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LIMIT THEOREMS FOR ONE AND TWO-DIMENSIONAL RANDOM

WALKS IN RANDOM SCENERY

FABIENNE CASTELL, NADINE GUILLOTIN-PLANTARD, AND FRANÇOISE PÈNE

Abstract. Random walks in random scenery are processes defined by Zn :=
∑n

k=1 ξX1+...+Xk
,

where (Xk, k ≥ 1) and (ξy, y ∈ Z
d) are two independent sequences of i.i.d. random variables with

values in Z
d and R respectively. We suppose that the distributions of X1 and ξ0 belong to the

normal basin of attraction of stable distribution of index α ∈ (0, 2] and β ∈ (0, 2]. When d = 1
and α 6= 1, a functional limit theorem has been established in [11] and a local limit theorem
in [5]. In this paper, we establish the convergence of the finite-dimensional distributions and a
local limit theorem when α = d (i.e. α = d = 1 or α = d = 2) and β ∈ (0, 2]. Let us mention
that functional limit theorems have been established in [2] and recently in [8] in the particular
case where β = 2 (respectively for α = d = 2 and α = d = 1).

1. Introduction

Random walks in random scenery (RWRS) are simple models of processes in disordered media
with long-range correlations. They have been used in a wide variety of models in physics to
study anomalous dispersion in layered random flows [14], diffusion with random sources, or spin
depolarization in random fields (we refer the reader to Le Doussal’s review paper [12] for a
discussion of these models).

On the mathematical side, motivated by the construction of new self-similar processes with
stationary increments, Kesten and Spitzer [11] and Borodin [3, 4] introduced RWRS in dimension
one and proved functional limit theorems. This study has been completed in many works, in
particular in [2] and [8]. These processes are defined as follows. Let ξ := (ξy, y ∈ Z

d) and
X := (Xk, k ≥ 1) be two independent sequences of independent identically distributed random
variables taking values in R and Z

d respectively. The sequence ξ is called the random scenery.
The sequence X is the sequence of increments of the random walk (Sn, n ≥ 0) defined by S0 := 0
and Sn :=

∑n
i=1 Xi, for n ≥ 1. The random walk in random scenery Z is then defined by

Z0 := 0 and ∀n ≥ 1, Zn :=

n−1
∑

k=0

ξSk
.

Denoting by Nn(y) the local time of the random walk S :

Nn(y) := #{k = 0, ..., n − 1 : Sk = y} ,
it is straightforward to see that Zn can be rewritten as Zn =

∑

y ξyNn(y).

As in [11], the distribution of ξ0 is assumed to belong to the normal domain of attraction of
a strictly stable distribution Sβ of index β ∈ (0, 2], with characteristic function φ given by

φ(u) = e−|u|β(A1+iA2sgn(u)) u ∈ R,
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where 0 < A1 < ∞ and |A−1
1 A2| ≤ | tan(πβ/2)|. We will denote by ϕξ the characteristic function

of the ξx’s. When β > 1, this implies that E[ξ0] = 0. When β = 1, we will further assume the
symmetry condition

sup
t>0

∣

∣E
[

ξ0 1I{|ξ0|≤t}

]∣

∣ < +∞ . (1)

Under these conditions (for β ∈ (0; 2]), there exists Cξ > 0 such that we have

∀t > 0, P (|ξ0| ≥ t) ≤ Cξt
−β. (2)

Concerning the random walk, the distribution of X1 is assumed to belong to the normal basin
of attraction of a stable distribution S ′

α with index α ∈ (0, 2].

Then the following weak convergences hold in the space of càdlàg real-valued functions defined
on [0,∞) and on R respectively, endowed with the Skorohod J1-topology (see [1, chapter 3]) :

(

n−1/αS⌊nt⌋

)

t≥0

L
=⇒
n→∞

(U(t))t≥0

and



n
− 1

β

⌊nx⌋
∑

k=0

ξke1





x∈R

L
=⇒
n→∞

(Y (x))x∈R , with e1 = (1, 0, · · · , 0) ∈ Z
d ,

where U and Y are two independent Lévy processes such that U(0) = 0, Y (0) = 0, U(1) has
distribution S ′

α, Y (1) and Y (−1) have distribution Sβ.

Functional limit theorem.

Our first result is concerned with a functional limit theorem for (Z[nt])t≥0. Intuitively speaking,

• when α < d, the random walk Sn is transient, its range is of order n, and Zn has the same
behaviour as a sum of about n independent random variables with the same distribution
as the variables ξx. Therefore, n−1/β(Z[nt])t≥0 weakly converges in the space D([0,∞))
of càdlàg functions endowed with the Skorohod J1-topology, to a multiple of the process
(Yt), as proved in [4];

• when α > d (i.e d = 1 and 1 < α ≤ 2), the random walk Sn is recurrent, its range is of

order n1/α, its local times are of order n1−1/α, so that Zn is of order n
1− 1

α
+ 1

αβ . In this

situation, [3] and [11] proved a functional limit theorem for n−(1− 1
α
+ 1

αβ
)(Z[nt])t≥0 in the

space C([0,∞)) of continuous functions endowed with the uniform topology , the limiting
process being a self-similar process, but not a stable one.

• when α = d (i.e. α = d = 1, or α = d = 2), Sn is recurrent, its range is of order

n/ log(n), its local times are of order log(n) so that Zn is of order n
1
β log(n)

β−1
β . In this

situation, a functional limit theorem in the space of continuous functions was proved in
[2] for d = α = β = 2, and in [8] for d = α = 1 and β = 2.

Our first result gives a limit theorem for α = d (and so d ∈ {1, 2}) and for any value of β ∈ (0; 2)
in the finite distributional sense.

Theorem 1. Let us assume that β ∈ (0; 2] and that

(a) either d = 2 and X1 is centered, square integrable with invertible variance matrix Σ and

then we define A := 2
√
detΣ;

(b) or d = 1 and
(

Sn
n

)

n
converges in distribution to a random variable with characteristic

function given by t 7→ exp(−a|t|) with a > 0 and then we define A := a.
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Then, the finite-dimensional distributions of the sequence of random variables

(

(

Z[nt]

n1/β log(n)(β−1)/β

)

t≥0

)

n≥2

converges to the finite-dimensional distributions of the process

(

Ỹt :=

(

Γ(β + 1)

(πA)β−1

)1/β

Y (t)

)

t≥0

.

Moreover, if β < 2, the sequence

(

(

Z[nt]

n1/β log(n)(β−1)/β

)

t≥0

)

n≥2

is not tight in D([0,∞)) endowed with the J1-topology.

Local limit theorem.

Our next results concern a local limit theorem for (Zn)n. The d = 1 case was treated in [5] for
α ∈ (0; 2]\ {1} and all values of β ∈ (0; 2]. Here, we complete this study by proving a local limit
theorem for α = d = 1 (and β ∈ (0; 2]). By a direct adaptation of the proof of this result, we
also establish a local limit theorem for α = d = 2 (we just adapt the definition of "peaks", see
section 3.5). Let us notice that the same adaptation can be done from [5] (case α < 1) to get
local limit theorems for d ≥ 2, α < d and β ∈ (0; 2].

We give two results corresponding respectively to the case when ξ0 is lattice and to the case
when it is strongly non-lattice. We denote by ϕξ the characteristic function of ξ0.

Theorem 2. Assume that ξ0 takes its values in Z . Let d0 ≥ 1 be the integer such that {u :

|ϕξ(u)| = 1} = 2π
d0
Z. Let bn := n1/β(log(n))(β−1)/β . Under the previous assumptions on the

random walk and on the scenery, for α = d ∈ {1, 2}, for every β ∈ (0, 2], and for every x ∈ R,

• if P (nξ0 − ⌊bnx⌋ /∈ d0Z) = 1, then P (Zn = ⌊bnx⌋) = 0;

• if P (nξ0 − ⌊bnx⌋ ∈ d0Z) = 1, then

P (Zn = ⌊bnx⌋) = d0
C(x)

n1/β(log(n))(β−1)/β
+ o(n−1/β(log(n))−(β−1)/β)

uniformly in x ∈ R, where C(·) is the density function of Ỹ1.

Theorem 3. Assume now that ξ0 is strongly non-lattice which means that

lim sup
|u|→+∞

|ϕξ(u)| < 1.

We still assume that α = d ∈ {1, 2} and β ∈ (0; 2]. Then, for every x, a, b ∈ R such that a < b,
we have

lim
n→+∞

bnP (Zn ∈ [bnx+ a; bnx+ b]) = C(x)(b− a),

with bn := n1/β(log(n))(β−1)/β and where C(·) is the density function of Ỹ1.
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2. Proof of the limit theorem

Before proving the theorem, we prove some technical lemmas. For any real number γ > 0, any
integer m ≥ 1, any θ1, . . . , θm ∈ R, any t0 = 0 < t1 < . . . < tm, we consider the sequences of
random variables (Ln(γ))n≥2 and (L′

n(γ))n≥2 defined by

Ln(γ) :=
1

n(log n)γ−1

∑

x∈Zd

∣

∣

∣

∣

∣

m
∑

i=1

θi(N[nti](x)−N[nti−1](x))

∣

∣

∣

∣

∣

γ

and

L′
n(γ) :=

1

n(log n)γ−1

∑

x∈Zd

∣

∣

∣

∣

∣

m
∑

i=1

θi(N[nti](x)−N[nti−1](x))

∣

∣

∣

∣

∣

γ

sgn

(

m
∑

i=1

θi(N[nti](x)−N[nti−1](x))

)

.

Lemma 4. For any real number γ > 0, any integer m ≥ 1, any θ1, . . . , θm ∈ R, any t0 = 0 <
t1 < . . . < tm, the following convergences hold P-almost surely

lim
n→+∞

Ln(γ) =
Γ(γ + 1)

(πA)γ−1

m
∑

i=1

|θi|γ(ti − ti−1) (3)

and

lim
n→+∞

L′
n(γ) =

Γ(γ + 1)

(πA)γ−1

m
∑

i=1

|θi|γsgn(θi)(ti − ti−1). (4)

Proof. We fix an integer m ≥ 1 and 2m real numbers θ1, . . . , θm, t1, ..., tm such that 0 < t1 <
. . . < tm and we set t0 := 0. To simplify notations, we write bi,n(x) := N[nti](x) − N[nti−1](x).
Following the techniques developed in [6], we first have to prove (3) and (4) for integer γ: for
every integer k ≥ 1, P-almost surely, as n goes to infinity, we have

1

n(log n)k−1

∑

x∈Zd

(

m
∑

i=1

θibi,n(x)

)k

−→ Γ(k + 1)

(πA)k−1

m
∑

i=1

θki (ti − ti−1). (5)

Let us assume (5) for a while, and let us end the proof of (3) and (4) for any positive real γ.
Given the random walk S := (Sn)n, let (Un)n≥1 be a sequence of random variables with values
in Z

d, such that for all n, Un is a point chosen uniformly in the range of the random walk up to
time [ntm], that is

P(Un = x
∣

∣S) = R−1
[ntm]1{N[ntm](x)≥1},

with Rk := #{y : Nk(y) > 0}. Moreover, let U ′ be a random variable with values in {1, . . . ,m}
and distribution

P(U ′ = i) = (ti − ti−1)/tm

and let T be a random variable with exponential distribution with parameter one and independent
of U ′.
Then, for P− almost every realization of the random walk S, the sequence of random variables

(

Wn :=
πA

log(n)

m
∑

i=1

θibi,n(Un)

)

n

converges in distribution to the random variable W := θU ′T . Indeed, the moment of order k of
Wn given S is

E(W k
n

∣

∣S) =
(πA)k

n(log n)k−1

∑

x∈Zd

(

m
∑

i=1

θibi,n(x)

)k
n

log(n)R([ntm])
.
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Using (5) and the fact that ((log n)Rn/n)n converges almost surely to πA (see [9, 13]), the mo-
ments E(W k

n

∣

∣S) converges a.s. to E(W k) = Γ(k + 1)
∑m

i=1 θ
k
i (ti − ti−1)/tm, which proves the

convergence in distribution of (Wn)n (given S) to W . This ensure, in particular, the convergence
in distribution of (|Wn|γ)n and of (|Wn|γsgn(Wn))n (given S) to |W |γ and |W |γsgn(W ) respec-
tively (for every real number γ ≥ 0 and for P− almost every realization of the random walk S).
Since any moment of |Wn| can be bounded from above by an integer moment, we deduce that,
for any γ ≥ 0, we have P-almost surely

lim
n→+∞

E(|Wn|γ
∣

∣S) = E(|W |γ) and lim
n→+∞

E(|Wn|γsgn(Wn)
∣

∣S) = E(|W |γsgn(W )),

which proves lemma 4.
Let us prove (5). Let k ≥ 1. According to Theorem 1 in [6] (proved for α = d = 2, but also valid
for α = d = 1), we have

∀i ∈ {1, ...,m}, lim
n→+∞

1

n(log n)k−1

∑

x∈Zd

(bi,n(x))
k =

Γ(k + 1)

(πA)k−1
(ti − ti−1), P− a.s.. (6)

We define

Σn(θ1, ..., θm) :=
∑

x∈Zd

(

m
∑

i=1

θibi,n(x)

)k

−
∑

x∈Zd

m
∑

i=1

(θi)
k (bi,n(x))

k . (7)

According to (6), it is enough to prove that P−a.s., Σn(θ1, ..., θm) = o(n(log n)k−1). We observe
that Σn(θ1, ..., θm) is the sum of the following terms

∑

x∈Zd

k
∏

j=1

(

θijbij ,n(x)
)

. (8)

over all the k-tuple (i1, . . . , ik) ∈ {1, . . . ,m}k, with at least two distinct indices. We observe that

|Σn(θ1, ..., θm)| ≤ max(|θ1|, ..., |θm|)kΣn(1, ..., 1).

But, we have

Σn(1, ..., 1) =
∑

x∈Zd

(

N[ntm](x)
)k −

∑

x∈Zd

m
∑

i=1

(bi,n(x))
k

=
∑

x∈Zd

(

N[ntm](x)
)k −

m
∑

i=1

∑

x∈Zd

(bi,n(x))
k = o(n log(n)k−1),

according to (6). �

Lemma 5. For any ρ > 0,

sup
x∈Zd

Nn(x) = o(nρ) a.s..

Proof. See Lemma 2.5 in [2]. �

Proof of Theorem 1. Let an integer m ≥ 1 and 2m real numbers θ1, ..., θm, t1, ..., tm such that
0 < t1 < ... < tm. We set t0 := 0. Again, we use the notation bi,n(x) := N[nti](x) −N[nti−1](x).

Let us write Z̃n := 1
n1/β(log(n))(β−1)/β

∑m
i=1 θi(Z[nti] − Z[nti−1]). We have to prove that

E[eiZ̃n ] →
m
∏

i=1

φ

(

θi(ti − ti−1)
1/β

(

Γ(β + 1)

(πA)β−1

)1/β
)

, (9)



LIMIT THEOREMS FOR 1-D AND 2-D RWRS 6

as n goes to infinity. We observe that Z̃n = 1
n1/β(log(n))(β−1)/β

∑

x∈Zd

∑m
i=1 θibi,n(x)ξx. Hence we

have

E[eiZ̃n |S] =
∏

x∈Zd

ϕξ

( ∑m
i=1 θibi,n(x)

n1/β(log(n))(β−1)/β

)

.

Observe next that
∣

∣

∣
ϕξ(t)− exp

(

−|t|β(A1 + iA2sgn(t)
)∣

∣

∣
≤ |t|βh(|t|) for all t ∈ R,

with h a continuous and monotone function on [0,+∞) vanishing in 0. This implies in particular

the existence of ε0 > 0 and σ > 0 such that max(|ϕξ(t)|, exp
(

−A1|t|β
)

) ≤ e−σ|t|β for any
t ∈ [−ε0, ε0]. According to lemma 5, P-almost surely, for every n large enough, we have

bn := sup
x

|
∑m

i=1 θibi,n(x)|
n1/β(log(n))(β−1)/β

≤ ε0

and so
∣

∣

∣

∣

∣

∣

E[eiZ̃n |S]−
∏

x∈Zd

e
−
|∑m

i=1 θibi,n(x)|β
n(log(n))β−1 (A1+iA2sgn(

∑m
i=1 θibi,n(x)))

∣

∣

∣

∣

∣

∣

is less than
∑

x∈Zd
|∑m

i=1 θibi,n(x)|β
n(log(n))β−1 h(bn)e

−σ

(∑
y∈Z|∑m

i=1 θibi,n(y)|β
n(log n)β−1 −bβn

)

. Hence, according to lemmas

4 and 5, P-almost surely, we have

lim
n→+∞

E[eiZ̃n |S] = e
− Γ(β+1)

(πA)β−1

∑m
i=1 |θi|

β(ti−ti−1)(A1+iA2sgn(θi))

which gives (9) thanks to the Lebesgue dominated convergence theorem.

Finally we prove that the sequence
(

(

Z[nt]

n1/β log(n)(β−1)/β

)

t∈[0;1]

)

n≥2

is not tight in D([0,∞)). It is enough to prove that it is not tight in D([0, 1]). To this aim, let

bn = n1/β log(n)(β−1)/β , and (Zn(t), t ∈ [0, 1]) denote the linear interpolation of (Z[nt], t ∈ [0, 1]),
i.e.

Zn(t) = Z[nt] + (nt− [nt])ξS[nt]
.

Then, ∀ǫ > 0,

P

[

sup
t∈[0,1]

∣

∣Zn(t)− Z[nt]

∣

∣ ≥ ǫbn

]

= P

[

n−1
max
i=0

|ξSi | ≥ ǫbn

]

= P [∃x ∈ {S0, · · · , Sn−1} s.t |ξx| ≥ ǫbn]

≤ E(# {S0, · · · , Sn−1})P [|ξ0| ≥ ǫbn]

≤ C
n

log(n)
ǫ−βb−β

n = Cǫ−β log(n)−β,

where the last inequality comes from (2) and Theorem 6.9 of [13]. Therefore, if

(

(

Z[nt]

bn

)

t∈[0;1]

)

n≥2

converges weakly to
(

Ỹt

)

t∈[0,1]
, the same is true for

(

(

Zn(t)
bn

)

t∈[0;1]

)

n≥2

. Using the fact that
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the sequence

(

(

Zn(t)
bn

)

t∈[0;1]

)

n≥2

is a sequence in the space C([0, 1]) and that the Skorohod J1-

topology coincides with the uniform one when restricted to C([0, 1]), one deduces that
(

Zn(t)
bn

)

t∈[0;1]

converges weakly in C([0, 1]), and that the limiting process
(

Ỹt

)

t∈[0,1]
is therefore continuous,

which is false as soon as β < 2. �

3. Proof of the local limit theorem in the lattice case

3.1. The event Ωn. Set

N∗
n := sup

y
Nn(y) and Rn := #{y : Nn(y) > 0} .

Lemma 6. For every n ≥ 1 and 1 > γ > 0, set

Ωn = Ωn(γ) :=

{

Rn ≤ n

(log log(n))1/4
and N∗

n ≤ nγ

}

.

Then, P(Ωn) = 1− o(b−1
n ). Moreover, the following also holds on Ωn:

(log log(n))1/4 ≤ N∗
n and Vn ≥ n1−γ(1−β)+ . (10)

Proof. We first prove that

P

(

Rn ≥ n(log log(n))−1/4
)

= o(b−1
n ). (11)

Let us recall that for every a, b ∈ N, we have

P(Rn ≥ a+ b) ≤ P(Rn ≥ a)P(Rn ≥ b) . (12)

The proof is given for instance in [7]. We will moreover use the fact that E[Rn] ∼ cn(log(n))−1

and V ar(Rn) = O
(

n2 log−4(n)
)

(see [13]). Hence, for n large enough, there exists C > 0 such
that we have

P

(

Rn ≥ n

(log log(n))1/4

)

≤ P

(

Rn ≥
⌊

n(log log(n))1/4

log(n)

⌋)⌊log(n)(log log(n))−1/2⌋

≤ P

(

|Rn − E[Rn]| ≥
1

2

⌊

n(log log(n))1/4

log(n)

⌋)⌊log(n)(log log(n))−1/2⌋

≤
(

5V ar(Rn) log
2(n)

n2(log log(n))1/2

)⌊log(n)(log log(n))−1/2⌋

≤
(

Cn2 log2(n)/ log4(n)

n2
√

log log(n)

)⌊log(n)(log log(n))−1/2⌋

≤
(

C

(log(n))2

)⌊log(n)(log log(n))−1/2⌋
= exp

(

− log(n)
√

log log(n)

(

1− log(C)

2 log log(n)

))

.

This ends the proof of (11).

Let us now prove that

P [N∗
n ≥ nγ ] = o(b−1

n ). (13)
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We have

P(N∗
n ≥ nγ) ≤

∑

x

P(Nn(x) ≥ nγ)

=
∑

x

P(Tx ≤ n;Nn(x) ≥ nγ) , where Tx := inf {n > 1, s.t. Sn = x} ,

≤
∑

x

P(Tx ≤ n)P(Nn(0) ≥ nγ)

≤ E[Rn]P(T0 ≤ n)n
γ
.

Hence, (13) follows now from E[Rn] ∼ cn(log(n))−1, and from P(T0 > n) ∼ C/ log(n).

Since n =
∑

y Nn(y) ≤ RnN
∗
n, we get that N∗

n ≥ n
Rn

≥ (log log(n))1/4 on Ωn.

To prove the lower bound for Vn, note that for β ≥ 1, Vn =
∑

y Nn(y)
β ≥∑y Nn(y) = n. For

β < 1, on Ωn,

n =
∑

y

Nn(y) =
∑

y

Nn(y)
βNn(y)

1−β ≤ Vn(N
∗
n)

1−β ≤ Vnn
γ(1−β) .

�

3.2. Scheme of the proof. It is easy to see (cf the proof of lemma 5 in [5]) that P (Zn = ⌊bnx⌋) =
0 if P (nξ0 − ⌊bnx⌋ /∈ d0Z) = 1, and that if P (nξ0 − ⌊bnx⌋ ∈ d0Z) = 1,

P (Zn = ⌊bnx⌋) =
d0
2π

∫ π
d0

− π
d0

e−it⌊bnx⌋E

[

∏

y

ϕξ(tNn(y))

]

dt .

In view of lemma 6, we have to estimate

d0
2π

∫ π
d0

− π
d0

e−it⌊bnx⌋E

[

∏

y

ϕξ(tNn(y))1Ωn

]

dt .

This is done in several steps presented in the following propositions.

Proposition 7. Let γ ∈ (0, 1/(β + 1)) and δ ∈ (0, 1/(2β)) s.t. γ (1−β)+
β < δ < 1/β − γ. Then,

we have

d0
2π

∫

{|t|≤nδ/bn}
e−it⌊bnx⌋E

[

∏

y

ϕξ(tNn(y))1Ωn

]

dt = d0
C(x)

bn
+ o(b−1

n ) ,

uniformly in x ∈ R.

Recall next that the characteristic function φ of the limit distribution of
(

n−1/β
∑n

k=1 ξke1
)

n
has the following form :

φ(u) = e−|u|β(A1+iA2sgn(u)),

with 0 < A1 < ∞ and |A−1
1 A2| ≤ | tan(πβ/2)|. It follows that the characteristic function ϕξ of

ξ0 satisfies:

1− ϕξ(u) ∼ |u|β(A1 + iA2sgn(u)) when u → 0. (14)

Therefore there exist constants ε0 > 0 and σ > 0 such that

max(|φ(u)|, |ϕξ(u)|) ≤ exp
(

−σ|u|β
)

for all u ∈ [−ε0, ε0]. (15)

Since ϕξ(t) = ϕξ(−t) for every t ≥ 0, the following propositions achieve the proof of Theorem 2:
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Proposition 8. Let δ and γ be as in Proposition 7. Then there exists c > 0 such that

∫ ε0n−γ

nδ/bn

E

[

∏

y

|ϕξ(tNn(y))|1Ωn

]

dt = o(e−nc
).

Proposition 9. There exists c > 0 such that

∫ π
d0

ε0n−γ

E

[

∏

y

|ϕξ(tNn(y))|1Ωn

]

dt = o(e−nc
).

3.3. Proof of Proposition 7. Remember that Vn =
∑

z∈Zd N
β
n (z). We start by a preliminary

lemma.

Lemma 10. (1) If β > 1, supn E

[

(

n log(n)β−1

Vn

)1/(β−1)
]

< +∞.

(2) If β ≤ 1, ∀p ∈ N, supn E
[(

n log(n)β−1

Vn

)p]

< +∞.

Proof. For β > 1, using Hölder’s inequality with p = β, we get

n =
∑

x

Nn(x) ≤ V
1
β
n R

β−1
β

n

which means that
(

n log(n)β−1

Vn

)1/(β−1)

≤ log(n)Rn

n
.

But it is proved in [13] Equation (7.a) that E[Rn] = O(n/ log(n)). The result follows.

The result is obvious for β = 1. For β < 1, Hölder’s inequality with p = 2− β yields

n =
∑

x

N
β

2−β
n (x)N

2(1−β)
2−β

n (x) ≤ V
1

2−β
n

(

∑

x

N2
n(x)

)
1−β
2−β

and so

n log(n)β−1

Vn
≤
(∑

xN
2
n(x)

n log(n)

)1−β

.

It is therefore enough to prove that there exists c > 0 such that

sup
n

E

[

exp

(

c

∑

xN
2
n(x)

n log(n)

)]

< ∞. (16)

Note that
∑

xN
2
n(x) =

∑n−1
k=0 Nn(Sk). By Jensen’s inequality, we get thus

E

[

exp

(

c

∑

xN
2
n(x)

n log(n)

)]

≤ 1

n

n−1
∑

k=0

E

[

exp

(

c
Nn(Sk)

log(n)

)]

.

Observe now that Nn(Sk) =
∑k

j=0 1{Sk−Sj=0} +
∑n−1

j=k+1 1{Sj−Sk=0}
(d)
= Nk+1(0) +N ′

n−k(0) − 1,

where (N ′
n(x), n ∈ N, x ∈ Z

d) is an independent copy of (Nn(x), n ∈ N, x ∈ Z
d). Hence,

E

[

exp

(

c

∑

xN
2
n(x)

n log(n)

)]

≤ E

[

exp

(

c
Nn(0)

log(n)

)]2

.

But, ∀t > 0,

P (Nn(0) ≥ t log(n)) ≤ P (T0 ≤ n)⌈t log(n)⌉ ,



LIMIT THEOREMS FOR 1-D AND 2-D RWRS 10

and

E

[

exp

(

c
Nn(0)

log(n)

)]

≤ 1 +

∫ ∞

0
c exp(ct) exp (−⌈t log(n)⌉P(T0 > n)) dt .

Now (16) follows then from the fact that ∃C > 0 such that P(T0 > n) ∼ C/ log(n) for any integer
n ≥ 1. �

The next step is

Lemma 11. Under the hypotheses of Proposition 7, we have

∫

{|t|≤nδ/bn}
e−it⌊bnx⌋E

[{

∏

y

ϕξ(tNn(y))− e−|t|β(A1+iA2sgn(t))Vn

}

1Ωn

]

dt = o(b−1
n ) ,

uniformly in x ∈ R.

Proof. It suffices to prove that
∫

{|t|≤nδ/bn}
E[|En(t)|1Ωn ] dt = o(b−1

n )

with

En(t) :=
∏

y

ϕξ(tNn(y))−
∏

y

exp
(

−|t|βNβ
n (y)(A1 + iA2sgn(t))

)

.

Observe that

En(t) =
∑

y

(

∏

z<y

ϕξ(tNn(z))

)

(

ϕξ(tNn(y))− e−|t|βNβ
n (y)(A1+iA2sgn(t))

)

×
(

∏

z>y

e−|t|βNβ
n (z)(A1+iA2sgn(t))

)

,

where an arbitrary ordering of sites of Zd has been chosen. But on Ωn, if |t| ≤ nδb−1
n , then

|t|Nn(z) ≤ nγ+δb−1
n . (17)

Since γ + δ < β−1, this implies in particular that |t|Nn(z) < ε0 for n large enough. Thus, by
using (15), we get

|En(t)| ≤
∑

y

∣

∣

∣
ϕξ(tNn(y)) − exp

(

−|t|βNβ
n (y)(A1 + iA2sgn(t))

)∣

∣

∣
exp



−σ|t|β
∑

z 6=y

Nβ
n (z)



 ,

for n large enough. Observe next that (14) implies
∣

∣

∣ϕξ(u)− exp
(

−|u|β(A1 + iA2sgn(u))
)∣

∣

∣ ≤ |u|βh(|u|) for all u ∈ R,

with h a continuous and monotone function on [0,+∞) vanishing in 0. Therefore by using (17)
we get

|En(t)| ≤ |t|βh(nγ+δb−1
n )

∑

y

Nβ
n (y) exp



−σ|t|β
∑

z 6=y

Nβ
n (z)



 .

Now, according to (10) and since γ < 1
β+1 ≤ 1

β+(1−β)+
, if n is large enough, we have on Ωn

∑

z 6=y

Nβ
n (z) ≥ Vn/2 for all y ∈ Z.
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By using this and the change of variables v = tV
1/β
n , we get

∫

{|t|≤nδb−1
n }

E [|En(t)|1Ωn ] dt ≤ h(nγ+δb−1
n )E[V −1/β

n ]

∫

R

|v|β exp
(

−σ|v|β/2
)

dv = o(E[V −1/β
n ]),

which proves the result according to Lemma 10. �

Finally Proposition 7 follows from the

Lemma 12. Under the hypotheses of Proposition 7, we have

d0
2π

∫

{|t|≤nδb−1
n }

e−it⌊bnx⌋E

[

e−|t|βVn(A1+iA2sgn(t))1Ωn

]

dt = d0
C(x)

bn
+ o(b−1

n ) ,

uniformly in x ∈ R.

Proof. Set

In,x :=

∫

{|t|≤nδb−1
n }

e−it⌊bnx⌋e−|t|βVn(A1+iA2sgn(t)) dt,

which can be rewritten

In,x =

∫

{|t|≤nδb−1
n }

e−it⌊bnx⌋φ(tV 1/β
n ) dt.

Since | ⌊bnx⌋ − bnx| ≤ 1, for all n and x, it is immediate that

In,x =

∫

{|t|≤nδb−1
n }

e−itbnxφ(tV 1/β
n ) dt+O(n2δb−2

n ).

But δ < (2β)−1 by hypothesis. So actually

In,x =

∫

{|t|≤nδb−1
n }

e−itbnxφ(tV 1/β
n ) dt+ o(b−1

n ).

Next, with the change of variable v = tbn, we get:
∫

{|t|≤nδb−1
n }

e−itbnxφ(tV 1/β
n ) dt = b−1

n

{

V −1/β
n bnf(xV

−1/β
n bn)− Jn,x

}

, (18)

where f is the density function of the distribution with characteristic function φ and where

Jn,x :=

∫

{|v|≥nδ}
e−ivxφ(vb−1

n V 1/β
n ) dv.

By lemma 4 (applied with m = 1, t1 = θ1 = 1, γ = β), (Wn := bnV
−1/β
n )n converges almost

surely, as n → ∞, to the constant Γ(β + 1)−1/β(πA)1−1/β . Moreover, Lemma 10 ensures that
the sequence (Wn, n ≥ 1) is uniformly integrable, so actually the convergence holds in L

1. Let
us deduce that

E[gx(Wn)] = E[gx(W )] + o(1), (19)

where gx : z 7→ zf(xz) and the o(1) is uniform in x. First

|E[gx(Wn)]− E[gx(W )]| ≤ sup
x,z∈R

|(gx)′(z)|E[|Wn −W |]

≤ sup
u

|f(u) + uf ′(u)|E[|Wn −W |].

This proves (19). We observe that E[gx(W )] = C(x).



LIMIT THEOREMS FOR 1-D AND 2-D RWRS 12

In view of (18), it only remains to prove that E[Jn,x1Ωn ] = o(1) uniformly in x. But this follows
from the basic inequality

E[|Jn,x1Ωn |] ≤
∫

|v|≥nδ

E

[

e
−A1|v|β

Vn

b
β
n 1Ωn

]

dv,

and from the lower bound for Vn given in (10) and from the choice δ > γ(1− β)+/β. �

3.4. Proof of Proposition 8. Recall that on Ωn, Nn(y) ≤ nγ , for all y ∈ Z
d. Hence by (15),

Kn :=

∫ ε0n−γ

nδ/bn

E

[

∏

y

|ϕξ(tNn(y))|1Ωn

]

dt ≤
∫ ε0n−γ

nδ/bn

E

[

exp
(

−σtβVn

)

1Ωn

]

dt .

With the change of variable s = tV
1/β
n , we get

Kn ≤ E

[

V −1/β
n

∫ ε0n−γV
1/β
n

nδV
1/β
n b−1

n

exp
(

−σsβ
)

ds1Ωn

]

≤ 1

n
1
β
−γ

(1−β)+
β

∫ +∞

n
δ−γ

(1−β)+
β log(n)

1−β
β

exp
(

−σsβ
)

ds ,

which proves the proposition since δ > γ(1− β)+/β.

3.5. Proof of Proposition 9. We adapt the proof of [5, Proposition 10]. We will see that the
argument of "peaks" still works here. We endow Z

d with the ordered structure given by the
relation < defined by

(α1, ..., αd) < (β1, ..., βd) ↔ ∃i ∈ {1, ..., d}, αi < βi, ∀j < i, αj = βj .

We consider C+ = (x1, ..., xT ) ∈ (Zd \ {0})T for some positive integer T such that:

• x1 + ...+ xT = 0;
• for every i = 1, ..., T , P(X1 = xi) > 0;
• there exists I1 ∈ {1, ..., T} such that

– for every i = 1, ..., I1, xi > 0,
– for every i = I1 + 1, ..., T , xi < 0.

Let us write C− := (xT−i+1)i=1,...,T . We define B :=
∑I1

i=1 xi. We observe that

p := P((X1, ...,XT ) = C+) = P((X1, ...,XT ) = C−) > 0.

We notice that (X1, ...,XT ) = C+ corresponds to a trajectory visiting B only once before going
back to the origin at time T (and without visiting −B). Analogously, (X1, ...,XT ) = C− corre-
sponds to a trajectory that goes down to −B and comes back up to 0 (and without visiting B),

and staying at a distance smaller than d̃/2 of the origin with d̃ :=
∑T

i=1 |xi| (where | · | is the
absolute value if d = 1 and |(a, b)| = max(|a|, |b|) if d = 2). We introduce now the event

Dn :=
{

Cn >
np

2T

}

,

where

Cn := #
{

k = 0, ...,
⌊ n

T

⌋

− 1 : (XkT+1, . . . ,X(k+1)T ) = C±
}

.

Since the sequences (XkT+1, . . . ,X(k+1)T ), for k ≥ 0, are independent of each other, Chernoff’s
inequality implies that there exists c > 0 such that

P(Dn) = 1− o(e−cn).
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We introduce now the notion of "loop". We say that there is a loop based on y at time n if
Sn = y and (Xn+1, . . . ,Xn+T ) = C±. We will see (in Lemma 13 below) that, on Ωn ∩ Dn, there
is a large number of y ∈ Z

d on which are based a large number of loops. For any y ∈ Z
d, let

Cn(y) := #
{

k = 0, . . . ,
⌊n

T

⌋

− 1 : SkT = y and (XkT+1, . . . ,X(k+1)T ) = C±
}

,

be the number of loops based on y before time n (and at times which are multiple of T ), and let

pn := #

{

y ∈ Z : Cn(y) ≥
log log(n)1/4p

4T

}

,

be the number of sites y ∈ Z on which at least an :=
⌊

log log(n)1/4p
4T

⌋

loops are based.

Lemma 13. On Ωn ∩ Dn, we have, pn ≥ c′n1−γ with c′ = p/(4T ).

Proof. Note that Cn(y) ≤ N∗
n for all y ∈ Z

d. Thus on Ωn ∩Dn, we have
np

2T
≤

∑

y∈Zd : Cn(y)<an

Cn(y) +
∑

y∈Zd : Cn(y)≥an

Cn(y)

≤ Rnan +N∗
npn ≤ np

4T
+ pnn

γ ,

according to lemma 6. This proves the lemma. �

We have proved that, if n is large enough, the event Ωn ∩ Dn is contained in the event

En := {pn ≥ c′n1−γ}.
Now, on En, we consider (Yi)i=1,...,⌊c′′n1−γ⌋ (with c′′ := c′/(2d̃) if d = 1 and with c′′ := c′/2d̃2) if
d = 2) such that

• on each Yi, at least an loops are based,
• for every i, j such that i 6= j, we have |Yi − Yj| > d̃/2.

For every i = 1, . . . ,
⌊

c′′n1−γ
⌋

, let t
(1)
i , . . . , t

(an)
i be the an first times (which are multiples of T )

when a loop is based on the site Yi. We also define N0
n(Yi + B) as the number of visits of S

before time n to Yi +B, which do not occur during the time intervals [t
(j)
i , t

(j)
i + T ], for j ≤ an.

Since our construction is basically the same as in [5, section 2.8], the proof of the following
lemma is exactly the same as the proof of [5, Lemma 16] and we do not prove it again.

Lemma 14. Conditionally to the event En, (Nn(Yi+B)−N0
n(Yi+B))i≥1 is a sequence of inde-

pendent identically distributed random variables with binomial distribution B
(

an;
1
2

)

. Moreover

this sequence is independent of (N0
n(Yi +B))i≥1.

Let η be a real number such that γ < η < (1 − γ)/β (this is possible since γ < 1/(β + 1)). We
define

∀n ≥ 1, dn := n−η.

Let now ρ := sup{|ϕξ(u)| : d
(

u, 2πd0Z
)

≥ ε0}. According to Formula (15) and since limn→∞ dn =

0, for n large enough, we have

|ϕξ(u)| ≤ ρ1
{d
(

u, 2π
d0

Z

)

≥ǫ0}
+ exp

(

−σd

(

u,
2π

d0
Z

)β
)

1
{d
(

u, 2π
d0

Z

)

<ǫ0}

≤ exp
(

−σdβn

)

,
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as soon as d
(

u, 2πd0Z
)

≥ dn. Therefore, for n large enough,

∏

z

|ϕξ(tNn(z))| ≤ exp

(

−σdβn#

{

z : d

(

tNn(z),
2π

d0
Z

)

≥ dn

})

. (20)

Then notice that

d

(

tNn(z),
2πZ

d0

)

≥ dn ⇐⇒ Nn(z) ∈ I :=
⋃

k∈Z

Ik, (21)

where for all k ∈ Z,

Ik :=

[

2kπ

d0t
+

dn
t
,
2(k + 1)π

d0t
− dn

t

]

.

In particular R \ I =
⋃

k∈Z Jk, where for all k ∈ Z,

Jk :=

(

2kπ

d0t
− dn

t
,
2kπ

d0t
+

dn
t

)

.

Lemma 15. Under the hypotheses of Proposition 9, for every i ≤
⌊

c′′n1−γ
⌋

, t ∈ (ε0n
−γ , π/d0)

and n large enough,

P
(

Nn(Yi +B) ∈ I | En, N0
n(Yi +B)

)

≥ 1

3
almost surely.

Assume for a moment that this lemma holds true and let us finish the proof of Proposition
9. Lemmas 14 and 15 ensure that conditionally to En and ((N0

n(Yi + B), i ≥ 1), the events
{Nn(Yi+B) ∈ I}, i ≥ 1, are independent of each other, and all happen with probability at least
1/3. Therefore, since Ωn ∩ Dn ⊆ En, there exists c > 0, such that

P

(

Ωn ∩ Dn, #{i : Nn(Yi +B) ∈ I} ≤ c′′n1−γ

4

)

≤ P

(

Bn ≤ c′′n1−γ

4

)

= o(exp(−cn1−γ)),

where for all n ≥ 1, Bn has binomial distribution B
(⌊

c′′n1−γ
⌋

; 13
)

.

But if #{z : Nn(z) ∈ I} ≥ c′′n1−γ

4 , then by (20) and (21) there exists a constant c > 0, such
that

∏

z

|ϕξ(tNn(z))| ≤ exp
(

−cn1−γdβn

)

,

which proves Proposition 9 since 1− γ − βη > 0.

Proof of Lemma 15. First notice that by Lemma 14, for any H ≥ 0,

P(Nn(Yi +B) ∈ I | En, N0
n(Yi +B) = H) = P (H + bn ∈ I) , (22)

where bn is a random variable with binomial distribution B
(

an;
1
2

)

. We will use the following
result whose proof is postponed.

Lemma 16. Under the hypotheses of Proposition 9, for every t ∈ (ε0n
−γ , π/d0) and for n large

enough, the following holds:

(i) For any integer k such that all the elements of Ik −H are smaller than an
2 ,

P(bn ∈ (Ik −H)) ≥ P(bn ∈ (Jk −H)).

(ii) For any integer k such that all the elements of Ik −H are larger than an
2 ,

P(bn ∈ (Ik −H)) ≥ P(bn ∈ (Jk+1 −H)).
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Now call k0 the largest integer satisfying the condition appearing in (i) and k1 the smallest
integer satisfying the condition appearing in (ii). We have k1 = k0+1 or k1 = k0 +2. According
to Lemma 16, we have

P (H + bn ∈ I) ≥
∑

k≤k0

P (H + bn ∈ Ik) +
∑

k≥k1

P (H + bn ∈ Ik)

≥
∑

k≤k0

P (H + bn ∈ Jk) +
∑

k≥k1

P (H + bn ∈ Jk+1)

= P(H + bn 6∈ I)− P(H + bn ∈ Jk0+1 ∪ Jk1).

Hence,

P (H + bn ∈ I) ≥ 1

2
[1− P(H + bn ∈ Jk0+1 ∪ Jk1)] .

Let b̄n := 2
(

bn − an
2

)√
an. Since limn→+∞ an = +∞, (b̄n)n converges in distribution to a

standard normal variable, whose distribution function is denoted by Φ. The interval Jk1 being
of length 2dn/t,

P(H + bn ∈ Jk1) = P(b̄n ∈ [mn,Mn]) , with Mn −mn = 4
dn

t
√
an

≤ Φ(Mn)− Φ(mn) +
C√
an

(by the Berry–Esseen inequality)

≤ Mn −mn√
2π

+
C√
an

≤ C ′ dn
ε0n−γ√an

+
C√
an

,

for t ≥ ε0n
−γ , and some constants C > 0 and C ′ > 0. Since limn→+∞ an = +∞ and

limn→+∞ dnn
γ(an)

−1/2 = 0 (since η > γ), we conclude that P(H + bn ∈ Jk1) = o(1). The
same holds for P(H + bn ∈ Jk0+1), so that for n large enough,

P (H + bn ∈ I) ≥ 1

2
[1− o(1)] ≥ 1

3
.

Together with (22), this concludes the proof of Lemma 15. �

Proof of Lemma 16. We only prove (i), since (ii) is similar. So let k be an integer such that all
the elements of Ik − H are smaller than an

2 . Assume that (Jk − H) ∩ Z contains at least one
nonnegative integer (otherwise P(bn ∈ (Jk − H)) = 0 and there is nothing to prove). Let zk
denote the greatest integer in Jk −H, so that by our assumption P(bn = zk) > 0 (remind that
0 ≤ zk < an

2 ). By monotonicity of the function z 7→ P(bn = z), for z ≤ an
2 , we get

P(bn ∈ Jk −H) ≤ P(bn = zk)#((Jk −H) ∩ Z) ≤ P(bn = zk)

⌈

2dn
t

⌉

.

In the same way,

P(bn ∈ Ik −H) ≥ P(bn = zk)#((Ik −H) ∩ Z) ≥ P(bn = zk)

⌊

2π

d0t
− 2dn

t

⌋

.

Hence

P(bn ∈ Ik −H) ≥

⌊

2π
d0t

− 2dn
t

⌋

⌈

2dn
t

⌉ P(bn ∈ Jk −H) .
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But π/(d0t) ≥ 1 and limn→+∞ dn = 0 by hypothesis. It follows immediately that for n large
enough, we have 2dn < π/(2d0), and so

⌊

2π

d0t
− 2dn

t

⌋

≥
⌊

3π

2d0t

⌋

≥ 1 +

⌊

π

2d0t

⌋

≥
⌈

π

2d0t

⌉

≥
⌈

2dn
t

⌉

.

This concludes the proof of the lemma. �

4. Proof of the local limit theorem in the strongly nonlattice case

As in [5], the proof in the strongly nonlattice case is closely related to the proof in the lattice
case.

We assume here that ξ is strongly nonlattice. In that case, there exist ε0 > 0, σ > 0 and ρ < 1
such that |ϕξ(u)| ≤ ρ if |u| ≥ ε0 and |ϕξ(u)| ≤ exp(−σ|u|β) if |u| < ε0.

We use here the notations of Section 3 with the hypotheses on γ, and δ of Proposition 7. Let

h0 be the density of Polya’s distribution: h0(y) = 1
π
1−cos(y)

y2
, with Fourier transform ĥ0(t) =

(1− |t|)+. For θ ∈ R, let hθ(y) = exp(iθy)h0(y) with Fourier transform ĥθ(t) = ĥ0(t+ θ). As in
[10, thm 5.4], it is enough to show that for all θ ∈ R,

lim
n→∞

bnE [hθ(Zn − bnx)] = C(x) ĥθ(0) . (23)

By Fourier inverse transform, we have

bnE [hθ(Zn − bnx)] =
bn
2π

∫

R

e−iubnxE





∏

x∈Zd

ϕξ(uNn(x))



 ĥθ(u) du .

Since ĥθ ∈ L1, we can restrict our study to the event Ωn of Lemma 6. The part of the integral
corresponding to |u| ≤ nδb−1

n is treated exactly as in Proposition 7. The only change is that we
have to check that

lim
n→∞

bn

∫

{|u|≤nδb−1
n }

E

[

e−|u|βVn(A1+iA2sgn(u))1Ωn

]

(ĥθ(u)− ĥθ(0)) du = 0 ,

which is obviously true since Vn ≥ n1−γ(1−β)+ and since 2γ(1 − β)+ < 2δβ < 1, using the fact

that ĥθ is a Lipschitz function.

Now, since ĥθ is bounded, the part corresponding to nδb−1
n ≤ |u| ≤ ε0n

−γ is treated as in the
proof of Proposition 8 (since it only uses the behavior of ϕξ around 0, which is the same).

Finally, it remains to prove that

lim
n→∞

bn

∫

{|u|≥ε0n−γ}
e−iubnx E

[

∏

x

ϕξ(uNn(x))1Ωn

]

ĥθ(u) du = 0 . (24)

We note that, if |u| ≥ ε0n
−γ and x ∈ Z

d, we have

|ϕξ(uNn(x))| ≤ exp(−σ|u|βNβ
n (x)) 1{|uNn(x)|≤ε0} + ρ 1{|uNn(x)|≥ε0}

≤ exp(−σεβ0n
−γβNβ

n (x)) 1{|uNn(x)|≤ε0} + ρ 1{|uNn(x)|≥ε0} .

For n large enough, ρ ≤ exp(−σεβ0n
−γβ). Therefore, if n is large enough, then for all x and u

such that Nn(x) ≥ 1 and |u| ≥ ε0n
−γ , we have

|ϕξ(uNn(x))| ≤ exp(−σεβ0n
−γβ) .
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Hence,
∣

∣

∣

∣

∣

E

[

∏

x

ϕξ(uNn(x))1Ωn

]∣

∣

∣

∣

∣

≤ E

[

exp(−σεβ0n
−γβRn)1Ωn

]

≤ exp(−σεβ0n
1−γ(1+β)) .

Therefore, since γ(1 + β) < 1, we have

lim
n→∞

bn

∫

{|u|≥ε0n−γ}
e−iubnx E

[

∏

x

ϕξ(uNn(x))1Ωn

]

ĥθ(u) du = 0 .

This concludes the proof of Theorem 3. �
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