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Abstract—Multispectral and hyperspectral imagery are often
used for estimating crop yield. This paper describes an unsu-
pervised unmixing scheme of hyperspectral images on field in
order to estimate the crop yield. From the hyperspectral images,
the endmembers and their abundance maps are computed by
unsupervised unmixing. The abundance maps are then compared
with the crop yield data. The results show the capability for
estimating crop yield of the unmixing scheme, thanks to the
high correlations between the crop yield data and the abundance
maps of the endmembers corresponding to crop, even though the
scheme is totally unsupervised.

I. INTRODUCTION

Multispectral and hyperspectral imagery are often used for
estimating crop yield. Traditionally, the crop field yield is
estimated by some vegetation index from the images [1][2].
These index are often computed from certain combinations of
visible and near-infrared bands, of which the most famous may
be NDVI=(NIR-Red)/(NIR+Red) [3]. The high correlation
between the vegetation index and the ground truth crop yield
data shows the capability of the vegetation index for estimating
crop yield.

Hyperspectral imagery, which often contains hundreds of
spectral bands, has been evaluated for crop yield estimation
in [4][5]. These almost continuous spectra, which provide
much more spectral information on the observed materials,
have the potential to better describe the biological and chem-
ical attributes of the plants. The spatial abundance of the
vegetation on a scene derived from hyperspectral image can
be more precise than the vegetation index deduced from
multispectral image. Recently, it was proposed to compute
the vegetation abundance in order to map the crop yield
with the help of linear unmix of hyperspectral images in [6].
The authors assume that the spectrum of a pixel in the
hyperspectral image on a crop field is a linear mixture of
the spectra of vegetation and bare soil. The abundance of
vegetation is then calculated by using linear regression. In [6],
the spectra of vegetation and bare soil are supposed to be
known. They are either measured in laboratory or selected
manually from the image. This is a main drawback of the
method, since the reference spectrum is not always available.
Moreover, the hypothesis which supposes the spectrum of a
pixel is a linear mixture of only two endmembers (vegetation
and bare soil) is questionable, since other endmembers can be
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present (for example asphalt, if there are roads between the
fields).

Therefore, in this paper, we present a totally blind linear
unmixing scheme for hyperspectral images which is applied
for crop field yield estimation. For all the linear unmixing
methods, one has always to manually fix the number of
endmembers at first. Therefore, the first step of the unmix-
ing scheme consists in estimating the sub space dimension
of the endmembers which span the hyperspectral image.
In [7], a method to estimate the number of endmembers
based on the distribution of eigenvalues of the correlation
and covariance matrix of the data has been proposed. The
experiments in [7] show that this method works very precisely,
even though the hyperspectral images may be affected by
the artifacts. For linear unmixing of hyperspectral images,
one can find two families of approaches: statistical methods
(such as the Independent Component Analysis [8], Bayesian
Positive Source Separation [9], etc.) and geometrical methods
(such as N-Finder [10], VCA [11], etc.). In this paper, we
use the geometrical method - Vertex Component Analysis
(VCA) to unmix the hyperspectral image. With the help of the
unsupervised unmixing scheme, we can obtain the abundance
map of vegetation without any manual processing and any
information a piori on the crop. The correlation coefficient
computed between the abundance of vegetation and the ground
truth crop yield data will show the capability of the scheme
for estimating crop yield.

The outline of this paper is as follow: in Section II, we
present the linear mixture model of hyperspectral image. In
Section III-A and III-B, we present very briefly the approach
used for estimating the number of endmembers and the linear
unmixing approach (VCA) respectively. In Section 1V, we
present the mapping results obtained on a real hyperspectral
data set. Finally, we conclude in Section V.

II. LINEAR MIXTURE MODEL

We note X the matrix representing the hyperspectral image
cube, where X = {xi,X2,...,Xn,} and X, =
{@1 5y T2k, ¥N, 1}, @) is the value of the kth pixel at
the [th band. We assume that the spectrum of each pixel is a
linear mixture of the spectra of N, endmembers, leading to
the following model:
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X=MS+n (D

where M = {m;,my,...,my, } is the mixing matrix where
m,, denotes the spectral signature of the nth endmember.
S = {s1,82,...,8n,}7 is the abundance matrix where s, =
{Sn1,Sn,2:---»Sn,N, } (Snk € [0,1] is the abundance of the
nth endmember at the kth pixel). n stands for the additive
noise of the image. For separating M and S from X without
any a priori information, we first have to estimate the number
N, of endmembers . In a second step, we can perform a linear
unmixing in order to obtain M and S.

III. LINEAR UNMIXING OF HYPERSPECYTRAL IMAGES
A. Estimation of the number of endmembers

in [7], the authors have proposed an approach for estimating
the number of endmembers by using the eigenvalues of the
correlation and covariance matrix of the hyperspectral image.
In this section, we briefly introduce the main idea of this
method. We note K the sample covariance matrix of X and R
its correlation matrix. Suppose that \; and \; are respectively
tpe itl} eigenvalues of K and R with ¢ > 0, A\; > ;41 and
Ai > Aiy1. Theoretically, if there are N endmembers present
in X, the eigenvalues \;, (i > N.) and \;, (i > N..) correspond
to the noise variance. Noting z; = 5\1‘ — \;, the distribution of
z; can be asymptotically modeled by [12][13]:

1 < N,
i > N,

Zi N(,LLZ*,O'?),

2~ R(0, 02), @

where 4i; is unknown and o; can be given by 07 &~ 2 (A\2+\?),
if the number of samples is sufficiently large (which is usually
the case for hyperspectral images).

Based on Equation 2, the authors of [7] proposed to cal-
culate the likelihhood function of z; of which the position of
the maximum corresponds to the number of endmembers N..
Moreover, the authors of [7] found that if there are some bands
which are corrupted by artifacts, the number of endmembers
N, corresponds the position of the first local maximum.

B. Vertex Component Analysis (VCA)

In [11], the Vertex Component Analysis (VCA) is proposed
as an effecient method for extracting the endmembers which
are linearly mixed. The main idea is to extract the vertex of
the simplex formed by M which contains all the data vectors
in X. According to the sum-to-one condition, the sum of the
abundances of all the endmembers for each pixel is equal to
one, i.e. Vk,Zg;l Sn,k = 1. Therefore the data vectors x; are
always inside a simplex of which the vertex are the spectra of
the endmembers if there is no noise. VCA iteratively projects
the data onto the direction orthogonal to the subspace spanned
by the endmembers already determined. And the extremity of
this projection is the new endmember signature. The algorithm
stops when p endmembers are extracted, where p is the number
of endmembers which has to be fixed before performing
VCA. In practice, we fix p by the number of endmembers
determined by the approach presented in Section III-A. We
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Fig. 1. Crop yield data with 8.7m spatial resolution.

note M = {my,...,m,} the spectra of the endmembers

extracted by VCA. The abundance maps S = {§;,...,8,}
of the endmembers are then obtained by
S=XxM . 3)

Remark that since the only parameter to be fixed, the
number of endmembers, can be determined by the method
introduced in III-A, which is also unsupervised, the linear
unmixing scheme is totally parameter free. By using this
scheme, without any information a priori on the endmembers,
we can extract the spectra and the abundance maps of the
endmembers in a hyperspectral image.

IV. EXPERIMENTS AND RESULTS

In this section, the scheme of linear unmixing presented in
Section III is applied for extracting the spectra and abundance
maps of the endmembers in a hyperspectral image taken on
a crop field. The correlation coefficients are then computed
between the abundance maps and the crop yield data. For
comparing our approach with the state of the art method
proposed in [6], we use the same hyperspectral image (Field
one in Figure 3 of [6]). It was acquired from the fields
with an airborne hyperspectral imaging system mounted on a
Cessna 206 single-engine aircraft. The system was configured
to record 12-bit imagery with 128 bands over the spectral
range from 457.2 nm to 921.7 nm at 3.63 nm intervals. The
image was recorded under sunny and calm conditions from
the field after the crop had reached the soft to hard dough
stages and achieved its maximum canopy cover. The swath
of the image was approximately 840 m and the ground pixel
size was 1.3 m. Because of the low quantum efficiency near
the NIR end of the observed spectrum, only 102 bands with
wavelengths from 477.2 nm to 843.7 nm were used.

Yield data (Figure 1), serving as ground truth, were recorded
with an Ag Leader PF3000 yield monitor (Ag Leader Tech-
nology, Ames, Iowa), which was calibrated to ensure accuracy
before the grain was harvested. The used combine had an
effective cutting width of 8.7 m, which is therefore the spatial
resolution of the yield data.

The approach introduced in Section III-A is used for esti-
mating the number of endmembers, which is p = 5. We then
use VCA [11] (see Section III-B) to extract the spectra of the
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Fig. 2. Spectra of the 5 endmembers extracted by VCA. Remark that the
spatial resolution of the abundance maps is the same as the hyperspectral
image (1.3m).

5 endmembers as well as their abundance maps. In Figure 2,
the spectra of these endmemebers M = {my,...,m5}) are
shown. It can be seen that the second endmember (Figure 2(b))
is the most similar to the spectrum of vegetation.

In Figure 3, we have shown the abundance maps of the
endmembers (S = {81,...,85}) extracted by VCA.

Considering the spatial resolutions of the crop yield data
(8.7m) and the abundance maps (1.3m), we have downsampled
the abundance maps by the factor % with the help of a
bilinear interpolation. For each downsampled abundance map,
we have calculated the correlation coefficient r; between it and
the crop yield data (see Table I). It can be observed that the
highest correlation coefficient is obtained on the abundance
map of the second endmember (see Figure 3(b)), which is the
most similar to the vegetation based on the observation of the
spectrum shown in Figure 2(b). The high correlation between
the crop yield data and the abundance of vegetation shows the
capability of the unmixing scheme presented in this paper for
estimating the crop yield.

For comparing our approach with the state of the art method
in [6], we recall that the authors of [6] computed the correla-
tion between the crop yield data and the vegetation abundance
obtained by linear unmixing, assuming that there are only
two endmembers: vegetation and bare soil. As discussed in
Section I, other endmembers can be present and the approach
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Fig. 3. Abundance maps of the 5 endmembers extracted by VCA.
Abundance S1 So S3 S4 S5
T 0.2570 | 0.7239 | 0.1960 | -0.4014 | -0.0558
TABLE I

CORRELATION COEFFICIENT BETWEEN THE ABUNDANCE MAPS AND THE
CROP YIELD DATA.

proposed in [6] requires the reference spectra of vegetation
and bare soil. These spectra are obtained either by laboratory
measurement or by manual extraction from the image. In order
to retrieve the reference spectra, many information have to be
known beforehand, such as the type of crop, the moisture, etc.
The correlation coefficients obtained in [6] on the same data
set are respectively equal to 0.63 and 0.62 when the reference
spectra of vegetation are obtained by laboratory measurement
and manual extraction from the image.

Remark that the result obtained by using the scheme pro-
posed in the paper is better than in [6]. While the proposed
scheme is totally unsupervised: it does not require any infor-
mation a priori.

Since there is noise in the hyperspectral data, the abundance
values obtained by Equation (3) are not necessarily in the inter-
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Fig. 4. Normalised abundance maps of the 5 endmembers extracted by VCA.

Abundance sV sy s sy s
r 0.0510 | 0.7338 | 0.2221 | -0.3627 | -0.0837
TABLE II

CORRELATION COEFFICIENT BETWEEN THE NORMALISED ABUNDANCE
MAPS AND THE CROP YIELD DATA.

val of [0, 1]. The normalised abundance maps §' (i = 1,...,5)
are then computed by (see Figure 4):
~N §1 — inf éz
Si =S5 a4 e
>i—1(8i —inf§;)

These normalised abundance maps are then downsampled
in order to compute the correlation coefficients between them
and the crop yield data, which are shown in Table II.

It can be observed that the normalisation can slightly im-
prove the correlation between the abundance of the vegetation
(from 0.7239 to 0.7338) and the crop yield data.

V. CONCLUSION

In this paper, we have presented a scheme for estimating
the crop yield with the help of linear unmixing of hyper-
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spectral images. As the most essential parameter for linear
unmixing, the number of endmembers is firstly determined
by an approach based on the eigenvalues of the correlation
and covariance matrix of hyperspectral data. Afterwards, the
spectra and the abundance maps of the endmembers are then
extracted by VCA. In order to validate our approach, the
experiment is carried out on an airbone hyperspectral image
of a real field with crop yield data serving as ground truth.
The high correlation between the crop yield data and the
abundance of vegetation extracted by the proposed scheme
shows its capability for estimating crop yield.
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