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Approach for Hyperspectral Data
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Jocelyn Chanussot, Senior Member, IEEE, and James C. Tilton, Senior Member, IEEE

Abstract—A new multiple-classifier approach for spectral–
spatial classification of hyperspectral images is proposed. Several
classifiers are used independently to classify an image. For every
pixel, if all the classifiers have assigned this pixel to the same class,
the pixel is kept as a marker, i.e., a seed of the spatial region with a
corresponding class label. We propose to use spectral–spatial clas-
sifiers at the preliminary step of the marker-selection procedure,
each of them combining the results of a pixelwise classification
and a segmentation map. Different segmentation methods based
on dissimilar principles lead to different classification results.
Furthermore, a minimum spanning forest is built, where each tree
is rooted on a classification-driven marker and forms a region in
the spectral–spatial classification map. Experimental results are
presented for two hyperspectral airborne images. The proposed
method significantly improves classification accuracies when com-
pared with previously proposed classification techniques.

Index Terms—Classification, hyperspectral images, minimum
spanning forest (MSF), multiple classifiers (MCs), segmentation.

I. INTRODUCTION

HYPERSPECTRAL imaging is a relatively recent tech-
nique in remote sensing. Acquired remotely by airborne

or spaceborne sensors, hyperspectral data are composed of
hundreds of spatially coregistered images corresponding to
different spectral channels [1], [2]. Fig. 1 shows the struc-
ture of a hyperspectral image. Every pixel is presented as a
B-dimensional feature vector across the wavelength dimension,
called the spectrum of the material in this pixel. This rich
information in every spatial location increases the capability
to distinguish different physical materials. Thus, hyperspectral
imagery opens new perspectives for image classification, which
is an important task for a wide variety of applications (precision
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Fig. 1. Structure of a hyperspectral image.

agriculture, monitoring and management of the environment,
and security issues).

However, such a large number of spectral channels, usually
coupled with limited availability of reference data,1 present
challenges to image analysis. While pixelwise classification
techniques process each pixel independently without con-
sidering information about spatial structures [3]–[6], further
improvement of classification results can be achieved by con-
sidering spatial dependences between pixels, i.e., by performing
spectral–spatial classification [7]–[12].

Segmentation techniques, partitioning an image into homo-
geneous regions with respect to some criterion of interest
(called homogeneity criterion, e.g., intensity or texture), are
powerful tools for defining spatial dependences [13]. In pre-
vious works, we have distinguished spatial structures in the
hyperspectral image by performing unsupervised segmentation
[12], [14], [15]. Watershed, partitional clustering, and hierar-
chical segmentation (HSEG) techniques have been used for
this purpose. Segmentation and pixelwise classification were
applied independently; then, results were combined using a
majority-voting rule (see Fig. 2). Thus, every region from a
segmentation map was considered as an adaptive homogeneous
neighborhood for all the pixels within this region. The de-
scribed technique led to a significant improvement of classifica-
tion accuracies and provided more homogeneous classification
maps, when compared with classification techniques using local
neighborhoods in order to include spatial information into a
classifier.

An alternative way to get accurate segmentation results con-
sists in performing a marker-controlled segmentation [13], [16].

1By reference data, we mean manually labeled pixels which are used for
training classifiers followed by assessment of classification accuracies.

0196-2892/$26.00 © 2010 IEEE
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Fig. 2. Example of spectral–spatial classification using majority voting within
segmentation regions.

The idea behind this approach is to select, for every spatial
object, one or several pixels belonging to this object (called a
region seed, or a marker of the corresponding region) and to
grow regions from the selected seeds so that every region in
the resulting segmentation map is associated with one region
seed. The markers of regions can be chosen either manually or
automatically. Recently, we have proposed to use probability
estimates obtained by the pixelwise support vector machine
(SVM) classification in order to select the most reliable clas-
sified pixels as markers, i.e., seeds of spatial regions [17]. Fur-
thermore, image pixels were grouped into a minimum spanning
forest (MSF) where each tree was rooted on a classification-
derived marker. The decision to connect a pixel, which is not
yet in the forest, to one of the trees in the forest was based on its
similarity to one of the adjacent pixels already belonging to the
forest. By assigning the class of each marker to all the pixels
within the region grown from this marker, a spectral–spatial
classification map was obtained. The described technique led
to a significant improvement of classification accuracies when
compared with previously proposed methods. The drawback of
this method is that the choice of markers strongly depends on
the performances of the selected pixelwise classifier (e.g., the
SVM classifier in our previous work [17]).

In this paper, we aim to mitigate the dependence of the
marker-selection procedure from the choice of a pixelwise clas-
sifier. This can be achieved by using not a single classification
algorithm for marker selection but an ensemble of classifiers,
i.e., multiple classifiers (MCs). For this purpose, several in-
dividual classifiers must be chosen and combined within one

system in such a way that the complementary benefits of each
classifier are used, while their weaknesses are avoided.

In this paper, a new marker-selection method based on an MC
system is proposed. Several classifiers are used independently
to classify an image. Furthermore, a marker map is constructed
by selecting the pixels assigned by all the classifiers to the
same class. We propose to use spectral–spatial classifiers in
the preliminary step of the marker-selection procedure, each
of them combining the results of a pixelwise classification and
one of the unsupervised segmentation techniques (see Fig. 2).
By using spectral–spatial classifiers in this step, spatial context
in the image is taken into account, and classification maps
are more accurate when compared with pixelwise classification
maps. This leads to more accurate marker-selection results.
The proposed marker-selection method is incorporated into a
new multiple spectral–spatial classification (MSSC) scheme
(MSSC-MSF) based on the construction of an MSF from region
markers (see Fig. 3).

In order to assess the importance of spectral–spatial ap-
proaches for marker selection, we have also implemented a
multiple classification scheme (MC-MSF). Here, spectral–
spatial classification maps are replaced by the maps obtained
using pixelwise classification techniques. Finally, a marker
map is computed, and an MSF from the selected markers is
constructed.

Although the classification approach proposed in this paper
has been designed for hyperspectral data, the method is general
and can be applied for other types of data as well. Two hyper-
spectral airborne images are used to demonstrate experimental
results: an image recorded by the reflective optics system
imaging spectrometer (ROSIS) over the University of Pavia,
Italy, and an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) image acquired over Northwestern Indiana’s Indian
Pines site [18].

This paper is organized as follows. In the next section,
the MC approach is briefly discussed. Section III describes
the proposed classification scheme. Experimental results are
discussed in Section IV. Finally, conclusions are drawn in
Section V.

II. MC APPROACH

The traditional approach for a pattern recognition problem
is to search for the individual algorithm giving the best pos-
sible classification performances. However, in many cases, the
classification accuracy can be improved by using an ensemble
of classifiers, or multiple classifiers. This is due to the fact
that, although one of the classification algorithms would yield
the best performance, the sets of pixels (patterns, in general)
misclassified by the different algorithms would not necessarily
overlap. Thus, the aim of an MC system is to determine an
efficient combination method that makes use of the comple-
mentary benefits of each classifier while tackling the individual
drawbacks [19]–[21].

A schematic representation of an MC system is shown in
Fig. 4. An important issue for an efficient MC system is that the
individual classifiers should be independent. More precisely,
the classifiers should not agree with each other when they
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Fig. 3. Flowchart of the proposed MSSC-MSF classification scheme.

Fig. 4. Schematic diagram of an MC system.

misclassify a pixel [20]. The complementary properties of the
different classifiers selected for the MC system should ensure,
to a certain extent, this requirement.

Another important issue is the rule for combining the indi-
vidual classifiers (i.e., combination function). The individual
classifier outputs, such as class labels and possible posterior
probabilities, are typically combined by voting rules, belief
functions, statistical techniques, the Dempster–Shafer evidence
theory, and other schemes [19]. For a given pixel, if all the
classifiers agree on the same class k, the evident combination
rule consists in assigning this pixel to the class k in the final
classification map. On the other side, when individual classi-
fiers disagree in assigning the given pixel, the procedure of
final decision making is not that straightforward, and different
combination functions may yield different results. A typical
result of the MC system is a final classification map where each
pixel has a unique class label. This type of MC systems has
been previously used for remote-sensing image classification
[21]–[23].

In this paper, we propose to address the combination-rule
issue in the following way: According to the exclusionary rule,
only the pixels where all the classifiers agree, i.e., the most
reliable pixels, are kept in the classification map. The rest
of the pixels are further classified by constructing an MSF
rooted on the “reliable” pixels, i.e., by incorporating the spatial
information into classification.

Going back to the first issue for designing an MC system,
different individual classifiers must be chosen. For instance,
standard pixelwise classification algorithms can be used for
this purpose, such as SVM, maximum likelihood (ML), and
k-nearest neighborhood (k-NN) methods (parametric and non-
parametric techniques based on different principles). We have

used these individual techniques in the MC-MSF classifica-
tion scheme. Furthermore, we propose to use spectral–spatial
classifiers as individual classifiers for the MC system (MSSC-
MSF classification scheme), each of them combining the results
of a pixelwise classification and one of the unsupervised seg-
mentation techniques. Different segmentation methods based
on dissimilar principles lead to different classification results.
The use of spectral–spatial classifiers yields more accurate
classification maps when compared with those obtained by
performing pixelwise classification.

III. PROPOSED CLASSIFICATION SCHEME

The flowchart of the proposed MSSC-MSF classification
method is shown in Fig. 3. At the input, a B-band hyperspec-
tral image is given, which can be considered as a set of n
pixel vectors X = {xj ∈ R

B , j = 1, 2, . . . , n}. Classification
consists in assigning each pixel to one of the K classes of
interest. In the following, each step of the proposed procedure
is described.

Segmentation can be defined as an exhaustive partitioning of
the input image into regions, each of which is considered to
be homogeneous with respect to some criterion of interest. We
have investigated the use of three techniques for hyperspectral
image segmentation, as described hereafter.

A. Watershed Segmentation

Watershed transformation is a powerful morphological ap-
proach to image segmentation that combines region growing
and edge detection. The watershed is usually applied to the
gradient function, and it divides an image into regions so that
each region is associated with one minimum of the gradient
image [24].

The extension of a watershed technique to the case of hy-
perspectral images has been investigated in [15] and [25]. In
this paper, we present watershed results obtained by the scheme
we proposed and described in [15]: First, a one-band robust
color morphological gradient (CMG) (RCMG) [26] for the
hyperspectral image is computed.

For each pixel vector xp, let χ = [x1
p,x

2
p, . . . ,x

e
p] be a set

of e vectors contained within a structuring element E (i.e., the
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pixel xp itself and e − 1 neighboring pixels). A 3 × 3 square
structuring element with the origin at its center is typically used.
The CMG, using the Euclidean distance, is computed as

CMGE(xp) = max
i,j∈χ

{∥∥xi
p − xj

p

∥∥
2

}
(1)

i.e., the maximum of the distances between all pairs of vectors
in the set χ. One of the drawbacks of the CMG is that it is
very sensitive to noise. To overcome the problem of outliers, the
RCMG has been proposed [26]. The scheme to make a CMG
robust consists of removing the two pixels that are furthest
apart and then finding the CMG of the remaining pixels. This
process can be repeated several times until a good estimate of
the gradient is obtained.

Thus, the RCMG, using the Euclidean distance, can be de-
fined as

RCMGE(xp) = max
i,j∈[χ−REMr]

{∥∥xi
p − xj

p

∥∥
2

}
(2)

where REMr is a set of r vector pairs removed. If E is a 3 ×
3 square structuring element, r = 1 is recommended [26].

Furthermore, watershed transformation is applied on the
gradient image using a standard algorithm [27]. As a result,
the image is partitioned into a set of regions and one subset
of watershed pixels, i.e., pixels situated on the borders between
regions. Finally, every watershed pixel is assigned to the neigh-
boring region with the “closest” median2 (the distance between
the vector median of this region and the watershed pixel is
minimal).

B. Segmentation by EM

The expectation maximization (EM) algorithm for the
Gaussian mixture resolving belongs to the group of partitional-
clustering techniques [14], [29]. The use of partitional cluster-
ing for hyperspectral image segmentation has been discussed
in [14]. Clustering aims at finding groups of spectrally similar
pixels. We assume that pixels belonging to the same cluster
are drawn from a multivariate Gaussian probability distribution.
Each image pixel can be statistically modeled by the following
probability density function:

p(x) =
C∑

c=1

ωcφc(xμc,Σc) (3)

where C is the number of clusters, ωc ∈ [0, 1] is the mixing pro-
portion (weight) of cluster c with

∑C
c=1 ωc = 1, and φ(μ,Σ) is

the multivariate Gaussian density with mean μ and covariance
matrix Σ

φc(xμc,Σc)

=
1

(2π)B/2

1
|Σc|1/2

exp
{
−1

2
(x − μc)

T Σ−1
c (x − μc)

}
. (4)

2A standard vector median [28] for the region S = {sj ∈ R
B , j =

1, 2, . . . , l} is defined as sV M = arg mins∈S{
∑l

j=1
‖s − sj‖1}.

The parameters of the distributions ψ = {C,ωc,μc,Σc; c =
1, 2, . . . , C} are estimated by the EM algorithm, as described
in [14]. An upper bound on the number of clusters, which is
a required input parameter, is recommended to be chosen as
slightly superior to the number of classes.

When the algorithm converges, the partitioning of the set
of image pixels into clusters is obtained. However, as no
spatial information is used during the clustering procedure,
pixels with the same cluster label can form a connected spatial
region or can belong to disjoint regions. In order to obtain a
segmentation map, a connected component-labeling algorithm
[30] is applied to the output image partitioning obtained by
clustering.

The total number of parameters to be estimated by the EM
algorithm is P = (B(B + 1)/2 + B + 1)C + 1, where B is a
dimensionality of feature vectors. If the value of B is large,
P may be quite a large number. This may cause a problem
of the covariance-matrix singularity or inaccurate parameter
estimation results. In order to avoid these problems, we pro-
pose to previously apply a feature reduction using the method
of piecewise constant function approximations (PCFAs) [31],
which has shown good performances for hyperspectral data
feature extraction.

C. RHSEG Segmentation

The HSEG algorithm is a segmentation technique based
on iterative hierarchical stepwise optimization region-growing
method. Furthermore, it provides a possibility of merging non-
adjacent regions by spectral clustering [32].

The following outline of the HSEG algorithm is based on the
description given in [32] and [33]

1) Initialize the segmentation by assigning for each pixel a
region label. If a presegmentation is provided, label each
pixel according to the presegmentation. Otherwise, label
each pixel as a separate region.

2) Calculate the dissimilarity criterion value between all
pairs of spatially adjacent regions.

3) Find the smallest dissimilarity criterion value
dissim_val and set thresh_val equal to it. Then,
merge all pairs of spatially adjacent regions with
dissim_val = thresh_val.

4) If a parameter Swght > 0.0, merge all pairs of spa-
tially nonadjacent regions with dissim_val ≤ Swght ·
thresh_val.

5) If convergence is not achieved, go to step 2).

In order to reduce computational demands, a recursive
divide-and-conquer approximation of HSEG (RHSEG) has
been developed. The NASA Goddard RHSEG software pro-
vides an efficient implementation of the RHSEG algorithm.

When determining most similar pair of regions, we pro-
pose to choose the standard Spectral Angle Mapper (SAM)
between the region mean vectors and as a dissimilarity criterion
[32]. The SAM measure between ui and uj (ui,uj ∈ R

B)



4126 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 11, NOVEMBER 2010

determines the spectral similarity between two vectors by com-
puting the angle between them. It is defined as

SAM(ui,uj) = arccos

⎛
⎜⎝

∑B
b=1 uibujb[∑B

b=1 u2
ib

]1/2 [∑B
b=1 u2

jb

]1/2

⎞
⎟⎠ .

(5)

The optional parameter Swght tunes the relative importance
of spectral clustering versus region growing. If Swght = 0.0,
only merging of spatially adjacent regions is performed. If
0.0 < Swght ≤ 1.0, merging between spatially adjacent regions
is favored compared with merging of spatially nonadjacent re-
gions by a factor of 1.0/Swght. As discussed in [34], the optimal
parameter Swght can be chosen based on a priori knowledge
about information classes contained in the image. If some
classes have very similar spectral responses, we recommended
to choose Swght = 0.0 or close to this value.3 Otherwise,
we recommend increasing the possibility of merging spatially
nonadjacent regions. If Swght > 0.0, labeling of connected
components has to be applied after RHSEG in order to obtain
a segmentation map where each spatially connected component
has a unique label.

RHSEG provides as output a hierarchical sequence of image
partitions. In this sequence, a particular object can be repre-
sented by several regions at finer levels of details and can be
assimilated with other objects in one region at coarser levels of
details. This hierarchical sequence allows flexibility in choos-
ing the appropriate level of detail for the segmentation map.
When training data are available, it is a simple process to quan-
titatively evaluate the segmentation results at each hierarchical
level versus the training data to select the appropriate level of
detail. Otherwise, an appropriate level of segmentation detail
can be chosen interactively with the program HSEGViewer
[32], or an automated method, tailored to the application, can
be developed, such as that explored in [35].

D. Pixelwise Classification

Independent of the previous steps, a pixelwise classification
of the hyperspectral image is performed. We propose to use
an SVM classifier for this purpose. Other pixelwise classifiers
could be used. However, SVMs perform extremely well in
classifying high-dimensional data when a limited number of
training samples are available [5], [36]. We refer the reader to
[5] and [37] for details on SVM technique. This step results in
a classification map where each pixel has a unique class label.

E. Majority Voting Within Segmentation Regions

Each of the obtained unsupervised segmentation maps is
combined with the pixelwise classification map using the
majority-voting principle: For every region in the segmentation
map, all the pixels are assigned to the most frequent class

3The analysis reported in this paper was performed with version 1.40 of
the RHSEG software. The recently released version 1.50 of RHSEG produces
similar segmentation results, except that it can exhibit improved results for
larger values of Swght, particularly for data sets containing classes with mostly
dissimilar spectral responses.

within this region (see an illustrative example in Fig. 2). Thus,
q segmentation maps combined with the pixelwise classifica-
tion map result in q spectral–spatial classification maps (since
we propose to use three different segmentation techniques, in
this particular case, q = 3).

F. Marker Selection

This step consists of computing a map of markers using
spectral–spatial classification maps from the previous step and
the exclusionary rule: For every pixel, if all the classifiers agree,
the pixel is kept as a marker with a corresponding class label.
The resulting map of m markers contains the most reliably
classified pixels.

G. Construction of a MSF

In the final step, image pixels are grouped into an MSF rooted
on the selected markers [17]. Each pixel is considered as a
vertex v ∈ V of an undirected graph G = (V,E,W ), where V
and E are the sets of vertices and edges, respectively, and W
is a mapping of the set of the edges E into R

+. Each edge
ei,j ∈ E of this graph connects a couple of vertices i and j
corresponding to the neighboring pixels. Furthermore, a weight
wi,j is assigned to each edge ei,j , which indicates the degree
of dissimilarity between two vertices (i.e., two corresponding
pixels) connected by this edge. We propose to use an eight-
neighborhood and the SAM measure for computing the weights
of edges, as described in [17].

Given a graph G = (V,E,W ), the MSF rooted on a set of
m distinct vertices {t1, . . . , tm} consists in finding a spanning
forest F ∗ = (V,EF∗) of G such that each distinct tree of F ∗ is
grown from one root ti, and the sum of the edges’ weights of
F ∗ is minimal [38]

F ∗ ∈ arg min
F∈SF

⎧⎨
⎩

∑
ei,j∈EF

wi,j

⎫⎬
⎭ (6)

where SF is a set of all spanning forests of G rooted on
{t1, . . . , tm}.

Algorithm 1 Prim’s Algorithm
Require: Connected graph G = (V,E,W )
Ensure: Tree T ∗ = (V ∗, E∗,W ∗)

V ∗ = {v}, v is an arbitrary vertex from V
while V ∗ �= V do

Choose edge ei,j ∈ E with minimal weight such that
i ∈ V ∗ and j /∈ V ∗

V ∗ = V ∗ ∪ {j}
E∗ = E∗ ∪ {ei,j}

end while

In order to obtain the MSF rooted on m markers correspond-
ing to the vertices ti, i = 1, . . . ,m, an additional root vertex
r is added and is connected by the null-weight edges to the
vertices ti. The minimum spanning tree of the constructed
graph induces an MSF in G, where each tree is grown on a
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TABLE I
CLASSIFICATION ACCURACIES IN PERCENT FOR THE University of Pavia IMAGE: OA, AA, KAPPA COEFFICIENT (κ), AND CLASS-SPECIFIC ACCURACIES

vertex ti; the MSF is obtained after removing the vertex r.
Prim’s algorithm can be used for building the MSF (see
Algorithm 1) [39]. The efficient implementation of the algo-
rithm using a binary min-heap is possible [40]; the resulting
time complexity of the algorithm is O(|E| log |V |). Finally, a
spectral–spatial classification map is obtained by assigning the
class of each marker to all the pixels grown from this marker.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Two different hyperspectral images were used for the ex-
periments with different contexts (one urban area and one
agricultural area) and recorded by different sensors (ROSIS
and AVIRIS). These data sets and the corresponding results are
discussed in the next two sections.

A. Classification of the University of Pavia Image

The University of Pavia image was recorded by the ROSIS
optical sensor over the urban area of the University of Pavia,
Italy. The image is 610 × 340 pixels with a spatial resolution
of 1.3 m/pixel. The number of data channels in the acquired
image is 115 (with a spectral range from 0.43 to 0.86 μm). The
12 most noisy channels have been removed, and the remaining
103 bands were used for the experiments. Nine classes of
interest are considered, which are detailed in Table I. Fig. 5
shows a three-band false color image and the reference data.
The training and test sets are composed of 3921 and 40 002
pixels, respectively. More information about the image, with
the number of training and test samples for each class can be
found in [14].

The segmentation of the considered image was performed
using the three different techniques discussed in the previous
section. For the EM algorithm, the maximum number of clus-
ters was chosen to be equal to ten (typically slightly superior
to the number of classes). Before applying the EM technique, a
feature extraction on the original 103-band image was applied
using the method of PCFA [31] to get a ten-band image YUP .
Pixels from the training set were used for selecting features.
The method produced an averaging of the following groups of
adjacent spectral channels: 1–4, 5–10, 11–24, 25–35, 36–43,
44–68, 69–72, 73–75, 76–79, and 80–103.

For the RHSEG algorithm, we chose Swght = 0.1 since the
image of this urban area contains classes with mostly dissimilar

spectral responses. A segmentation map at an appropriate level
of segmentation detail was chosen interactively with the pro-
gram HSEGViewer. The obtained watershed, EM, and RHSEG
segmentation maps contained 11 802, 22 549, and 7575 regions,
respectively.

The multiclass pairwise SVM classification, with the
Gaussian radial basis function (RBF) kernel, of the original
image was performed with the parameters chosen by fivefold
cross validation: C = 128 and γ = 0.125. The results of the
pixelwise classification were combined with the segmentation
results using the majority voting approach. Finally, the marker
selection (see Fig. 5(g); 132 521, i.e., 64% of pixels were
selected as markers) and the construction of an MSF were
performed, resulting in the MSSC-MSF spectral–spatial classi-
fication map shown in Fig. 5(h).

Table I summarizes the global and class-specific accu-
racies of the pixelwise SVM, segmentation plus majority
voting (WH + MV, EM + MV, RHSEG + MV for three
segmentation techniques, respectively), and the proposed
MSSC-MSF classification methods. The following measures of
accuracy were used: Overall accuracy [(OA) is the percentage
of correctly classified pixels], average accuracy [(AA) is the
mean of class-specific accuracies, i.e., the percentage of cor-
rectly classified pixels for each class], and kappa coefficient
(κ is the percentage of agreement, i.e., correctly classified
pixels, corrected by the number of agreements that would be
expected purely by chance [41]). In order to compare the perfor-
mances of the proposed technique with the previously proposed
methods, we have also included results of the well-known
ECHO spatial classifier [7], as well as the results obtained using
the construction of an MSF from the probabilistic SVM-derived
markers followed by majority voting within connected regions
(SVMMSF + MV) [17].

In addition, we assessed the importance of spectral–spatial
approaches for marker selection. For this purpose we replaced
the WH + MV, EM + MV, and RHSEG + MV classification
maps by three maps obtained using standard pixelwise classi-
fication techniques (we call this modified scheme an MC-MSF
classification method). SVM, ML, and three-nearest neighbor-
hood (3-NN, using the SAM distance) methods were used for
this purpose. The ML and the 3-NN techniques were applied
on the ten-band image YUP feature vectors. The accuracies of
the modified MC-MSF classification as well as the pixelwise
classification results are given in Table I.
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Fig. 5. University of Pavia image. (a) Three-band color composite. (b) Reference data: Asphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks,
and shadows. (c) SVM pixelwise classification map. (d) ECHO classification map. (e) SVMMSF + MV classification map. (f) MC-MSF classification map.
(g) MSSC-MSF marker map. (h) MSSC-MSF classification map.

As can be seen from Table I, the SVM method gives the
highest accuracies among all the pixelwise classification tech-
niques. All the spectral–spatial approaches yield higher clas-
sification accuracies when compared with pixelwise methods.
The proposed MC approach for marker selection improves the
accuracies when compared with those obtained by classifica-
tion techniques used in the preliminary step of the marker-
selection procedure, both for the MC-MSF and MSSC-MSF
methods. The best global and the best class-specific accuracies
for most classes are achieved by applying the proposed MSSC-
MSF method. According to the results of the McNemar’s test
[42], the MSSC-MSF classification map is significantly more
accurate when compared with those obtained by other clas-
sification approaches, using 5% level of significance. In this
case, the OA is improved by 16.9 percentage points and the
AA is improved by 10.3 percentage points when compared
with the SVM classification. All the class-specific accuracies
are higher than 96%. Only the accuracy for the class shad-
ows, representing small spatial structures, is slightly reduced
when compared with the SVM results (the drawback of ap-
plying spectral–spatial classification to small structures was
discussed, for instance, in [14]). The MSSC-MSF classifica-
tion accuracies are much higher than the MC-MSF accuracies.

Furthermore, the presented classification accuracies are higher
than all previous results we have found in the literature for
the same data.

Fig. 5 shows the MC-MSF and MSSC-MSF classification
maps, as well as the SVM, ECHO, and SVMMSF + MV
classification maps given for comparison. In Fig. 5(g) [MSSC-
MSF marker map], it can be seen that the marker pixels, i.e., the
most reliable classified pixels, are typically located at the center
of spatial structures, while borders of structures are under a
high risk of being misclassified. The MSSC-MSF classification
map [see Fig. 5(h)] contains much more homogeneous regions
when compared with the maps obtained by other pixelwise and
spectral–spatial approaches. These results prove the importance
of the use of MC systems and spatial information throughout
the classification procedure.

B. Classification of the Indian Pines Image

The proposed scheme was also tested on the Indian Pines
image of a vegetation area, acquired by the AVIRIS sensor
over the Indian Pines site in Northwestern Indiana. The image
has spatial dimensions of 145 by 145 pixels, with a spa-
tial resolution of 20 m/pixel. Twenty water absorption bands
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TABLE II
CLASSIFICATION ACCURACIES IN PERCENT FOR THE Indian Pines IMAGE: OA, AA, KAPPA COEFFICIENT (κ), AND CLASS-SPECIFIC ACCURACIES

(104–108, 150–163, and 220) have been removed [18], and a
200-band image was used for the experiments. The reference
data contain sixteen classes of interest, which represent mostly
different types of crops and are detailed in Table II. A three-
band false-color image and the reference data are shown in
Fig. 6. We have randomly chosen 50 samples for each class
from the reference data as training samples, except for classes
“alfalfa,”“grass/pasture mowed,” and “oats.” These classes
contain a small number of samples in the reference data.
Therefore, only 15 samples for each of these classes were
chosen randomly to be used as training samples. The remaining
samples composed the test set.

Segmentation of the Indian Pines image was performed
using the three discussed techniques. For the EM technique, the
upper bound on the number of classes was chosen to be equal
to 17, and a feature reduction has been previously applied using
the method of PCFA [31] to get a ten-band image YIN . The
following groups of bands were averaged: 1–18, 19–36, 37–53,
54–57, 58–61, 62–75, 76–81, 82–99, 100–140, and 141–200.

Since some classes have very similar spectral responses in
the Indian Pines image (for instance, three classes of corn and
three classes of soybeans), we set Swght = 0.0 for the RHSEG
method. A segmentation map at the relevant level of hierarchy
was chosen with the program HSEGViewer. The resulting wa-
tershed, EM, and RHSEG segmentation maps contained 1277,
3832, and 823 regions, respectively.

A pixelwise classification on the 200-band image was per-
formed using the multiclass one versus one SVM classifier
with the Gaussian RBF kernel. The optimal parameters C
and γ were chosen by fivefold cross validation: C = 128 and
γ = 2−6. After the segmentation results were combined with
the pixelwise classification map, the marker selection (14 409,
i.e., 68% of the pixels, were selected as markers) and the MSF
construction were applied, as described in the previous section.

Table II gives the global and class-specific accuracies of
the pixelwise SVM segmentation, followed by majority voting
and the proposed MSSC-MSF classification techniques. The
performances of the proposed approach are compared with
those obtained by the ECHO and SVMMSF + MV methods,

as described in the previous section. Finally, the MC-MSF
classification was applied in the same way as for the previous
data set.

From the table, similar conclusions as with the previous
data set can be derived. The SVM classification yields the
best accuracies among all the applied pixelwise methods.
The spectral–spatial classification accuracies are always higher
when compared with the pixelwise accuracies. The proposed
MC method succeeds in combining several classification re-
sults for further improvement of accuracies. The MSSC-MSF
yields the best OA, kappa coefficient, and most of the class-
specific accuracies. The AA is only slightly (nonsignificantly)
lower when compared with that obtained by the recently pro-
posed SVMMSF + MV method. Following the results of the
McNemar’s test, the MSSC-MSF and SVMMSF + MV accu-
racies are not significantly different using 5% level of signif-
icance. These two techniques significantly outperform other
classification approaches.

Fig. 6 shows theSVM,MC-MSF,MSSC-MSF, andSVMMSF+
MV classification maps. As can be seen, the MSSC-MSF map
contains much more homogeneous spatial structures when
compared with the SVM and MC-MSF maps and is comparable
with the SVMMSF + MV map. Again, spectral–spatial marker-
based techniques yielded the most accurate classification maps.

Although for the Indian Pines image, the MSSC-MSF and
SVMMSF + MV methods yield similar results, here, we stress
the advantages of the proposed MSSC-MSF approach versus the
previous one for spectral–spatial classification.

1) Robustness: While for the SVMMSF + MV method,
the marker selection strongly depends on the perfor-
mances of the selected pixelwise classifier, the MC
approach mitigates this dependence. Since in the MSSC-
MSF scheme, different segmentation maps are combined
with one pixelwise classification map, the choice of the
classifier is also important. However, if in the SVMMSF +
MV method, a pixel was wrongly classified with a high
probability, it will yield a wrong marker. In the new ap-
proach, the majority voting within segmentation regions
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Fig. 6. Indian Pines image. (a) Three-band color composite. (b) Reference data: Corn-no till, Corn-min till, Corn, Soybeans-no till, Soybeans-min till,
Soybeans-clean till, Alfalfa, Grass/pasture, Grass/trees, Grass/pasture-mowed, Hay-windrowed, Oats, Wheat, Woods, Bldg-Grass-Tree-Drives, Stone-steel towers.
(c) SVM pixelwise classification map. (d) SVMMSF + MV classification map. (e) MC-MSF classification map. (f) MSSC-MSF classification map.

can correct the misclassification result for a particular
pixel before the marker map is built.

2) Computational Complexity: In the SVMMSF + MV
method, the probabilistic pixelwise SVM classification
part is the most time consuming [43]. In the MSSC-
MSF approach, SVM classification is performed without
the computation of probability estimates; this reduces
the pixelwise classification-part execution time. The un-
supervised segmentation techniques are much less time
consuming when compared with the SVM classification.
Furthermore, their efficient implementations are avail-
able, and they can be executed in parallel at the same time
with the SVM classification. As a conclusion, the efficient
implementation of the proposed MSSC-MSF approach
is possible, which would run faster than the previously
proposed MSSC-MSF method.

V. CONCLUSION

Hyperspectral sensors capture images in hundreds of narrow
spectral channels. The detailed spectral signatures for each
spatial location provide rich information about an image scene,
leading to better discrimination between physical materials
and objects. However, interpretation of these high-dimensional
signatures is a challenging task. Although pixelwise classi-
fication techniques have given high classification accuracies
when dealing with hyperspectral data, the incorporation of
the spatial context into classification procedures yields further
improvement of the accuracies.

In this paper, a new method for spectral–spatial classification
of hyperspectral images based on multiple classifiers has been
proposed. First, a marker map is constructed by selecting the
pixels assigned by several spectral–spatial classifiers to the
same class. This ensures a robust and reliable selection. Then,

an MSF rooted on the selected markers is built. Experimental
results demonstrated that the proposed method improves clas-
sification accuracies, when compared with previously proposed
classification schemes, and provides classification maps with
homogeneous regions.

In conclusion, the proposed methodology succeeded in tak-
ing advantage of multiple classifiers and the spatial and spectral
information simultaneously for accurate hyperspectral image
classification. The method yields accurate results for different
data sets, i.e., data containing large spatial structures and/or
small and complex structures, with spectrally dissimilar and/or
spectrally confusing classes. Furthermore, its efficient imple-
mentation is possible.

While performing particularly well for classification of ho-
mogeneous regions, the proposed approach has a drawback
common to most of spectral–spatial techniques: It produces
a smoother classification map when compared with pixelwise
ones and therefore, it risks impairing results near the borders
between regions (where mixed pixels4 are often encountered)
or in textured areas. Spectral unmixing techniques [44] can be
used for accurate analysis of region borders, while segmenta-
tion in the sense of texture [45] can be applied for textured
regions.

In the future, we will further explore the integration of
spectral–spatial approaches in MC systems for accurate and
robust classification of hyperspectral images. Since the in-
corporation of the spatial information in classification sig-
nificantly improves accuracies, it is of interest to further

4A mixed pixel is defined as a pixel whose value represents the average
energy emitted or reflected from several different surfaces occurring within the
spatial area represented by the pixel.
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investigate performances of the proposed spectral–spatial ap-
proaches when a very limited number of training samples are
available.
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