for χ∗ = ωχ−1 (see Rem. 3.6, (ii)):

Mχ∗(Z) :=
p−1∑
k=1

(χ∗)−1(k)Zk,

and in the first case of FLT we must compute Mχ∗(−x
y ) modulo (p) for the usual (x, y)

depending of a solution and its permutations.

We suppose now that ω takes its values in the field F of (p− 1)th roots of unity. We consider
the ideal p0 | p of F such that ω(k) ≡ k mod p0 for all k. All the computations take place in
the compositum FK in which we denote by P the (unique) prime ideal above p0.

The condition of p-primarity of (a + b ζ)eχ , for χ = ωm, m ∈ {1, . . . , p − 1}, χ 6= ω (see
Subsec. 3.1) becomes, in FK with χ∗ = ω1−m:

Mχ∗

(
−b

a

)
. τ(χ∗) ≡ 0 mod Pp−1,

(13)In these computations, we must write the unit character ω0 instead of ωp−1 because of the expression of

ζ since ̟p−1 = −p and τ (ω0) = 1.
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where Mχ∗

(
−b
a

)
∈ F and τ(χ∗) := −∑p−1

k=1 χ
∗(k)ζk ∈ FK is of P-valuation m − 1, giving

Mχ∗

(
−b
a

)
≡ 0 mod p0, and where we have:

Mχ∗(ζ) = −τ((χ∗)−1).

The above properties of Gauss sums lead to the following, where we only suppose that a and
b are coprime integers.

Put (a+ b ζ)Z[ζ] = C1, thus ζ ≡ −a
b mod C1 seen in FK. This gives:

−Mχ∗

(
−a

b

)
= −

p−1∑
k=1

(χ∗)−1(k)
(
−a

b

)k
≡ τ((χ∗)−1) mod C1.

Thus in the same way (using ζ−1 ≡ −b
a mod C1):

−M(χ∗)−1

(
−b

a

)
≡ τ(χ∗) mod C1,

which yields, in F , for any χ 6= ω (i.e., χ∗ 6= χ0):

Mχ∗

(
−a

b

)
.M(χ∗)−1

(
−b

a

)
≡ τ((χ∗)−1) . τ (χ∗) ≡ p mod C1.

Let σ be an element of Gal (FK/K); for any (p − 1)th root of unity ξ, σ(ξ) = ξt with a
suitable t prime to p − 1, so that the action of σ on the powers of ω preserves the relation
ϕ .ϕ−1 = χ0 between the characters, and preserves the ideal C1 which is in K; thus the
expressions Mχ∗

(
−a
b

)
.M(χ∗)−1

(
−b
a

)
are conjugated by Galois so that the p-adic study (14) of

the products Mωd

(
−a
b

)
.Mω−d

(
−b
a

)
, d | p− 1, is sufficient.

The congruence modulo C1 in FK is now in F , thus it is actually modulo the ideal NK/Q(C1)

seen in F . Since it is the norm of a+ b ζ, it is the homogeneous form in a, b:

Φp(a, b) := ap−1 − ap−2b+ . . .− a bp−2 + bp−1.

Put Mχ∗

(
−a
b

)
.M(χ∗)−1

(
−b
a

)
− p = Φp(a, b) .

Ψχ(a, b)

ap−2 bp−2
, then Ψχ(a, b) is an homogeneous form

of degree p− 3.

We have, for any character ϕ, Mϕ(Z) = ϕ(−1)ZpMϕ(Z
−1), which givesMϕ(Z)Mϕ−1(Z−1) =

Mϕ(Z
−1)Mϕ−1(Z), hence proves the symmetry between a and b, and the invariance of

Mχ∗

(
−a
b

)
.M(χ∗)−1

(
−b
a

)
by complex conjugation in F/Q. So these expressions have coeffi-

cients in the maximal real subfield F+ of F .

To summarize, we have obtained:

Proposition 3.18. — Let x, y be indeterminates and put Mϕ(Z) :=
∑p−1

k=1 ϕ
−1(k)Zk for

any character ϕ. Then for all χ 6= ω, we have the relation:

Mχ∗

(
−x

y

)
.M(χ∗)−1

(
−y

x

)
= p+Φp(x, y) .

Ψχ(x, y)

xp−2 yp−2
,

where Ψχ(x, y) is a symmetrical homogeneous form of degree p− 3 with coefficients in F+.

(14)More precisely the knowledge of the p′0-valuations, for all the prime ideals p′0 of F above p.
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Now we suppose that (x, y, z) is a solution in the first case of the Fermat equation. Recall
that the condition of p-primarity of (x + y ζ)eχ which was modulo Pp−1 in FK is now,
because of the total ramification in FK/F , modulo the prime ideal p0 of F under P, and is
Mχ∗

(−y
x

)
≡ 0 mod p0.

From the above we obtain that:

Mχ∗

(
−x

y

)
.M(χ∗)−1

(
−y

x

)
≡ 0 mod p0

is equivalent to Ψχ(x, y) ≡ 0 mod p0.

For instance, for p = 5 we have (noting that F+ = Q and p0 = (5)):

Mω−1

(
−x

y

)
.Mω

(
−y

x

)
= 5 + Φ5(x, y) .

x2 + x y + y2

x3 y3
,

Mω2

(
−x

y

)
.Mω2

(
−y

x

)
= 5− Φ5(x, y) .

x2 + 3x y + y2

x3 y3
.

Of course these forms Ψ do not represent 0 in F5.

Remark 3.19. — (i) Notice that these congruences have nothing to do with Mirimanoff′s
congruences despite the fact that as soon as one of the factors Mχ∗

(
−x
y

)
, M(χ∗)−1

(−y
x

)
is

congruent to 0 modulo p0, this is the case of the expression Ψχ(x, y) and reciprocally.

More precisely, Mχ∗

(
−x
y

)
≡ 0 mod p0 is equivalent to (y+x ζ)eχ p-primary, hence to (x+y ζ)eχ

p-primary (since χ 6= ω), thus to Mχ∗

(−y
x

)
≡ 0 mod p0.

Similarly, M(χ∗)−1

(−y
x

)
≡ 0 mod p0 is equivalent to the p-primarity of the two pseudo-units

(x+ y ζ)eχ̃ and (y + x ζ)eχ̃ , then to M(χ∗)−1

(
−x
y

)
≡ 0 mod p0, where χ̃ := ω2 χ−1, which may

have some interest (see in Subsec. 2.5, (b), the reflection between R2,χ and Tω2χ−1).

(ii) It would be interesting to perform the same study with the Davenport–Hasse relations
between Gauss sums, for two characters:

∏
χ, χd=χ0

τ(χ .ψ) = ψ−d(d) . τ(ψd) .
∏

χ, χd=χ0

τ(χ),

for any divisor d of p− 1, and with the Jacobi sums given by the relation:

τ (χ) τ (ψ)

τ (χψ)
= −

p−1∑
k=1

χ(k)ψ(1 − k).

3.5. Mirimanoff ′s sums. — We still consider the context of the previous Subsection 3.4,
for which ω takes its values in the field F of (p − 1)th roots of unity. We fix the prime ideal
p0 of F above p in the following way: fix a primitive (p − 1)th root of unity ξ0 ∈ F and a
primitive (p− 1)th root r0 ∈ Z modulo p; then we decrete that ξ0 ≡ r0 mod p0.

Since for any character ϕ of g := Gal (K/Q), Mϕ(Z) =
∑p−1

k=1 ϕ
−1(k)Zk, if we put, for a

solution (x, y, z) in the first case of Fermat′s equation:
−y

x
≡ rt0 ≡ ξt0 =: ξ mod p0,
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we have in F the congruence:

Mϕ

(
−y

x

)
≡Mϕ(ξ) mod p0;

hence the congruences Mϕ

(−y
x

)
≡ 0 mod (p) in Qp and Mϕ(ξ) ≡ 0 mod p0 in F are equivalent.

We propose to call the sums of roots of unity:

µϕ(ξ) :=
p−1∑
k=1

ϕ−1(k) ξk ∈ F,

the Mirimanoff sums attached to the character ϕ and the (p − 1)th root of unity ξ.

It is clear that the algebraic numbers:

µϕ(ξ) . µϕ∗(ξ), ϕ 6= χ0, ω and µϕ(ξ) . µϕ−1(ξ−1), ϕ 6= χ0,

give the easy way to study the congruences of Mirimanoff and the congruences given in
Proposition 3.18.
Unfortunately, the root ξ is uneffective and the properties of the sums µϕ(ξ) depend largely
of the order of ξ (i.e., the order of −x

y modulo p); hence we must envisage all the possibilities.

Warning: in the factor ϕ−1(k), k is considered modulo p, but in the factor ξk, k is considered
modulo p− 1, under the condition that k ∈ {1, . . . , p− 1}.
In a more numerical setting, put ϕ = ωh and ξ = ξt0; then, writing k ≡ rj0 mod (p), we get:

µϕ(ξ) =: µh(t) =
p−1∑
k=1

ω−h(k) ξ t k0 =
p−1∑
j=1

ξ−h j
0 ξ

t [rj0]p
0

=
p−1∑
j=1

ξ
−h j + t [rj0]p
0 , h, t ∈ {1, . . . , p− 1},

where [rj0]p is the unique residue modulo p of rj0 in the set {1, . . . , p − 1}.
Then let Φp−1 be the (p−1)th cyclotomic polynomial, of degree ν := φ(p−1); after reduction
modulo Φp−1, we obtain: µh(t) = q0 + q1ξ0 + . . . + qν−1ξ

ν−1
0 , qi ∈ Z, which can be studied

modulo p0 in an easy way.

Naturally, these sums are completely analogous to Mirimanoff′s polynomials specialized at
suitable classes modulo p, but we hope that the formulation in terms of sums of roots of unity
is likely of a better understanding.

3.6. Wieferich′s criterion: a local consequence of the reciprocity law. — As indi-
cated in Ribenboim′s book, the Wieferich criterion may be deduced from the law of reciprocity
(this has been done first by Furtwängler from Eisenstein′s reciprocity law [R, IX.3]). For this
purpose, an explicit formula of Hasse may also be used [R, IX.5].

Here we propose a more basic proof using the p-conductor of a Kummer extension in the
following way, where

(
•
•

)
p

is the pth power residue symbol, with values in 〈 ζ 〉.
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Theorem 3.20 (Wieferich′s criterion). — Let ℓ be a prime number, ℓ 6= p, and suppose

that x+ y ζ is a pseudo-unit (i.e., (x+ y ζ) is the pth power of an ideal of K prime to p).

(i) Then
(
ζx y + ζ−y x

ℓ

)
p
= 1.

(ii) If ℓ | y with p ∤ y and if (x, y, z) is a solution of Fermat′s equation (15), then ℓ p−1 ≡
1 mod (p2).

Proof. — The expression of α := ζx y + ζ−y x is such that α is still a pseudo-unit, and
α ≡ x+ y ≡ (x+ y)p mod (1− ζ)2.
The general law of reciprocity (see e.g. [Gr1, Th. II.7.4.4]) yields to:

(
α

ℓ

)
p

(
ℓ

α

)−1

p
= (ℓ, α)p

where (•, •)p is the Hilbert′s symbol at the place p. This symbol is equal to 1 if and only if ℓ is
a local norm in the Kummer extension Kp( p

√
α )/Kp; the conductor of this extension divides

pp−1 since α is congruent to a pth power modulo p2 (see the general conductor formula in
[Gr1, Prop. II.1.6.3]). Since ℓ p−1 ≡ 1 mod (p) the normic condition is satisfied for ℓ.

But the symbol
(
ℓ
α

)−1

p
is tivial since (α) is the pth power of an ideal; thus:

(
ζx y + ζ−y x

ℓ

)
p
= 1.

If ℓ | y, we have ζx y+ζ−y x ≡ ζ−y x mod (ℓ) and 1 =
( ζ−y x

ℓ

)
p
=

( ζ
ℓ

)−y

p

(
x
ℓ

)
p
; but x = zp0−y ≡

zp0 mod (ℓ) giving
(
x
ℓ

)
p
= 1 and

( ζ
ℓ

)
p
= 1 since p ∤ y.

If (ℓ) = l1 . . . ld in K, then
∏d

i=1

( ζ
li

)
= 1, but we have

( ζ
l1

)k
= sk

( ζ
l1

)
=

( ζk
lk

)
=

( ζ
lk

)k, so that( ζ
lk

)
does not depend on k, giving

( ζ
l1

)
= 1; thus the multiplicative group of the residue field

of l1 contains an element of order p2, proving the point (ii) of the theorem.

Then the discovery of Wieferich′s criteria consists in proving that small prime numbers ℓ (e.g.
ℓ = 2) divide a b c (see [GM], [Th2], for a study of Fermat′s quotients in relation with FLT);
in the second case, the hypothesis ℓ | y, p ∤ y may be inaccurate, so the Wieferich criterion is
uneffective in the second case.

It is clear that the prime numbers ℓ ≡ 1 mod (p), such that Fermat′s equation up+ vp+1 = 0

has no nontrivial solutions in the finite field Fℓ, are divisors of a b c (where (a, b, c) is a global
solution in any case of Fermat′s equation); then experimental computations show that many
such primes do exist. One may conjecture that their number tends to infinity with p, which
gives many uneffective Wieferich′s criteria.

In this direction we have the following interesting approach.

(15)So that x+ y = zp0 as usual; the second case of FLT being equivalent here to p | x.
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3.7. Wendt ′s criterion: a non modulo p local–global result. — Let ℓ be a prime
number of the form 1 + n p, n ≥ 2, and let l be an ideal above ℓ in K. We consider the
algebraic number θn :=

∏n
i, j=1(ξi + ξj + 1), where the ξk, k = 1, . . . , n, are the nth roots of

unity.

We have θn ∈ Z\{0}; this number has been used for instance in the following papers : [LS]
(for a similar purpose as us) and [A-HB], [F] to prove that the first case of FLT holds for
infinitely many primes p.

See [R, IV.4] for its explicit computation via Wendt′s determinant. If ℓ ∤ θn this means that
Fermat′s equation in the residue field Fℓ of l has no nontrivial solutions; thus if a, b, c is a
solution in Z of Fermat′s equation, necessarily ℓ divides one of these numbers, say ℓ | c.
Now we state the following result (in the spirit of Germain′s theorem).

Theorem 3.21 (Wendt′s criterion). — Let ℓ = 1+n p be a prime number which does not

divide the natural integer θn. Moreover, we suppose that p is not a pth power modulo ℓ.

Then the first case of FLT holds for p.

Proof. — Suppose that ℓ | c for a solution in the first case of Fermat′s equation. We have
a+ b = cp0, NK/Q(a+ b ζ) = cp1 with −c = c0 c1 (see Rem. 1.4, (i)).
If ℓ | c0 then b ≡ −a mod (ℓ), giving:

cp1 = NK/Q(a+ b ζ) ≡ ap−1
p−1∏
i=1

(1− ζ i) = ap−1 p mod (ℓ)

(a contradiction since a+ c ≡ a ≡ bp0 mod (ℓ), giving that p is a local pth power at ℓ).

So ℓ | c1; from Lemma 1.2, ℓ ∤ c0 giving, from a + b = cp0, a + c = bp0, and b + c = ap0, the
relation 0 = a + b− cp0 ≡ bp0 + ap0 + (−c0)p mod (ℓ) which defines a non trivial solution in Fℓ

(absurd).
The conclusion of the theorem is the same if we replace the hypothesis “ p is not a pth power
modulo ℓ ”, by “ p ∤ n ” since in that case, Wieferich′s criterion is not satisfied for ℓ.

Appendix. Wieferich′s criterion without reciprocity law (from a proof rediscovered
by Roland Quême). (16)

We use the same notations as in Subsection 3.6. See also Notations 2.7.
Let ℓ 6= p be a prime number. We suppose that by choosing suitable x, y among a, b, c,
we have ℓ | y and p ∤ x + y in the writing (x + y ζ)Z[ζ] = z

p
1 (valid in any case of Fermat′s

equation). Consider eω ∈ Z[g] modulo p.

We know that cℓ(z1)eω = 1 (another application of the reflection theorem; see [Gr1, II.5.4.6.3]),
so that (x+ y ζ)eω = εω δ

p
ω, εω ∈ Eω = 〈ζ〉, δω ∈ K×; hence εω = ζh for h ≥ 0.

Thus this yields:
(x+ y ζ)eω ∈ ζh .K×p,

(16) Adress: Roland Quême, 13 Avenue du château d’eau, 31490 Brax, Url: http://roland.queme.free.fr/,

email: roland.queme@wanadoo.fr
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hence the relation
( (x+y ζ)eω

ℓ

)
p
=

( ζ
ℓ

)h
p

where (x+y ζ)eω ≡ xeω (a pth power) modulo ℓ, proving
that: (

ζ

ℓ

)h

p
= 1.

But (x+ y ζ)eω ∈ ζh .K×p is equivalent to (1 + y
x+y (ζ − 1))eω ∈ ζh .K×p; using Remark 3.4

( (1 + y
x+y (ζ − 1))eω ≡ 1 + y

x+y (ζ − 1) mod p2) we get immediately h ≡ y
x+y mod (p).

If moreover y 6≡ 0 mod (p) (e.g. first case of FLT, or second case with x ≡ 0 mod (p)) we
obtain the result on Wieferich′s criterion in the same way as in Subsection 3.6, without any
use of the reciprocity law.

4. Conclusion

We have shown that much of the classical literature on FLT has been concerned with very
basic facts of class field theory, often rediscovered by means of painful congruential com-
putations; but recall that class field theory is essentially algebraic as soon as, for instance,
Čebotarev′s density theorem is not used (among other analytic tools), and that, algebrically,
all is “ possible ”. So it appears that this approach is relatively poor, despite the power of class
field theory to enunciate technical properties.

Moreover, most of the arguments are local, especially local at p. (17)

The fact that the relative class group takes place in these studies does not change our point of
view since it is utilized without serious analytic arguments (except the unusable upperbound
log (h−) < p

4 log(p) and the ingenious but elementary derivation technic of Eichler). Moreover
the analytic class number formula for the relative class group is not really analytic since it is,
roughly speaking, equivalent to Stickelberger′s theorem and is, in some sense, algebraic (the
main theorem on cyclotomic fields gives a better knowledge of the class field theory aspects,
but it is not really necessary).

It is likely that the most serious cyclotomic approaches are the study of “ Mirimanoff′s sums ”,
since at least half of them must be zero modulo p0, and that of Wendt′s criterion since it is
connected with the theory of prime numbers; but all this only concerns the first case of FLT,
which is unnatural.

Still in the first case, from the well-known class field theory exact sequence of Zp-modules:

1 −→ U/E −−−→ Gal(HPlp/K) −−−→ Cℓ −→ 1,

where HPlp is the maximal abelian p-ramified pro-p-extension of K, U the group of principal
units of Kp, E the closure in U of the group of global units ε ≡ 1 mod p, we get for any even

character χ 6= χ0:
1 −→ Uχ/Eχ −−−→ Tχ −−−→ Cℓχ −→ 1,

(17)Recall that a pseudo-unit α of K is in K×p if and only if α ∈ K×p
q for all q ∈ {p, l1, . . . lr}, where the prime

ideals l1, . . . lr generate the p-class group of K (see [Gr1, Exer. II.6.3.8]); but this criterion is not effective.
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where all groups are p-torsion groups since χ 6= χ0 is even. For p large enough, the result
of Kurihara–Soulé is Cℓωp−3 = 1; suppose that it is possible to extend it to Tωp−3 = 1

(taking “ p-ramification ” instead of “ nonramification ”), then Eωp−3 = Uωp−3 which means
that the fundamental ωp−3-unit εωp−3 is not a local pth power and that the fundamental
ωp−3-cyclotomic unit ηωp−3 (equal to εωp−3 since Cℓωp−3 = 1) is not a local pth power, which
is equivalent to bχ∗ = bω3 6≡ 0 mod (p), in other words to Bp−3 6≡ 0 mod (p), which would
contradict the first case of FLT (at least for p large enough).

We believe more in the possibility of a nonalgebraic study of the radical generated by ζ, 1− ζ,
a+b ζ, b+c ζ, c+a ζ and their conjugates, which would be independent of the considered case
of FLT, and which is not equivalent to a general study of the group pCℓ because as a matter
of fact we are concerned with very specific p-classes, the same remark being valid for the
utilization of other arithmetical invariants of K. As the Referee mentions, all these invariants
are isomorphic or dual to adequate Tate twists of the cohomology group H2(G,Z/pZ) (where
G is the Galois group of the maximal p-ramified pro-p-extension of K) which relativizes the
interest, but we don′t know if the use of the pseudo-units x+ y ζ in these contexts leads, in
practice, to the same “ numerical ” criteria and to the same diophantine approach.

It is indeed surprising that, to our knowledge, there is no important diophantine results on
the mixed radical W , using simultaneously a, b, c, and possibly the cyclotomic numbers, which
constitutes a particular case of the study of the polynomial identity, in the polynomial ring
Z[X]:

n∏
i=1

(ui + viX
di)λi = H(X)p +B(X) (Xp − 1), 0 ≤ di, λi ≤ p− 1.
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