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ABSTRACT

In order to extract geometrical features from a multispectral
image and derive a classification, an approach based on the
topographic map of the image is proposed. For each pixel,
the most significant structure containing it is extracted. The
classification of this pixel is based on its spectral information
and the geometrical features of the corresponding structure
(its area and perimeter). The results obtained on multispectral
remote sensing images taken by two different sensors show
the efficiency of the extracted geometrical features for sepa-
rating some classes with very similar spectral attributes but of
different semantic meanings.

1. INTRODUCTION

Recently, very high resolution multispectral remote sensing
images are increasingly used for Earth observation. These
images, providing rich spatial and spectral information on the
observed scenes, better describe the material attributes than
panchromatic images. However, by using only the spectral
bands, it is difficult to distinguish some classes with similar
spectral attributes, such as water and shadow. Moreover, it is
impossible to separate objects made by the same material but
with different semantic meanings (such as the roads and the
roofs of some buildings). Therefore, contextual information,
in particular geometrical features, become important for the
classification of very high resolution multispectral images.

In order to extract the contextual information from remote
sensing images, one can use models based on Markov Ran-
dom Field (MRF) [1]. However, the MRF based methods pro-
vide only statistical information on the neighborhood of the
considered pixel. Another family of methods for contextual
information extraction is based on morphological operators,
which allow to extract descriptive features, such as the geo-
metrical features about the structures [2]. In [3], it is proposed
to extract the extended morphological profiles (EMP) of the
principle components of hyperspectral images for the classi-
fication. However, since all morphological methods require
a structuring element, the features extracted by such methods
depend on the used structuring element. Moreover, in order

This work is funded by French ANR project VAHINE.

978-1-4244-7994-8/10/$26.00 ©2010 IEEE

1045

to describe the contextual information of the structures with
different scales, one has to use structuring elements with a
large discrete scale range. This fact has two major drawbacks.
Firstly, the scale range has to be chosen manually and is not
necessarily adapted to the image. Secondly, it considerably
increases the feature dimension. For example, in order to de-
scribe the geometrical information of one pixel on a principle
component, the EMP method in [3] uses 8 values.

In [4], for panchromatic remote-sensing images, it is pro-
posed to define the pixel-wise characteristic scale of the data
using the topographic map of gray scale images. The main
idea is that for each pixel, the most contrasted structure con-
taining it is extracted, and the scale of this structure defines
the scale of this pixel. In [4], it was shown that the structures
extracted on all the pixels form a partition of the image and
that the structure extracted on a pixel is in fact the most signif-
icant structure containing it. The geometrical features of these
structures are very pertinent for describing the contextual in-
formation. In this paper, we try to extend the algorithm pre-
sented in [4] for extracting geometrical features (the areas and
the perimeters of the structures) of multispectral images. The
main advantages of our proposed method when compared to
EMP are two-fold. Firstly, no structuring element is required.
The proposed approach can extract the geometrical features
of structures of any scale. In addition, only a very few values
are required to describe the geometrical attributes of a spatial
position when compared the EMP.

The outline of the paper is as follow: in Section 2, we
briefly introduce and then extend the approach proposed in [4]
for extracting geometrical features of remote-sensing images.
In Section 3, the classification results obtained with the help
of the geometrical features are presented. In Section 4, the
conclusion is drawn and some perspectives are given.

2. EXTRACTION OF GEOMETRICAL FEATURES

2.1. Extraction of geometrical features on panchromatic
remote sensing images

In [4], the authors propose a method based on the topo-
graphic map of the image to estimate the local scale of each
pixel in the case of gray scale remote sensing images. The
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idea is that, for each pixel, the most contrasted shape con-
taining it is extracted, and the scale of this shape defines the
characteristic scale of this pixel. The topographic map [5],
which can be obtained by Fast Level Set Transformation
(FLST) [6], represents an image by an inclusion tree of the
shapes (which are defined as the connected components of
the level sets). For each pixel (x,y), there is a branch of
shapes f;(z,y) (fi—1 C f;) containing it. Note I(f;) the
gray level of the shape f;(z,y), S(f;) its area and P(f;) its
perimeter. The contrast of the shape f;(xz,y) is defined as
C(fi) = U(fis1) — I(fi)l-

The most contrasted shape f;(z,y) of a given pixel is de-
fined as the shape containing this pixel, of which the contrast
is the most important, i.e.

fila.y) = argmax{C(f;(@.4)} (n

Since the optical instruments always blur remote sensing
images, several shapes with very low contrasts can belong to
the same structure. In order to deal with the blur, the au-
thors of [4] propose a geometrical criterion to cumulate the
contrasts of the shapes corresponding to one given structure.
The idea is that the difference of the areas of two successive
shapes (for example f; and f;;1) corresponding to one given
structure is proportional to the perimeter of the smaller shape,
ie. S(fix1) — S(fi) ~ AP(f:;), where X is a constant. It is
shown in [4] that the most contrasted shapes extracted in an
image form a partition of this image. The area and the perime-
ter values of the most contrasted shape f;(x,y) are very per-
tinent geometrical features for the classification task.

2.2. Extension to multispectral images

We note Y,,(z,y), (n = 1,...,N.) the nth channel of the
multispectral image and N, the number of spectral channels.
In order to extend the estimation of local scale to multispectral
images, we firstly extract the most contrasted shapes for each
channel. Therefore, for each spatial position (x,y) in a mul-
tispectral image, N, shapes are extracted. We note f; , (z,y)
the most contrasted shape extracted by Equation (1)7 for the
pixel (z,y) on the nth channel. The simplest way to use the
scale features of a pixel is to use all the scale values of all the
channels as features for the classification. The major draw-
back is that for a given object, if the nth channel is dominant,
the area and perimeter values computed on the other channels
may introduce classification errors. Therefore, we try to de-
fine an unique area value and an unique perimeter value for
each pixel by the most significant channel. For a given pixel
(z,y), we try to select the most significant shape f;,ﬁ(:v, y)
from the most contrasted shapes f; , (x,y) extracted from all
the channels of the image. The criterion of the selection is
always based on the contrasts of these shapes C(f; . (x,y)).
Remark that, since the dynamic of each channel ma§/ be quite
different, we normalize the contrast value by the total varia-

tionTV,, = [ \/9,Y,? + 0,Y,? of the corresponding channel.
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Therefore, the most significant shape of the pixel (z,y) is de-
fined as:
C(f. (x,

Since the area and the perimeter values of the structures in
an image may significantly vary (from several pixels to tens
of thousands of pixels), we associate to the pixel (z,y) the
logarithmic values of the area and the perimeter of the shape
f 1,0 ((K ) y) .

Therefore, the feature vector O(z,y) of a given pixel
(z,y) containing spectral and geometrical features for classi-
fication is defined as:

@(x,y) = {Yl(x,y),...YNC(x,y),
log S(fﬁ,ﬁ(xv y)),log P(ff,ﬁ(xa y)t 3

3. EXPERIMENTS AND RESULTS

Geometrical features are more pertinent on very high reso-
Iution remote-sensing images, since fine structures (such as
buildings, roads, etc.) of urban areas become individually vis-
ible. Therefore, in this section, we validate the efficiency of
the geometrical features on classification by the experiments
carried out on two multispectral remote sensing images taken
by two different high resolution sensors: Quickbird (2.4m)
and simulated Pleiade (1m).

3.1. Experiments on QuickBird image

The first experiment is carried out on a Quickbird multispec-
tral image of Toulouse (see Figure 1(a)) with four channels
(infra-red, red, green and blue). The spatial resolution is
2.4m. The image size is 512 x 512 pixels. 23% of pixels of
this image are manually classified into 8 classes serving as
ground truth. The labelled pixels and the definitions of the
classes are shown in Figure 1(b).

Fig. 1. (a) Quickbird image on Toulouse. For the visualiza-
tion, only the infra red, red and green channels are shown. (b)
Manually labeled pixels. The definitions of the classes are:
Grass, Tree, Shadow, Building, Water, Bare soil, Park-
ing.

We use SVM (Support Vector Machines) with Gaussian
kernel for classification. 10% of the pixels in each class are



selected for training the SVM. The optimal scale parameter
of the Gaussian kernel is selected by 5-fold cross validation
on the training set. For comparison, we classified this image
by using two different feature sets. The first feature set {Y, },
(n = 1,...,4) contains only the four spectral bands. The
second feature set © defined by Equation (3) contains not only
the spectral bands but also the logarithmic values of the area
and the perimeter computed on this image, which are shown
in Figure 2.

=N W A~ oo N ® ©
- N W A~ 0 o N ®

200 300 400 500 100 200 300 400 500

(a) (b)

Fig. 2. Logarithmic values of (a) the areas and (b) the perime-
ters of the most contrasted shapes computed on all the pixels
of the Quickbird image.

The overall accuracy and the class accuracies obtained by
using the two feature sets on the Quickbird image are shown
in Table 1. Figure 3 shows the classification results on the
whole image with the help of the SVM trained by 10% of the
labelled pixels by using the two feature sets. It can be seen
that the addition of geometrical features improves the classifi-
cation results, especially for the classes of Shadow and Water.
It is very difficult to separate these two classes when we use
only the spectral channels (there isn’t even any pixel which
is classified as Water). The geometrical features can separate
these classes, since the area and the perimeter of the water
region in this image (which is in fact a lake) are much larger
than for the shadows. Moreover, the geometrical features con-
siderably improve the classification results of the Road and
Building classes. The color of the roads and the color of some
building roofs are exactly the same, since they are all made of
asphalt. Their geometrical attributes are different, since the
ratio between the area and perimeter of the buildings is larger
than for the roads. The same phenomenon can be observed
for the Parkings. By using only spectral channels, no pixel is
classified to this class, because the color of the parkings is the
same as for the roads.

3.2. Experiments on simulated Pleiade data

The second experiment is carried out on a simulated Pleiade
image (see Figure 4(a)) taken on Strasbourg with four spec-
tral channels (near infra red, red, green and blue). The spatial
resolution is 1m and the image size is 1024 x 1024 pixels.
38.9% of the pixels are manually labelled into 7 classes serv-
ing as ground truth. The labelled pixels and the definitions of
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Feature set {Yn} Original channels (S (see Eq. (3))
Feature dimension 4 6
Overall Accuracy 77.27% 84.84%
1. Grass 96.94% 97.96%
2. Tree 88.75% 88%
3. Shadow 74.44% 75.07%
4. Building 51.97% 74.82%
5. Road 77.54% 87.68%
6. Water 0% 71.5%
7. Bare soil 94.05% 97.83%
8. Parking 0% 22.86%

Table 1. Overall accuracy and class accuracies obtained on
the Quickbird image.

(a) (b)

Fig. 3. Classification results obtained on the Quickbird image
(a) by using the original 4 spectral bands only, and (b) by
using feature vector © (see Equation (3)).

the classes are shown in Figure 4(b).

Fig. 4. (a) Pletade image on Strasbourg. For the visualization,

only the infra red, red and green channels are shown. (b)

Manually labelled pixels. The definitions of the classes are:
Building, Water, Field, Bare soil, Grass, Tree.

SVM with Gaussian kernel is used, its optimal scale pa-
rameter is selected by 5-fold cross validation. 10% of the pix-
els of each class are used for training the SVM. For compar-
ison, the image is classified by two feature sets: the original
channels {Y,,,n =1,...,4} and the feature set © (see Equa-
tion (3)). Figure 5 shows the computed logarithmic values of
the areas and perimeters computed.

The overall accuracy and the class accuracies obtained by
using the two feature sets are shown in Table 2. Figure 6
shows the classification results of the whole Pleiade image



(a)

Fig. 5. Logarithmic values of (a) the areas and (b) the perime-
ters of the most contrasted shapes computed on all the pixels
of the simulated Pleiade image.

(b)

with the help of the SVM trained by 10% of the labelled pix-
els by using the two feature sets. It can be seen that, again,
the classification results are considerably improved by adding
the geometrical features. The overall accuracy increases by
nearly 9.14% and the accuracy of each class increases too.
In particular, the accuracies are significantly improved for the
Building, Field and Tree classes. For the class of Building,
the roads and some building roofs are made by the same ma-
terial, and hence have the same color. However, the ratio be-
tween the area and the perimeter of buildings is larger than for
the roads. The colors of the fields and of the trees are quite
similar. However, the fields have larger areas and much more
regular contours. Therefore, geometrical features can better
separate these two classes. Moreover, it can be observed from
Figure 6 that when only the spectral channels are used, lots of
errors occur on the top left corner of the image. Many pixels
corresponding to buildings (mainly small houses) are classi-
fied as Bare soil. Again, by adding geometrical features, these
pixels are better classified, because the Bare soil class in this
image corresponds to larger area and perimeter.

Feature set {Y,,} Original channels | © (see Eq. (3))
Feature dimension 4 6
Overall Accuracy 83.87% 93.01%
1. Road 91.84% 96.88%
2. Building 77.37% 84.86%
3. Water 94.14% 97.93%
4. Field 63.23% 92.36%
5. Bare soil 89.17% 90.78%
6. Grass 88.39% 93.03%
7. Tree 63.2% 89.96%

Table 2. Overall accuracy and class accuracies obtained on
the simulated Pletade image.

4. CONCLUSION AND PERSPECTIVES

In this paper, we describe an approach for automatically ex-
tracting the geometrical features (the areas and the perime-
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(b)

Fig. 6. Classification results obtained on the simulated
Pleiade image (a) by using the original 4 spectral bands only,
and (b) by using feature vector O (see Equation (3)).

ters of the structures) of multispectral remote sensing images
based on topographic map. The results on both Quickbird and
simulated Plefade images show the efficiency of these fea-
tures: by adding only two features, it is possible to separate
some classes which are difficult to separate by using spectral
bands only.

However, it can be seen that, in this paper, the geometrical
features are simply appended to the feature set. It will be in-
teresting to apply a feature ponderation stradegy (such as the
method proposed in [7]) in order to avoid potential classifica-
tion errors introduced by the geometrical features.
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