
HAL Id: hal-00578908
https://hal.science/hal-00578908v1

Preprint submitted on 23 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

H(infini)-feedback design for linear systems subject to
input saturation

Yacine Chitour, Sami Tliba

To cite this version:
Yacine Chitour, Sami Tliba. H(infini)-feedback design for linear systems subject to input saturation.
2011. �hal-00578908�

https://hal.science/hal-00578908v1
https://hal.archives-ouvertes.fr


H∞−feedback design for linear systems subject to input

saturation

Yacine Chitour∗ Sami Tliba∗

February 27, 2011

1 Introduction

In this paper, we study linear systems subject to input saturation, i.e. systems of the type

(Σ)sat ẋ = Ax + bσ(u), (1)

where x ∈ Rn, u ∈ R and σ : R → R is a saturation function whose prototype is the
standard saturation function σ0(s) = s

max(1,|s|)
. In this paper, we deliberately focus on single

input systems, eventhough several results quoted below hold true for muti-inputs as well. The
saturation-free linear system associated to (Σ)sat is naturally defined as

(Σ)L ẋ = Ax + bu, (2)

Our goal regards robustness issues associated to the (global asymptotic) stabilization to the
origin of systems (1). More precisely, assume that there exists an non empty set K of static
feedback laws (i.e. u = k(x)) so that

(a) for each feedback law k ∈ K, the closed loop system is GAS with respect to the origin;

(b) the L2-gain associated to each k ∈ K is finite, i.e.

γsat
k := sup

d∈L2(R+,R)

‖xd‖2

‖d‖2

< ∞,

where xd is the trajectory of ẋ = Ax + bσ(k(x) + d) with initial condition x(0) = 0.

Note immediately that if k is a linear feedback, then γsat
k ≥ SγL

k , where γL
k is the L2-gain

associated to k for the linear system (Σ)L and S is a positive constant only depending on σ.
Then, the issue we address is the following

Estimate inf
k∈K

γsat
k , (3)
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eventually in terms of L2-gains of (Σ)L. In particular, if (A, b) is controllable, recall that
inf

k linear γL
k = 0. Our ultimate concern will be to achieve the same performance in the

presence of saturation.
At the starting point of our study, (A, b) must be at least stabilizable, and by restricting

the state space to the controllable space, we can (and will) assume, with no loss of generality,
that the pair (A, b) is controllable. Moreover, it is well-known that (1) is stabilizable if and
only if the eigenvalues of A must have non positive real part. Most delicate issues arise when
the spectrum of A lies on the imaginary axis. The stabilization issue is already non trivial
except for two dimensional systems which can be stabilized by linear feedbacks u = kT x.
However, it was proved by Sussman and Yang ([11] and also Fuller []) that the nth-integrator,
n ≥ 3 cannot be stabilized by linear feedbacks u = kT x. Thanks to Teel [12] and Sussmann,
Yang and Sontag [10], general and explicit static feedbacks were first constructed using nested
saturations. However, as soon as the feedback requires at least two nested saturations, the
corresponding L2-gain is infinite, eventhough one can obtain L2 robustness results for these
feedbacks at the price of a non linear concept of gain (cf. [13]). One should also mention the
construction of another type of feedbacks based on “minimal” ellipsoids and due to Megretsky
(cf. [9]). The evaluation of the L2-performances of these feedbacks is still an open problem.
Finally, let us mention that, in the context of semi-global stabilization, the L2-performances of
linear systems with saturations were resolved by Z. Lin and his coworkers, using a low-and-high
gain design technique (cf. [5] and references therein).

At the light of the above discussion, a reasonable chance to address the issue of estimating
infk∈K γsat

k only occurs when the family of stabilizing keedbacks K is large enough. To the best
of the authors knowledge, this is the case for particular cases only, besides the use of nested
saturations. For instance, when A is skew-symmetric (and more generally marginally stable),
it was proved that the feedbacks u = −rbT x, r > 0 verify both Items (a) and (b) (cf. [7]) but
infr>0 γsat

r > 0, where γsat
r is the associated L2-gain. This is obtained by simply comparing

γsat
r with the corresponding γL

r . However, for 2D and 3D systems and increasing saturation
functions, in [1], the family of stabilizing feedbacks K was enlarged to at least all the linear
feedbacks for (Σ)L and it was also proved that the L∞-gains for these feedbacks were finite. It
is not difficult to see that the same holds true for the L2-gains but no gain attenuation result
seems straitgthforward from the results of [1].

In the present paper, we return to the case of the 2D oscillator subject to input saturation
and we determine an appropriate set K of linear feedbacks so that infk∈K γsat

k = 0.
We next deal with the case of the double integrator subject to input saturation i.e.

ẍ = −σ(u), where x ∈ R. Eventhough the latter system is stabilizable by means of lin-
ear feedbacks, it was shown in [7] that the corresponding L2-gains are infinite for the main
output map y = x. The same conclusion was reached for the output map y = ẋ in [6] but
it was proved in [3] that the L2-gain for the output map y = ẍ was finite, partially solving a
Problem 36 as posted in [2]. Still in [3], was provided a class of nonlinear feedbacks having a
finite L2-gain for the output map y = x. In this paper, we show how to select a subset K of
this class of feedbacks so that to get that infk∈K γsat

k = 0.
As future works, several directions seem interesting. The first one consists in extending

first the present results to the general case of A skew-symmetric. We conjecture that linear
feedbacks should be enough to get infk∈K γsat

k = 0. It is definitely more difficult to reach the
same results for marginally instable A and we suspect that new (non linear) feedbacks must
be deviced for that purpose. Another line of research would be to investigate attenuation of
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incremental gains since partial results on that issue are available for A skew-symmetric ([8]).

2 Notations

We use L+
2 to denote the Hilbert space L2(R+,R) and, for d ∈ L+

2 , we use ‖d‖2 to denote the
corresponding L2-norm of d.

Definition 1 We call σ : R → R a (normalized) saturation function (or an S-function) if
for all t, t′ ∈ R

(i) |σ(t) − σ(t′)| ≤ inf(1, |t − t′|);

(ii) |σ(t) − t| ≤ tσ(t).

Note that (i) is equivalent to the fact that σ is bounded and globally Lipschitz. On the
other hand, (ii) is equivalent to

σ′(0) = 1, tσ(t) > 0 for t 6= 0, lim inf
|t|→∞

|σ(t)| > 0, lim sup
t→0

σ(t) − t

t2
< ∞.

For instance, arctan, tanh and σ0 are examples of saturation functions.
We use Σ(s) to denote, for s ∈ R the function defined by

∫ s

0
σ(t)dt. Note that Σ(s) > 0

for s 6= 0 and if σ is odd then Σ is an even function.
We also recall that for a linear system ẋ = Ax + bu, with (A, b) controllable, one has

inf
k linear γL

k = 0 where γL
k is the L2-gain associated to the output map u 7→ x and a

stabilizing linear feedback k. Indeed, to see that, it is enough to prove it for the Brunovsky
form associated to ẋ = Jnx+ ben where Jn is the n-th Jordan block and en = (0 · · · 0 1)T . For
the latter system, a direct computation using the family of dilations Dµ := diag(µn−i)1≤i≤n,
µ > 0 yields the conclusion (see also Remark 4.3).

3 Oscillator in dimension two

We consider the linear control system subject to input saturation given by

(Σ)sat ẋ = A0x − e2σ(u), (4)

where A0 =

(

0 −1
1 0

)

, e2 =

(

0
1

)

and σ is a real valued-function of “saturation” type.

The corresponding saturation free system is given by

(Σ)L ẋ = A0x − e2u. (5)

According to the Routh-Hurwitz criterion, the linear stabilizing feedbacks for (Σ)L are row
vectors (k1 k2) with k1 < 1 and k2 > 0. It was proved in [1] that these feedbacks also render
(Σ)sat globally asymptotically stable with respect to the origin.
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Proposition 3.1 (cf. [1]) Let S be the subset of R2 whose elements are the row vectors
(k1 k2) with k1 < 1 and k2 > 0. Then, for every K ∈ S, the saturated system

ẋ = A0x − e2σ(k1x1 + k2x2),

is globally asymptotically stable with respect to the origin.

Proof. Consider the Lyapunov function given by

V (x1, x2) = ‖x‖2 +
2k1

k2
1 + k2

2

Σ(k1x1 + k2x2).

Then, the derivative of V along trajectories of ẋ = A0x − e2σ(k1x1 + k2x2) is equal to

V̇ = − 2k2

k2
1 + k2

2

ξσ(ξ)
(

1 − k1
σ(ξ)

ξ

)

,

where ξ := k1x1 + k2x2. Since k1 < 1 and 0 < σ(ξ)
ξ

≤ 1 for ξ ∈ R, one gets that V̇ ≤
−2k2(1−k1)

k2
1
+k2

2

ξσ(ξ) and then concludes by applying Lasalle’s principle.

For every linear stabilizing feedback K ∈ S (Σ)L, the linear gain γL
K associated to the

output map y = x is defined as

γL
K := sup

d6=0

‖xd‖2

‖d‖2

, (6)

where d ∈ L2(R+,R) and xd is the unique solution of ẋ = (A0 − e2K
T )x− e2d with x(0) = 0.

It is well-known that γL
K is finite and verifies the classical Riccati criterium given next (cf.

[4]): for every γ > γL
K , there exists a unique symmetric definite positive matrix P solution of

the following Ricatti equation,

P (A0 − e2K
T ) + (A0 − e2K

T )T P +
1

γ2
Pe2e

T
2 P + I2 = 0, (7)

and such that A + 1
γ2 e2e

T
2 P is Hurwitz. Moreover, the infimum of γL

K over all the linear
stabilizing feedback K is equal to zero.

The goal of this note is to first determine a large set S ′ ⊂ S of linear stabilizing feedbacks
K for (Σ)sat having a finite (saturated) gain γsat

K (associated to the output map y = x) i.e.,

γsat
K := sup

d6=0

‖xd‖2

‖d‖2

< ∞, (8)

where d ∈ L2(R+,R) and xd is the unique solution of ẋ = A0 − e2σ(KT x + d) with x(0) = 0.
Then, we will prove that the infimum of γsat

K over all the linear stabilizing feedback K of S ′ is
equal to zero.

To proceed, we operate a linear change of variable for each feedback K ∈ S. We consider
now the following saturated system

(Σsat)K ẋ = A0 − bσ(keT
2 x + d), (9)
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where b :=

(

cθ

sθ

)

and k > 0. Here we use cθ and sθ to denote respectively cos θ and sin θ.

The corresponding linear system (i.e., saturation free) is equal to

(ΣL)K ẋ = (A0 − kbeT
2 )x − bd, (10)

and the stability condition reads

sθ > 0 and 1 + kcθ > 0.

Moreover, the Ricatti equation (7) becomes now

P (A0 − kbeT
2 ) + (A0 − kbeT

2 )T P +
1

γ2
PbbT P + I2 = 0, (11)

In the sequel, we will use repeatedly the notation Rα, α ∈ R, to denote the rotation of angle
α, i.e.,

Rα :=

(

cα sα

−sα cα

)

.

In particular, b = Rαe1, where e1 =

(

1
0

)

.

We next sketch the rest of the argument. We will first compute the linear gain γL defined
in (6) for θ < π/2 and close to π/2 and k large enough. We then compute the symmetric
positive definite matrix P defined in (7) as well as the vector Pb corresponding to the above
mentionned of k and θ. In a last step, we provide an upper bound of γsat in terms of γL and
conclude.

Lemma 3.2 Assume that k > 0, θ ∈ (0, π/2) and 4 + 4kcθ + k2(c2
θ − s2

θ) < 0. Then the linear
gain γL

K of ẋ = (A0 − kbeT
2 )x − bd, associated to the output map y = x, is equal to

γL
K =

1

1 + kcθ

. (12)

In particular, the conditions on k and θ in the above statement imply that θ ∈ (π/4, π/2).
Moreover, the subscript K stands for a choice of (k, θ) in the range defined previously.
Proof. We proceed by a standard computation of the H∞-gain of the linear system ẋ =
(A0 − kbeT

2 )x − bd associated to the output map y = x.
The closed-loop transfer mapping G(s) is given by

G(s) =
1

s2 + ksθs + 1 + kcθ

(

−cθs + sθ

−sθs − cθ

)

.

Then one has the standard formula (cf. for instance [4]) asserts that

γL
K = ‖G(s)‖∞ = sup

ω∈R

σ̄(G(jω)),

where σ̄(G(jω)) is used to denote the maximum singular value of G(jω) for ω ∈ R. One
easily gets that

σ̄(G(jω)) =

√

1 + ω2

(ω2 − 1 − kcθ)2 + (ksθω)2
.
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One has therefore to determine the maximum of the function fR+ → R+ defined by

f(X) =
1 + X

(X − 1 − kcθ)2 + (ksθX)2
.

A straitghforward computation shows that, if 4 + 4kcθ + k2(c2
θ − s2

θ) < 0, then the maximum
is reached at X = 0 and is equal to 1

(1+kcθ)2
.

Lemma 3.3 Assume that θ ∈ (0, π/2) and 4 + 4kcθ + k2(c2
θ − s2

θ) < 0. Then, the unique
symmetric positive definite matrix P , solution of the Riccati equation, defined in (11) and
such that A + 1

γ2 e2e
T
2 P is Hurwitz, is equal to

P =
1

∆
Rθ+ϕ

[

(

p1 p2

p2 p3

)

+ O(
1

k2
)
]

R−(θ+ϕ), (13)

where

tan ϕ = − 1

ksθ

, ∆ = 2(1 + kcθ) −
cθ

sθ

(1 +
cθ

sθ

) + O(
1

k
), (14)

and

p1 =
cθ

sθ

+
1

ksθ

, p2 =
2cθ

ks2
θ

, p3 = 2kcθ − (1 +
cθ

sθ

). (15)

Finally, one has

Pb =
cθ

2sθ(1 + kcθ)
Rθ

(

1
2

)

+ O(
1

k2
). (16)

In the above equation, O(·) stands the standard ”Big O” notation as k or kcθ tends to infinity.
All constants involved in this notation do not depend on k or θ ∈ (π/4, π/2).

Proof. . For γ > γL
K , the symmetric solution of the Ricatti equation P (γ) is positive definite.

Define Q(γ) := P−1(γ). Then Q(γ) is the symmetric positive definite solution of the equation

(Q + A)(Q + A)T = AAT − 1

γ2
bbT . (17)

Assume that the above equation admits a symmetric positive definite solution Q for γ = γL
K .

By a simple continuity argument, one gets that P (γ) tends to Q
−1

as γ tends to γL
K , for fixed

k and θ in the admissible range. Thus P (γL
K) is well defined (as symmetric positive definite

solution of (11) and equal to Q
−1

).
We can therefore solve (17) for γ = γL

K and, as we will notice ultimately, the symmetric
solution to be found will be positive definite.

We first find that

AAT − 1

(γL
K)2

bbT = X2Rθ+ϕe1e
T
1 R−(θ+ϕ),

where X =
√

1 + ksθ and ϕ is the angle defined by tan ϕ = − 1
ksθ

(here and after k is supposed

to be large with respect to 1). Set S := Rθ+ϕe1e
T
1 R−(θ+ϕ).

Then, there exists a rotation Rη such that

Q + A = XSRη = XRθ+ϕe1e
T
1 R−(θ+ϕ)+η.
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Since Q is symmetric, one has

A − AT = X(SRη − R−ηS) = XRθ+ϕ(e1e
T
1 Rη − R−ηe1e

T
1 )R−(θ+ϕ).

The matrix in parentheses in the last expression is skew-symmetric and therefore commutes
with the rotation Rθ+ϕ. That implies that the last equation reduces to

A − AT = X(e1e
T
1 Rη − R−ηe1e

T
1 ).

A simple computation then yields

sη =
2 + kcθ

X
. (18)

On the other hand, one has

Q = −A + AT

2
+ X

SRη + R−ηS

2
.

After some computations, one gets

Q = Rθ+ϕ

[

k(sθR−ηe1e
T
1 Rη +

cθ

2
R−η(e1e

T
2 + e2e

T
1 )Rη +

X

2
(e1e

T
1 Rη + R−ηe1e

T
1 )

]

R−(θ+ϕ),

which in turn yieds that

Q = Rθ+ϕ

(

q1 q2

q2 q3

)

R−(θ+ϕ),

where

q1 = ksθc
2
ϕ + kcθcϕsϕ + Xcη, (19)

q2 = −ksθcϕsϕ +
kcθ

2
(c2

ϕ − s2
ϕ) − Xsη

2
, (20)

q3 = −kcθcϕsϕ − ksθs
2
ϕ. (21)

By taking into account the definitions of X and the angles ϕ and η, one gets

q1 = k(sθ −
cθ

sθ

)
k2s2

θ

1 + k2s2
θ

+ ksθ

√

(1 − 1 + 2kcθ

k2s2
θ

) = 2ksθ − (1 +
cθ

sθ

) + O(
1

k2
), (22)

q2 = − cθ

ks2
θ

− 1 + kcθ

1 + k2s2
θ

= − 2cθ

ks2
θ

+ O(
1

k2
), (23)

q3 = (
cθ

sθ

+
1

ksθ

)
k2s2

θ

1 + k2s2
θ

=
cθ

sθ

+
1

ksθ

+ O(
1

k2
). (24)

Setting ∆ := det Q, one gets at once (14) and then (13) and (15) for an analytical expression
of P .

Recalling that b = Rθe1, one gets that

Pb =
cϕ

∆
Rθ+ϕ

(

q3 −q2

−q2 q1

) (

1
1

ksθ

)

.

Using further that cϕRϕ =
k2s2

θ

1+k2s2
θ

(I2 − 1
ksθ

A0), one derives (16).
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We can now address the question of H∞−feedback design for (Σ)sat. In order to access to
upper bounds of γsat

K , we resort to a dissipative inequality involving an appropriate storage
function. More precisely, assume that θ ∈ (0, π/2), 4 + 4kcθ + k2(c2

θ − s2
θ) < 0 and k is large.

We prove the following theorem.

Theorem 3.4 There exists θ0 ∈ (π/4, π/2) and k0 > 0 such that, for every k ≥ k0, one has

γsat
K ≤ 30γL

K . (25)

In particular, for that choice of K (i.e., choice of (k, θ0) with k ≥ k0), (Σ)sat has a finite
L2-induced gain for the output y = x and the infimum of these gains over all the stabilizing
feedbacks is equal to zero.

Proof. . Along trajectories of ((Σsat)K) given in (9), consider the Lyapunov function W
defined by

W (x) = xT Px +
C0

3
‖x‖3, (26)

where P is the symmetric positive definite matrix provided by Lemma 3.3 and C0 > 0 is a
constant to be determined. Set ξ := keT

2 x + d. Then one has

(xT Px)· = −‖x‖2 − 1

γ2
L

(xT Pb)2 − 2d(xT Pb) + 2(xT Pb)(ξ − σ(ξ)). (27)

It is the last term of the above equality which cannot be controlled, neither by the term
“−‖x‖2” nor by a completion of squares involving − 1

γ2
L

(xT Pb)2. This is why one must add

another term to xT Px in order to achieve to a dissipation inequality.
Consider the following

(‖x‖3/3)· = ‖x‖xT ẋ = −‖x‖(cθe
T
1 xσ(ξ) +

ξ − d

k
sθσ(ξ)). (28)

We next take C0 = 2k‖Pb‖
sθ

. The above equation yields

(
C0

3
‖x‖3)· ≤ C0cθ‖x‖2 +

2‖Pb‖
sθ

‖x‖|d| − 2‖x‖‖Pb‖ξσ(ξ). (29)

Using Item (ii) in Definition 1, we can get rid of the last term of (27) with the last term
of (29). One then gets

Ẇ ≤ −(1 − C0cθ)‖x‖2 +
2‖Pb‖

sθ

‖x‖|d| − 1

γ2
L

(xT Pb)2 + 2|d||xT Pb|. (30)

By choosing k large enough, one has

C0cθ ≤
3cθ

s2
θ

and
2‖Pb‖

sθ

≤ 6

ks2
θ

.

By choosing θ = θ0 close enough to π/2 and independently of k, one also has

C0cθ0
≤ 1/2 and

2‖Pb‖
sθ0

≤ 7γL
K .
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For the choice θ = θ0 and for k large enough, (30) becomes

Ẇ ≤ −1

2
‖x‖2 + 7γL

K‖x‖|d| − 1

(γL
K)2

(xT Pb)2 + 2|d||xT Pb|.

After completion of squares, the above inequality can be written as

Ẇ ≤ −1

4
‖x‖2 + (1 + 142)(γL

K)2|d|2. (31)

It is then immediate to derive (25) from the above inequality.

Remark 3.5 The choice of the Lyapunov function W as defined in (26) was already performed
in [7]. However, in the abovementionned reference, the symmetric positive definite matrix P
was taken as solution of the Lyapunov equation AT P + PA = −I2. Moreover, the feedback
was taken with the choice k > 0 and θ = 0. The corresponding linear gain was always equal
to one.

Remark 3.6 One of the critical inequalities obtained previously was C0cθ := 2kcθ‖Pb‖
sθ

≤ 3cθ

s2
θ

,

which then allows to use the angle θ as an extra degree of freedom in order to get C0cθ < 1.
It was therefore important to have a “good” upper bound of ‖Pb‖. One can derive a first
estimate of ‖Pb‖ without an exact computation of P itself. Indeed, by taking the trace in
(11), one deduces that

‖Pb‖ ≤ k(γL
K)2 + γL

K

√

(kγL
K)2 − 2.

Then the smallest value for C0cθ is obtained as θ tends to π/4 and is equal to 4, which is not
“good” enough for our purposes.

4 Double integrator

In this section, we consider the double integrator system subject to input satutation, i.e. the
linear control system defined by

(DI)sat ẋ = J2x − e2σ(u), (32)

where x = (x1, x2)
T , J2 is the 2D Jordan block, i.e. J2 =

(

0 1
0 0

)

and σ is a real valued-

function of “saturation” type.
In [3], non linear feedbacks were introduced to obtain finite L2-gains. For that purpose,

we define the class of F -functions as follows:

Definition 2 A function F : R → R is an F-function if F is C1, odd, F ′(0) = 0 and there
exist r ≥ 1 such that, for |x2| ≥ 1, we have

F ′(x2) ≥ sup
(

3|x2|, r
F (x2)

x2

)

. (33)

9



We now recall the result of [3] to be used later.

Proposition 4.1 Let us consider the control system (DI)sat with σ an increasing saturation
function, and the feedback kF (x) given by

kF (x) := x1 + x2 + F (x2), (34)

where F an F-function. Then kF is a feedback stabilizer for (DI)sat with finite L2-gain for
the output map y = x.

For instance x1 + x2 + 3x2|x2| and x1 + x2 + x3
2 are examples of kF -feedbacks.

Then, the main result of this section is the following.

Theorem 4.2 Consider the double integrator system subject to input satutation as defined by
in (32) and a feedback kF defined by some F-function. For µ > 0, consider the feedback

kµ
F (x) := µ2x1 + µx2 + F (µx2). (35)

If γ(µ) is used to denote the L2-gain associated to kµ
F for the output map y = x, then, for

µ ≥ 1, one has

γ(µ) ≤ γ(1)

µ
, (36)

where γ(1) is L2-gain associated to kF for the output map y = x. As a consequence,

lim
µ→∞

γ(µ) = 0.

Proof. For µ > 0, consider the feedback kµ
F given in (35). Make the following change of

variable and time

X1(t) = µ2x1(t/µ), (37)

X2(t) = µx2(t/µ), (38)

V (t) = u(t/µ). (39)

The state X := (X1, X2)
T verifies

Ẋ = J2X − e2σ(kF (X) + V ).

According to Proposition 4.1, one has

‖X‖2 ≤ γ(1)‖V ‖2.

Since one has

‖X1‖2 = µ5/2‖x1‖2, ‖X2‖2 = µ3/2‖x2‖2, ‖V ‖2 = µ1/2‖u‖2,

one concludes readily.
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Remark 4.3 Actually, the above technique of dilations is standard and can be generalized
as well for the n-th integrator subject to input saturation, in the case where there exists a
stabilizing (static) feedback law with finite L2-gain. It works as follows.

Assume that k is a stabilizing (static) feedback law with finite L2-gain i.e.,

γsat := sup
d∈L2(R+,R)

‖xd‖2

‖d‖2

< ∞,

where xd is the solution of the perturbed system ẋ = Jnx + enσ(k(x) + d) with x(0) = 0.
For µ > 0, set Dµ = diag(µn−i)1≤i≤n. Then, one has

µDµJnD
−1
µ = Jn, Dµen = en.

Also set kµ(·) := k(µDµ·) for µ > 0. Then

γsat
µ := sup

d∈L2(R+,R)

‖zd‖2

‖d‖2

< ∞,

where zd is the solution of the perturbed system ẋ = Jnx + enσ(kµ(x) + d) with x(0) = 0.
Indeed, xµ

d(·) := µDµzd(·/µ) is the solution of ẋ = Jnx + enσ(k(x) + d(·/µ)), with xµ(0) = 0.
For µ ≥ 1, one immediately gets,

µ3/2‖zd‖2 ≤ ‖xµ
d‖2 ≤ γsat‖d(·/µ)‖2 = γsatµ1/2‖d‖2,

and then deduces that γsat
µ ≤ γsat/µ and concludes readily.
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