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H ∞ -feedback design for linear systems subject to input saturation

Introduction

In this paper, we study linear systems subject to input saturation, i.e. systems of the type (Σ) sat ẋ = Ax + bσ(u),

where x ∈ R n , u ∈ R and σ : R → R is a saturation function whose prototype is the standard saturation function σ 0 (s) = s max (1,|s|) . In this paper, we deliberately focus on single input systems, eventhough several results quoted below hold true for muti-inputs as well. The saturation-free linear system associated to (Σ) sat is naturally defined as

(Σ) L ẋ = Ax + bu, (2) 
Our goal regards robustness issues associated to the (global asymptotic) stabilization to the origin of systems [START_REF] Angeli | Robust Stabilization via Saturated Feedback[END_REF]. More precisely, assume that there exists an non empty set K of static feedback laws (i.e. u = k(x)) so that (a) for each feedback law k ∈ K, the closed loop system is GAS with respect to the origin;

(b) the L 2 -gain associated to each k ∈ K is finite, i.e.

γ sat k := sup d∈L 2 (R + ,R) x d 2 d 2 < ∞,
where x d is the trajectory of ẋ = Ax + bσ(k(x) + d) with initial condition x(0) = 0.

Note immediately that if k is a linear feedback, then γ sat k ≥ Sγ L k , where γ L k is the L 2 -gain associated to k for the linear system (Σ) L and S is a positive constant only depending on σ.

Then, the issue we address is the following Estimate inf

k∈K γ sat k , (3) 
eventually in terms of L 2 -gains of (Σ) L . In particular, if (A, b) is controllable, recall that inf k linear γ L k = 0. Our ultimate concern will be to achieve the same performance in the presence of saturation.

At the starting point of our study, (A, b) must be at least stabilizable, and by restricting the state space to the controllable space, we can (and will) assume, with no loss of generality, that the pair (A, b) is controllable. Moreover, it is well-known that (1) is stabilizable if and only if the eigenvalues of A must have non positive real part. Most delicate issues arise when the spectrum of A lies on the imaginary axis. The stabilization issue is already non trivial except for two dimensional systems which can be stabilized by linear feedbacks u = k T x. However, it was proved by Sussman and Yang ( [11] and also Fuller []) that the nth-integrator, n ≥ 3 cannot be stabilized by linear feedbacks u = k T x. Thanks to Teel [START_REF] Teel | Global stabilization and restricted tracking for multiple integrators with bounded controls[END_REF] and Sussmann, Yang and Sontag [START_REF] Sussmann | A general result on the stabilization of linear systems using bounded controls[END_REF], general and explicit static feedbacks were first constructed using nested saturations. However, as soon as the feedback requires at least two nested saturations, the corresponding L 2 -gain is infinite, eventhough one can obtain L 2 robustness results for these feedbacks at the price of a non linear concept of gain (cf. [START_REF] Teel | On L 2 performance induced by feedbacks with multiple saturations[END_REF]). One should also mention the construction of another type of feedbacks based on "minimal" ellipsoids and due to Megretsky (cf. [START_REF] Megretski | L 2 output feedback stabilization with saturated control[END_REF]). The evaluation of the L 2 -performances of these feedbacks is still an open problem. Finally, let us mention that, in the context of semi-global stabilization, the L 2 -performances of linear systems with saturations were resolved by Z. Lin and his coworkers, using a low-and-high gain design technique (cf. [START_REF] Hu | Control Systems with Actuator Saturation: Analysis and Design[END_REF] and references therein).

At the light of the above discussion, a reasonable chance to address the issue of estimating inf k∈K γ sat k only occurs when the family of stabilizing keedbacks K is large enough. To the best of the authors knowledge, this is the case for particular cases only, besides the use of nested saturations. For instance, when A is skew-symmetric (and more generally marginally stable), it was proved that the feedbacks u = -rb T x, r > 0 verify both Items (a) and (b) (cf. [7]) but inf r>0 γ sat r > 0, where γ sat r is the associated L 2 -gain. This is obtained by simply comparing γ sat r with the corresponding γ L r . However, for 2D and 3D systems and increasing saturation functions, in [START_REF] Angeli | Robust Stabilization via Saturated Feedback[END_REF], the family of stabilizing feedbacks K was enlarged to at least all the linear feedbacks for (Σ) L and it was also proved that the L ∞ -gains for these feedbacks were finite. It is not difficult to see that the same holds true for the L 2 -gains but no gain attenuation result seems straitgthforward from the results of [START_REF] Angeli | Robust Stabilization via Saturated Feedback[END_REF].

In the present paper, we return to the case of the 2D oscillator subject to input saturation and we determine an appropriate set K of linear feedbacks so that inf k∈K γ sat k = 0. We next deal with the case of the double integrator subject to input saturation i.e. ẍ = -σ(u), where x ∈ R. Eventhough the latter system is stabilizable by means of linear feedbacks, it was shown in [7] that the corresponding L 2 -gains are infinite for the main output map y = x. The same conclusion was reached for the output map y = ẋ in [START_REF] Kao | On the L 2 -gain of a double integrator with feedback loop saturation nonlinearity[END_REF] but it was proved in [START_REF] Chitour | esaim cocv[END_REF] that the L 2 -gain for the output map y = ẍ was finite, partially solving a Problem 36 as posted in [START_REF] Blondel | Open problems in Mathematical Systems and Control Theory[END_REF]. Still in [START_REF] Chitour | esaim cocv[END_REF], was provided a class of nonlinear feedbacks having a finite L 2 -gain for the output map y = x. In this paper, we show how to select a subset K of this class of feedbacks so that to get that inf k∈K γ sat k = 0. As future works, several directions seem interesting. The first one consists in extending first the present results to the general case of A skew-symmetric. We conjecture that linear feedbacks should be enough to get inf k∈K γ sat k = 0. It is definitely more difficult to reach the same results for marginally instable A and we suspect that new (non linear) feedbacks must be deviced for that purpose. Another line of research would be to investigate attenuation of incremental gains since partial results on that issue are available for A skew-symmetric ([8]).

Notations

We use L + 2 to denote the Hilbert space L 2 (R + , R) and, for d ∈ L + 2 , we use d 2 to denote the corresponding L 2 -norm of d.

Definition 1 We call σ : R → R a (normalized) saturation function (or an S-function) if for all t, t ′ ∈ R (i) |σ(t) -σ(t ′ )| ≤ inf(1, |t -t ′ |); (ii) |σ(t) -t| ≤ tσ(t).
Note that (i) is equivalent to the fact that σ is bounded and globally Lipschitz. On the other hand, (ii) is equivalent to

σ ′ (0) = 1, tσ(t) > 0 for t = 0, lim inf |t|→∞ |σ(t)| > 0, lim sup t→0 σ(t) -t t 2 < ∞.
For instance, arctan, tanh and σ 0 are examples of saturation functions. We use Σ(s) to denote, for s ∈ R the function defined by s 0 σ(t)dt. Note that Σ(s) > 0 for s = 0 and if σ is odd then Σ is an even function.

We also recall that for a linear system ẋ = Ax + bu, with (A, b) controllable, one has inf k linear γ L k = 0 where γ L k is the L 2 -gain associated to the output map u → x and a stabilizing linear feedback k. Indeed, to see that, it is enough to prove it for the Brunovsky form associated to ẋ = J n x + be n where J n is the n-th Jordan block and e n = (0 • • • 0 1) T . For the latter system, a direct computation using the family of dilations D µ := diag(µ n-i ) 1≤i≤n , µ > 0 yields the conclusion (see also Remark 4.3).

Oscillator in dimension two

We consider the linear control system subject to input saturation given by

(Σ) sat ẋ = A 0 x -e 2 σ(u), (4) 
where

A 0 = 0 -1 1 0 , e 2 = 0 1
and σ is a real valued-function of "saturation" type.

The corresponding saturation free system is given by

(Σ) L ẋ = A 0 x -e 2 u. (5) 
According to the Routh-Hurwitz criterion, the linear stabilizing feedbacks for (Σ) L are row vectors (k 1 k 2 ) with k 1 < 1 and k 2 > 0. It was proved in [START_REF] Angeli | Robust Stabilization via Saturated Feedback[END_REF] that these feedbacks also render (Σ) sat globally asymptotically stable with respect to the origin.

Proposition 3.1 (cf. [START_REF] Angeli | Robust Stabilization via Saturated Feedback[END_REF]) Let S be the subset of R 2 whose elements are the row vectors (k 1 k 2 ) with k 1 < 1 and k 2 > 0. Then, for every K ∈ S, the saturated system

ẋ = A 0 x -e 2 σ(k 1 x 1 + k 2 x 2 ),
is globally asymptotically stable with respect to the origin.

Proof. Consider the Lyapunov function given by

V (x 1 , x 2 ) = x 2 + 2k 1 k 2 1 + k 2 2 Σ(k 1 x 1 + k 2 x 2 ).
Then, the derivative of V along trajectories of ẋ = A 0 x -e 2 σ(k

1 x 1 + k 2 x 2 ) is equal to V = - 2k 2 k 2 1 + k 2 2 ξσ(ξ) 1 -k 1 σ(ξ) ξ ,
where

ξ := k 1 x 1 + k 2 x 2 . Since k 1 < 1 and 0 < σ(ξ) ξ ≤ 1 for ξ ∈ R, one gets that V ≤ -2k 2 (1-k 1 ) k 2 1 +k 2 2
ξσ(ξ) and then concludes by applying Lasalle's principle.

For every linear stabilizing feedback K ∈ S (Σ) L , the linear gain γ L K associated to the output map y = x is defined as

γ L K := sup d =0 x d 2 d 2 , (6) 
where

d ∈ L 2 (R + , R) and x d is the unique solution of ẋ = (A 0 -e 2 K T )x -e 2 d with x(0) = 0.
It is well-known that γ L K is finite and verifies the classical Riccati criterium given next (cf. [START_REF] Green | Linear Robust Control[END_REF]): for every γ > γ L K , there exists a unique symmetric definite positive matrix P solution of the following Ricatti equation,

P (A 0 -e 2 K T ) + (A 0 -e 2 K T ) T P + 1 γ 2 P e 2 e T 2 P + I 2 = 0, (7) 
and such that A + 1 γ 2 e 2 e T 2 P is Hurwitz. Moreover, the infimum of γ L K over all the linear stabilizing feedback K is equal to zero.

The goal of this note is to first determine a large set S ′ ⊂ S of linear stabilizing feedbacks K for (Σ) sat having a finite (saturated) gain γ sat K (associated to the output map y = x) i.e.,

γ sat K := sup d =0 x d 2 d 2 < ∞, (8) 
where d ∈ L 2 (R + , R) and x d is the unique solution of ẋ = A 0 -e 2 σ(K T x + d) with x(0) = 0. Then, we will prove that the infimum of γ sat K over all the linear stabilizing feedback K of S ′ is equal to zero.

To proceed, we operate a linear change of variable for each feedback K ∈ S. We consider now the following saturated system

(Σ sat ) K ẋ = A 0 -bσ(ke T 2 x + d), (9) 
where b := c θ s θ and k > 0. Here we use c θ and s θ to denote respectively cos θ and sin θ. The corresponding linear system (i.e., saturation free) is equal to

(Σ L ) K ẋ = (A 0 -kbe T 2 )x -bd, (10) 
and the stability condition reads s θ > 0 and 1 + kc θ > 0.

Moreover, the Ricatti equation ( 7) becomes now

P (A 0 -kbe T 2 ) + (A 0 -kbe T 2 ) T P + 1 γ 2 P bb T P + I 2 = 0, (11) 
In the sequel, we will use repeatedly the notation R α , α ∈ R, to denote the rotation of angle α, i.e.,

R α := c α s α -s α c α .
In particular, b = R α e 1 , where e 1 = 1 0 .

We next sketch the rest of the argument. We will first compute the linear gain γ L defined in (6) for θ < π/2 and close to π/2 and k large enough. We then compute the symmetric positive definite matrix P defined in (7) as well as the vector P b corresponding to the above mentionned of k and θ. In a last step, we provide an upper bound of γ sat in terms of γ L and conclude. Lemma 3.2 Assume that k > 0, θ ∈ (0, π/2) and 4 + 4kc θ + k 2 (c 2 θ -s 2 θ ) < 0. Then the linear gain γ L K of ẋ = (A 0 -kbe T 2 )x -bd, associated to the output map y = x, is equal to

γ L K = 1 1 + kc θ . ( 12 
)
In particular, the conditions on k and θ in the above statement imply that θ ∈ (π/4, π/2). Moreover, the subscript K stands for a choice of (k, θ) in the range defined previously.

Proof. We proceed by a standard computation of the H ∞ -gain of the linear system ẋ = (A 0 -kbe T 2 )x -bd associated to the output map y = x. The closed-loop transfer mapping G(s) is given by

G(s) = 1 s 2 + ks θ s + 1 + kc θ -c θ s + s θ -s θ s -c θ .
Then one has the standard formula (cf. for instance [START_REF] Green | Linear Robust Control[END_REF]) asserts that

γ L K = G(s) ∞ = sup ω∈R σ(G(jω)),
where σ(G(jω)) is used to denote the maximum singular value of G(jω) for ω ∈ R. One easily gets that

σ(G(jω)) = 1 + ω 2 (ω 2 -1 -kc θ ) 2 + (ks θ ω) 2 .
One has therefore to determine the maximum of the function f R + → R + defined by

f (X) = 1 + X (X -1 -kc θ ) 2 + (ks θ X) 2 .
A straitghforward computation shows that, if 4 + 4kc θ + k 2 (c 2 θ -s 2 θ ) < 0, then the maximum is reached at X = 0 and is equal to

1 (1+kc θ ) 2 . Lemma 3.3 Assume that θ ∈ (0, π/2) and 4 + 4kc θ + k 2 (c 2 θ -s 2 θ ) < 0.
Then, the unique symmetric positive definite matrix P , solution of the Riccati equation, defined in (11) and such that A + 1 γ 2 e 2 e T 2 P is Hurwitz, is equal to

P = 1 ∆ R θ+ϕ p 1 p 2 p 2 p 3 + O( 1 k 2 ) R -(θ+ϕ) , (13) 
In the above equation, O(•) stands the standard "Big O" notation as k or kc θ tends to infinity. All constants involved in this notation do not depend on k or θ ∈ (π/4, π/2).

Proof. . For γ > γ L K , the symmetric solution of the Ricatti equation P (γ) is positive definite. Define Q(γ) := P -1 (γ). Then Q(γ) is the symmetric positive definite solution of the equation

(Q + A)(Q + A) T = AA T - 1 γ 2 bb T . (17) 
Assume that the above equation admits a symmetric positive definite solution Q for γ = γ L K . By a simple continuity argument, one gets that P (γ) tends to Q -1 as γ tends to γ L K , for fixed k and θ in the admissible range. Thus P (γ L K ) is well defined (as symmetric positive definite solution of (11) and equal to Q -1 ).

We can therefore solve (17) for γ = γ L K and, as we will notice ultimately, the symmetric solution to be found will be positive definite.

We first find that

AA T - 1 (γ L K ) 2 bb T = X 2 R θ+ϕ e 1 e T 1 R -(θ+ϕ) ,
where X = √ 1 + ks θ and ϕ is the angle defined by tan ϕ = -1 ks θ (here and after k is supposed to be large with respect to 1). Set S := R θ+ϕ e 1 e T 1 R -(θ+ϕ) . Then, there exists a rotation R η such that

Q + A = XSR η = XR θ+ϕ e 1 e T 1 R -(θ+ϕ)+η . Since Q is symmetric, one has A -A T = X(SR η -R -η S) = XR θ+ϕ (e 1 e T 1 R η -R -η e 1 e T 1 )R -(θ+ϕ) .
The matrix in parentheses in the last expression is skew-symmetric and therefore commutes with the rotation R θ+ϕ . That implies that the last equation reduces to

A -A T = X(e 1 e T 1 R η -R -η e 1 e T 1 )
.

A simple computation then yields

s η = 2 + kc θ X . (18) 
On the other hand, one has

Q = - A + A T 2 + X SR η + R -η S 2 .
After some computations, one gets

Q = R θ+ϕ k(s θ R -η e 1 e T 1 R η + c θ 2 R -η (e 1 e T 2 + e 2 e T 1 )R η + X 2 (e 1 e T 1 R η + R -η e 1 e T 1 ) R -(θ+ϕ) ,
which in turn yieds that

Q = R θ+ϕ q 1 q 2 q 2 q 3 R -(θ+ϕ) ,
where

q 1 = ks θ c 2 ϕ + kc θ c ϕ s ϕ + Xc η , (19) 
q 2 = -ks θ c ϕ s ϕ + kc θ 2 (c 2 ϕ -s 2 ϕ ) - Xs η 2 , (20) 
q 3 = -kc θ c ϕ s ϕ -ks θ s 2 = c θ s θ + 1 ks θ + O( 1 k 2 ). ( 24 
)
Setting ∆ := det Q, one gets at once (14) and then ( 13) and (15) for an analytical expression of P .

Recalling that b = R θ e 1 , one gets that

P b = c ϕ ∆ R θ+ϕ q 3 -q 2 -q 2 q 1 1 1 ks θ . Using further that c ϕ R ϕ = k 2 s 2 θ 1+k 2 s 2 θ (I 2 -1 ks θ A 0 ), one derives (16).
We can now address the question of H ∞ -feedback design for (Σ) sat . In order to access to upper bounds of γ sat K , we resort to a dissipative inequality involving an appropriate storage function. More precisely, assume that θ ∈ (0, π/2), 4 + 4kc θ + k 2 (c 2 θ -s 2 θ ) < 0 and k is large. We prove the following theorem. Theorem 3.4 There exists θ 0 ∈ (π/4, π/2) and k 0 > 0 such that, for every k ≥ k 0 , one has

γ sat K ≤ 30γ L K . (25) 
In particular, for that choice of K (i.e., choice of (k, θ 0 ) with k ≥ k 0 ), (Σ) sat has a finite L 2 -induced gain for the output y = x and the infimum of these gains over all the stabilizing feedbacks is equal to zero.

Proof. . Along trajectories of ((Σ sat ) K ) given in [START_REF] Megretski | L 2 output feedback stabilization with saturated control[END_REF], consider the Lyapunov function W defined by

W (x) = x T P x + C 0 3 x 3 , ( 26 
)
where P is symmetric positive definite matrix provided by Lemma 3.3 and C 0 > 0 is a constant to be determined. Set ξ := ke T 2 x + d. Then one has

(x T P x) • = -x 2 - 1 γ 2 L (x T P b) 2 -2d(x T P b) + 2(x T P b)(ξ -σ(ξ)). (27) 
It is the last term of the above equality which cannot be controlled, neither by the term "-x 2 " nor by a completion of squares involving -1

γ 2 L (x T P b) 2
. This is why one must add another term to x T P x in order to achieve to a dissipation inequality.

Consider the following

( x 3 /3) • = x x T ẋ = -x (c θ e T 1 xσ(ξ) + ξ -d k s θ σ(ξ)). (28) 
We next take C 0 = 2k P b s θ . The above equation yields

( C 0 3 x 3 ) • ≤ C 0 c θ x 2 + 2 P b s θ x |d| -2 x P b ξσ(ξ). (29) 
Using Item (ii) in Definition 1, we can get rid of the last term of (27) with the last term of (29). One then gets

Ẇ ≤ -(1 -C 0 c θ ) x 2 + 2 P b s θ x |d| - 1 γ 2 L (x T P b) 2 + 2|d||x T P b|. (30) 
By choosing k large enough, one has

C 0 c θ ≤ 3c θ s 2 θ and 2 P b s θ ≤ 6 ks 2 θ .
By choosing θ = θ 0 close enough to π/2 and independently of k, one also has

C 0 c θ 0 ≤ 1/2 and 2 P b s θ 0 ≤ 7γ L K .
For the choice θ = θ 0 and for k large enough, (30) becomes

Ẇ ≤ - 1 2 x 2 + 7γ L K x |d| - 1 (γ L K ) 2 (x T P b) 2 + 2|d||x T P b|.
After completion of squares, the above inequality can be written as

Ẇ ≤ - 1 4 x 2 + (1 + 14 2 )(γ L K ) 2 |d| 2 . ( 31 
)
It is then immediate to derive (25) from the above inequality.

Remark 3.5 The choice of the Lyapunov function W as defined in (26) was already performed in [7]. However, in the abovementionned reference, the symmetric positive definite matrix P was taken as solution of the Lyapunov equation A T P + P A = -I 2 . Moreover, the feedback was taken with the choice k > 0 and θ = 0. The corresponding linear gain was always equal to one. , which then allows to use the angle θ as an extra degree of freedom in order to get C 0 c θ < 1. It was therefore important to have a "good" upper bound of P b . One can derive a first estimate of P b without an exact computation of P itself. Indeed, by taking the trace in (11), one deduces that

P b ≤ k(γ L K ) 2 + γ L K (kγ L K ) 2 -2.
Then the smallest value for C 0 c θ is obtained as θ tends to π/4 and is equal to 4, which is not "good" enough for our purposes.

Double integrator

In this section, we consider the double integrator system subject to input satutation, i.e. the linear control system defined by (DI) sat ẋ = J 2 x -e 2 σ(u),

where x = (x 1 , x 2 ) T , J 2 is the 2D Jordan block, i.e. J 2 = 0 1 0 0 and σ is a real valuedfunction of "saturation" type.

In [START_REF] Chitour | esaim cocv[END_REF], non linear feedbacks were introduced to obtain finite L 2 -gains. For that purpose, we define the class of F-functions as follows:

Definition 2 A function F : R → R is an F-function if F is C 1 , odd, F ′ (0) = 0 and there exist r ≥ 1 such that, for |x 2 | ≥ 1, we have

F ′ (x 2 ) ≥ sup 3|x 2 |, r F (x 2 ) x 2 . ( 33 
)

Remark 3 . 6

 36 One of the critical inequalities obtained previously was C 0 c θ := 2kc θ P b s θ ≤ 3c θ s 2 θ

We now recall the result of [START_REF] Chitour | esaim cocv[END_REF] to be used later. Proposition 4.1 Let us consider the control system (DI) sat with σ an increasing saturation function, and the feedback k F (x) given by

where F an F-function. Then k F is a feedback stabilizer for (DI) sat with finite L 2 -gain for the output map y = x.

For instance

2 are examples of k F -feedbacks. Then, the main result of this section is the following. Theorem 4.2 Consider the double integrator system subject to input satutation as defined by in (32) and a feedback k F defined by some F-function. For µ > 0, consider the feedback

If γ(µ) is used to denote the L 2 -gain associated to k µ F for the output map y = x, then, for µ ≥ 1, one has

where γ( 1) is L 2 -gain associated to k F for the output map y = x. As a consequence,

Proof. For µ > 0, consider the feedback k µ F given in (35). Make the following change of variable and time

The state

According to Proposition 4.1, one has

Since one has

one concludes readily.

Remark 4.3 Actually, the above technique of dilations is standard and can be generalized as well for the n-th integrator subject to input saturation, in the case where there exists a stabilizing (static) feedback law with finite L 2 -gain. It works as follows.

Assume that k is a stabilizing (static) feedback law with finite L 2 -gain i.e.,

where x d is the solution of the perturbed system ẋ = J n x + e n σ(k(x) + d) with x(0) = 0. For µ > 0, set D µ = diag(µ n-i ) 1≤i≤n . Then, one has

Also set k µ (•) := k(µD µ •) for µ > 0. Then

where z d is the solution of the perturbed system ẋ = J n x + e n σ(k µ (x) + d) with x(0) = 0. Indeed, x µ d (•) := µD µ z d (•/µ) is the solution of ẋ = J n x + e n σ(k(x) + d(•/µ)), with x µ (0) = 0. For µ ≥ 1, one immediately gets,

and then deduces that γ sat µ ≤ γ sat /µ and concludes readily.