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XRD and electrochemical investigation of particle size effects in platinum-cobalt cathode electrocatalysts for oxygen reduction

I.N.

Introduction

Proton-exchange membrane fuel cells (PEMFC) have received considerable attention as promising devices for portable and transport applications, due to their high energy density, relatively low operating temperature and minimal corrosion problems. Yet, the commercial viability of the PEMFC's has been still hindered by several problems including the high cost, insufficient stability against degradation, and agglomeration of the Pt nanoparticles. The latter two phenomena are especially intrinsic to the oxygen electrode. They reduce the catalyst's effective surface and hence the activity. The search for more active, cost-effective, and corrosion stable electrocatalysts for the oxygen reduction reaction (ORR) is therefore a priority in fuel cell catalysis research. The most popular strategy toward more active and stable ORR electrocatalysts has been alloying pure Pt with transition metals, such as Co, Ni, etc. It has been suggested [START_REF] Thompsett | Catalysts for the Proton Exchange Membrane Fuel Cell[END_REF][START_REF] Xiong | [END_REF][3][4][5][6] that the activating effect of the alloying elements for the ORR could be associated with (i) modified composition of the surface oxides and improved corrosion resistance of the alloy; (ii) formation of a new electronic structure of the metal; (iii) shortening of the Pt-Pt distance which favors adsorption of oxygen molecules, (iv) formation of a thin Pt shell at the surface of the nanoparticles due to selective dissolution of a second alloying element, and (v) some other effects. One or another mechanism may prevail depending on specific alloy composition and conditions of the reaction process. The positive effect of the second alloying component on the catalyst's aggregation stability seems to result from strengthening of the nanoparticle to carbon carrier adhesion and/or improved corrosion resistance of the carbon surface regions adjacent to the metal nanoparticles [START_REF] Thompsett | Catalysts for the Proton Exchange Membrane Fuel Cell[END_REF]7] . Unfortunately, the second component in such alloys is not as stable as Pt, and the alloy composition may alter owing to corrosion during operation of an electrocatalyst [3,5] . The corrosion effect on the composition and structure of Pt-Me/C catalysts as well as the dependence of the catalyst's stability on their original composition and structure are therefore subjects of great importance.

In reality, carbon carries the nanoparticles of different size, and its metal coverage itself is variable and not always uniform [START_REF] Thompsett | Catalysts for the Proton Exchange Membrane Fuel Cell[END_REF]4,8,9] . Optimum size range of the metal nanoparticles is altogether uncertain and is apparently dependent on a particular electrochemical system, conditions of the reaction process, and the alloy composition. The above considerations demonstrate that control over composition and size of the metal alloy nanoparticles is a real challenge both in science and technology.

The purposes of this work are: (i) to study the influence of water -ethylene glycol solvent composition on structural and micro structural parameters of the Pt3Co/C materials prepared by wet synthesis; (ii) to investigate the particle size effect in the synthesized Pt3Co/C electrocatalists by means of XRD, and (iii) to estimate corrosion stability of the synthesized materials in 1M H2SO4 solution as well as their ORR activity.

Results and Discussion

The XRD patterns of all our Pt-Co/C samples, both asprepared and treated in boiling H2SO4, are presented in Figures 1 and2. One can see the pronounced peaks characteristic of a Pt- Co alloy with the fcc structure. No obvious peaks indicating the presence of free Co or its oxides are found (see Figures 1,2). The peak shapes were described using the pseudo-Voigt function [10] . The X-ray reflections were fitted using the Winplotr from the FullProf software [START_REF] Roisnel | WinPLOTR: Windows tool for powder diffraction patterns analysis[END_REF] . The quality of the fit is shown in Figure 3. It should be noted that our fitting of the reflections from the synthesized samples was made with allowance for reflections from the carbon support. The neglect of this contribution can lead to erroneous determination of the Bragg angle 2 and the full width at half maximum (FWHM), hence underestimation of the particle size (our estimated error is about 0.2 nm for particle sizes close to 3 nm). XRD-pattern of the carbon carrier (Timrex HSAG-300) representing a mixture of the rhombohedral R3m (a=3.6420 Å, =39 0 30) and orthorhombic Fmmm (a = 2.456 Å, b = 4.254 Å, c = 6.696 Å) graphite phases is shown in Figure 1. The (111) reflection has consistently lower FWHM's compared to the other reflections, and the anisotropy increases with increasing particle size. In general, the anisotropic line broadening may be attributed to the three factors: the presence of stacking faults, the presence of dislocations, and nonequivalence of the particle sizes along different crystallographic directions. In our case, it is due to the particle size anisotropy. The presence of stacking faults would provoke a reduced coherent scattering region along the <111> direction (as compared to those for other directions) hence a higher FWHM value. The occurrence of dislocations is hardly probable. It was shown [START_REF] Gryaznov | [END_REF]13] that the particles became dislocation-free below a certain critical size. For instance, dislocation-free particles of iron and nickel have diameters of 23 and 140 nm, respectively [START_REF] Gryaznov | [END_REF] . The same is evident from the high-resolution TEM images of Pt3Co and Pt69Ni31 particles [3,7] .

The average particle size was determined by three separate techniques. The first was the so-called "double Voigt" method [14] . The main relations in this method are For a Voigt size-broadened profile, the size coefficient is given as the Fourier transform
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Determination of the volume-weighted grain size was carried out by means of the D. Balzars program BREADTH [15] .

The second method is based on the assumption that the grain size distribution GSD obeys a Gamma function one, can be found in Ref. [16] . The basic idea is as follows: The average particle size D and its dispersion  were derived from the expressions
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The coefficients B and C were found from the expressions
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, where FW1/5M и FW4/5M are the full widths at 1/5 and 4/5 of the peak maximum, respectively. As was shown in Ref. [17] , the grain size distribution determined by this method for strain-free samples is in good agreement with that found from the SEM analysis. For GSD determination by this method we have developed the L&TGSD program [18] The third way applied here for determination of the average particle size is based on the well-known Scherrer equation
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 D [START_REF] Klug | X-ray Diffraction Procedures from Polycrystalline and Amorphous Materials[END_REF] , where  is the wavelength; D -the volume averaged particle size;  -the Bragg angle, and К = 0.89the Sherrer constant.

The fitting results for the (111) peak were employed for estimation of the average particle size and GSD parameters using the Sherrer equation and the , and the Sherrer methods are listed in Table 1. As follows from Table 1, despite a discrepancy in the particle size values for each individual sample, all the three techniques yield nearly identical variation of the dimension of the as-prepared Pt-Co nanoparticles as a function of ethylene glycol concentration in the solvent, and very similar changes subsequent to the treatment. Thus, the average particle size increases in the sequence PC1> PC3 > PC5 with lowering concentrations of the organic component in the solvent, and the treatment with H2SO4 brings about an additional increase of ca. 0.8-1 nm. method for all three pairs of the asprepared and treated Pt-Co/C samples. The narrowest GSD is found for a 1:5 ratio of water to the nonaqueous component of the solvent. This means that, during synthesis of that material (PC1) the nucleation to growth activation energy ratio Enucl/ Egr was the lowest. In such conditions, the nucleation process prevails over growth of the particles, which corresponds to the instantaneous nucleation model. As the ratio Enucl/ Egr increases with increasing water content (samples PC3, PC5), the growth process becomes more favorable, leading to a larger particle size and GSD broadening (Figure 6).

Grain size distributions calculated by means of the

From comparison of the unit-cell parameters (Table 1) and their dependence on the particle size 111 D (Fig. 7), the following conclusions could be made. (i) The parameters a in all of the synthesized materials are lower than that of pure Pt, (aPt=3.9231Å [START_REF] Downs | [END_REF] ). This fact confirms the formation of a Pt-Co solid solution. (ii)

A nonlinear dependence of the unit cell parameter a on 111 D is observed for the treated samples which have practically identical compositions (within the experimental error). This phenomenon could be explained by a size effect which is due to uncompensated interatomic distances and reduced interplanar spacing near the particle surface. This results in compression of the particles and reduction of the unit cell parameter [21] . The size effect should be more pronounced for smaller nanoparticles where concentration of the surface atoms is essentially higher. A similar effect was observed for nanoparticles of Pd [22] and Ag [23] . A nonlinear dependence of the unit cell parameter on the average particle size observed for the as-prepared samples is a consequence of both the aforesaid size effect and different Co concentrations in the crystallites. (iii) Samples labeled PC4 (the treated PC3) and PC5, although differ essentially in composition, have practically identical unit-cell parameters and particle sizes. It therefore seems that a fraction of Co atoms in the starting (asprepared) samples were not included in the Pt-Co alloy crystallites but were present in an amorphous phase. A similar assumption, concerned with dissolution of only "amorphous" cobalt atoms during corrosion treatment of Pt-Co/C catalysts was made in Ref. [3] .

Cathode chronoamperometric curves for our as-prepared samples demonstrate higher specific currents than those measured for the commercial Pt/C electrocatalysts, TEC10V50E (TKK Co., 46% Pt) or E-TEC (40% Pt). The expected and actually observed enhancement of the ORR activity in the PC5 < PC3 < PC1 series (Fig. 8) may be a result of both the enlargement of the metal surface area and an increase in the intrinsic catalytic activity due to facilitation of dissociative oxygen adsorption through shortening of the Pt -Pt distances, or the unit cell parameter (Fig. 9). 

Conclusion

The Pt3Co/C nanoscale materials with average particle sizes of 2.9-4.6 nm and metal loadings of 24-30 wt % were prepared by wet synthesis using water -ethylene glycol matrix solution and NaBH4 as a reducing agent. It was found that the average particle size <D>111 of the synthesized materials decreases progressively with increasing concentration of the organic component (ethylene glycol) in the matrix solution. The GSD dispersion  decreases with decreasing size of the Pt3Co nanoparticles (higher ethylene glycol concentrations in the matrix solution). The narrowest GSD is observed for a H2O -EG ratio of 1:5.

The average particle size increases by 0.8-1 nm, and the grain size distribution becomes broader after treating the Pt3Co/C samples with hot H2SO4 solution.

The unit cell parameter as a function of the particle size shows nonlinear behavior both for the as-prepared samples and those treated with hot H2SO4 solution during 1 hr.

An increase in the anisotropic line broadening with increasing grain size was observed for all of the tested samples. The observed anisotropic line broadening is due to nonequivalent particle sizes along different crystallographic directions.

The mass ORR activity of the prepared Pt3Co/C catalysts in H2SO4 solutions enhances in the order PC5 < PC3 < PC1 (i.e., with decreasing average particle size, unit cell parameter, and GSD dispersion). All of the as-prepared samples show higher catalytic activities than do the commercial Pt/C materials, TEC10V50E (TKK Co., 46% Pt) and E-TEC (40% Pt).

Experimental Section

Preparation of the electrocatalysts. Carbon supported Pt-Co electrocatalysts with nominal Pt:Co atomic ratio of 3:1 were prepared by a low temperature method using sodium borohydride as a reducing agent [24] . A high surface area carbon (Timrex HSAG-300) was impregnated with solutions of chloroplatinic acid (H2PtCl6*6H2O) and cobalt nitrate (Co(NO3)2 *6H2O). The metals were then reduced at room temperature with a sodium borohydride solution which was slowly added to the carbon dispersion at pH 10 under sonication. The water/ethylene glycol mixture was used as a solvent. Water and the nonaqueous component of the solvent were taken in ratios of 1:5, 1:1, and 5:1 for samples labeled PC1, PC3, and PC5, respectively. The resulting material represented 24-30 wt.% metal on the carbon support. All prepared samples were treated in 1M H2SO4 at 100 o C for 1 hr for estimation of the corrosion and aggregate stabilities. The treated samples then received designations PC2, PC4, and PC6, respectively. Metal loadings in the Pt-Co/C materials were determined by differential thermal analysis using a Diamond TG/DTA derivatograph (Perkin Elmer). The Pt:Co atomic ratios in the synthesized catalysts were ascertained by means of an Energy Dispersive X-ray Spectrometry System DX-95 (EDAX, Inc).

Electrochemical measurements. To test the catalytic activity of the prepared Pt3Co/C materials, the rotating disk electrode (RDE) method was used. The glass-carbon electrode's butt-end was soaked with a drop of the catalyst's alcohol suspension containing a small amount of polyvinilidenefluoride. The RDE was rotated at 1000 rpm and stabilized at 0.72 V with an IPC-Pro potentiostat during the current measurements. The electrolyte was a 1M H2SO4 solution saturated with oxygen (p = 1 atm). The potentials cited in this work are referred to that of the reversible hydrogen electrode.

X-ray diffraction (XRD).

Powder diffraction patterns were recorded at the Swiss-Norwegian Beam Lines (SNBL) at the ESRF (=0.72287Å) using a MAR345 image-plate detector. The wavelength, sample-todetector distance (150 mm) and resolution of the setup were calibrated with LaB6 powder (NIST) [25] . The samples were loaded into glass capillaries (Hilgenberg GmbH) having a diameter of 0.3 mm and a wall thickness of 0.01 mm. The data were processed with the Fit2D software [26] . Corrections for the instrumental broadening were made according to a conventional procedure described, e.g., in Ref. [27] .
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 1 Figure 1. XRD patterns of the carbon-supported Pt-Co/C catalysts (samples PC1, PC2) and of the carbon support itself (Timrex HSAG-300).

Figure 2 .

 2 Figure 2. XRD patterns of the carbon-supported Pt-Co/C catalysts (samples PC3-PC6)

Figure 3 .

 3 Figure 3. Quality of fit for the observed 111 and 200 reflections (open circles), fitted data (solid curve) and the difference (dashed curve).

Figure 4 .

 4 Figure 4. FWHM values vs. 2 for the as-prepared (PC5) and treated (PC6) samples of Pt-Co/C catalyst.



  are the integral breadths of the Lorentz and Gauss functions, and LS breadths of the Lorentz (L) and Gauss (G) functions, corresponding to the size (S) and strain (D) broadening, respectively.

  very close to the conventional lognormal distribution. A detailed description and justification of this method, called the

  and (222) peaks were used for the «double-Voight» method. Values of the average particle size along the (111) direction, 111 D , for the synthesized Pt-Co/C samples estimated using the «double-Voight», the

  Voigt" methods are presented at Figure5for the as-prepared (PC5) and treated (PC6) samples. Since the "double Voigt" method, unlike the equation, takes into account the microstrains, and the two results still coincide very closely, it may be concluded that a contribution of the strains to the observed line broadening is

Figure 5 .

 5 Figure 5. Comparison of grain size distributions calculated by means of the "double Voigt" (curves 1, 3) and M FW 5 4 / 5 1 (curves 2, 4) methods for the asprepared PC5 (left panel) and treated PC6 (right panel) samples of the Pt-Co/C catalyst.

Figure 6 .

 6 Figure 6. Grain size distributions as determined by the M FW 5 4 / 5 1 method.

Figure 7 .

 7 Figure 7. Unit cell parameter a as a function of the particle size D111 along the <111>direction.

Figure 7 .

 7 Figure 7. Room-temperature chronoamperograms of the Pt-Co/C catalysts at 0.72 V in 1M H2SO4 (O2 atmosphere, rotating disk electrode,  = 1000 min -1).

Figure 8 .

 8 Figure 8. Mass activity of electrocatalysts at 0.72 V (t = 200 s) as function of the particle size D111 along the <111>direction, GSD dispersion , and Pt -Pt distance.

Table 1 .

 1 Average particle size, unit cell parameter a, Pt-Pt distance, and alloy composition of the nanostructured Pt-Co/C electrocatalysts.

			Average particle size					
	Sample	Sherrer D111, nm	Double-Voit D111, nm	FW D111, 5 1 nm	/	5 4	M , nm	а, Å	Pt-Pt distance, Å	composition EDX
	PC1 PC3	prepared	2.9 3.8	2.5 3.4	3.1 4.0			1.5 2.1	3.881 3.905	2.744 2.761	Pt58Co42 Pt66Co34
	PC5	As	4.6	4.3	4.7			2.6	3.908	2.763	Pt70Co30
	PC2		4.0	3.3	4.2			2.2	3.893	2.765	Pt85Co15
	PC4	Treated	4.7	4.4	4.9			2.6	3.908	2.763	Pt86Co14
	PC6		5.6	5.4	5.7			3.2	3.911	2.752	Pt88Co12
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