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Abstract

In this article, we have addressed the control problem of unicycle path following, using a rigidly attached target point.

The initial path following problem has been transformed into a reference trajectory following problem, using saturated

control laws and a geometric characterization hypothesis. This hypothesis links the curvature of the path to be followed

with the target point. The proposed controller allows global stabilization, without restrictions on initial conditions. The

effectiveness of this controller is illustrated through simulations.

1. Introduction

The case of vehicle path following using a ”target point” (situated at a distance from the vehicle) is well known

in the domain of automatic vehicle guidance. This technique is often used in robotic vehicles with artificial camera

vision, where the camera is fixed on the vehicle and the target point (physical or virtual) is situated somewhere in its

field of view. This problem has been the subject of many research works in the recent years ([1, 2, 3, 4, 5, 6, 7]). The

dominant trend in the contemporary literature is to control either the vehicle’s forward velocity (thereby, not controlling

the vehicle’s orientation), or the instantaneous rotational velocity only. Hence, essentially only one actuator is used.

In [2], a local path following strategy has been proposed, which takes uncertainties into account as well. Their

solution is based on a control law that comprises of two terms; an open loop control that allows inversion of the nominal

model, and a closed loop control that stabilizes the resultant system. It should be noted that the error dynamics obtained

in [2] are expressed in the Frénet frame associated to the followed path (a technique that has also been discussed

in ([5])). While the use of Frénet frames of the reference trajectory is convenient, its application is local, i.e. the

convenience is significant only when the vehicle is close to the path (with respect to a universal constant), as well as

positioned and oriented. When such ideal situations are not valid (the vehicle is initially located far from the path),

Preprint submitted to Elsevier March 24, 2011



another controller (e.g. an open loop control) takes over to bring the vehicle in the path’s proximity befo re the primary

controller starts operation.

In this paper, we have presented a target point based path following technique for a robot unicycle. The target point

has been considered fixed with respect to a point on the vehicle, i.e. the target point is at a fixed distance d > 0 from

the center of gravity on the axis of the vehicle. Our control objective is to drive the vehicle, such that the target point

follows the desired path (see Fig. 1 below). We have assumed that the vehicle’s velocity is measured only, and not

controlled. This assumption conforms with practical applications, where other intelligent systems control the velocity,

(for example, ABS, ESP ([8]).

One of the objectives of this article is to conceive global control laws, which are applicable regardless of the initial

position and orientation of the vehicle w.r.t. the path to be followed. Hence the problem can be defined as orientation

control with a forced forward velocity. Our proposed solution is based on the subsequent consideration: no constraints

are imposed on how the reference path is parameterized, therefore, if the path is considered to be the trajectory of

a unicycle, the forward velocity of this trajectory can be considered as a supplementary control variable. A similar

approach can be found in [1] and [2], where orientation control of a vehicle is under consideration. The authors have

achieved this through a dynamic inversion process, implemented using adaptive parametrization of the followed path.

In our work, we have chosen the opposite direction, converting the problem of path following into a special case of

trajectory following. Furthermore, we have considered the trajectory of the target point as the trajectory of a unicycle.

This allows us to express the error dynamics as the difference between the unicycle dynamics defined by the reference

path, and the unicycle dynamics defined by the target point. We have thus obtained a controlled system with three

dimensional state and two control inputs (the forward velocity of the reference path and the angular velocity of the

vehicle) .

Our control law is based upon state feedback with static error control algorithms, along with saturated input tech-

nique ([9, 10, 11]). As would be shown further on, the application of bounded inputs is justified by two constraints, (a)

to maintain the forward velocity on the reference path uniformly bounded, (b) to focus on controlling the orientation of

the unicycle defined by the target point, rather than controlling the orientation of the vehicle. It is worth mentioning that

in order to satisfy constraint (b), we have supposed the geodesic curvature of the followed path to be strictly bounded

in magnitude by the inverse of the distance d. Application of such type of bounded commands in the same context



(trajectory following of unicycle robots) can be found in [3] . The stability analysis is based on an argument of the

Lyapunov type. Our contribution, compared to [3] is the determination of a strict and global Lyapunov Function on an

approp riate basin of attraction. As a byproduct, we can handle model uncertainties, external perturbations as well as

(constant) delays as indicated in a series of remarks preceding the simulation section.

Acknowledgements. The authors thank E. Panteley and W. Pasillas-Lépine for their constructive remarks.

2. Vehicle model and reference trajectory

Let us consider a path γ with geodesic curvature κ∗r whose absolute value is bounded by κmax ≥ 0. As described

in the introduction, we want to parameterize γ as a unicycle trajectory with a forward velocity u(t) such that γ(t) =

(pr(t),qr(t)) can be described by the following state equations :

ṗr = ucosψr,

q̇r = usinψr,

ψ̇r = uκr,

(1)

where κr, is the scalar curvature associated to the parametrization of γ by time t. The relationship between the

arclength s of γ and time t for the trajectory (pr,qr,ψr) is given by s(t) = s0 +
∫ t

0 u(τ)τ. The scalar curvature κr(t) is

hence equal to κ∗r (s(t)). For the sake of simplicity, we have assumed in this paper that u(·) is a strictly positive function

(i.e., strictly positive forward velocity), and moreover, that the controls u verify
∫ ∞

0 u(t)dt = +∞. Furthermore, for all

t ≥ 0, we have

|κr(t)| ≤ κmax. (2)

The state equations for the vehicle can be defined as:

ẋ = Vx cosψ,

ẏ = Vx sinψ,

ψ̇ = Vx v,

(3)

These equations represent the vehicle’s motion with a velocity Vx, along the curve defined by the its geodesic curvature



v. This variable will be considered as the second control in the problem. Notice that Vx is not necessarily constant,

but simply a continuous function of time, which verifies the following hypothesis: there exist two positive constants

0 < Vmin ≤Vmax, such that for all t ≥ 0

Vmin ≤Vx(t)≤Vmax. (4)

Recall that the strict positivity of the lower bound is a necessary assumption to obtain the results of the paper (see, [6]

for an explanation of this classical phenomenon).

For the target point, the equations for the coordinates p and q are defined as:

p = x+d cosψ,

q = y+d sinψ.

(5)

We will also suppose throughout the paper that

(H1) dκmax < 1.

This can be considered as a technical condition, or a design constraint for positioning the target point. However, as

explained later, condition (H1) turns out to be (almost) necessary to control the system.

The dynamics of the target point can be obtained by deriving the precedent equations

ṗ = Vx cosψ−d Vx sinψ v,

q̇ = Vx sinψ+d Vx cosψ v,

ψ̇ = Vx v.

(6)

The curve defined by the target point is traveled at the following speed:

vd :=
√

ṗ2 + q̇2 = Vx

√
1+(vd)2.

Our objective now is to define the dynamics of the target point as those of a unicycle. Therefore, let us consider θ

as the angle between the abscissa axis and the velocity vector (ṗ, q̇)T . One eaily gets that θ = ψ+ arctan(v). and then,

ṗ = vd cos(θ), q̇ = vd sin(θ),
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Figure 1: The reference trajectory, the vehicle and its target point.

and the scalar curvature ω is defined by ω :=
θ̇
vd

.

Solving these equations, we obtain:

ω =
Vx v
vd

+
d v̇

vd(1+(v d)2)
. (7)

Hence the dynamics of the target point (p,q) becomes

ṗ = vd cosθ,

q̇ = vd sinθ,

θ̇ = vd ω.

(8)

From here on, we will replace v with ω as the new control. Considering equation (7),we obtain the following form:

v̇ =
1+(vd)2

d
Vx

[√
1+(vd)2ω− v

]
, (9)

i.e. an ordinary differential equation for the unknown function v. Since the right side of (9) is not globally Lipschitz

with respect to v, the solution may only be defined for finite time duration. We will show later on, that a choice of ω

under Hypothesis (H1) resolves this problem (see Lemma 1 below).



The error between the target point and the reference curve can be defined as:

ep = p− pr,

eq = q−qr,

ξ = θ−ψr,

(10)

and the error dynamics are given by:

ėp = vd cosθ−ucosψr,

ėq = vd sinθ−usinψr,

ξ̇ = vd ω−κr u.

(11)

The objective, hence, is to determine the control laws, u(ep,eq,ξ) and ω(ep,eq,ξ) such that the closed loop system

(11) is globally asymptotically stable (GAS for short) with respect to the origin.

Let us first of all perform a variable change on the control, as follows:

u = vd(1+u1),

ω = κr(1+u1)+u2.

(12)

The system that we have to stabilize, becomes:

ėp = vd(cosθ− cosψr− u1 cosψr),

ėq = vd(sinθ− sinψr− u1 sinψr),

ξ̇ = vdu2.

(13)

The following lemma provides bounding conditions on u1 and u2 that would guarantee that the differential equation

given in (9) is defined for all times t ≥ 0.

Lemma 1. Suppose that for all t ≥ 0, there exists

|u1(t)|
d

+ |u2(t)| ≤ βM :=
1−dκmax

d
. (14)

Then, the differential equation given by Eq.(9) is defined for all times t ≥ 0.



Proof of Lemma 1 Let us multiply (9) by v. We obtain:

vv̇ =
1+(vd)2

d
Vx

[√
1+(vd)2vω− v2

]
. (15)

If vω≤ 0, then vv̇≤ 0. If vω > 0, the precedent equation can be written as:

vv̇ =
1+(vd)2

d
Vx |v|

[
ω2 + v2

(
(d ω)2−1

)
√

1+(vd)2|ω|+ |v|

]
. (16)

In order to guarantee that the right side of (16) is globally Lipschitz with respect to v2, it is sufficient to choose u1,u2

such that for all t ≥ 0,

(d ω(t))2−1≤ 0.

Using (12), we can rewrite the equation

(d ω(t))2−1≤ d2(κmax(1+ |u1(t)|)+ |u2(t)|)2−1.

For the value of this quantity to be less than zero, it is sufficient that d(κmax(1 + |u1(t)|)+ |u2(t)|) ≤ 1, and hence for

all t ≥ 0,

|u1(t)|
d

+ |u2(t)| ≤ βM.

In order to verify (14), the controls u1 et u2 can be expressed in the following form:

u1 = C1σ(·),

u2 = βσ(·),
(17)

with (for instance)

(Cond0) 0 < C1 ≤ dβM

2
, 0 < β≤ βM

2
, (18)

and σ being equal to the standard saturation function

σ(x) =
x

max(1, |x|) .



Since v is bounded, vd also remains uniformly bounded throughout t ≥ 0. We can hence change the time by

considering dt ′ = vd dt. To keep the notations simple, we would continue to use t for time. This has no effect on the

control laws since our design is based on static feedback (w.r.t. the error).

The error dynamics hence becomes:

ėp = cosθ− cosψr−u1 cosψr,

ėq = sinθ− sinψr−u1 sinψr,

ξ̇ = u2.

(19)

Let us perform the following change of variable corresponding to a time-varying rotation in the frame of the

reference trajectory:

y1 = ep cosψr + eq sinψr,

y2 = −ep sinψr + eq sinψr.

(20)

The final system can be expressed as

ẏ1 = −u1 +(cosξ−1)+(1+u1)κry2,

ẏ2 = sinξ− (1+u1)κry1,

ξ̇ = u2.

(21)

This system of equations greatly resembles the error dynamics obtained for the classic tracking problem of a

vehicle using a unicycle, with the forward velocity and the instantaneous rotation velocity of the vehicle body as

control variables (cf. [5] et [3]).



We choose the controls u1 and u2 as follows:

u1 = C1σ(My1),

u2 = −βσ(
C0

β
[ξ+ρσ(C2y2)]),

(22)

with M,C0,C2,β as positive constants to be fixed later.

Hence the error dynamics are:

ẏ1 = −C1σ(My1)+λ(t)y2 +(cosξ−1),

ẏ2 = sinξ−λ(t)y1,

ξ̇ = −βσ(C0
β [ξ+ρσ(C2y2)]),

(23)

where λ(t) := (1+u1)κr. λ is bounded by

|λ(t)| ≤ (3+C1)κmax. (24)

Theorem 1: The system (23) is GAS with respect to 0, with bounds in the norm L∞ arbitrarily small for the controls

u1 and u2, i.e., C1 and β arbitrarily small.

Proof of Theorem 1

We first have the following result, which is a trivial consequence of the dynamics of ξ(·).
Lemma 2. ∃t0 ≥ 0 ∀t > t0 : |ξ(t)|< 2ρ.

We next impose the following condition.

(Cond1) : 3ρC0 ≤ β.

This implies that for t ≥ t0,

∣∣∣∣
C0

β
[ξ(t)+ρσ(C2y2(t))]

∣∣∣∣≤ 1.



Hence, for t ≥ t0, the system (23) becomes:

ẏ1 = −C1σ(My1)+λ(t)y2 +(cosξ−1),

ẏ2 = sinξ−λ(t)y1,

ξ̇ = −C0 [ξ+ρσ(C2y2)] .

(25)

Let E be a set of points (y1,y2,ξ) such that |ξ|< 2ρ. Considering Lemma 2, E is an open invariant in the system

(25). To prove Theorem 1, it is sufficient to form a strict Lyapunov function for (25) on E . We propose the following

candidate function:

V (y1,y2,ξ) :=
y2

1 + y2
2

2
+

F(ξ)y2

C0
+

N
C0

ξ2, (26)

wit N a positive constant to be determined, and F(ξ) =
∫ ξ

0

sins ds
s

.

Notice that F is an odd function and if N >
1

2C0
then V is positive definite. We next prove that V a strict Lyapunov

function for (25) on E with an appropriate choice of the constants.

Let us suppose from this point on that ρ 6 1
2 . Therefore, for ξ 6 2ρ:

1− ξ
6

2

6 sinξ
ξ

6 1

1− ξ
18

2

6 F(ξ)
ξ

6 1

(27)

From here, it can be deduced that:

1− 2ρ
3

2
6 sinξ

ξ
6 1,

1− 2ξ
9

2

6 F(ξ)
ξ

6 1.

(28)

The derivative of V along the trajectories of the system is equal to:

V̇ = −
[
C1y1σ(My1)+ λ(t)F(ξ)

COξ ξy1 + 1
2

(
N− F(ξ)sinξ

COξ2

)
ξ2

]

−
[

1
2

(
N− F(ξ)sinξ

COξ2

)
ξ2 +ρNξσ(C2y2)+ sinξ

ξ ρy2σ(C2y2)
]
.

(29)



From equations (24) and (28), it can be seen that the first term of equation (29) is greater or equal to:

A(y1,ξ) := C1y1σ(My1)− (3+C1)κmax
CO

|ξy1|

+ 1
2

(
N− 1

CO

)
ξ2.

(30)

Similarly, the second term can be limited by:

B(y2,ξ) := 1
2

(
N− 1

CO

)
ξ2−ρN |ξσ(C2y2)|

+
(

1− 2ρ2

3

)
ρy2σ(C2y2) .

(31)

Hence, using equations (29), (30) and (31), V̇ can be expressed as:

V̇ 6−A(y1,ξ)−B(y2,ξ) . (32)

We shall now present two lemmas, and establish the conditions on constants, under which these lemmas would hold

true.

Lemma 3. There exist a value of constants, for which the function A is positive definite on IR× ]−2ρ,2ρ[.

Lemma 4. There exist a value of constants, for which the function B is positive definite on IR× ]−2ρ,2ρ[.

Proof of Lemma 3: Let us consider 2 cases:

Case 1: |y1|> 1
M .

As |ξ|6 2ρ, we obtain:

A > |y1|
(

C1− 2ρκmax
C0

(3+C1)
)

. (33)

Hence it is sufficient to verify that:

C1− 2ρκmax
C0

(3+C1) > 0⇔C1

(
1− 2ρκmax

C0

)
> 3κmax

C0
ρ. (34)

From here, we obtain a supplementary condition:

κmax
C0

ρ < 1. (35)



This condition, along with cond1 presented before, is equivalent to:

(Cond12) : 9ρ <
κmax

C0
<

1
2ρ

.

Therefore, C1 has to be chosen, such that:

(Cond3) : C1 >
3κmax

C0
ρ(

1− 2ρκmax
C0

) . (36)

Case 2: |y1|< 1
M .

As the saturation is no longer activated, A reduces to a quadratic form. To prove that it is positive definite, it is sufficient

that (
N− 1

C0

)
> 0

∣∣∣∣∣∣∣∣

C1M −κmax(3+C1)
2C0

−κmax(3+C1)
2C0

N− 1
C0

2

∣∣∣∣∣∣∣∣
> 0.

(37)

Equation (37) gives us:

C1M
N− 1

C0
2 >

(
−κmax(3+C1)

2C0

)2
. (38)

Therefore, M should be chosen such that:

(Cond4) : M > κ2
max(3+C1)2

2C2
0C1

(
N− 1

C0

) . (39)

Proof of Lemma 4: B can be expressed in the following manner:

B =
(

1− 2ρ2

3

)(
y2− σ(C2y2)

C2

)
σ(C2y2)+ ρ

C2
D(σ(C2y2) ,ξ) , (40)

where

D(z,ξ) :=
(

1− 2ρ2

3

)
z2−C2N |ξz|+ C2

ρ

(
N− 1

C0

)
ξ2. (41)



It can be seen from equations (40) and (41), that if D is positive definite, then B is positive definite as well, i.e.:

∣∣∣∣∣∣∣∣

1− 2ρ2

3
−C2

2

−C2
2

C2
ρ

(
N− 1

C0

)

∣∣∣∣∣∣∣∣
> 0. (42)

From here, we obtain a new condition on ρ:

(Cond5) :

(
1− 2ρ2

3

)

ρ > C2N2

4
(

N− 1
C0

) . (43)

Therefore, to prove the theorem 1, it has to be shown that there exist constants C0, C1, C2, M, N, ρ, such that

conditions (Cond12) and (cond5) are met. In practice, C0 and C2 are given fixed positive values, and then N is fixed

such that N > 1
C0

. Then, ρ is chosen, small enough to satisfy conditions (cond2) and (cond5). Finally, C1 and M are

chosen so that they satisfy respectively conditions (cond3) and (cond4).

The results presented above can be improved in the following directions

Remark 1. Having a strict Lyapunov function allows us to extend the precedent results to cases in which external
perturbations exist. More precisely, it can be shown that (25) is ISS (input-to-state) with respect bounded external
perturbations and an upper bound for allowed perturbations can be determined explicitly (as a function of the constants
of the problem). In particular, it is interesting to suppose that the reference trajectory curvature κr, along with the
vehicle velocity Vx are susceptible to measurement noise. Hence the system can be stabilized in the proximity of the
reference curve, depending explicitly on the magnitude of noise. In the following section, we will present simulation
results, both with and without perturbations on κr.

Remark 2. One limitation of our control laws is that we have used instantaneous measures of κr. In the case where
the measurement discontinuity is finite, κr can be replaced by the following approximation:

ψr(t)−ψr(t−h)
h

,

with h small enough that asymptotic stabilization towards the reference trajectory can be achieved. If one has an a
priori bound on the derivative of κr, then the above convergence argument carries over for h small enough.

Remark 3. It is possible not to bound the control u2 as defined in (22) but to simply use

u2 =−C0 [ξ+ρσ(C2y2)] .

The proof of the non-explosion of (9) is slightly modified.

3. Simulations

In this section, we have presented two simulation cases, based on the following values:



d = 2 m, κmax = 0,02 m−1, Vx = 15 m.s−1.

We have chosen dκmax much smaller than 1 in order to emphasize upon significant initial conditions (in particular,

ξ(0) close to π) so that the resultant illustrations highlight our claim. Simulations for the case of dκmax close to 1 have

been presented in [12], where Remark 3 has been taken into consideration. The initial conditions imposed upon the

error are

ep(0) = eq(0) = 10 m, ξ(0) = 9π/10.

In the first case, the path γ to be followed is defined by the geodesic curvature κr (see Fig. 2). Notice that κr is not

continuous. The reference trajectories, of the vehicle and of the target point are shown together in Figure 3. We can

see that the target point trajectory converges on the path in approximately 7 sec. (see Fig. 4). The curves of the control

function are given in Fig. 5 and Fig. 6.

In order to illustrate the robustness of our control laws, we have considered a second case where a white noise of

amplitude of 5% of κmax is superposed on the geodesic curvature κr (see Fig. 7. Again we see that the target point

trajectory converges well on path, in approximately 7 sec. (see Figs. 8 and 9). The control curves, u et v, are given in

Fig. 10 and Fig. 11.

4. Conclusion

In this article, we have addressed the problem of path following using a target point rigidly attached to a unicycle

type vehicle, by controlling only the orientation of the vehicle. The main idea was to consider the parametrization of

the followed path as an additional input for the system defined by the error dynamics. Control laws using saturation

have been determined in order to achieve global stabilization (i.e., without restrictions on initial conditions) under a

(necessary) geometric characterization hypothesis, which relates the followed path with the target point position. This

approach can also be extended to the cases where there are external perturbations or uncertainties in the model. Future

work directions aim at addressing similar issues with more elaborate car models.
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Figure 3: Reference trajectory, of the vehicle and its target point (Case 1: Without perturbations)
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Figure 4: Errors ep, eq et ξ
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Figure 5: Control u
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Figure 6: Control v
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Figure 7: curvature κr (Perturbed)
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Figure 8: Reference trajectory, of the vehicle and its target point (Case 2: With perturbations)
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Figure 9: Errors ep, eq et ξ (with perturbations)
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Figure 10: control u (with perturbations)
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Figure 11: control v (with perturbations)


