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ABSTRACT

The definition of the Mahalanobis kernel for the classification
of hyperspectral remote sensing images is addressed. Class
specific covariance matrices are regularized by a probabilistic
model which is based on the data living in a subspace spanned
by the p first principal components. The inverse of the covari-
ance matrix is computed in a closed form and is used in the
kernel to compute the distance between two spectra. Each
principal direction is normalized by a hyperparameter tuned,
according to an upper error bound, during the training of an
SVM classifier. Results on real data sets empirically demon-
strate that the proposed kernel leads to an increase of the
classification accuracy by comparison to standard kernels.

Index Terms— Mahalanobis kernel, probabilistic prin-
cipal component analysis, support vector machine, hyper-
spectral images, classification.

1. INTRODUCTION

Kernel methods have received a considerable attention dur-
ing the last decade [1]. Their performances for classification,
regression or feature extraction make them popular in the
remote sensing community [2]. The core of kernel learning
algorithms is the kernel function. It measures the similar-
ity between two spectra x and y in a d-dimensional vector
space, and enable the transformation of a linear algorithm
into a non-linear one [3]. Over the different kernels used in
remote sensing, the Gaussian kernel:

1o 2
Koey) =exp - 237wl 1)
Y
i=1
is widely used because it usually gives good results and has
only one hyperparameter (v) to be tuned. By using kernels,
an implicit mapping of the spectra from the input space to
the feature space is done, the feature space being associated
to the kernel [1].
Under some weak conditions, the feature space induced
by the kernel is a Riemannian manifold [4,5]. The metric
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tensor is

Ok(x,y)

8561'81/]‘ (2)

gij(x) =

y=x

which is for the Gaussian kernel: g;;(x) = 7~ 28;; with d;; = 1
if i = j and 0 otherwise. This metric stretches or compresses
the Euclidean distance between x and y by a factor v~2 and
the implicit statistical model associated to the input data
x is the normal law with a diagonal covariance matrix and
identical elements [6, Chap. 4]: Each variable’ has the same
variance and there is no covariance between variables (which
is not true in practice). The model also assumes that each
variable is equally relevant for the given task, e.g., classifi-
cation or regression. A more advanced model is to consider
that the data follow a normal law with a diagonal covariance
matrix, but with no identical diagonal elements: Each vari-
able has its own variance, but still no covariance. It is then
possible to tune the relevance of each variable separately. It
was shown in [7] that this model improves the classification
accuracy of remote sensing images, but it also increases the
computational load. The more general model, full covariance
matrix, leads to the well known Mahalanobis kernel (MK) [8]:

—sElx-v)akx-y) ). ©

k(x,y) = exp
Several definitions of Q exist for the problem of classifica-
tion: It can be either the inverse of the covariance matrix
3 of the total training samples [8] or the covariance matrix
of the considered class [9], e.g., for m classes problem, if the
classifier separates the class ¢ against all the others, Q is
Yo', Generally, Q can be any positive definite matrix. The
metric induced is gi;(x) = 7y 2Qu;, which stretches or com-
presses the variance of the data along their principal direc-
tions (see Section 3). Although the MK better handles the
data characteristics than the conventional Gaussian kernel in
small/moderate dimensional space, it is difficult to use in high
dimensional spaces, such as hyperspectral remote sensing im-
ages. As a matter of fact, the estimation of the covariance
matrix is ill-conditioned, making its inversion impossible or
at least unstable. Moreover, all the principal directions are

!n this study, the variables are the different components of the
spectra.
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not equally relevant for classification: A subset of them cor-
responds to the signal while the remaining dimensions corre-
spond to the noise.

In this article, it is proposed to regularize Q in a suit-
able way and to tune the weight of the principal directions
according to their relevance in classification. The regular-
ization strategy is detailed in Section 2. The link between
probabilistic PCA and the proposed regularization is also dis-
cussed. The Mahalanobis kernel is then constructed with the
regularized inverse covariance matrix in Section 3. Finally,
experiments on real hyperspectral data sets are reported in
Section 4.

2. REGULARIZATION OF COVARIANCE
MATRICES

From the spectral theorem, a covariance matrix can be writ-
ten as:

¥ = VAV (4)

where A is the diagonal matrix of eigenvalues and V is an or-
thonormal matrix of corresponding eigenvectors. Its inverse is

=VA~'V', (5)

Ill-conditioning is related to a high condition number x(X),
i.e., the ratio between the largest §1 and the smallest §,4 eigen-
value [10]. In general, in hyperspectral imagery, X is not full
rank because of the high correlation between two adjacent
bands. One consequence of this is a high condition number.
Another consequence is that not all principal directions carry
the relevant signal and thus it is possible to discard principal
directions corresponding to zero (or close to) eigenvalues.
Following [11,12], it is proposed in this article to use the
PCA-Ridge regularization based approach: Noting IY the di-
agonal matrix with the p first elements equal to 1 and the
remaining equal to 0 and defining 2 = VIZVt, the ill-posed

problem (5) is changed to (QE + TId)_IQ which is, after

trivial simplifications, equal to VA(r, p)V* with
A(T,p) = dia L 0 0 (6)
’p - g 51 + T ’ ’ 6p + T ) 7ttt .

Usually, the regularization parameter 7 is set to a small value:
i +7 = 9; if §; is high enough. Therefore, principal directions
corresponding to high eigenvalues are slightly regularized and
those corresponding to small eigenvalues are largely regular-
ized. The remaining (d—p) principal directions are discarded.

Finally, with the regularized estimate of the covariance
matrix, ||x — y||%-1can be rewritten as:

Ix—yl3-1 = y)tVA(T,p)Vt(x—y)
- H (VA2 (r,p)] (x — y H (7)
= aeenf
with
_ Vi Vp
A= |:((51 +7‘)0'5 (5P+T)0.5:| (8)
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Table 1. Number p of principal components kept for the
computation of X1 for each class c.
(et [2]3[af[s5][6[7][8][09]
[p[[20]21 a2 13 [17 121914 |

the projection operator on the vector space A spanned by the
p first regularized principal directions (the projection on the
(d — p) last principal directions are always null) and | - ||
the Euclidean norm in RP. A represents the class specific
subspace® and A the noise subspace: R* = A + A. With
such a regularization, it is supposed that all the necessary
information for the discrimination of class ¢ is included in
Ae.

This model is closely related to probabilistic principal
component analysis (PPCA) [13]. In PPCA, it is assumed
that the observed d variables x are a linear combination of p
unobserved variables s (p<d):

x=Ws+pu+e (9)

with s ~ N(0,I) and € ~ N(0,¢T). Tt follows that x ~
N(p, WW? +¢T). With PPCA, it is clear that all the infor-
mation/signal in x is contained in s. It can be proved that s
lives in a subspace spanned by the p first eigenvectors of the
covariance matrix of x [13]. This subspace correspond to A,
that was previously defined.

Using [13], A is estimated using the p first eigenvalues
and corresponding eigenvectors computed on the empirical
sample estimate of 3:

$- %Z(xi — %) (xi — %) (10)

with n the number of training samples and X being the sample
mean of x.

It results that the inverse of the covariance matrix can
be computed in a closed form from the empirical covariance
matrix. The parameter p controls the model: the size of A
where the data originally lived. Therefore, it is important
to tune p correctly, since if p is set to a small value relevant
information is lost, while with a too big value some noise is
included in the computation. In remote sensing applications,
it is conventionally selected by considering a certain percent-
age of the cumulative variance (total eigenvalues sum).
more robust approach is to use statistical model selection cri-
teria [14]: Bayesian Information Criteria (BIC) or Akaike
Information Criteria (AIC) ... After some trials, BIC was
selected in this work (AIC gave too high p). Table 1 reports
the size of the subspace for each class obtained with the BIC
(see Section 3 for a description of the data set). BIC is com-
puted as:

BIC(p) = -2l + (d — 1)(p — 1) log(n) (11)

where [ is the log-likelihood associated to the PPCA model
for the considered p. The optimal p minimizes the BIC.

2In the following the subscript ¢ indicates the corresponding
class.



3. MAHALANOBIS KERNEL

In this section, the proposed Mahalanobis kernel is detailed.
In A., the variables from the class ¢ are uncorrelated. It is
therefore suitable to tune the relevance of each variable for
the classification problem by introducing a diagonal matrix
T of hyperparameters (T';; = 1/+7) [7]:

ke(x,y) = exp| — %(x — y)tACI‘Ai (x - y) .(12)

The metric tensor is now

 vli]vals]’
gij(x) = Ezj ﬁ (13)

with vg[i] the i*" element of eigenvector v, associated to
eigenvalue 04, 7 the regularization parameter, p the number
of remaining principal directions and v, the hyperparameter,
which will be tuned during the training process. With this
kernel, the distance between two spectra is stretched or com-
pressed along their p first principal components. The vari-
ation along the (d — p) last principal directions is assumed
to be caused by the noise and they are not considered in the
computation.
The above formulation has several advantages over (3):

1. The condition number of the matrix is equal to (d1 +
7)/(6p + 7), which is controlled by the two parameters
p and 7. For instance, with the class 1, the initial
m(ﬁ)) is approximately 3 x 10 while with the proposed
approach it is approximately 4 x 103.

2. It is known that the principal directions are not opti-
mal for classification since they do not maximize any
discrimination criterion. However, they still span a
subspace where there are some variation in the data.
By controlling, with I', which directions are relevant
(or discriminative) for the classification, it is possible
to go further in the classification process: The feature
space is modified during the training process to ensure
a better discrimination between samples.

3. T provides some information about the relevance of
each principal direction.

4. EXPERIMENTS

In this section, results obtained on real data sets are pre-
sented. The data is the University Area of Pavia, Italy, ac-
quired with the ROSIS-03 sensor. The image has 103 bands
and is 610 x 340 pixels. Nine classes have been defined. More
details about the data sets can be found in [15].

For the classification, a SVM with gradient based ap-
proach to tune the hyperparameters was used [16] and one
versus all multiclass strategy was employed. The proposed
kernel has been compared with the conventional Gaussian
kernel, the Mahalanobis kernel where a small ridge regular-
ization has been done to prevent instability, and the proposed
regularized Mahalanobis kernel. The covariance matrix 3. for
class ¢ was estimated with the available training samples. For
the experiments, the regularization parameter p was selected
with the cumulative variance (99% and 99.9%) and with the
BIC criterion.
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Fig. 1. Hyperparameters v, for the four first classes. Hori-
zontal axis: Number of the principal component g. Vertical
axis: value of the hyperparameters 4. The size of the specific
subspace was selected with the BIC, see Table 1.

Classification results are reported in Table 2. The results
must be considered as 9 binary classification problems: No
fusion rule was applied to obtain the multiclass classification
result.

Without any regularization, the conventional Maha-
lanobis kernel performs worst in terms of classification ac-
curacy than the Gaussian kernel. With 7 = 10%, it leads
to a slight increase of the classification while the training
time is drastically increased. The proposed kernel leads to
an increased accuracy when p corresponds to 99.9% of the
cumulative variance and when p is selected with the BIC.
For the proposed kernel, the regularization parameter p has
stronger influence on the classification accuracy than 7. We
have set 7 to zero with the BIC strategy and no difference in
terms of classification have been found. By retaining more
principal directions, up to a certain amount, the training
process becomes longer with no increase of the accuracy.
Then the accuracy decreases. The BIC strategy permits to
select the right size of the class specific subspace and thus
minimizes the total training time.

Figure 1 displays the hyperparameters ~, found for the
first four classes. It can be seen that the hyperparameters
are class-dependent and, therefore, need to be tuned inde-
pendently for each class.

5. CONCLUSIONS AND PERSPECTIVES

The classification of hyperspectral images with the Maha-
lanobis kernel was investigated in this article. A regulariza-
tion of the covariance matrix was proposed, based on a prob-
abilistic model. Using the BIC, the class specific subspace is
defined for each class, leading to a closed form solution for
the inverse of ¥. The distance between two spectra is now
computed in the class specific subspace A rather than in R%.
A set of hyperparameters is added in the kernel. They are
tuned during the training of the SVM.

Experimental results on real data sets have shown that
the proposed kernel can improve the classification accuracy
when compared to a standard Gaussian kernel. Using BIC
to select the size of the class specific subspace is more perti-
nent than considering the cumulative variance. Further ex-
periments on other data sets are needed to better assess the



Table 2. Classification accuracies for the different kernels in percentage of correctly classified samples. Here S means that
there is one hyperparameter and M means that there is one hyperparameter per variable. For the regularized kernel, the
number in brackets represents p the number of selected principal directions. It corresponds, for the first two results, to 99% of
the total variance and 99.9% for the following two results. The last column corresponds to p selected with the BIC. For each
class, the number of training samples is indicated in brackets.

Kernel Gaussian Mahalanobis Reg-Mahalanobis
T s M s s M M M M M
T - - 0 102 0 102 0 10° 0
Asphalt (548) 944 | 949 || 884 | 91.8 || 945 (7) | 945 (7) | 95.9 (39) | 95.9 (39) || 96.0
Meadow (540) 79.2 | 783 || 709 | 75.8 || 77.2(4) | 77.2(4) | 81.9 (24) | 81.9 (24) || 82.0
Gravel (392) 95.7 | 97.2 || 96.2 | 97.0 || 96.8 (5) | 96.8 (5) | 97.5 (30) | 97.5 (30) || 97.6
Tree (524) 93.8 | 94.4 || 965 | 97.8 || 94.3(6) | 94.3 (6) | 98.3 (23) | 98.3 (23) || 98.3
Metal Sheet (265) 99.8 | 99.8 || 99.9 | 99.9 || 99.7 (2) | 99.7 (2) | 99.9 (15) | 99.9 (15) || 99.9
Bare Soil (532) 89.3 | 85.4 || 90.1 | 91.0 || 83.3(4) | 83.3(4) | 92.4 (21) | 92.4 (21) || 914
Bitumen (375) 97.8 | 985 || 98.9 | 99.3 || 98.9 (28) | 98.9 (28) | 99.1 (61) | 99.1 (61) || 98.7
Brick (514) 953 | 96.2 || 93.5 | 955 || 96.8 (8) | 96.8(8) | 97.5(41) | 97.5 (41) || 97.5
Shadow (231) 99.9 | 99.9 || 98.8 | 99.7 || 99.9 (9) | 99.9 (9) | 99.9 (38) | 99.9 (38) || 99.9
| Average class accuracy || 93.8 [ 939 [[ 926 [ 942 [ 935 [ 935 [ 959 | 959 [ 95.7 |
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