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 in the particular case where β = 2 (respectively for α = d = 2 and α = d = 1).

Introduction

Random walks in random scenery (RWRS) are simple models of processes in disordered media with long-range correlations. They have been used in a wide variety of models in physics to study anomalous dispersion in layered random flows [START_REF] Matheron | Is transport in porous media always diffusive? A counterxample[END_REF], diffusion with random sources, or spin depolarization in random fields (we refer the reader to Le Doussal's review paper [START_REF] Doussal | Diffusion in layered random flows, polymers, electrons in random potentials, and spin depolarization in random fields[END_REF] for a discussion of these models).

On the mathematical side, motivated by the construction of new self-similar processes with stationary increments, Kesten and Spitzer [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] and Borodin [START_REF] Borodin | A limit theorem for sums of independent random variables defined on a recurrent random walk. (Russian)[END_REF][START_REF] Borodin | Limit theorems for sums of independent random variables defined on a transient random walk. Investigations in the theory of probability distributions[END_REF] introduced RWRS in dimension one and proved functional limit theorems. This study has been completed in many works, in particular in [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] and [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks Arxiv[END_REF]. These processes are defined as follows. Let ξ := (ξ y , y ∈ Z d ) and X := (X k , k ≥ 1) be two independent sequences of independent identically distributed random variables taking values in R and Z d respectively. The sequence ξ is called the random scenery. The sequence X is the sequence of increments of the random walk (S n , n ≥ 0) defined by S 0 := 0 and S n := n i=1 X i , for n ≥ 1. The random walk in random scenery Z is then defined by Z 0 := 0 and ∀n ≥ 1,

Z n := n-1 k=0 ξ S k .
Denoting by N n (y) the local time of the random walk S :

N n (y) := #{k = 0, ..., n -1 :

S k = y} ,
it is straightforward to see that Z n can be rewritten as Z n = y ξ y N n (y).

As in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF], the distribution of ξ 0 is assumed to belong to the normal domain of attraction of a strictly stable distribution S β of index β ∈ (0, 2], with characteristic function φ given by φ(u) = e -|u| β (A 1 +iA 2 sgn(u)) u ∈ R, where 0 < A 1 < ∞ and |A -1 1 A 2 | ≤ | tan(πβ/2)|. We will denote by ϕ ξ the characteristic function of the ξ x 's. When β > 1, this implies that E[ξ 0 ] = 0. When β = 1, we will further assume the symmetry condition sup t>0 E ξ 0 1I {|ξ 0 |≤t} < +∞ .

(1)

Under these conditions (for β ∈ (0; 2]), there exists C ξ > 0 such that we have

∀t > 0, P (|ξ 0 | ≥ t) ≤ C ξ t -β . (2) 
Concerning the random walk, the distribution of X 1 is assumed to belong to the normal basin of attraction of a stable distribution S ′ α with index α ∈ (0, 2]. Then the following weak convergences hold in the space of càdlàg real-valued functions defined on [0, ∞) and on R respectively, endowed with the Skorohod J 1 -topology (see [1, chapter 3]) :

n -1/α S ⌊nt⌋ t≥0 L =⇒ n→∞ (U (t)) t≥0 and   n -1 β ⌊nx⌋ k=0 ξ ke 1   x∈R L =⇒ n→∞ (Y (x)) x∈R , with e 1 = (1, 0, • • • , 0) ∈ Z d ,
where U and Y are two independent Lévy processes such that U (0) = 0, Y (0) = 0, U (1) has distribution S ′ α , Y (1) and Y (-1) have distribution S β . Functional limit theorem. Our first result is concerned with a functional limit theorem for (Z [nt] ) t≥0 . Intuitively speaking,

• when α < d, the random walk S n is transient, its range is of order n, and Z n has the same behaviour as a sum of about n independent random variables with the same distribution as the variables ξ x . Therefore, n -1/β (Z [nt] ) t≥0 weakly converges in the space D([0, ∞)) of càdlàg functions endowed with the Skorohod J 1 -topology, to a multiple of the process (Y t ), as proved in [START_REF] Borodin | Limit theorems for sums of independent random variables defined on a transient random walk. Investigations in the theory of probability distributions[END_REF]; • when α > d (i.e d = 1 and 1 < α ≤ 2), the random walk S n is recurrent, its range is of order n 1/α , its local times are of order n 1-1/α , so that Z n is of order n

1-1 α + 1
αβ . In this situation, [START_REF] Borodin | A limit theorem for sums of independent random variables defined on a recurrent random walk. (Russian)[END_REF] and [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] proved a functional limit theorem for n -(1-

1 α + 1 αβ ) (Z [nt]
) t≥0 in the space C([0, ∞)) of continuous functions endowed with the uniform topology , the limiting process being a self-similar process, but not a stable one.

• when α = d (i.e. α = d = 1, or α = d = 2), S n is recurrent, its range is of order n/ log(n), its local times are of order log(n) so that Z n is of order n 1 β log(n) β-1
β . In this situation, a functional limit theorem in the space of continuous functions was proved in [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] for d = α = β = 2, and in [START_REF] Deligiannidis | An asymptotic variance of the self-intersections of random walks Arxiv[END_REF] for d = α = 1 and β = 2.

Our first result gives a limit theorem for α = d (and so d ∈ {1, 2}) and for any value of β ∈ (0; 2) in the finite distributional sense. n n converges in distribution to a random variable with characteristic function given by t → exp(-a|t|) with a > 0 and then we define A := a.

Then, the finite-dimensional distributions of the sequence of random variables

Z [nt] n 1/β log(n) (β-1)/β t≥0 n≥2
converges to the finite-dimensional distributions of the process

Ỹt := Γ(β + 1) (πA) β-1 1/β Y (t) t≥0 .
Moreover, if β < 2, the sequence

Z [nt] n 1/β log(n) (β-1)/β t≥0 n≥2
is not tight in D([0, ∞)) endowed with the J 1 -topology.

Local limit theorem.

Our next results concern a local limit theorem for (Z n ) n . The d = 1 case was treated in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices To appear[END_REF] for α ∈ (0; 2]\ {1} and all values of β ∈ (0; 2]. Here, we complete this study by proving a local limit theorem for α = d = 1 (and β ∈ (0; 2]). By a direct adaptation of the proof of this result, we also establish a local limit theorem for α = d = 2 (we just adapt the definition of "peaks", see section 3.5). Let us notice that the same adaptation can be done from [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices To appear[END_REF] (case α < 1) to get local limit theorems for d ≥ 2, α < d and β ∈ (0; 2].

We give two results corresponding respectively to the case when ξ 0 is lattice and to the case when it is strongly non-lattice. We denote by ϕ ξ the characteristic function of ξ 0 .

Theorem 2. Assume that ξ 0 takes its values in Z . Let d 0 ≥ 1 be the integer such that {u :

|ϕ ξ (u)| = 1} = 2π d 0 Z. Let b n := n 1/β (log(n)) (β-1)/β
. Under the previous assumptions on the random walk and on the scenery, for α = d ∈ {1, 2}, for every β ∈ (0, 2], and for every x ∈ R,

• if P (nξ 0 -⌊b n x⌋ / ∈ d 0 Z) = 1, then P (Z n = ⌊b n x⌋) = 0; • if P (nξ 0 -⌊b n x⌋ ∈ d 0 Z) = 1, then P (Z n = ⌊b n x⌋) = d 0 C(x) n 1/β (log(n)) (β-1)/β + o(n -1/β (log(n)) -(β-1)/β ) uniformly in x ∈ R, where C(•) is the density function of Ỹ1 .
Theorem 3. Assume now that ξ 0 is strongly non-lattice which means that

lim sup |u|→+∞ |ϕ ξ (u)| < 1.
We still assume that α = d ∈ {1, 2} and β ∈ (0; 2]. Then, for every x, a, b ∈ R such that a < b, we have

lim n→+∞ b n P (Z n ∈ [b n x + a; b n x + b]) = C(x)(b -a),
with b n := n 1/β (log(n)) (β-1)/β and where C(•) is the density function of Ỹ1 .

Proof of the limit theorem

Before proving the theorem, we prove some technical lemmas. For any real number γ > 0, any integer m ≥ 1, any θ 1 , . . . , θ m ∈ R, any t 0 = 0 < t 1 < . . . < t m , we consider the sequences of random variables (L n (γ)) n≥2 and (L ′ n (γ)) n≥2 defined by

L n (γ) := 1 n(log n) γ-1 x∈Z d m i=1 θ i (N [nt i ] (x) -N [nt i-1 ] (x)) γ and L ′ n (γ) := 1 n(log n) γ-1 x∈Z d m i=1 θ i (N [nt i ] (x) -N [nt i-1 ] (x)) γ sgn m i=1 θ i (N [nt i ] (x) -N [nt i-1 ] (x)) .
Lemma 4. For any real number γ > 0, any integer m ≥ 1, any θ 1 , . . . , θ m ∈ R, any t 0 = 0 < t 1 < . . . < t m , the following convergences hold P-almost surely

lim n→+∞ L n (γ) = Γ(γ + 1) (πA) γ-1 m i=1 |θ i | γ (t i -t i-1 ) (3) 
and

lim n→+∞ L ′ n (γ) = Γ(γ + 1) (πA) γ-1 m i=1 |θ i | γ sgn(θ i )(t i -t i-1 ). (4) 
Proof. We fix an integer m ≥ 1 and 2m real numbers θ 1 , . . . , θ m , t 1 , ..., t m such that 0 < t 1 < . . . < t m and we set t 0 := 0. To simplify notations, we write b i,n (x

) := N [nt i ] (x) -N [nt i-1 ] (x).
Following the techniques developed in [START_REF] Cerný | Moments and distribution of the local time of a two-dimensional random walk[END_REF], we first have to prove (3) and (4) for integer γ: for every integer k ≥ 1, P-almost surely, as n goes to infinity, we have

1 n(log n) k-1 x∈Z d m i=1 θ i b i,n (x) k -→ Γ(k + 1) (πA) k-1 m i=1 θ k i (t i -t i-1 ). (5) 
Let us assume (5) for a while, and let us end the proof of (3) and (4) for any positive real γ.

Given the random walk S := (S n ) n , let (U n ) n≥1 be a sequence of random variables with values in Z d , such that for all n, U n is a point chosen uniformly in the range of the random walk up to time [nt m ], that is

P(U n = x S) = R -1 [ntm] 1 {N [ntm] (x)≥1} , with R k := #{y : N k (y) > 0}.
Moreover, let U ′ be a random variable with values in {1, . . . , m} and distribution

P(U ′ = i) = (t i -t i-1
)/t m and let T be a random variable with exponential distribution with parameter one and independent of U ′ . Then, for P-almost every realization of the random walk S, the sequence of random variables

W n := πA log(n) m i=1 θ i b i,n (U n ) n converges in distribution to the random variable W := θ U ′ T . Indeed, the moment of order k of W n given S is E(W k n S) = (πA) k n(log n) k-1 x∈Z d m i=1 θ i b i,n (x) k n log(n)R([nt m ])
.

Using ( 5) and the fact that ((log n)R n /n) n converges almost surely to πA (see [START_REF] Dvoretzky | Some problems on random walk in space[END_REF][START_REF] Gall | The range of stable random walks[END_REF]), the moments

E(W k n S) converges a.s. to E(W k ) = Γ(k + 1) m i=1 θ k i (t i -t i-1
)/t m , which proves the convergence in distribution of (W n ) n (given S) to W . This ensure, in particular, the convergence in distribution of (|W n | γ ) n and of (|W n | γ sgn(W n )) n (given S) to |W | γ and |W | γ sgn(W ) respectively (for every real number γ ≥ 0 and for P-almost every realization of the random walk S). Since any moment of |W n | can be bounded from above by an integer moment, we deduce that, for any γ ≥ 0, we have P-almost surely

lim n→+∞ E(|W n | γ S) = E(|W | γ ) and lim n→+∞ E(|W n | γ sgn(W n ) S) = E(|W | γ sgn(W )),
which proves lemma 4. Let us prove [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices To appear[END_REF]. Let k ≥ 1. According to Theorem 1 in [START_REF] Cerný | Moments and distribution of the local time of a two-dimensional random walk[END_REF] (proved for α = d = 2, but also valid for α = d = 1), we have ∀i ∈ {1, ..., m}, lim

n→+∞ 1 n(log n) k-1 x∈Z d (b i,n (x)) k = Γ(k + 1) (πA) k-1 (t i -t i-1 ), P -a.s.. (6) 
We define

Σ n (θ 1 , ..., θ m ) := x∈Z d m i=1 θ i b i,n (x) k - x∈Z d m i=1 (θ i ) k (b i,n (x)) k . (7) 
According to [START_REF] Cerný | Moments and distribution of the local time of a two-dimensional random walk[END_REF], it is enough to prove that P-a.s.,

Σ n (θ 1 , ..., θ m ) = o(n(log n) k-1
). We observe that Σ n (θ 1 , ..., θ m ) is the sum of the following terms

x∈Z d k j=1 θ i j b i j ,n (x) . (8) 
over all the k-tuple (i 1 , . . . , i k ) ∈ {1, . . . , m} k , with at least two distinct indices. We observe that

|Σ n (θ 1 , ..., θ m )| ≤ max(|θ 1 |, ..., |θ m |) k Σ n (1, ..., 1)
.

But, we have

Σ n (1, ..., 1) = x∈Z d N [ntm] (x) k - x∈Z d m i=1 (b i,n (x)) k = x∈Z d N [ntm] (x) k - m i=1 x∈Z d (b i,n (x)) k = o(n log(n) k-1 ),
according to (6).

Lemma 5. For any ρ > 0, sup

x∈Z d N n (x) = o(n ρ ) a.s.. Proof. See Lemma 2.5 in [2].
Proof of Theorem 1. Let an integer m ≥ 1 and 2m real numbers θ 1 , ..., θ m , t 1 , ..., t m such that 0 < t 1 < ... < t m . We set t 0 := 0. Again, we use the notation b i,n (x

) := N [nt i ] (x) -N [nt i-1 ] (x).
Let us write Zn :=

1 n 1/β (log(n)) (β-1)/β m i=1 θ i (Z [nt i ] -Z [nt i-1 ] ). We have to prove that E[e i Zn ] → m i=1 φ θ i (t i -t i-1 ) 1/β Γ(β + 1) (πA) β-1 1/β , (9) 
as n goes to infinity. We observe that Zn =

1 n 1/β (log(n)) (β-1)/β x∈Z d m i=1 θ i b i,n (x)ξ x . Hence we have E[e i Zn |S] = x∈Z d ϕ ξ m i=1 θ i b i,n (x) n 1/β (log(n)) (β-1)/β . Observe next that ϕ ξ (t) -exp -|t| β (A 1 + iA 2 sgn(t) ≤ |t| β h(|t|) for all t ∈ R,
with h a continuous and monotone function on [0, +∞) vanishing in 0. This implies in particular the existence of ε 0 > 0 and σ > 0 such that max(|ϕ ξ (t)|, exp -A 1 |t| β ) ≤ e -σ|t| β for any t ∈ [-ε 0 , ε 0 ]. According to lemma 5, P-almost surely, for every n large enough, we have

b n := sup x | m i=1 θ i b i,n (x)| n 1/β (log(n)) (β-1)/β ≤ ε 0 and so E[e i Zn |S] - x∈Z d e -| m i=1 θ i b i,n (x) | β n(log(n)) β-1 (A 1 +iA 2 sgn( m i=1 θ i b i,n (x))) is less than x∈Z d | m i=1 θ i b i,n (x)| β n(log(n)) β-1 h(b n )e -σ y∈Z| m i=1 θ i b i,n (y) | β n(log n) β-1 -b β n
. Hence, according to lemmas 4 and 5, P-almost surely, we have

lim n→+∞ E[e i Zn |S] = e -Γ(β+1) (πA) β-1 m i=1 |θ i | β (t i -t i-1 )(A 1 +iA 2 sgn(θ i ))
which gives [START_REF] Dvoretzky | Some problems on random walk in space[END_REF] thanks to the Lebesgue dominated convergence theorem.

Finally we prove that the sequence

Z [nt] n 1/β log(n) (β-1)/β t∈[0;1] n≥2 is not tight in D([0, ∞)). It is enough to prove that it is not tight in D([0, 1]). To this aim, let b n = n 1/β log(n) (β-1)/β , and (Z n (t), t ∈ [0, 1]) denote the linear interpolation of (Z [nt] , t ∈ [0, 1]), i.e. Z n (t) = Z [nt] + (nt -[nt])ξ S [nt] .
Then, ∀ǫ > 0,

P sup t∈[0,1] Z n (t) -Z [nt] ≥ ǫb n = P n-1 max i=0 |ξ S i | ≥ ǫb n = P [∃x ∈ {S 0 , • • • , S n-1 } s.t |ξ x | ≥ ǫb n ] ≤ E(# {S 0 , • • • , S n-1 })P [|ξ 0 | ≥ ǫb n ] ≤ C n log(n) ǫ -β b -β n = Cǫ -β log(n) -β ,
where the last inequality comes from (2) and Theorem 6.9 of [START_REF] Gall | The range of stable random walks[END_REF]. Therefore, if

Z [nt] bn t∈[0;1] n≥2 converges weakly to Ỹt t∈[0,1]
, the same is true for

Zn(t) bn t∈[0;1] n≥2
. Using the fact that the sequence

Zn(t) bn t∈[0;1] n≥2
is a sequence in the space C([0, 1]) and that the Skorohod J 1topology coincides with the uniform one when restricted to C([0, 1]), one deduces that Zn(t) bn t∈[0;1] converges weakly in C([0, 1]), and that the limiting process Ỹt

t∈[0,1]
is therefore continuous, which is false as soon as β < 2.

3. Proof of the local limit theorem in the lattice case Lemma 6. For every n ≥ 1 and 1 > γ > 0, set

Ω n = Ω n (γ) := R n ≤ n (log log(n)) 1/4 and N * n ≤ n γ .
Then,

P(Ω n ) = 1 -o(b -1 n ).
Moreover, the following also holds on Ω n :

(log log(n)) 1/4 ≤ N * n and V n ≥ n 1-γ(1-β) + . ( 10 
)
Proof. We first prove that

P R n ≥ n(log log(n)) -1/4 = o(b -1 n ). (11) 
Let us recall that for every a, b ∈ N, we have

P(R n ≥ a + b) ≤ P(R n ≥ a)P(R n ≥ b) . ( 12 
)
The proof is given for instance in [START_REF] Chen | Moderate and small deviations for the ranges of one-dimensional random walks[END_REF]. We will moreover use the fact that E[R n ] ∼ cn(log(n)) -1 and V ar(R n ) = O n 2 log -4 (n) (see [START_REF] Gall | The range of stable random walks[END_REF]). Hence, for n large enough, there exists C > 0 such that we have

P R n ≥ n (log log(n)) 1/4 ≤ P R n ≥ n(log log(n)) 1/4 log(n) ⌊log(n)(log log(n)) -1/2 ⌋ ≤ P |R n -E[R n ]| ≥ 1 2 n(log log(n)) 1/4 log(n) ⌊log(n)(log log(n)) -1/2 ⌋ ≤ 5V ar(R n ) log 2 (n) n 2 (log log(n)) 1/2 ⌊log(n)(log log(n)) -1/2 ⌋ ≤ Cn 2 log 2 (n)/ log 4 (n) n 2 log log(n) ⌊log(n)(log log(n)) -1/2 ⌋ ≤ C (log(n)) 2 ⌊log(n)(log log(n)) -1/2 ⌋ = exp -log(n) log log(n) 1 - log(C) 2 log log(n) .
This ends the proof of [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF].

Let us now prove that

P [N * n ≥ n γ ] = o(b -1 n ). (13) 
We have

P(N * n ≥ n γ ) ≤ x P(N n (x) ≥ n γ ) = x P(T x ≤ n; N n (x) ≥ n γ ) , where T x := inf {n > 1, s.t. S n = x} , ≤ x P(T x ≤ n)P(N n (0) ≥ n γ ) ≤ E[R n ]P(T 0 ≤ n) n γ .
Hence, (13) follows now from E[R n ] ∼ cn(log(n)) -1 , and from P(T 0 > n) ∼ C/ log(n).

Since

n = y N n (y) ≤ R n N * n , we get that N * n ≥ n Rn ≥ (log log(n)) 1/4 on Ω n . To prove the lower bound for V n , note that for β ≥ 1, V n = y N n (y) β ≥ y N n (y) = n. For β < 1, on Ω n , n = y N n (y) = y N n (y) β N n (y) 1-β ≤ V n (N * n ) 1-β ≤ V n n γ(1-β) .
3.2. Scheme of the proof. It is easy to see (cf the proof of lemma 5 in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices To appear[END_REF]) that

P (Z n = ⌊b n x⌋) = 0 if P (nξ 0 -⌊b n x⌋ / ∈ d 0 Z) = 1, and that if P (nξ 0 -⌊b n x⌋ ∈ d 0 Z) = 1, P (Z n = ⌊b n x⌋) = d 0 2π π d 0 -π d 0 e -it⌊bnx⌋ E y ϕ ξ (tN n (y)) dt .
In view of lemma 6, we have to estimate

d 0 2π π d 0 -π d 0 e -it⌊bnx⌋ E y ϕ ξ (tN n (y))1 Ωn dt .
This is done in several steps presented in the following propositions.

Proposition 7. Let γ ∈ (0, 1/(β + 1)) and δ ∈ (0, 1/(2β))

s.t. γ (1-β) + β < δ < 1/β -γ. Then, we have d 0 2π {|t|≤n δ /bn} e -it⌊bnx⌋ E y ϕ ξ (tN n (y))1 Ωn dt = d 0 C(x) b n + o(b -1 n ) , uniformly in x ∈ R.
Recall next that the characteristic function φ of the limit distribution of n -1/β n k=1 ξ ke 1 n has the following form :

φ(u) = e -|u| β (A 1 +iA 2 sgn(u)) , with 0 < A 1 < ∞ and |A -1 1 A 2 | ≤ | tan(πβ/2)|.
It follows that the characteristic function ϕ ξ of ξ 0 satisfies:

1 -ϕ ξ (u) ∼ |u| β (A 1 + iA 2 sgn(u)) when u → 0. ( 14 
)
Therefore there exist constants ε 0 > 0 and σ > 0 such that

max(|φ(u)|, |ϕ ξ (u)|) ≤ exp -σ|u| β for all u ∈ [-ε 0 , ε 0 ]. (15) 
Since ϕ ξ (t) = ϕ ξ (-t) for every t ≥ 0, the following propositions achieve the proof of Theorem 2: 3.3. Proof of Proposition 7. Remember that V n = z∈Z d N β n (z). We start by a preliminary lemma.

Lemma 10.

(

) If β > 1, sup n E n log(n) β-1 Vn 1/(β-1) 1 
< +∞.

(

) If β ≤ 1, ∀p ∈ N, sup n E n log(n) β-1 Vn p < +∞. 2 
Proof. For β > 1, using Hölder's inequality with p = β, we get

n = x N n (x) ≤ V 1 β n R β-1 β n which means that n log(n) β-1 V n 1/(β-1) ≤ log(n)R n n .
But it is proved in [START_REF] Gall | The range of stable random walks[END_REF] 

Equation (7.a) that E[R n ] = O(n/ log(n))
. The result follows.

The result is obvious for β = 1. For β < 1, Hölder's inequality with p = 2 -β yields

n = x N β 2-β n (x)N 2(1-β) 2-β n (x) ≤ V 1 2-β n x N 2 n (x) 1-β 2-β and so n log(n) β-1 V n ≤ x N 2 n (x) n log(n) 1-β .
It is therefore enough to prove that there exists c > 0 such that

sup n E exp c x N 2 n (x) n log(n) < ∞. ( 16 
) Note that x N 2 n (x) = n-1 k=0 N n (S k )
. By Jensen's inequality, we get thus

E exp c x N 2 n (x) n log(n) ≤ 1 n n-1 k=0 E exp c N n (S k ) log(n) . Observe now that N n (S k ) = k j=0 1 {S k -S j =0} + n-1 j=k+1 1 {S j -S k =0} (d) = N k+1 (0) + N ′ n-k (0) -1, where (N ′ n (x), n ∈ N, x ∈ Z d ) is an independent copy of (N n (x), n ∈ N, x ∈ Z d ).
Hence,

E exp c x N 2 n (x) n log(n) ≤ E exp c N n (0) log(n) 2 .
But, ∀t > 0,

P (N n (0) ≥ t log(n)) ≤ P (T 0 ≤ n) ⌈t log(n)⌉ ,
and

E exp c N n (0) log(n) ≤ 1 + ∞ 0 c exp(ct) exp (-⌈t log(n)⌉ P(T 0 > n)) dt .
Now (16) follows then from the fact that ∃C > 0 such that P(T 0 > n) ∼ C/ log(n) for any integer n ≥ 1.

The next step is

Lemma 11. Under the hypotheses of Proposition 7, we have

{|t|≤n δ /bn} e -it⌊bnx⌋ E y ϕ ξ (tN n (y)) -e -|t| β (A 1 +iA 2 sgn(t))Vn 1 Ωn dt = o(b -1 n ) , uniformly in x ∈ R.
Proof. It suffices to prove that

{|t|≤n δ /bn} E[|E n (t)|1 Ωn ] dt = o(b -1 n ) with E n (t) := y ϕ ξ (tN n (y)) - y exp -|t| β N β n (y)(A 1 + iA 2 sgn(t)) .
Observe that

E n (t) = y z<y ϕ ξ (tN n (z)) ϕ ξ (tN n (y)) -e -|t| β N β n (y)(A 1 +iA 2 sgn(t)) × z>y e -|t| β N β n (z)(A 1 +iA 2 sgn(t))
, where an arbitrary ordering of sites of Z d has been chosen. But on

Ω n , if |t| ≤ n δ b -1 n , then |t|N n (z) ≤ n γ+δ b -1 n . (17) 
Since γ + δ < β -1 , this implies in particular that |t|N n (z) < ε 0 for n large enough. Thus, by using (15), we get

|E n (t)| ≤ y ϕ ξ (tN n (y)) -exp -|t| β N β n (y)(A 1 + iA 2 sgn(t)) exp   -σ|t| β z =y N β n (z)   ,
for n large enough. Observe next that ( 14) implies

ϕ ξ (u) -exp -|u| β (A 1 + iA 2 sgn(u)) ≤ |u| β h(|u|) for all u ∈ R,
with h a continuous and monotone function on [0, +∞) vanishing in 0. Therefore by using (17) we get

|E n (t)| ≤ |t| β h(n γ+δ b -1 n ) y N β n (y) exp   -σ|t| β z =y N β n (z)   .
Now, according to [START_REF] Durrett | Probability: theory and examples[END_REF] and since γ <

1 β+1 ≤ 1 β+(1-β) + , if n is large enough, we have on Ω n z =y N β n (z) ≥ V n /2
for all y ∈ Z.

By using this and the change of variables v = tV 1/β n , we get

{|t|≤n δ b -1 n } E [|E n (t)|1 Ωn ] dt ≤ h(n γ+δ b -1 n )E[V -1/β n ] R |v| β exp -σ|v| β /2 dv = o(E[V -1/β n ]),
which proves the result according to Lemma 10.

Finally Proposition 7 follows from the Lemma 12. Under the hypotheses of Proposition 7, we have

d 0 2π {|t|≤n δ b -1 n } e -it⌊bnx⌋ E e -|t| β Vn(A 1 +iA 2 sgn(t)) 1 Ωn dt = d 0 C(x) b n + o(b -1 n ) , uniformly in x ∈ R.
Proof. Set

I n,x := {|t|≤n δ b -1 n }
e -it⌊bnx⌋ e -|t| β Vn(A 1 +iA 2 sgn(t)) dt, which can be rewritten

I n,x = {|t|≤n δ b -1 n } e -it⌊bnx⌋ φ(tV 1/β n ) dt.
Since | ⌊b n x⌋ -b n x| ≤ 1, for all n and x, it is immediate that

I n,x = {|t|≤n δ b -1 n } e -itbnx φ(tV 1/β n ) dt + O(n 2δ b -2 n ).
But δ < (2β) -1 by hypothesis. So actually

I n,x = {|t|≤n δ b -1 n } e -itbnx φ(tV 1/β n ) dt + o(b -1 n ).
Next, with the change of variable v = tb n , we get:

{|t|≤n δ b -1 n } e -itbnx φ(tV 1/β n ) dt = b -1 n V -1/β n b n f (xV -1/β n b n ) -J n,x , ( 18 
)
where f is the density function of the distribution with characteristic function φ and where

J n,x := {|v|≥n δ } e -ivx φ(vb -1 n V 1/β n ) dv.
By lemma 4 (applied with m = 1,

t 1 = θ 1 = 1, γ = β), (W n := b n V -1/β n
) n converges almost surely, as n → ∞, to the constant Γ(β + 1) -1/β (πA) 1-1/β . Moreover, Lemma 10 ensures that the sequence (W n , n ≥ 1) is uniformly integrable, so actually the convergence holds in L 1 . Let us deduce that

E[g x (W n )] = E[g x (W )] + o(1), ( 19 
)
where

g x : z → zf (xz) and the o(1) is uniform in x. First |E[g x (W n )] -E[g x (W )]| ≤ sup x,z∈R |(g x ) ′ (z)|E[|W n -W |] ≤ sup u |f (u) + uf ′ (u)|E[|W n -W |].
This proves (19). We observe that E[g x (W )] = C(x).

In view of (18), it only remains to prove that E[J n,x 1 Ωn ] = o(1) uniformly in x. But this follows from the basic inequality

E[|J n,x 1 Ωn |] ≤ |v|≥n δ E e -A 1 |v| β Vn b β n 1 Ωn dv,
and from the lower bound for V n given in [START_REF] Durrett | Probability: theory and examples[END_REF] and from the choice δ > γ(1 -β) + /β.

3.4.

Proof of Proposition 8. Recall that on Ω n , N n (y) ≤ n γ , for all y ∈ Z d . Hence by (15),

K n := ε 0 n -γ n δ /bn E y |ϕ ξ (tN n (y))|1 Ωn dt ≤ ε 0 n -γ n δ /bn E exp -σt β V n 1 Ωn dt .
With the change of variable s = tV 1/β n , we get

K n ≤ E V -1/β n ε 0 n -γ V 1/β n n δ V 1/β n b -1 n exp -σs β ds1 Ωn ≤ 1 1 β -γ (1-β) + β +∞ n δ-γ (1-β) + β log(n) 1-β β exp -σs β ds ,
which proves the proposition since δ > γ(1 -β) + /β.

3.5.

Proof of Proposition 9. We adapt the proof of [5, Proposition 10]. We will see that the argument of "peaks" still works here. We endow Z d with the ordered structure given by the relation < defined by

(α 1 , ..., α d ) < (β 1 , ..., β d ) ↔ ∃i ∈ {1, ..., d}, α i < β i , ∀j < i, α j = β j .
We consider C + = (x 1 , ..., x T ) ∈ (Z d \ {0}) T for some positive integer T such that:

• x 1 + ... + x T = 0;

• for every i = 1, ..., T , P(X 1 = x i ) > 0;

• there exists I 1 ∈ {1, ..., T } such that for every i = 1, ..., I 1 , x i > 0, -for every i = I 1 + 1, ..., T , x i < 0.

Let us write C -:= (x T -i+1 ) i=1,...,T . We define B := I 1 i=1 x i . We observe that p := P((X 1 , ..., X T ) = C + ) = P((X 1 , ..., X T ) = C -) > 0.

We notice that (X 1 , ..., X T ) = C + corresponds to a trajectory visiting B only once before going back to the origin at time T (and without visiting -B). Analogously, (X 1 , ..., X T ) = C -corresponds to a trajectory that goes down to -B and comes back up to 0 (and without visiting B), and staying at a distance smaller than d/2 of the origin with d :

= T i=1 |x i | (where | • | is the absolute value if d = 1 and |(a, b)| = max(|a|, |b|) if d = 2
). We introduce now the event

D n := C n > np 2T ,
where

C n := # k = 0, ..., n T -1 : (X kT +1 , . . . , X (k+1)T ) = C ± .
Since the sequences (X kT +1 , . . . , X (k+1)T ), for k ≥ 0, are independent of each other, Chernoff's inequality implies that there exists c > 0 such that

P(D n ) = 1 -o(e -cn ).
We introduce now the notion of "loop". We say that there is a loop based on y at time n if S n = y and (X n+1 , . . . , X n+T ) = C ± . We will see (in Lemma 13 below) that, on Ω n ∩ D n , there is a large number of y ∈ Z d on which are based a large number of loops. For any y ∈ Z d , let

C n (y) := # k = 0, . . . , n T -1 : S kT = y and (X kT +1 , . . . , X (k+1)T ) = C ± ,
be the number of loops based on y before time n (and at times which are multiple of T ), and let

p n := # y ∈ Z : C n (y) ≥ log log(n) 1/4 p 4T ,
be the number of sites y ∈ Z on which at least a n := log log(n) 1/4 p 4T loops are based.

Lemma 13. On Ω n ∩ D n , we have,

p n ≥ c ′ n 1-γ with c ′ = p/(4T ). Proof. Note that C n (y) ≤ N * n for all y ∈ Z d . Thus on Ω n ∩ D n , we have np 2T ≤ y∈Z d : Cn(y)<an C n (y) + y∈Z d : Cn(y)≥an C n (y) ≤ R n a n + N * n p n ≤ np 4T + p n n γ ,
according to lemma 6. This proves the lemma.

We have proved that, if n is large enough, the event Ω n ∩ D n is contained in the event

E n := {p n ≥ c ′ n 1-γ }. Now, on E n , we consider (Y i ) i=1,...,⌊c ′′ n 1-γ ⌋ (with c ′′ := c ′ /(2 d) if d = 1 and with c ′′ := c ′ /2 d2 ) if d = 2) such that
• on each Y i , at least a n loops are based,

• for every i, j such that i = j, we have

|Y i -Y j | > d/2.
For every i = 1, . . . , c ′′ n 1-γ , let t

i , . . . , t

(an) i be the a n first times (which are multiples of T ) when a loop is based on the site Y i . We also define N 0 n (Y i + B) as the number of visits of S before time n to Y i + B, which do not occur during the time intervals [t (j) i , t (j) i + T ], for j ≤ a n . Since our construction is basically the same as in [5, section 2.8], the proof of the following lemma is exactly the same as the proof of [5, Lemma 16] and we do not prove it again.

Lemma 14. Conditionally to the event E

n , (N n (Y i + B) -N 0 n (Y i + B))
i≥1 is a sequence of independent identically distributed random variables with binomial distribution B a n ; 1 2 . Moreover this sequence is independent of

(N 0 n (Y i + B)) i≥1 .
Let η be a real number such that γ < η < (1 -γ)/β (this is possible since γ < 1/(β + 1)). We define ∀n ≥ 1, d n := n -η .

Let now ρ := sup{|ϕ ξ (u)| : d u, 2π d 0 Z ≥ ε 0 }. According to Formula (15) and since lim n→∞ d n = 0, for n large enough, we have

|ϕ ξ (u)| ≤ ρ1 {d u, 2π d 0 Z ≥ǫ 0 } + exp -σd u, 2π d 0 Z β 1 {d u, 2π d 0 Z <ǫ 0 } ≤ exp -σd β n ,
as soon as d u, 2π d 0 Z ≥ d n . Therefore, for n large enough,

z |ϕ ξ (tN n (z))| ≤ exp -σd β n # z : d tN n (z), 2π d 0 Z ≥ d n . (20) 
Then notice that

d tN n (z), 2πZ d 0 ≥ d n ⇐⇒ N n (z) ∈ I := k∈Z I k , (21) 
where for all k ∈ Z,

I k := 2kπ d 0 t + d n t , 2(k + 1)π d 0 t - d n t .
In particular R \ I = k∈Z J k , where for all k ∈ Z,

J k := 2kπ d 0 t - d n t , 2kπ d 0 t + d n t .
Lemma 15. Under the hypotheses of Proposition 9, for every i ≤ c ′′ n 1-γ , t ∈ (ε 0 n -γ , π/d 0 ) and n large enough,

P N n (Y i + B) ∈ I | E n , N 0 n (Y i + B) ≥ 1 3 almost surely.
Assume for a moment that this lemma holds true and let us finish the proof of Proposition 9. Lemmas 14 and 15 ensure that conditionally to E n and ((N 0 n (Y i + B), i ≥ 1), the events {N n (Y i + B) ∈ I}, i ≥ 1, are independent of each other, and all happen with probability at least 1/3. Therefore, since Ω n ∩ D n ⊆ E n , there exists c > 0, such that

P Ω n ∩ D n , #{i : N n (Y i + B) ∈ I} ≤ c ′′ n 1-γ 4 ≤ P B n ≤ c ′′ n 1-γ 4 = o(exp(-cn 1-γ )),
where for all n ≥ 1, B n has binomial distribution

B c ′′ n 1-γ ; 1 3 . But if #{z : N n (z) ∈ I} ≥ c ′′ n 1-γ 4
, then by (20) and (21) there exists a constant c > 0, such that

z |ϕ ξ (tN n (z))| ≤ exp -cn 1-γ d β n ,
which proves Proposition 9 since 1 -γ -βη > 0.

Proof of Lemma 15. First notice that by Lemma 14, for any H ≥ 0,

P(N n (Y i + B) ∈ I | E n , N 0 n (Y i + B) = H) = P (H + b n ∈ I) , (22) 
where b n is a random variable with binomial distribution B a n ; 1 2 . We will use the following result whose proof is postponed.

Lemma 16. Under the hypotheses of Proposition 9, for every t ∈ (ε 0 n -γ , π/d 0 ) and for n large enough, the following holds:

(i) For any integer k such that all the elements of I k -H are smaller than an 2 ,

P(b n ∈ (I k -H)) ≥ P(b n ∈ (J k -H)).
(ii) For any integer k such that all the elements of I k -H are larger than an 2 , P(b n ∈ (I k -H)) ≥ P(b n ∈ (J k+1 -H)). Now call k 0 the largest integer satisfying the condition appearing in (i) and k 1 the smallest integer satisfying the condition appearing in (ii). We have k 1 = k 0 + 1 or k 1 = k 0 + 2. According to Lemma 16, we have

P (H + b n ∈ I) ≥ k≤k 0 P (H + b n ∈ I k ) + k≥k 1 P (H + b n ∈ I k ) ≥ k≤k 0 P (H + b n ∈ J k ) + k≥k 1 P (H + b n ∈ J k+1 ) = P(H + b n ∈ I) -P(H + b n ∈ J k 0 +1 ∪ J k 1 ).
Hence,

P (H + b n ∈ I) ≥ 1 2 [1 -P(H + b n ∈ J k 0 +1 ∪ J k 1 )] .
Let bn := 2 b n -an 2 √ a n . Since lim n→+∞ a n = +∞, ( bn ) n converges in distribution to a standard normal variable, whose distribution function is denoted by Φ. The interval J k 1 being of length 2d n /t,

P(H + b n ∈ J k 1 ) = P( bn ∈ [m n , M n ]) , with M n -m n = 4 d n t √ a n ≤ Φ(M n ) -Φ(m n ) + C √ a n (by the Berry-Esseen inequality) ≤ M n -m n √ 2π + C √ a n ≤ C ′ d n ε 0 n -γ √ a n + C √ a n ,
for t ≥ ε 0 n -γ , and some constants C > 0 and C ′ > 0. Since lim n→+∞ a n = +∞ and lim n→+∞ d n n γ (a n ) -1/2 = 0 (since η > γ), we conclude that P(H + b n ∈ J k 1 ) = o(1). The same holds for P(H + b n ∈ J k 0 +1 ), so that for n large enough,

P (H + b n ∈ I) ≥ 1 2 [1 -o(1)] ≥ 1 3 .
Together with (22), this concludes the proof of Lemma 15.

Proof of Lemma 16. We only prove (i), since (ii) is similar. So let k be an integer such that all the elements of I k -H are smaller than an 2 . Assume that (J k -H) ∩ Z contains at least one nonnegative integer (otherwise P(b n ∈ (J k -H)) = 0 and there is nothing to prove). Let z k denote the greatest integer in J k -H, so that by our assumption

P(b n = z k ) > 0 (remind that 0 ≤ z k < an 2 )
. By monotonicity of the function z → P(b n = z), for z ≤ an 2 , we get

P(b n ∈ J k -H) ≤ P(b n = z k )#((J k -H) ∩ Z) ≤ P(b n = z k ) 2d n t .
In the same way, This concludes the proof of the lemma.

P(b n ∈ I k -H) ≥ P(b n = z k )#((I k -H) ∩ Z) ≥ P(b n = z k ) 2π d 0 t -
4. Proof of the local limit theorem in the strongly nonlattice case

As in [START_REF] Castell | A local limit theorem for random walks in random scenery and on randomly oriented lattices To appear[END_REF], the proof in the strongly nonlattice case is closely related to the proof in the lattice case.

We assume here that ξ is strongly nonlattice. In that case, there exist ε 0 > 0, σ > 0 and ρ < 1 such that |ϕ ξ (u)| ≤ ρ if |u| ≥ ε 0 and |ϕ ξ (u)| ≤ exp(-σ|u| β ) if |u| < ε 0 .

We use here the notations of Section 3 with the hypotheses on γ, and δ of Proposition 7. Let h 0 be the density of Polya's distribution: h 0 (y) = 1 n } E e -|u| β Vn(A 1 +iA 2 sgn(u)) 1 Ωn ( ĥθ (u) -ĥθ (0)) du = 0 , which is obviously true since V n ≥ n 1-γ(1-β) + and since 2γ(1 -β) + < 2δβ < 1, using the fact that ĥθ is a Lipschitz function. Now, since ĥθ is bounded, the part corresponding to n δ b -1 n ≤ |u| ≤ ε 0 n -γ is treated as in the proof of Proposition 8 (since it only uses the behavior of ϕ ξ around 0, which is the same). For n large enough, ρ ≤ exp(-σε β 0 n -γβ ). Therefore, if n is large enough, then for all x and u such that N n (x) ≥ 1 and |u| ≥ ε 0 n -γ , we have |ϕ ξ (uN n (x))| ≤ exp(-σε β 0 n -γβ ) .

Hence,

E

x ϕ ξ (uN n (x)) 1 Ωn ≤ E exp(-σε β 0 n -γβ R n )1 Ωn ≤ exp(-σε β 0 n 1-γ(1+β) ) .

Therefore, since γ(1 + β) < 1, we have This concludes the proof of Theorem 3.

Theorem 1 .

 1 Let us assume that β ∈ (0; 2] and that (a) either d = 2 and X 1 is centered, square integrable with invertible variance matrix Σ and then we define A := 2 √ det Σ; (b) or d = 1 and Sn

3. 1 .

 1 The event Ω n . Set N * n := sup y N n (y) and R n := #{y : N n (y) > 0} .

Proposition 8 .Proposition 9 .

 89 Let δ and γ be as in Proposition 7. Then there exists c > 0 such thatε 0 n -γ n δ /bnE y |ϕ ξ (tN n (y))|1 Ωn dt = o(e -n c ). There exists c > 0 such that π d 0 ε 0 n -γ E y |ϕ ξ (tN n (y))|1 Ωn dt = o(e -n c ).

π 1 - 2 ,

 12 cos(y) y with Fourier transform ĥ0 (t) = (1 -|t|) + . For θ ∈ R, let h θ (y) = exp(iθy)h 0 (y) with Fourier transform ĥθ (t) = ĥ0 (t + θ). As in[10, thm 5.4], it is enough to show that for all θ ∈ R,lim n→∞ b n E [h θ (Z n -b n x)] = C(x) ĥθ (0) . (23)By Fourier inverse transform, we haveb n E [h θ (Z n -b n x)] = b n 2π R e -iubnx E   x∈Z d ϕ ξ (uN n (x))   ĥθ (u) du .Since ĥθ ∈ L 1 , we can restrict our study to the event Ω n of Lemma 6. The part of the integral corresponding to |u| ≤ n δ b -1 n is treated exactly as in Proposition 7. The only change is that we have to check that lim n→∞ b n {|u|≤n δ b -1

Finally, it remains to prove that lim n→∞ b n {|u|≥ε 0

 0 n -γ } e -iubnx E x ϕ ξ (uN n (x))1 Ωn ĥθ (u) du = 0 . (24)We note that, if |u| ≥ ε 0 n -γ and x ∈ Z d , we have|ϕ ξ (uN n (x))| ≤ exp(-σ|u| β N β n (x)) 1 {|uNn(x)|≤ε 0 } + ρ 1 {|uNn(x)|≥ε 0 } ≤ exp(-σε β 0 n -γβ N β n (x)) 1 {|uNn(x)|≤ε 0 } + ρ 1 {|uNn(x)|≥ε 0 } .

lim n→∞ b n {|u|≥ε 0

 0 n -γ } e -iubnx E x ϕ ξ (uN n (x)) 1 Ωn ĥθ (u) du = 0 .

  But π/(d 0 t) ≥ 1 and lim n→+∞ d n = 0 by hypothesis. It follows immediately that for n large enough, we have 2d n < π/(2d 0 ), and so

	2π d 0 t	-	2d n t	≥	3π 2d 0 t	≥ 1 +	π 2d 0 t	≥	π 2d 0 t	≥	2d n t	.
												2d n t	.
						2π d 0 t -2dn t 2dn					
						t						

Hence

P(b n ∈ I k -H) ≥ P(b n ∈ J k -H) .
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