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ON STABILITY OF STANDING WAVES OF NONLINEAR DIRAC EQUATIONS

NABILE BOUSSAID AND SCIPIO CUCCAGNA

ABSTRACT. We consider the stability problem for standing waves of nonlinear Dirac models. Under
a suitable definition of linear stability, and under some restriction on the spectrum, we prove at the
same time orbital and asymptotic stability. We are not able to get the full result proved in [26] for the
nonlinear Schrédinger equation, because of the strong indefiniteness of the energy.

1. INTRODUCTION

In this paper we study the stability of standing waves of a class of nonlinear Dirac equations (NLDE).
We assume that these standing waves are smooth, have exponential decay to 0 at infinity and that they
are smoothly dependent on a parameter. We then partially characterize, under a number of further
technical hypotheses, their stability and their instability. We succeed partially in transposing to NLDE
results proved for the nonlinear Schrédinger equations (NLS) in [26] and in previous references. We recall
that [15, 49, 50, 61, 62, 35, 36] contain a quite satisfactory characterization of the orbital stability of
standing waves of the NLS. They do not apply to the Dirac equation, due to the strong indefiniteness of
the energy. In this paper we initiate a theory of stability in the case of the NLDE, using ideas coming
from the theory of asymptotic stability which are less sensitive to indefiniteness of the energy. This idea
is explored also in [46] in a very special situation.

1.1. The nonlinear Dirac equation. We consider for m > 0 a NLDE

iuy — Dppu+ g(uw)Bu =0
(1.1) { (0, 2) — up(z) (t,r) € R x R3

where D,,, = _12?21 a;0y; +mf, with for j =1,2,3

a»—OUj 6_]@2 0 0_010_010_10
i=\o; 0) "TN0 —Ie) P\ 0)72 T\ o0)0 T 0 —1)

The unknown u is C*-valued. Given two vectors of C*, uv := u - v is the inner product in C*, v* is the
complex conjugate, u-v* is the hermitian product in C*, which we write as uv* = u-v*. We set U := Bu*,
so that uu = w - fu*. We have

ooy + agpoy = 2050lca, o8+ Poy =0, ﬁ2 = Ica.

Thus the operator D,, is self-adjoint on L?(R?, C*), with domain H'(R3, C*) and we have D2, = —A+m?.
The spectrum is o(Dy,) = (—o0, —m] U [m, +00), see [59, Theorem 1.1].

1.2. State of the art. The equation in §1.1 arises in Dirac models used to model either extended
particles with self-interaction or particles in space-time with geometrical structure. In the latter case,
physicists have shown that a relativistic theory sometimes imposes a fourth order nonlinear potential (i.e.,
a cubic nonlinearity) such as the square of a quadratic form on C%; see [47] and the references therein.
The associated stationary equation is called the Soler model, [52], as it was proposed by Soler to model
the elementary fermions.

In our study, we assume the existence of stationary solutions as well as a number of properties like the
smooth dependence on a parameter, the smoothness and the fact that they are rapidly decaying. These
are not well established properties. Stationary solutions were actively studied in the last thirty years.
References [16, 42, 3, 4] used a dynamical systems approach. For the use of the variational structure
of the stationary equation, see [32]. For an approach yielding stationary solutions of the NLDE from
solutions of the NLS, see [45, 37].

Turning to the question of stability, [55] discusses the Soler model within the framework of [50], without
attempting a proof. Some partial results involving small standing waves obtained by bifurcation from
linear ones, with D,, replaced by H := D,, + V with V a nice potential, are in [9, 10]. [10] shows
that if a resonance condition holds, there is a stable manifold outside which any initial condition leads
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2 NABILE BOUSSAID AND SCIPIO CUCCAGNA

to instability. If the resonance condition is not fulfilled, the stability problem is left open. The results
we present here answer this question and can be used to clarify [9]. [41] proves the existence of global
attractors in a model involving a Dirac equation coupled to an harmonic oscillator. The stability problem
for the 1 dimensional NLDE is discussed under very restrictive hypotheses in [46] which reproduces for
the 1 D NLDE an analogue of the result in [57].

1.3. Hypotheses. We assume the following hypotheses (H:1)—(H:12).

(H:1) g(0) =0, g € C=(R,R).

(H:2) There exists an open interval O C (m/3,m) such that D,,u —wu — g(uu)fu = 0 admits a C>
family of solutions w € O — ¢, € H*™(R3) for any (k, ), see (1.4) for a definition. In spherical
coordinates x1 = pcos(¥) sin(p), x2 = psin(?) sin(yp), xs = pcos(p), these standing waves are of

the form
o) o]

. COSs
lb(p) |:€i19 SII’SIDQD:|

bu(z) =

with a(p) and b(p) real valued and satistfying the following properties:
a,b € C*([0,00),R), Vp>0, a*(p)—0b*(p)>0,
a¥) and b decay exponentially at infinity for all j.

Notice that ¢, (—2) = Bé.(x) and ¢, (—x1, —x2,x3) = S3d (21, T2, x3) With S5 := (03 0).

0 g3

(H:3) Let g(w) = ||¢w|32. We assume ¢'(w) # 0 for all w € O.

(H:4) For any z € R3 we consider in (1.1) initial data s.t. ug(—x) = Bug(z) and ug(—x1, —x2,73) =
SgUO(SCl, Zo, 1'3).

(H:5) Let H,, be the linearized operator around e'*“¢,,, see Sect. 3. We assume that #,, satisfies the
definition of linear stability in Definition 3.4.

(H:6) Consider X := {(Y1,T2) € L3(R3,(CY?) : (Y1(—2), Yo(—mx1, —22,23) = (BY1(x), —BY1(2),
(Y1(—z1, —22,23), To(—21, —22,23) = (S35T1(x),—S3Y1(x))}, see Sect. 3 and under Lemma
2.3. X is invariant for the action of H,. Consider the restriction of H, in X. Then H, has
2n nonzero eigenvalues, counted with multiplicity, all contained in (w — m, m — w). The positive
eigenvalues can be listed as 0 < A\ (w) < ... < A\ (w) < m — w, where we repeat each eigenvalue
according to the multiplicity. For each A;(w), also —\;(w) is an eigenvalue (this symmetry follows
from(2.9)). There are no other eigenvalues except for 0.

(H:7) The points and £(m — w) and £(m + w) are not resonances for H,,, see (1.2)- (1.3) below.

(H:8) Suppose that A € R with |A] > m — w is a resonance for H,, that is one of the following two
equations admits a nontrivial solution:

(1.2) (I+ Ry, WVo)u=0, weL*> " (R?C8) for some 7> 1/2;
(1.3) (14 Ry, ,MVo)u=0, ueL> 7(R3C®) for some 7 >1/2.

Then if u satisfies either (1.2) or (1.3) we have u € L?(R3,C®) and ) is an eigenvalue of H,,.
(H:9) There are natural numbers N; defined by the property 0 < N;\j(w) < m —w < (N; + 1) (w).
(H:10) There is no multi index p € ZF with |u| := |p1| + ... + |px| < 2Ny + 3 such that p- A = m + w.
(H:11) If \j, < ... < \;, are k distinct \'s, and p € ZF satisfies |u| < 2Ny + 3, then we have

/LlAj1+"'+,ufk>‘jk =0 <— ,LL:() .
(H:12) The nonlinear Fermi golden rule (11.12) is true.

The space of functions satisfying (H:4) is invariant by (1.1). Except for the smoothness with respect to
the parameter w, for some non-linearities (H:2) is a consequence of [32]. Continuous dependence on w
for some examples is proved in [37].

Remark 1.1. 2w is always an eigenvalue of H,, in L?(R3 C?), [20]. So for 3w > m we have 2w €
(m —w,m+ w) is an embedded eigenvalue. We can avoid it thanks to the symmetry (H:4) since the
eigenvectors do not belong to X, see Lemma 3.1 below and subsequent comments. Reducing to the
space X reduces the number of parameters, simplifying the problem. The parameters eliminated involve
translation and orientation of the solutions. For work on moving ground states of the NLS see [27].



ON STABILITY OF STANDING WAVES OF NONLINEAR DIRAC EQUATIONS 3

Remark 1.2. By (H:6)—(H:8) there are no resonances for the restriction of H,, in X. (H:8) is proved
in the case of the NLS assumption in [29]. In the case of the Dirac system we are not able to prove it
except for resonances contained in (—w + m,w — m) or for large energies. This is yet a consequence of
the strong indefiniteness of the energy of the Dirac system. We expect that (H:8) can be eliminated.

1.4. Main results. The main result in this article is the following one.

Theorem 1.3. Suppose that O C (m/3,m) and fit ko >4 , ko € Z. Pick w1 € O and let ¢, (z) be a
standing wave of (1.1). Let u(t,z) be a solution to (1.1). Assume (H:1)—(H:12). Then, there exist an
€0 >0 and a C > 0 such that for any € € (0,¢€0) and for any uo with inf g ||ug — €7 dw, || gro < €, there
ezist wy € O, 0 € CY(R;R) and hy € H* with ||hy| gro + |wy — wi| < Ce such that

tiigloo [Ju(t,-) — ele(t)¢w+ —e Py | gre = 0.
Remark 1.4. The constraint 3w > m allows to exploit the nonlinear Fermi Golden Rule (FGR) like for
the NLS in [26] by circumventing the strong indefiniteness of the Dirac system. We expect that that the
hypothesis 3w > m can be eliminated. Specifically, it is used to guarantee that appropriate multiples
of the eigenvalues belong to portions of the spectrum where there is no superposition of the continuous
spectrum of distinct coordinates. This fact and our results continue to hold if 3w < m and (2N,;+1)w > m
for all 7 =1,...,n, see Remark 11.3.

Remark 1.5. Energy indefiniteness affects our methods because it results in superposition of the contin-
uous spectrum of distinct coordinates. There are two points where our methods are affected. The first is
discussed in Remark 1.4. The second point is when we take (H:8) as an hypothesis, see Remark 1.2.

Remark 1.6. We do not know of examples of g and w satisfying our spectral assumptions. The situation is
not very different from the case of the NLS where the spectrum is unknown except in few cases. Rigorous
analysis of examples is certainly a difficult open problem. Like for the NLS, see [17], one can consider
numerical analysis. For some example in 1-D see [6, 19]. For NLDE | by a non relativistic bifurcation
argument, see [45, 37, 31], it is possible to extend what is known for the NLS equation to the NLDE for
w close to m.

Remark 1.7. A partial justification of our hypotheses can be given using bifurcation theory from linear
problem, see [9, 10, 46, 56, 57]. It is easy to prove the existence of “small solitons” for which (H:1)—
(H:11) hold. In this context the symmetry ¢, (—z) = B¢, (z) and in (H:4) are unnecessary. In particular
(H:6) holds replacing X with L?(R3,C8). In the set up of small solitons, (H:6) and (H:8) are always
true while (H:7) and (H:9)—(H:11) hold generically. In the context of small solitons it is easy to prove
existence of examples with just one eigenvalue A\(w) with N = 1 for which (H:12) holds, in fact is generic,
thanks to the easy form the FGR takes, see formula (1.5) [60] for the NLS.

Remark 1.8. Under (H:1)—(H:11), we prove that, in an appropriate coordinate system, some key co-
efficients of the discrete modes equations are non negative. If (H:12) holds, then these coefficients are
positive and our proof tells us that the continuous modes disperse and the discrete ones decay to O.
We expect (H:12) to hold generically. Our proof extends with minor modifications to the case of small
solitons discussed in Remark 1.7, where even the case of just one eigenvalue A\(w) with N = 1 (in fact
even the case with no eigenvalues) was an open problem.

Remark 1.9. One can envisage extending Theorem 1.3 to moving red and rotating solitons. This would
require dropping (H:4). Then, since 3w > m, one would face the embedded eigenvalue 2w. Problems
arising from the possible failure of the dispersive estimates in Sect. 10.1 might be solvable, considering
that [29] proves smoothing estimates in the presence of embedded eigenvalues. However, looking at the
nonlinear FGR (which considers multiples of the eigenvalues), we also have the problem that 4w > m+w.
So 4w belongs to a portion of the spectrum where there is superposition of continuous spectrum of distinct
components and the hypothesis 3w > m is of no help to avoid this.

Consider £ € ker(H., — Aj(w)). One of the requirements for linear stability in Definition 3.4 is that if
& # 0 then (&,33¢*) > 0. As it might seem artificial, we prove what follows.

Theorem 1.10. Suppose that O C (m/3,m). Pick w € O and let ¢, (x) be a standing wave of (1.1).
Replace (H:5) with the following assumption:
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(H:5%) We assume that H,, satisfies all the conditions of Definition 3.4 except for condition (4) which
we restate as follows. That is, we assume that for any eigenvalue A > 0 the quadratic form
& — (£,238%) is non degenerate in ker(H, — N). We assume that there exists at least one
eigenvalue X > 0 such that the quadratic form is non positive in ker(H,, — \).

Assume (H:1)—(H:4), (H:5%) and (H:6)-(H:12). Then ¢, (x) is orbitally unstable.

We will follow the argument developed in [26] for the NLS. The NLDE is harder than the NLS. For
example, the regularity of ¢,, in w for NLDE is unknown. The classical methods to prove orbital stability
in [15, 62, 35, 36], based as they are on the positivity of certain functionals, do not apply to NLDE because
of the strong indefiniteness of the energy. We already mentioned some initial results for the Dirac equation
in [9, 10, 46]. Like in these articles, we exploit the dispersive properties of the linearizations, adapting
the methods used to prove asymptotic stability for the NLS initiated in [56, 57, 12, 13] and developed
by a substantial number of authors, see the references in [26]. One of the difficult issues for the NLS,
was, and still is, to prove that the energy of the discrete modes associated to the eigenvalues in (H:6)
leaks either in the radiation part or in the standing wave. The solution to this problem was initiated
in [13], where the eigenvalues are close to the continuous spectrum, and solved in quite general form in
[26], see also [2, 25]. We recall that there is leaking because, in appropriate coordinates, the nonlinear
interaction between discrete and continuous modes yields some dissipative coefficients in the equations
of the discrete modes, in a way similar to the classical Fermi Golden Rule (FGR). This phenomenon was
first established in special cases for the NLS in [13]. The coefficients were identified generally in [28],
which built on [33]. Their dissipative nature was established in [26]. We refer to [26] for a discussion of
the fact that it is essential to exploit the hamiltonian structure of the equation. For work [27] extending
the result in [26] to moving ground states see Remark 1.1.

In this article we follow the same framework of [26] obtaining similar results. In particular the key
coefficients in the discrete modes equations are shown to be quadratic forms, see Lemma 11.2. By the
energy indefiniteness, see Remark 1.5, the sign of these quadratic forms is unclear. We can overcome this
uncertainty if we assume 3w > m, since in this case there is no superposition of continuous spectrum of
distinct components and the quadratic forms are easily proved to be non negative.

We need to develop some of the linear theory of dispersion, which in the case of the NLS had been
developed in the course of a decade, see [22, 29]. Key to dispersion theory is the proof of smoothing
estimates for Schrodinger operators with magnetic potentials in [30]. There are two points in the article
where the strong indefiniteness of the energy interferes with our method and they are discussed in Remark
1.5. We expects these difficulties to be technical and solvable. Notice that in in [9, 10, 46] these difficulties
do not arise because smallness of solitons yields absence of resonances for free and the FGR is not
addressed because of their restrictive hypotheses.

The instability result in Theorem 1.10 arises from our desire to justify Assumption (H:5) in our
definition of linear stability, see Definition 3.4. The proof of Theorem 1.10 is similar to [24]. That is, we
show that orbital stability implies asymptotic stability, and we then show that this is incompatible with
(H:5%). All the proofs are conditional on (H:12), that is that a certain non negative quantity is actually
positive. Presumably this is true generically.

1.5. Notation and preliminaries. We consider spaces
(1.4) H"*(R?,CY) = {f € S'(R?), [{2)* (V)" fll2 < o0}

for s,k € R with norm || f||gx.- = |[(x)*(V)* f||2. Sometimes we will write H** to emphasize the inde-
pendent variable z. If k£ = 0, we write L?* instead of H®*.

For k € Rand 1 < p,q < 0o, the Besov space B;fyq(Rg’, C%) is the space of all tempered distributions
f € 8'(R?,C%) such that

Flls, = (3 2%y D)} < oo
jEN
with @ € Cg°(R™ \ {0}) such that >, P(277¢) =1 for all £ € R3\ {0}, $;(&) = §(279¢) for all j € N*
and for all ¢ € R3, and g = 1 — > jen- @j- 1t is endowed with the norm | f]|px .

For A a closed operator on a Hilbert space X we will set Ra(2) := (A— z)~! for any z in the resolvent
set of A.
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1.6. Structure of the article. The paper is organized as follows. In Sections 2-4, we study of the
linearization of (1.1) at the stationary solution, we give some information on the spectrum and on
symmetries of the linearization, we define the notion of linear stability and we introduce an appropriate
coordinate system related to the spectral decomposition of the linearized operator. In Sect. 5 and in
the Appendix we discuss estimates on such operators. In Sect. 6 we discuss we reframe the system in a
hamiltonian form. In Sect. 7 we look for canonical coordinates. In Sect. 9.2 we reformulate the system in
these coordinates. In Sect. 9 we apply the method of Birkhoff normal forms. The proofs of the analogous
parts in [26] work almost unaltered. Having chosen an appropriate coordinate system, in Sect 10.1 we
begin to prove nonlinear dispersion, in particular estimating the continuous modes. We finish with the
closing up of the estimates in Sect. 11 where we prove the Fermi Golden Rule. Specifically we prove that
appropriate coefficients are quadratic forms and that for w > m/3 they are non negative. Finally, under
hypothesis (H:12), which presumably holds generically, we close up the inequalities and we conclude
the proof of asymptotic stability, Theorem 1.3. We also prove Theorems 1.10 using similar ideas. In the
Appendix we proves smoothing estimates and scattering estimates.

2. SET UP AND SYMMETRIES

2.1. Set up. Since our ambient space is H*(R3, C*) with kg > 4 and so in particular ky > 3/2, under
(H:1) the functional v — g(uu)Bu is locally Lipschitz and (1.1) is locally well posed, see pp. 293-294
volume IIT [58]. Counsider the solution u(t,z) of (1.1). Then by (H:4) we have u(t, —z) = pu(t,z) and
u(t, —x1, —x2, x3) = Ssu(t,z). We write the ansatz
(21) u(ta ‘T) = eiﬂ(t) (¢w(t) (:E) + T(f, ZC))
Inserting (2.1) in (1.1) we get from the definition of ¢,
iry = Dy — W) = 9(Pu(t) Do) BT = 9 (Do) o)) (T Do) ) Bur(t)
— 9 (Gu(t) o)) (o)) Bty + (O(t) + w(t))(Bu(e) + 1) — 10(1) D uo(e) + 1(r),
where n(r) = O(r?) is defined by

n(r) 1 = g((Dut) + 7)Pui) +7)B(Puwir) +7) = 9(Pu(t) Puot)) BPus(t)

- gl(ﬂﬁw(t)aw(t))(raw(t))5¢w(t) - gl(ﬂﬁw(t)aw(t))(¢w(t)7)5¢w(t)-

We denote by C': C* — C* the charge conjugation operator u¢ := Cu := iBasu*. We have o,;C = Ca;
and BC = —CBforall j € {1,2,3}, [59, Sect. 1.4.6]. Since it is anti-linear, for any u € C*, C(u*) = (Cu)*.
We state without proof the following simple lemma.

(2.2)

Lemma 2.1. For any vector v € C* we have C?v = v. Moreover we have:
C(iv) = —iv®, v =—-CvCv, , C(Bv)=—pv° C(Dypw)=—Dywe.
For ug satisfying (H:4) we have u§(—z) = —pfu§(r) and ui(—z1, —x2,23) = —Ssu§(x).
Applying —C' to (2.2), we obtain
iry = Dy +w(t)re — g(aﬁw(t)%(t))ﬁr” + g'(qﬁw(t)%(t))(Tcﬁwm)ﬁaﬁ&@

+ 9" (Puo(t) Purt)) (Do) T0) BB 1) — (I(t) + w()) (D) + 7€) — 10(H) D@l gy — C(r).

() am() () ()

Dy, —w 0
(2.3) Ho=Hoo+Ve , Hoo= ( 0 D,, + w) ’

vV, = g(%@w)ﬁ +g'(¢w5w) (_(ﬁqﬁ:} )ﬁ¢w (ﬁ(qﬁ&)* )B(bw)

We set

—(BeL )BeL  (B(L)" B

where the first 8 in the last line is meant in the sense of (2.5) below and where (¢ ) stands for the map
r +— ¢r. Then we have:

(2.4) iR=H,R+ () +w(t)(XsP, + X3R) — iwd, P, + N(R),

0 I 0 i/ I 0
where 21 = (I(C4 84> ’22 = (iI(C4 ! 54) ,23 = ( (84 I(C4) .
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Notice that by (H:4) and Lemma 2.1 we have for Y(x) € {®,(z), R(t,z)}
(2.5) T(—) = BT (2) where § — (g g)

(2.6) and Y(—x1, —x2,x3) = S3X3Y (z) where S3 = <%3 59)
3

2.2. Symmetries. We consider now the bilinear map

(()-()= s

By M}, we denote the adjoint of #H,, with respect to this inner product. We have:
Lemma 2.2. We have

(2.8) H = Y3HoYs

(2.9) H, = -CE1H,CX1 where C = (g g) ,

(2.10) Vo (—2x) = B33V, (x) B3 with B in the sense of (2.5)

(2.11) Vo(—21, —22,23) = S353V,,(x)S335 with S3 in the sense of (2.6) .

Proof. First of all, (2.8)—(2.9) hold with H,, replaced by H, . It remains to check them with H,,
replaced by V,,. We have V; = X3V, X3 by

(865 e (BOE) BN < (—(B85 )Bdw —(B65) )Béu
@12) % ((m V8oL, (B(oL)" )ﬂ¢5) ES‘(W:: o5 (BleS)* )ﬂasz)

and from the fact that the matrix in rhs(2.12) is the adjoint of the matrix in lhs(2.12). (2.9) holds with
‘H,, replaced by H, 0 by Lemma 2.1. We have

cs: (-

)
(2.13) _C( v Voo (Ber
((ﬁ(¢$)* VB — (B )*5%) o
(BE) V85 —(Bor ) pes ) Tt

B (B(F)"
)8 (B(¢S)"
T B (B

Be
BeL
Ao
Ao

We have for v € C*
(B(¢5) )" = ﬂ(lﬂasz ot = =B¢,C(v),
= Bouv" = —B(iBazgy)(ifazv™) = —B(¢)"C(v).
Then

(8¢5 )Beu () )56
rhs(2.18) = <—</3<z>;3 1B6E (B65)" )6¢$> e

This yields (2.9). The proof of (2.10) goes as follows. Using ¢(—z) = B¢(x) and ¢°(—z) = —B¢°(x),

where we omit the subindex w, we have

V(=088 = g(0e)3e)Z + o 6utBacr) () o) (e Yoy ) 92
(2.14) . . (g .
= sto@iaE)Ds + o o) (($50 e B o)
Similarly
BEBV(:E) = g(¢($)5($))23 + g/(¢w(t)5w(t))ﬁz3 (_((ﬂﬁﬁj((;)) )ﬂd)c(l‘) ((ﬂﬁ(gscc(zl)'gl* ))ﬂﬁ(b(zb:((i)))
= second line of (2.14).
The last two formulas yield (2.10). Identity (2.11) is proved similarly. O
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Lemma 2.3. For A the operator in L?(R3,C®) defined by (AX)(x) := fX3X (—x), then A2 =Id, A is
selfadjoint and o(A) = {1,—1}. We have [A, H,] = [A, H.o0] = 0.

For B the operator in L*(R3,C8) defined by (BX)(z) := S3383X (—x1, —72,23), then B> = Id, B is
selfadjoint and o(B) = {1,—1}. We have [B,H,] = [B, Huwo] = 0.

Moreover, [A, B] = 0.

Proof. The first sentence is elementary. The second follows by [A, A] = 0 for A = D,,,, X3 (straightfor-
ward) and A =V, from (2.10). The statements for B are obtained similarly. [A,B] = 0 is elementary.
2.3. Energy and charge. We have the following elementary result.

Lemma 2.4. Let UT = (u,Cu). Set for G(0) =0 and G'(s) = g(s)

B(U) = Ex(U) + Ep(U), Ex(U) = / (Dpuyutde, Bp(U) =~ | Gm)dr,

QU) = /}R3 wu*dz.

Then E(U) and Q(U) are invariants of motion for (1.1) and we have

E(U) = %<iﬂ0&22321DmU7 U> 7/

1
G <—U . ia22321U> dx
Rs \2

(2.15) X
Q(U> = §<U7 i/BQQZlU>a

where for (-,-) see (2.7). U satisfies system

(2.16) iU = ifasXs ¥ VE(U).

Proof. For any symmetric operator A acting on L?(R?, C*) with the domain invariant by C' and anticom-
muting to C and any v € D(A),

u- (Au)* +u* - (Au)  u-ifasCAu+iBazCu - Au

u- (Au)* = =
2 2
 —u-ifogAut +ifagu® - Au —u-ifas Au® + ufifas - Au
B 2 N 2
i . A 0
= §U - BagXz3X1 AU, where we write A for A = 0 Al

If A commutes with C, then a similar calculation shows (u, (Au)*) = (U, BaoX AU). These identities
for A=D,,, A= p or A= 1I prove the lemma. d

3. SPECTRUM AND LINEAR STABILITY

From now on we restrict attention to X = {Y € L?(R3,C?) : T (—z) = 853X (2), T(—x1, —22,23) =
S333Y (z)} :=ker(A — Id) Nker(B — Id) C L*(R3,C8). Tt is invariant by H,, o and H,,, see Lemma 2.3.
We consider the spectrum

o(Hu) ={A€C, Hy — Md: XN H'(R? C®) — X is not invertible}
We summarize what we know about the spectrum.

Lemma 3.1. (1) For the essential spectrum we have, Tess(Hey) = (—00,w —m] U [m — w, +00).
(2) For each z € op(H,,) the corresponding generalized eigenspace Ng(H,, — z) has finite dimension.
(3) If z € 0(H,) then also —z € o(H,,).
(4) For the generalized kernel we have Ng(H%) D { Py, X30,P0, }-
(5) Ou||Pw |3 # 0 implies that there are no v such that Hyv = 0,9, .

6 e have H,Y = —2wY an w 1Y = 2wl orY = . We have T (—z) =
We have H,Y Y and H,CE,Y CSLY forY 0‘10‘2‘5‘35% We have T
—BY3Y () for Y =Y, CL,Y.

Proof. We have that (1) and (2) are consequences of the above discussion. If z € 0¢s5(H,) then (3) is
a consequence of (1). If z is an eigenvalue, then (3) is a consequence of (2.9). (4) is a consequence of
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Nyg(Hyw) 2 {E3P.,0,P.,} which can be seen as follows. By the gauge invariance of the nomnlinearity,

G((e'%)(efu)) = G(ua), where G is a primitive of g, we have

0w\ _ _
He (cmaw) =0 or H,T3P, = 0.

Then differentiating with respect to w (1.1) and taking its image by C, we obtain H,,0,P, = —33P,,.
(5) follows by the following argument, if we assume existence of v s.t. H,v = 9,,P,,,

0= (v, (HPw)") = (00Pu; ©F) = (O &) + (Ouifaady,,ifasdu)

= <aW¢wa¢Z> + <aw¢:,,¢w> = aw”@d”% # 0.
(6) is obtained by a direct computation. O

Remark 3.2. From (2.8), if z € 0(H.,) then Z € 0(Hy,). Soif z € o(H.,) then {z,—2,Z, —Z} C o(Hd).

Remark 3.3. The observation that 2w is an eigenvalue of H,, in L?(R3,C?) is due to [20]. For 3w > m the
eigenvalue 2w is embedded in the continuous spectrum. The fact that the vectors in Claim (6) Lemma
3.1 do not satisfy the symmetry (2.5) and are not in X, shows that the existence of this eigenvalue does
not interfere with our proof. Obviously the symmetry (H:4) is crucial.
We have the beginning of #,, invariant Jordan block decomposition X = Ny(#,) & Ny (H,). Linear

stability means to us what follows, see [24].
Definition 3.4 (Linear Stability). A standing wave e'*“¢,, is linearly stable when the following hold:

(1) o(Hy) CR;

(2) Ng(H) = {23P0, 0 Pu };

(3) for any eigenvalue z # 0 of H,, we have Ny(Ho, — z) = ker(Ho, — 2);

(4) for any positive eigenvalue A > 0 and for any ¢ € ker(H,, — A), we have (£, X36*) >0

As a consequence of (H:5), the Jordan decomposition can be continued as follows:

X = Ny(Ho) ® (@j,2 ker(Ho F Aj(w))) @ LA(He,) with X, (He) = {Xa(H2)} NX,

where for K = H}, H,, we set Xq(K) := Ny(K) ® &, + ker(K F A (w)).

Let (§;(w,x)); be a basis of @}_; ker(H, — Aj(w)) so that each vector is smooth in both variables, with

109,&(w,2)| < cae™ !l for some ¢, > 0 and a, > 0. This can be proved by the Combes-Thomas
method [38] using (H:2). We normalize ;(w, ) so that £; = (§;, ¥3&}) € {1, —1} and (§;, ¥3&;) = 0 for
j # i. In Theorem 1.3 for all j we have ¢; = 1 while for Theorem 1.10 we have ¢; = —1 for at least one j.

From the calculations of this section, we have built a dual basis. Hence, given any vector X, we have
(3.2)

(3.1)

i¥39 * iX39p)*
X (€5755000) ) imyoy, g (X0 (€772) )
q'(w) ¢'(w)

Z £ <X 12319236 123196 4 Z E] 12319212306j)*>6i2319210§j + eiZgﬁPC(Hw)e—izgﬂX’

X= 50,5

with P.(H,) the projector onto XC(’HN) with respect to decomposition (3.1). More generally, for X €
L?(R3,C8) = X @ X+, see the simultaneous spectral decomposition of A and B in Lemma 2.3, we
denote by P.(H,)X the vector obtained first projecting in X and then in X .(H,). By duality, we have
the following lemma.

Lemma 3.5. Suppose that for a given w € O the conditions of Definition 3.4 are satisfied. Then
(3.3) X = Ny(H5) @ (@4 ker(HL, F X (w))) © Xe(H) with Xo(H) = {Xa(Ho)} -
Any 1 form o = (af, ) can be decomposed as follows:
539 iXg0
<aﬂ,e/23 0, ®) (612319(1))* <aﬂ,e/23 ¥3P)
q(w) K (w)

(34) + ZEJ <Oéﬁ, ei23ﬂ€j> ( 12319235] ZE_] , izgﬂzlc£j> (ei231923210€j)*

of = (eizi"ﬂEg@w@)*

+ e*izg’ﬂ (PC(H:)efiESﬂ(aﬂ)*)* )
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4. MODULATION AND COORDINATES

4.1. Modulation. Consider the U in (2.3). Then, in the notation of (2.3), (2.1) can be written as
(4.1) U =e%d, +R).
Consider the following two functions

FU,w,9) = (=00 — @, @1, G(U,w,?) = (e =90, 530,0%).

Notice that R € Nj-(H) if and only if F(U,w,?) = G(U,w,¥) = 0. By (H:2) the map w € O = ¢,, €
H(R3) is C*°. Then F and G are C* functions with partial derivatives

Fo(U,w,9) = —i(Sge U, @7)

Fo(U,w,9) = —2¢ (w) + (77U, 9,87 ,

FuU,w,9) =e >, Gu(U,w, ) = e V530,07,

Go(U,w,9) = —i(e U, 0,®}),  Gu(U,w,9) = (e7*"U, L307,97,).

(4.2)

We have F(e*7®,,, w,9) = G(i*?®,,,w,9) = 0. For U = Y, in (4.2) we get

fﬁ(eizzﬂq)wawaﬁ) = 0 9 ]:w(anaﬁ) = _q/(w) b
Go(€™ Dy, w,0) = —i¢'(w) , Gu(e™Dy,w,9) =0

Then by the implicit function theorem and (H:3) there is a unique choice of functions § = 0(U), w = w(U)
which are C*° and yield to the following lemma.

Lemma 4.1 (Modulation). For any wy € O there exist € > 0 and C > 0 such that for any u € H'(R3)
with ||[u—e'?1¢y, || < € < e, there exists a unique choice of (9,w,r) such that |w —wi| + ¥ — V1| < Ce for
a fired C, R € Ni-(Hz) and (4.1) hold.

Consider the two C> functions ¥,w : U € By (e ®,, , &) — R. Inserting (4.1) in (4.2) we get
Fo = —UE3R, Q); Fu = —q'(w) + (R, 0u®%) ;
Fu=e 399 . Gy = 705509, 08
Go = —i(q/(w) + <R’ awq):;)) ;o Gw = <R, Eg@i@t) :

Then, if we set

(@) TR, iR,
(4.3) ““'< (R, 550207 —i<q'<w>+3<R,aw¢z>>)

we have the following equality

Vw —e’izi"ﬂ@;
(44) A (Vﬂ) - (_e—i2319236wq):)) )

where given a vector field X and a scalar valued function F, we have XF = (VF, X) = dF (X), with dF
the exterior differential and VF the gradient.
By the above discussion we obtain the following lemma.

Lemma 4.2. We have the following formulas:
(¢ (@) + (R, 8,27)) (€™7®)" — (3R, @F) (€™7530,9)
(¢'(W))? = (R, 0,9%)* + (L3R, %) (R, X395 )

(R, S302®%) (eX37®)" + (¢ (w) — (R, 0,®%)) (™27 %30,,P)
1g'(w))? — (R, 0,9%)* + (L3R, %) (R, £3029)]

Vw =

*

Vi =



10 NABILE BOUSSAID AND SCIPIO CUCCAGNA

4.2. Coordinates. For w € O we consider decomposition (3.1). By P.(H.,) (resp. Pa(H)), or simply by
P.(w) (resp. Py(w)), we denote the projection on X (M) (resp. X4(H,)). The space X (H,) “depends
continuously” on w, as P.(w) = 1 — Py(w) depends smoothly on w.

By Lemma 4.1 we specify the ansatz (4.1) imposing w € O, ¥ € R and R € N;(HZ) Fix wp, where
q(wo) = |luol|32. For w close to wy the map P.(H,) is an isomorphism from X.(Hy,) to X.(Hy). In
particular we write (Z; is the complex conjugate of the scalar z;)

(4.5) Nj(HL) 5 R=D 2&(w) + > 25104 W) + Pe(Mu)f,  f € Xe(Huy).
j=1 j=1

Setting 2 - € = Y7, 2;€; and 7- 510€ = Y7, ;51 C¢;, we write

(4.6) U=e"" (D, +2-E(w)+7Z-3106w) + Po(Ho) f)

w € O close to wo, (z, f) € C" x X (Hy,) close to 0, are our coordinates. In the sequel, we set

R:i=> 20,&w) + Y ZT100.&(w) + 0uPe(Hu) f-
j=1 j=1

Then we have the vector fields

9 _ 79, (® + R), 0 _ ie¥39%3(® + R),
Ow 09

(47) a 7ei2319§_ a 76123192 C&
sz - 77 azj N ! a

In particular, given a scalar function F', we have
O.F = (VF,e¥%9,(® + R)), g F = i(VF,e®?%53(® + R)),
0., F = (VF,e™7¢) 0- F = (VF,e™7%,0¢;).

Lemma 4.3. We have the following formulas:

£;Vzj = —(23€), 0,R)Vw — i(X3€], D3R) VI + e~ 37 Eq¢7

£;VZ; = —(X133(C¢)", 0, R)Vw — 1(X123(CE;)*, B3 R)VY + e 2275, 33(CE;)*

F(U) = (Pe(w)Pe(wo)) "' Pe(w) [0, Rdw — iZsRd¥ + e 77 1] ,
with (Pe(w)Pe(wo))™! + Xe(Ho) — Xe(Huy) the inverse of P.(w)Pe(wo) @ Xe(Huwy) — Xe(Hw) and
gj = (&, Xa;)-

Proof. The proof is similar to the proof of [26, Lemmas 4.1-4.2 ]. Let us see for example the proof of the

o Oz 0z, 0z 0z .
first formula. Equalities 72 = 0je, 6—5 =32 = 55 = 0and V;z; = 0 are equivalent to

(Vzj,e720¢)) = 550, (Vz;,e™278,0¢) = 0 = (Vzj,e™7%3(® + R))
(Vzj, ™70, (® + R)) = 0 = (Vzj, ™ Po(w) Pe(w0)g) Vg € Xe(Huy)-

Notice that the last identity implies Pe(Hy, ) Po(H},)e®*?Vz; = 0 which in turn implies Pe(H;,)e™*"Vz; =
0. Then, applying (3.2) and using the product row column, we get for some pair of numbers (a, b)

Vzj = ae” P 0* + be V530, + £je 7 5¢]
6712319(1)* > . Yw . .
= (a, b) (eiEBﬁEBawq)* +egje 231923§j = —(a, b).A vy +¢gje 2379236_7» s

where in the last line we used (4.4). Equating the two extreme sides and applying to the formula (-, %>

and < ) 319> by <VZJ7 5w> = <VZ]', 3619> <V19, ai,> <Vw, 319> =0, by <V19, 3619> = <Vw, %> =1 and by
(4.7) and (4.8), we get
« [(A) ) <E3§;aawR>
A <b> =€ <1<23§;,233> '

* . * v —iX3 *
Vzj = —£;((¥38],0,R), (X387, X3 R)) <Vi;> + e e M0 Ser.

(4.8)

This implies
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5. SMOOTHING AND DISPERSIVE ESTIMATES
We collect the statements on linear theory needed later to prove the nonlinear estimates.

Lemma 5.1. The following facts are true.

(i) For any T > 1 there exists C' independent of w s.t.

(5.1) IR, (2)¢ll L2~ < Cll¢l| L2 for all z ¢ R
(5.2) | Rocery (Dll1s— < Cllll o for all 2 ¢ R.
(i) For any T > 1 the following limits
(5.3) RE (N = ;13% Rp, (A £ie) and Rf; (N = ;13% Ry, (A tie)

exist in B(HYT, L>~7) and the convergence is uniform for \ in compact sets.

Proof. Estimate (5.1) implies (5.2). Then (i) is the content of [39, Theorem 2.1] while (ii) is contained
in [34, Theorem 1.6]. O

Rp, (r —y,A+w) 0 >

Lemma 5.2. We have Ry, ,(2,y,\) = Ry, (x —y,\) = ( 0 Ro, (2 —y, A —w)
D - Y -

for A& 0(He,0) with

(A+m)Iy ivm2 — A2¢ -7\ e VAl gl —m2=A% ||
(5.4) Rp,, (z,A) = . . +i e
" ivm?2 —A%0 - (A —=m)I, 4| 4r|x|?

where T = x/|z| and where for ¢ = eVr with r >0 and ¥ € (=7, ) we set /C = e/2\/r.
Proof. This is [59, Identity (1.263) section 1.E]. O
Remark 5.3. REm (x,A) for A > m (resp. A < —m) is obtained substituting vm? — A2 in (5.4) with
—ivVA2Z—m?2 = 1i\n% vm? — (A +ie)? (resp. ivVAZ —m? = li\I‘I(l) vm? — (A +ig)?).

€ €
Theorem 5.4. For any 7> 1 and k € R 3 C s.t.

el ey < Cllolae.
t

n / P B(t) dt| s < O F |l 2casee).

—1 — ’ Dm
| /t/<te e F(t) dt/HL?(RH"’*T) < CHFHLf(R,Hm)-
The same estimates with the same constants hold when we replace Dy, with H 0.

Proof. This is [10, Theorem 1.1] in the free case. But can be easily deduced from Lemma 5.1 using tools
in [48, Section XIII.7]. O

The following theorem is a special case of Theorem 1.1 [9)].

Theorem 5.5. For any 7> 5/2 and k € R 3 C s.t. [[e 7 "Pmap|| yr—r(gsy < C{t)~ 2 ||| grr.r. The same
estimates with the same constants hold when we replace D, with H, 0.

Theorem 5.6. For any 2 < p,q < oo, 6 € [0,1], with (1 — %)(1 +4) = % and (p,0) # (2,0), and for any

reals k, k' with k' — k > a(q), where a(q) = (1+ $)(1 — %), there exists a positive constant C' such that

—i DTVL
le™ 2l s s oy < O oo ey

M/e“Dmﬁxwdt

/ efi(tft’)DmF(t/) dt'
t'<t

for any (a,b) chosen like (p,q), and h — k > «a(q) + a(b). Ezactly the same estimates hold with D,,
replaced by He 0.

< / ,
- — C HFHLf (]R,B(’j,yz(]Rg',(C‘l)) 9

<C ||F||Lg’(R,Bg, ,(R3,C4))

LY(R,Bf ,(R?,C))
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Proof. For D, see [10], see also [14] for the Klein-Gordon case. For H,, ¢ the statement is an immediate
consequence of the case D,,. O

Lemma 5.7. Consider pairs (p,q) as in Theorem 5.6 with p > 2, k € R arbitrary and k' — k > «a(q).
Then for any T > 1 there is a constant Co = Co(1, k,p,q) such that

t
‘/ eiDm(t'—t)F(t/)dt/

0
The same estimates hold with D,, replaced by H, 0
Proof. For F(t,x) € C°(R x R?) set

< Col|1 ||L§Hk/w-
LPBE
tPq,2

+oo ., —+oo -,
TF(t) = / @ =ODmpat | f = / e P (¢ dt' .
0 0

Theorem 5.6 implies [[T'F||;ppr < |[fllgw for k" —k = a(q). By Theorem 5.4 we have [|f||gw <

ClFll Lz pgr - - Since p > 2, by a well known lemma due to Christ and Kiselev [18], see Lemma 3.1 [53)],
the statement of Lemma 5.7 follows. O

Lemma 5.8. Let 1 > 1, K a compact subset of O and I a compact subset of oc(Hy,)\{E(m + w)}.
Assume (H:1) and (H:6)—(H:8). Then there exists a C > 0, such that

e R, (\)Polw)ollp2-ns sy < CO 1t s 1 e
for everyt >0, \€ I, w € K and 1y € S(R3;C?).
Proof. We expand R, (\) = Ritw,o()‘) — R}, (\VLRf, ()). We have from [8, Theorem 2 ]
||efim“’°Ri¢w,0(/\WOHLZY*n ®3) < C<t>7%||R7J§w70(>\)1/)0||L2m ®3) < Cl<t>7%H"/)O||L2vT1+1(R3)a
with Cy locally bounded in A and 71. Hence, by exponential decay of ¢, and by (5.5) below,
le™ 70 Ry, | (MVi Ry, (N Pe(w)tbol| 2
< Cilt) 2 IVl pgor,pomn) | Bi, VPe@)ll gopam po-my Id0lli2m < C/(0)75.
O

Lemma 5.9. Assume the hypotheses of Lemma 5.8. Then for any T > 1, for any k € Z with k > 0, for
a constant Cy = Co(1,w, k) semicontinuous in w, for any T > 0 and for any V g(t,z) € S(R*), we have

Proof. Tt is not restrictive to focus only on T'= oo and k = 0. By Plancherel inequality we have

t
/ e =)Mo p (3 Vg(s, -)ds < Clgll 2 g0,y 18-

0

L3([0,7),H; )

t
|| / e P (g (s, sl e < 1By, (V) Pe(Ha)Ri0.00) 2 GO 2)]| 2 2

< [ 18 VP g2 12 I Rit00) 2 GO D) 2

L3
< Ry, M Pe(Ho)ll oo, 5227 2277 19l L2127
We are done if we can prove
(5.5) ||R+w()‘)Pc(Hw)HL;O(R,B(L%’,L%”)) <G
By (A.3) and Lemma A.1 we have
(5.6)  IIRf, (NPe(Ho)ll e p2-my <A+ AR, ((NB) sl Ry, ,(Mlpzr g2y

To prove (5.6) it is enough to consider A € (R\[-m + w + dp,m — w — do]) as in (A.4). Then we
can exploit inequality (A.4) to bound uniformly in A the first factor in the rhs of (5.6). The proof
that || R, oM 27 p2--) < C for a fixed C is a consequence of H)\RJ_FA()\Q)HB(L%T p2-my < €7 and
HVR*_'A()\Q)HB(L?E,T p2-7y < C" by (A.7)-(A.8). The last two inequalities are proved in [1]

(|
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6. HAMILTONIAN STRUCTURE

The discussion in Sections 6-7 is almost the same of [26], rewritten in the context of the Dirac systems.

6.1. Symplectic structure. We recall that in view of Theorem 1.10 we set ¢; = (@-,ngﬁ where
g; € {1,—1}. Notice that in Theorem 1.3 and in [26], we have €; = 1. Our ambient space is X. We
focus only on the subspace formed by the points which satisfy XU = CU. In view of (2.16), the natural
symplectic structure is Q(X,Y) := (X, iBasX133Y).

The Hamiltonian vector field X¢ of a scalar function G is defined by the equation Q(Xqg,Y) =
—1(VG,Y) for any vector Y and is X¢ = BasXs¥1 VG.

We call Poisson bracket of a pair of scalar valued functions F' and G the scalar valued function

(6.1) {F,G} = (VF, Xqg) =iQ(Xp, Xg) =iQ(VF,VG).
This can be extended to vector valued function using 1-forms or equivalently defining the extension the

following way.

Definition 6.1. Given a function G(U) with values in X.(H., ), a symplectic form €2 and a scalar function
F(U), we define {G,F} = G'(U)Xr(U), with X the Hamiltonian vector field associated to F. We set
{£,G}=—{G,F}.

Lemma 6.2. Let Q be the function defined by (2.15)and let X¢ its Hamiltonian vectorfield of Q. Then
Xg = —%. We have the following formulas :

(62) {Q,w}:(), {Qaﬂ}zlv {Qazj}:{Qazj}:()v {Qaf}:()
Proof. (6.2) follows from X¢g = 76%' The latter follows from (4.7):

0
XQ == ﬂa22321VQ = ﬂO&QZgEﬂﬂO&QZlU = 7123U = 7%

O

6.2. Hamiltonian reformulation of the system. For any scalar function F', the time derivative of
F(U(t)) is (VF(U),U) and thus if U satisfies (2.16) it is {F, E}. A similar identity holds for vector
valued function and thus as in [26] we write our system as

For wug the initial datum in (1.1), we introduce a new Hamiltonian for which the stationary solution ®,,,,
with g(wo) = |Juol|%2, is a critical point :
(6.4) K(U) = B(U) +w(U)QW) — w(U)l|uol 72

By Lemma 6.2 and since Q(U) is an invariant of the motion, see Lemma 2.4, the solution of the initial
value problem in (1.1) solves also

(6.5) w={w K}, f={fK}, % ={2,K}, ¥—w={0K}.

By %K = 0 and (6.2) the right hand sides in the equations (6.5) do not depend on ¥. Hence, if we look
at the new system

(6'6) LZ)Z{LU,K}, f:{faK}a Zj:{zj’K}’ 19:{19’K}’

the evolution of the crucial variables (w, z, f) in (6.3) and (6.6) is the same. Therefore, to prove Theorem
1.3 it is sufficient to consider system (6.6).

7. APPLICATION OF THE DARBOUX THEOREM

We will show that a resonance phenomenon is responsible for energy leaking from discrete to continuous
spectrum. This will be seen in appropriate coordinates system, obtained by means of Birkhoff normal
forms. Since the coordinates (4.6) are not canonical for the symplectic form €, it is natural to apply
Darboux theorem, moving to a different set of coordinates. It is key that our nonlinear Dirac equation
remain semilinear. Hence we follow the argument of [26, Section 7], which takes care of this, and to which
we refer for more details.
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Strategy of the proof. For ¢ = q(w) = ||¢WH2L27 we introduce the 2-form
(71) Qo = id¥ A dqg + gjdzj Ndz; + <fI(U), iﬁagEg,Elf’(U)->,
summing on repeated indexes, with f(U) the function in Lemma 4.3, f/(U) its Frechét derivative and
the last term in (7.1) acting on pairs (X, Y) like (f'(U)X,iBae¥sX: f/(U)Y).
The proof of the Darboux Theorem goes as follows. First consider
(7.2) Q= (1—7)0 + 7Q = Q + 7Q with Q := Q — Q.
In Lemma 7.1, we check that Qy(U) = Q(U) at U = €*3?®,, . Then 2, is non degenerate near e>3?®,,
One considers a 1- form ~(7,U) such that dy(r,U) = Q with y(U) = 0 at U = ¢*3?®,,, (external

differentiation will always be on the U variable only) and the vector field )7 such that iy-Q, = —v. The
flow §, generated by )7, close the points e*3?®,, is defined up to time 1, and is such that F;Q = Qo by

d d
L E0) =5 (L Q) +§—Q, =
—(5100) = 5 (L Q) + F -

= 3 d iy ) + T =F (—dv + ?2) —0.

This procedure can be carried out abstractly. But here we need to be careful, choosing v appropriately,
because we want the new Hamiltonian K = K oF; to be 9 invariant and yield a semilinear Dirac equation.

In the sequel of this section all the work is finalized to the correct choice if 4. In Lemma 7.2 we compute
explicitly a differential form « and we make the preliminary choice v = a. This is not yet the right choice.
By the computations in Lemma 7.3 we find the obstruction to the fact that K is of the desired type.
Lemmas 7.5-7.8 are necessary to find an appropriate solution F' of a differential equation in Lemma 7.9.
Then v = a+idF is the right choice of 4. In Lemma 7.11 we collect a number of useful estimates for .
Lemma 7.12 contains information necessary for the reformulation of our system (8.1)—(8.2).

(7.3)

Preliminary remarks. Note that for U in a sufficiently small neigborhood of @, that is R small, from
(3.2) the vector fields defined in (4.7) can be completed into a basis of Ty L? (tangent space at U). For
any vector Y € Ty L?, we have

0 239
Y =Yy + Yoo +ZYJ6Z] +> Y Jaz + ™7 P (W)Y}
and defining the dual basis we set
Yo=dv(Y), Y,=dw(l), Y;=dz(Y)
Y;=dz;(Y), Yy=f(U)Y.
So similarly, a differential 1-form ~ decomposes as
Y=Y +9¥dw + Y Y dz+ > ATz + (o f),

where (yf, ') acts on a vector Y as (y/, f'Y’), with here v/ € L2(H:,); ~? 4%, 47 and 49 are in C.
Notice that we are reversing the standard notation on super and subscripts for forms and vector fields.
In the sequel, given a differential 1-form v and a point U, we will denote by v the value of v at U.

Given a function y, denote its hamiltonian vector field with respect to Q. by X7 : i X7 Q, = —idy.
By (7.1) we have X)) = — 5.

The proof. We have the following preliminary observation ensuring that €2, is a non degenerate 2-form
in a neighborhood of €37 ®,,

Lemma 7.1. At U = €37®,, , for any 9, we have Qo(U) = QU).

Proof. See also [26, Lemma 7.1]. Using (3.2) we get, summing on repeated indexes,
Q(X,Y) = <)(7 15022321Y> =
1

W', e FE0,0%) A (e RN (X, Y )+

s e Z0Ee) A (- e E0 R 35 (08;) ) (X, Y)
+ (Po(Hy)e 39 X iBan s X Po(Hy, )e =%y,
Set

det
(7.4) ap = —iq' + et A

/

+ <PN9L (H:)llea iﬁagEngawR).
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Then a; is smooth in the arguments w € @, z € C" and f € H-%"=5" (see (1.4) for the definition) for
any pair (K',S") with, for (z, f) near 0,
(7.5) jaa] < C(K", 8") (2] + 1 fll -r.=s0)?

by (4.3). Furthermore a; is imaginary valued. By Lemmas 4.2 and 4.3, summing on repeated indexes we
get
Q = (i’ + a1)dd A dw + €jdzj A dz;

+dz; A ((123(C¢;)", 0uR) dw + 1(X133(C¢;)*, 23 R) dv)
—dz; A ((835, 0uR) dw + (S8}, B3 R) dV)) +
+ (Pe(w)Pe(wo) ', 1Baz B3 X1 Pe(w) Pe(wo) f) +
+ (P.(w)Pe(wo) [+, 1BaaX3X Pe(w)0 R) A dw+
+i(Pe(w)Pe(wo) f'+, 1By Po(w)X3 R) A do.
At points U = e>3Y®, that is for R = 0, we have
(7.6) Q =1idY ANdg + €;dz; N dz; + (Pe(w)Pe(wo) f'+, 1B sy Pe(w) Pe(wo) f'+).

which at w = wq gives Q = Q. ]

Since 0, = Qg + 7(Q2 — Q) with 7 € [0,1] and Q = Q at *3?®,, , and since { is a non degenerate
2-form, €2, is also non degenerate in a neighborhood of €*3?®,, . Thus the map X ~ ix ), from vector
fields to 1-forms is bijective at any point in the neighborhood of €*3?®,, . Notice that Lemma 7.1 is
claimed at wy and not at different standing waves, and that the />3 ®,,  are the only stationary solutions
preserved by our changes of coordinates.

The next lemma suggests as candidate for the 1 form  the choice v = a, for a see below. This is not
yet the final choice of ~.

Lemma 7.2. Consider the forms, summing on repeated indexes,

1
ZU(U)Y = 5<iﬁ0¢22321U, Y>

wo(U) == —igdd — ij %(f(U),iﬁ%EsEJI(U) )-
Then dwy = Qg, dw = . Set
(7.7) a(U) :=w(U) — wo(U) + dyp(U) where p(U) := %(Zg@*, R).

We have a = o’ dd + a¥dw + (o, f') with
o'+ SIfI3 = 5l €+ B0 — Rz - € + 7 1 CE (Puw))")
— iR((Pe(w) — Pe(wo)) f; (Pe(w) f)™),

7.
(7.8) o :,%<R*,23&JR>,
af :%iﬂOAQElESI C(Hwo> (Pc(Hw) - PC(;[WO)) f

Proof. Here the proof is almost the same of [26, Lemma 7.2 ]. We focus on (7.8), the only nontrivial
statement. We will sum over repeated indexes. We have

1, . 1.
w = §<e—1231915a22123q>, N+ §<e—1231915a22123pc(w)f, )
(7.9)
1 . 1 .
+ 52]‘ <€_1230iﬁa22123§j, > — 52]‘ (6_1231916@2230@, >

By Lemma 3.5 and summing on repeated indexes we obtain

1, g (1iBaoX 33®,0,®) .
§<€ E3191/80522123@7 > =2 q/(W) <€ 2319@ ) >
liﬁa22123<1), 23(19 . 1 .
(710) + <2 q’(w) > <€7123ﬂ238w(1)*, > + €j<§1ﬂ0422123(1), §j><€7123ﬂ23§;, >

1 : : 1
— Ej<5150é22123<1>, 210§j><6_‘2302321(0«£j)*, > + <€_12319(PC(H:)516&22123@*)*, >
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By iBa2X1® = iBasC® = (iBas)?®* = &* we have

(711) <iﬁa22321¢';awq)> = <¢*aaw¢> - <¢a anﬁ*) =0,

by (¢, 0,9") = / (adya + bO,b) dx = (9", 0, ¢), see (H:2). Then

R3

1 .
§<€7123ﬁ15022123@7 )=

i 1. i N
(7.12) — §<€_1230238w(1)*, N+ €j<§1ﬂa22123@,§j><6 PU53¢x, )
1. —iX4 * —iXa * 1 * 0\ *
—&j{51Par i P, 510 e P55 (CE5)%, ) + (e Zsﬂ(Pc(Hw)?ﬂagzlzg@ )*, ).
with by (4.4)

(7.13) f§<e*i23ﬁ238w¢)*, ) = ;{<R, $3020*) dw — i% (¢ + (R, 8,8")) dv.

Applying Lemma 4.3, we get (by iBasX¥: f = f* which follows from ¥,U = CU)

Ej de — Zj dEj
2

(714) =i (—q + %HRHZL?) dd + %(EgR*, awR> dw + +%(iﬁa22123 (1 — PC(WO)PC((U)) f, f/ >+

(f(U),ifaxsXy f'(U)-)

wo = —igdd —¢;

N | —

+ %zﬂe*izsﬁzlzg(cgj)*, N = %@(fﬂaﬁzgg, S+ +%<e*i23ﬂiﬂagzlzgpc(w)f, .
By (4.6) we have
(7.15) dip = %(23@, 0 R)dw + %(zgqﬁ,gj)dzj + %(zgqﬁ, $10¢;)dZ; + %(zg@*, Po(w)f').
Applying to (7.15) Lemma 4.3 and the identities (7) below, we get dy =
d = S(S5®", ) PR ) 4 3 (S, Si0E N e SR B(CE)" )

(e (Po(H)S5@)" )

+
Nl R

|

(7.16) + L(%30,9*,0,R)dw

/

R

- % <<23@*7§j>23§; + (B30", E1CE)E133(CE)" + (Po(HL)X3D)™, EBR> dd.

Py 1 () Za®"
To get the third line of (7.16) we have used:
1 1
S (Za®" 0LR) — 5(Sa®", ) (556 0 R) -
%@3@*, 516 (5154(CE, )", O R) — %<(PC(H;;)23<1>)* OLR) = %<23q>*,awR>;
— % (33P*,0,R) — $<23<1>*,23<1>><238w<1>*,aw3> = ;—;(Egﬁw@*ﬁwR>.

Let us consider the sum (7.7). There are various cancelations. The first and second (resp. the first term
of the third) line of (7.16) cancel with the second and third lines of (7.12) (resp. the first term of the rhs
of (7.13)). The last three terms in rhs(7.9) cancel with the last two lines of (7.14). The —igd¥ term in
the rhs of (7.14)) cancels with the —igdd term in (7.13). Adding the fourth line of (7.16) with the last
term of rhs(7.13) we get the product of i times the following quantities:
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1 1
_ §<PN;(HM)23¢*323R> — %(R,@w@*> — _§<(I)*,R>
1
+ 5P, () T32", Sa R) - 1R, 0,0
q
(7.17) . )
= ——(®* R) + —(®*,X3R)(0,, P, L3d*
2< ? >+ 2q/< ) &3 >< 3 >
1
+ 5.7 (0,0, T R) (50, D) — 4 (R, 0,07) =0,
q q

where for the second equality we have used
1., 1 .
PNQ(H:) = ?q) <awq)’ > + ?236(4)(1) <E3(I)a >

The last equality in (7.17) can be seen as follows. The two terms in the third line in (7.17) are both equal
to 0. Indeed, (¥3®*,0,®) = 0 by (7.11) and, by R € Nj-(H}) and ®* € Ny(H,), (R, ®*) = 0. The two
terms in the fourth line in (7.17) cancel each other. Then we get formulas for o and af. We get o also

by |Pe(w) fl13 = 115 + 2R((Pe(w) — Pewo)) f, (Pe(w) f)*)- O
Lemma 7.3. We have, summing over repeated indexes (also on j and j):
(718) iyQo = inY19dw - inYwdﬂ + € (ijdfj - }/;—dzj) + (iﬁangZ3Yf, fl>

For the ay in (7.4), and for T =iy Q, we have
Ty =a1Yy +Y;(E133(C¢;)", 0,R) — Y;(ng}‘, OwR) + (Y7,ifaeX¥3¥ PO, R);
—I'y =a Y, —iY;(E:133(C¢;)", X3R) + iYJ—»<Z3£;-‘, Y3R) — (Y, iBa¥sE P.XsR);
(7.19) —T; =(E133(C&)*, 0, R)Y,, +1(X153(CE)*, B3 R) Yy;
s =(836}, 0uR) Y + (23, £3R) Yo;
ifas¥sEq Iy =(Pe(wo)Pe(w) — 1)Yy + Yo, Pe(wo) Pe(w)0uR + 1Yy Pe(wo) Pe(w) X3 R.

In particular, for v = iy-Q; = iy-Qo + Tiyfﬁ we have

Yo =(i¢" 4+ Ta1)Yy 4+ 7Y (133(CE;)", 0L R) — TYJ—T(Z3£}‘, OuR)
+7(Yf,iBa2¥3¥ PO, R);
—y9 =(q" + 7a1)Y] — Y[ (8133(C&;)", B3 R) + TinQ}gf;, Y3R)
- iT<YfT, iBas¥s¥ P.X3R);
—Y; =€; (YT)]f + 7(E123(C¢;)", 0uR)Y] +1m(E123(CE;)", E3R)Yy ;
v =;(YT); + 7(83&;, O R)Y] +17(E38], B3 R)Yo;
iBasXsEivr =Y7) 4+ 7(Pe(wo) Pe(w) — nYyy
+7Y] Pe(wo)Pe(w)Oy R + i1 Yy Pe(wo)Pe(w)XsR .

(7.20)

Proof. Identity (7.18) is straightforward. Identity (7.20) follows immediately from (7.18)—(7.19). Finally,
(7.19) is elementary linear algebra, and basically the same of [26, Lemma 7.3]. O

Remark 7.4. Choosing v = « in Lemma 7.3 with F, the flow of Y7, then (Y7)y £ 0 is an obstruction

to the fact that K o Fj is a ¢ invariant Hamiltonian yielding a semilinear Dirac equation. So we want

YTy =0o0r dd(Y") =i, (X3,Y7) = 0, with X the Hamiltonian fields of ¥ . To this effect we add a

correction to o and define Y7 from o + idF where (a4 idF)(X]) = 0.

Lemma 7.5. Consider the vector field X3 (resp. X[) defined by ix;Qr = —idd (resp. ix;Qr = —idw).

Then we have (here P. = P.(H,) and P° = P.(H.,)):

X5 =(X3)w [2 — 7(33&! (’LR>i —7(X123(C¢;)" &J%}i
ow 77 6zj 77 GEj

—7P)(1+ 7P, — 7P))"'P)P.0.R],,

(7.21)
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where (X})., is real valued and given by (for the ai in (7.4))
i
= —(XZ)w

.22 X)p=7—"-—"-—"78™H+—
(7.22) ( 2) i’ + Ta1 + Taq

ag 1= iT<Z3€;, GMR) <2123(C§j)*, Z3R> — 17(2123(0@)*, GMR) <§]*, R>+

7.23
(7.23) +ir(P°(1 + 7P, — 7P°) "' P°P.0,, R, i35 P.Y3R).

Proof. The proof is almost the same of [26, Lemma 7.5]. By (7.20) for v = —idd, X satisfies

(X§)o =05
i = (i¢' +71a1)(X3)w — i7(X123(CE;)", B3 R) (X5) i+
(7.24) +iT(33&], B3 R) (X )5 — i7((XJ) 5, 1BaeXisX P X3 R);

(X3)f =7(1 = PIP.)(X3); — T(X§)w P P.O0uR;
(X5)7 = —T(X§)w(E1X5(CE)", 0uR); (X§); = —7(X§)w (s8], 0uR).

This yields (7.21) for XJ and the first equality in (7.22). The fact that (X})., is real valued follows from
(7.22) and the fact that a; and as are imaginary valued, which can be checked by the definitions. O
The following lemma is an immediate consequence of the formulas in Lemma 7.5 and of (7.5).

Lemma 7.6. For any (K',S’, K, S) we have

1= (X5)wd| S IRIG-w s

[(X5)5] + 1(X3)51 + 1 (X) sl s SNRI s s
Definition 7.7. Set HX%(w) = P.(w)H%¥ and denote

(7.26) PIOS =" x HES(wg), PKS =R? x PKS
with elements (9,w, z, f) € PX% and (2, f) € PK.S

Lemma 7.8. We consider ¥V 7 € [0, 1] the hamiltonian field Xj and the flow

(7.25)

%@s(T, U) = X3(®y(r,U)), Go(r,U) = U,

(1) For any (K',8’) there is a so > 0 and a neighborhood U of R x {(wo,0,0)} in P~K"=5" such that
the map (s, 7,U) — ®4(1,U) is smooth
(=50, 50) % [0,1] x U N{w =wo}) —» P~

(2) U can be chosen so that for any T € [0, 1] there is another neighborhood V. of R x {(wo,0,0)} in
P—K'=S" 5t the above map establishes a diffeomorphism

(7.27) (—5s0,80) X (UN{w=wo}) = V.
(3) f(®s(r,U)) — f(U) =G(t,s,2, f) is a smooth map for all (K, S)

(—50,50) % [0,1] x UN{w=wo}) = HES
with |G(t, 5, % Pl s < Clsl(le] + |l 1)

Proof. The proof is exactly the same of Lemma 7.7 [26]. We only remark, that the field XJ, the flow
O, (7,U) and the function F(7,U) in Lemma 7.9 are defined intrinsically, and so are periodic in ¢. This
is because X satisfies these properties, since ix7€); = —idJ with both €2, and d intrinsically defined
and periodic in ¢. O

Lemma 7.9. We consider a scalar function F(1,U) defined as follows:
F(r,®,(r,U)) =1 / Qe (t,U) (X} (@ (t,U)))ds", where w(U) = wy .
0

We have F € C°°([0,1] x U, R) for a neighborhood U of R x {(wo,0,0)} in P~5"=5" We have
(7.28) |[F(8,U)] < C(K', 8")|w = wol (2] + 1]l gr-rr.-s7)”
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We have (exterior differentiation only in U)
(7.29) (a +1dF)(Xy) = 0.

Proof. The proof is elementary and is exactly the same of Lemma 7.8 [26]. O
We now have the desired correction for a and below we introduce the vector field whose flow yields
the wanted change of coordinates.

Lemma 7.10. Denote by X7 the vector field which solves ix-Q); = —a — idF(7). Then the following
properties hold.
(1) There is a neighborhood U of R x {(wo,0,0)} in P10 such that X7 (U) € C>([0,1] x U, P1Y).
(2) We have (X7)y = 0.
(3) For constants C(K, S, K',S")

o B | 5
(A7)t gy | el Ul o)
(7:30) (X731 + 1)+ (X )l S (2l + L lLysers)

X (Jw = wol + [zl + | fl pr-ser.-s' + I F1Z2)-

(4) We have Ly-2 = [X7, &] =0.
(5) We have (X7)7 = (X7);, (X7)f = CE1(X7)p. (X7). is real valued.

Proof. The proof is almost the same of [26, Lemma 7.9 ]. Claim (1) follows from the regularity properties
of a, F' and €, and from equations (7.31) and (7.33) below. (7.29) implies (2) by

(X7)g = id0(X7) = —ix; Qr(X7) = ix-Q, (X]) = —(a +1dF)(X]) = 0.

We have i(X7), = idw(X7) = —ix Q2 (X7), so
(7.31) (A7) = ixrQr(X]) = —(X])o [’ + 70, F (&, R) — 70:F (1(C¢;)*, R)
' +7(ViF +iad , PY(1+7P. — 7P?) ' P'P.¥3R)].

Then by (7.8), (7.22) and (7.23), we get the first inequality in (7.30):
1£113
2¢'(w)
By (7.20) we have the following equations
16JF = Ej(XT); + T<2123(C§j)*, 6WR>(XT)w
(733) 71%F:Ej(XT)j+T<23§;,awR>(XT)w
iBaaXs¥(af +iVF) = —(X7); — 7(P°P. — 1)(X7); — 7(X7),P°P.0,R.

< C (2l + 1 fllgr-ser-s)*

(7.32) ‘(XT)UJ +

Formulas (7.33) imply

(X231 <10 F| + C (2] + 1 f | gr-rcro-5) [(XT) o]
(X251 < 15F|+ C (2] + ([ fll gr-rcr.-5) [(X 7)o
(XD sllrrcs < N llgpes + IV s F |l s + O (2] + 1F | gg-ser.-s0) | (X7)oo]

which with (7.32), (7.8) and Lemma (7.28) imply (7.30). Claim (4) follows by La (o +1dF) = 0 and by
the product rule for the Lie derivative,

L% (ZXTQT) = Z[%,XT]QT +ZXTLB_%QT = Z[%,XT]QT

It is elementary to check that (7.31) and (7.33) imply Claim (6), when we use the fact that (X7)y is real
valued, we consider (7.8), the fact that F is real valued.
O

The following lemma gathers some properties of the change of coordinates.
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Lemma 7.11. Consider the vectorfield X7 in Lemma 7.9 and denote by F,(U) the corresponding flow.
Then the flow F.(U) for U near e¥37®,,, is defined for all T € [0,1]. We have ¥ o F; = 9. We have

1 FEO)) =g o) - LB g 0)
(739 5(FU)) = 2(0) + &)
FF) = 1) + £5(0)
with
(7.5) EuU) S (ko — ol + 121 + Ly
(7.56) &) + 185l S (o = ol + 21+ |l + 1112z

X(Jw = wol + |z[ + 1 fll gr-xr.-57)-

For each ¢ = w, z;, [ we have E(U) = Ec(|| |32, w, 2, f) with, for a neighborhood Uu-K.-s' of {(wo,0,0)}
in P~K=5" "0 {9 =0} and for some fized ag > 0

(7.37) Ec(o,w, z, f) € C*°((—ap, ap) x L{_K/’_S/,(C) for { =w,z;

(7.38) Erlo,w,z, f) € C((—ap, ao) X Y - L N X).

Proof. The argument is the same of Lemma 7.10 [26], but we review it for the sake of the reader. We
add a new variable p. We define a new field by

||f||2

(YT = —(XD)o [a + i Jr TO; F (5;,R> - T%F(Zl(C'fj)*,]ﬂ

+7(ViF +iaf , P°(1 + 7P. — TPCO)_lPCOPCZ3R)],

(7.39)

which implies that (Y7),, is real valued, by
10;F = e;(YT)7 + 7(E123(C&)", 0 R) (YT )w
—i GJ—F = Ej(YT)j + 7‘<23£;, (')WR>(YT)w
iBao¥sEy(af +iVF) = —(YT);y — 7(P°P. — 1)(Y7); — 7(Y")POPOLR ,
where we see (Y7); = (Y7),;, CE1(Y7)r = (Y7) s and (Y7) s € Xc(Huy), and by Y[ = 2((Y7) ¢, iBasXy f).
Then Y™ =Y (w, p, 2, f) defines a new ﬂow QT(p, U), which reduces to F,(U) in the invariant manifold

defined by p = || f||2. Notice that by p(t )+ fo Y;ds it is easy to conclude p(Gi(p,U)) = p(U) +
O(rhs(7.35)). Using (7.8) , (7.22), (7. 25) and (7 39) it is then easy to get

quwwwm»+édwwmﬁw=«wm—1f§%m%me%»

By standard arguments, see for example the proof of Lemma 4.3 [2], we get

1(@(Gi(p,U)) = 4 (@(U) = § +E(p.U)
2(G1(p,U)) = 2(U) + Ex(p,U)
f(gl(pa U)) = f(U) + 5f(p’ U)

with E:(p,U) satisfying (7.37) for ¢ = w, z¢, (7.38) for ¢ = f and such that CX1Er(p,U) = E(p,U). We
have E(U) = &E:(|| f|l2, U) satistying (7.35) for ( = w and (7.36) for ( = z, f. O
Eventually we have the desired Darboux type result:

Lemma 7.12. (Darboux Theorem) Consider the flow F. of Lemma 7.11. Then we have F S = Q.
We have Q o F1 = q. If x is a function with Ogx =0, then Oy(x o F¢) = 0.

Proof. The proof is the same of Lemma 7.11 [26]. O
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8. REFORMULATION OF (6.6) IN THE NEW COORDINATES

We set H := K o F7. In the new coordinates (6.6) becomes

OH O0H
8.1 = — = =
&) (h=5 =0, dV=50
o0H :
(82) 1z = Ejg , lf = iﬂagEgzlfo.
J

Recall that we are solving the initial value problem (1.1) and that we have chosen wy with q(wo) = ||uol/2..

Correspondingly it is enough to focus on (8.2) with w = wg. Consider the notation of Theorem 1.3. Let
us focus for the moment on the case ¢; =1 in system (8.2). Then we prove :

Theorem 8.1. Assume (H:1)-(H:12). Then for any integer ko > 3 there exist g > 0 and C > 0 such
that for |z(0)] 4+ || £(0)|| gro < € < € the corresponding solution of (8.2) is globally defined and there are
f+ € HR with || f+|| gro < Ce such that

i9(t)Ss _ _—itDy, o
(53 im0 f(2) = P £ = 0
and lim; o0 2(t) = 0, for J(t) the exponent in (4.1). Fiz po > 2 and 70 > 1. Let 5 1= %—i and a(q) = %.

Then, we can choose ey small enough such that f(t,z) = A(t,z) + f(t,z) with
(

Vn € N, Cp(t) := sup ()" |A(t,x)] = 0 as t — o0
zER3

and for some fized C
(5.4 17, < ce.

)Bq02 P)mLZ([o,oo),H;“O’*’U)ng([o,oo),L;o)
There exist wy such that |wi — wo| = O(|| f+|13) such that limy_, oo w(t) = wo.

Proof that Theorem 8.1 implies Theorem 1.3. . If we denote (w, 2’, f') the initial coordinates, and (wo, 2, f)
the coordinates in (8.2), we have from Lemma 7.11 :

2" =2l = O(l2| + [ fllg2—2) and | f" = fllaxs = O(z[ + [l L2-2)
for any (K, S) € (RT)2. The two error terms O converge to 0 as t — co. Hence the asymptotic behavior

of (2, f') and of (z, f) is the same. We also have, from Lemma 7.11, q (w(t)) = ¢ (wo) — % +O0(|=(t)|+
[ f()|| ;2.~2) which implies, say at +oo

eiitH“U’Uer 2 er 2
|| 5 |2) — q(w()) o H 2”2 — q(er)

for wy the unique element near wy for which the last inequality holds. So lim;—, 1o w(t) = wy.

lim ¢(w(t)) = lim <q (wo) —

t— o0 t——+o0

O

In the case ¢; € {1, —1} with ; # 1, using the same argument of Theorem 8.1, we prove that solutions

which remain close to the standing wave, actually have remainder which scatters. We state this in terms

of the system (8.2) and the coordinates after Darboux, but of course it can be stated also in terms of the
original coordinates, as in Theorems 1.3 and 1.10.

Theorem 8.2. Assume (H:1)-(H:4), (H:5%) and (H:6)—-(H:12). Then there exist ¢ > 0 with the
following property. Suppose that (z(t), f(t)) is a solution of (8.2) such that |z(t)] + || f(0)||gro < € < €0
for all t > 0. Suppose furthermore that there exists a fized C > 0 such that || f(t)||gro < Ce for all t > 0.
Then there exist f1 € H* such that (8.3) holds (case +) and we have lim;_, o, 2(t) = 0. Furthermore,
we can write f(t,z) = A(t,z) + f(t,z) as in Theorem 8.1 in such a way that the same conclusions of
Theorem 8.1 regarding A(t,x) and f hold.

Remark 8.3. Theorem 8.2 is analogous to an observation in [43] regarding the fact that solutions remaining
for all times close to a standing wave, stable or unstable, converge to it. Among other references see also
[5, 44].

Finally, Theorem 1.10, that is orbital instability, is a consequence of the following theorem.

Theorem 8.4. Assume (H:1)—-(H:4), (H:5%) and (H:6)—(H:12). Then there is a €1 > 0 such that for
any § > 0 there is a solution (z(t), f(t)) of (8.2) such that |z(0)| + || f(0)|| gro < § but there exists t > 0
such that |z(t)| > €1.
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8.1. Taylor expansions. We recall that ¢; = (§;,X3¢;) € {1, —1} is the signature of the eigenvalues of
H,. We set d(w) := E(®,,) + wQ(P,). We recall that wp is the unique element such that g(wo) = ||uo|3
and G is the primitive of the non-linearity ¢g vanishing at 0.

Lemma 8.5. The following statements hold.
K = d(w) — w||uol3 + K2 + Kp with

Ks fZej w)lz;? + = <1ﬂa22 Satof, f) and

(8.5) p:<G6(w,f(:c)),1>+ S (bu(w,2), )22+ Y 22 (K (w, 2), 18028351 Pe(w) f)

|;,L+l/|:3 |;,L+l/|:2

+ 3 (G0, 2) (RN + [ (G, f(@), 7 @) o
d=2

R3

where for a small neighborhood U of (wo,0) in O x C™, we have what follows.

(1) Go(z,w, f) = G (3(Pe(w)f(2)) - iS5 (Po(w) f (),

(2) k#”('vwvz) € CW(U7H£(7S(R3¢C8);

(3) Ku(-,w,2) € C®°U, HES (R, C8) N X),

(4) Ga(-,w,z) € C=U, HES(R3, B((C®)®?,C))), for 2 < d <4 and Go(-,w,0) = 0.
(5) Let'n = (¢,CC) for ¢ € CL. Then for Gs(-,w, z,1) we have

vl € NU {0}, ”Vfu,z,z,c,chs(wa 2, 77)||H£<,S(R373((c8)®57@) <.
(6) We have kyy, =k}, K = —C¥1K,),.

Proof. Consider U= 612319((19 + R) as in (4.1) . Decompose R as in (4.5). Set U = p(w, z) + Pe(w)f.
Let K,(U) = [ h(U(z))dz, see Lemma 2.4, then after first a Taylor integral expansion around f at first
order and a Taylor mtegral expansion around ¢ at fourth order, we have

h(U) = h (P.(w)f) +/0 dh(ty + P.(w)f)pdt

—h BN+ [ RE Rt
z<4
+ 5/ (1—s)t gczﬁh(up + 8P.(w) f)(Pe(w) )@ dtds
[0,1]?
Since ¢, is a critical point of K as it is in the kernel of H,,X3, so in the Taylor expansion of K around
®,, there is no first order term. The second derivative of K is the bilinear form 1 5(1Ba2X1¥3H,,, ). This
gives Ks.

The term Kp contains all terms of order higher than 2 in f and z. Thus coincides with the term of
order higher than 2 in f and z in the above expansion after integration in x.

The Hamiltonian K is a real quantity and considering its conjugate will exchange z and z and
lead by a straightforward calculation to the last assertion. The fact that K, (w,z) € X follows from
<iﬂOé22123AX, Y> = <iﬂa22123X, AY>, <iﬂOé22123BX, Y> = <iﬂa22123X, BY> and f S X, see Lemma
2.3. O

The following lemma is a reformulation with some rearrangements of the above one in the canonical
coordinates provided by Lemma 7.11. We set §; be for j € {1,...n} the multi index §; = (15, ..., In;)-
Let )\? = Aj(wo) and X° = (A9, -+ [ A\0).

Lemma 8.6. Let H := K o Fy. Then, around emw(l)wo we have the expansion

(8.6) H = d(wo) — wolluoll + (|l f113) + H" + R, where
(8.7) HY = 3 kD13 + 5 <1ﬁa221237'lw0f f).
|t |=2

A0 (p—v)=0



ON STABILITY OF STANDING WAVES OF NONLINEAR DIRAC EQUATIONS 23

and R = R + 7/&2/), with

(8.8)

RO = > EDA32 + > 2 (Hypu(If1I3),1BazSsS1f),
[ptv|=2 |utv]=1
A% (p— V)sﬁO

RE) = G( (Po(wo) f(x)) - i35 51 (Pe(wo) f(2)) dz + Y z“z/ ko (2, 2, f, f(2), | FII3)dz
R? |ptv|=3

+ Z Z”Z/ 16a22123Huu($azafaf($)a||f||%)]Tf($)d$

er/\ 2

+ZR<” + ROz, £, 11£112)

j=2
and RY = [ Fy(az f. @) 1) @)

and where the following holds.
(1) We have ¢(s) is smooth with ¢¥(0) = v'(0) = 0.
(2) At ||f|l2 = 0 we have:
/{:ELI,/)(O) =0 for |p+v| =2 with (u,v) # (85,0;) for all j;
(8.9) kzéjl_();j (0) = €;\j(wo), where §; = (81j,-..,0m;) and here we are not summing in j;
H,.(0)=0 for |pu+v|=1.
These kf},,)(g) and H,,,(x, 0) are smooth in all variables with H,,,(-,-) € C=(R,, HX5(R3, C¥)NX)

for all (K, S).
(8) We have for all indexes

(8.10) kS = (KO), kw =k, Hyu=-CS1H,,.

(4) We have F5(x,0,0,0,0) = 0.

(5) For all (K,S,K', S") positives there is a neighborhood U=K"=5" of {(0,0)} in P—E' =5 see
(7.26), such that
(a) for 'n = (¢,CC) where ¢ € C*. we have, for k,(z,z, f,n,0) with (z, f,(,0) € UK x

C*xR
(8.11) VIeN®, | Vizeocrokullussgs oy < Ch
(b) for Hyu(z,z, g, 0),
(8.12) VIeN®,  |IVizcec ol ges gs ey < O

(c) for Fj(z,z, f,g,0),
6 l .
VEEN®,  IVizcocrolilluxs s pceyer oy < Ci

(d) we have ﬁgl)(z,f, 0) € C°(U K5 x R, R) with

(R (=, £, 0)1 < 12l + lel + 1 Ly - -
Proof. The following proof is a continuation of proof of Lemma 7.11. We thus consider H = K o G; as
a function of (o,U). By G1(0, o) = F1(Puy) = oy K'(Puy) = 0 and || F1(U) = Ullpr.s S ||R|Z2 we
conclude H'(®,,) = 0 and H"(®,,) = K"(®,,). In particular, this yields the formula for H2(1) +RM
for o = |3 =0.

The other terms are obtained by substituting in Kp of (8.5) the formula (7.34). The term (o)
arises from d(w o G1) — w o Gi|Jug||3. There are no monomials || f||32#z" (H, f)* with |+ v| + 4 = 1,
due to (7.35) (applied for w = wp). By (iBaa¥1Xsf, f) = || fl3, we have (iBaeX1Y3Hutswf, f) =
(iBaaX1XsHuo f, ) + |\f||29 + F, where F, can be absorbed in j=2in R® and @ can be absorbed
in ¢ when restricted to Q = |If1I3.

Notice that Rg is a remainder term obtained from terms in £ of Lemme 7.11. g
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9. BIRKHOFF NORMAL FORMS

9.1. Normal form. Here again and in the following sections, we use the notation /\9 = Aj(wo). Set
H = Hey Pe(Husy)-

Definition 9.1. A function Z(z, f) is in normal form if it is of the form Z = Zy + Z; where we have
finite sums of the following types:

(9.1) Zy = > 22 (1Baa 1 %3G (|| £113), £)
X0 (=) | >m—wo

with H,, (z, 0) € C°(R,, HXS) for all K, S;

(9.2) Zo= Y auulfl3)="z"
A0 (p—v)=0
and a,,,(0) € C*°(R,, C). We will always assume the symmetries (8.10). O

We consider the coefficients of the type of (8.7) (below it will be those of the H2(T) in Theorem 9.5)
and thus let, for 5j = (51ja ---;5nj);

93) 5 = NI = 20+ ks, (1713, A= (e Am).

Let

(949 Dy =S e (UIRI | + 5 (18005 S Ho . )
j=1

We have (X (o) is the derivative in ) for I a scalar valued function that, summing on repeated indexes,
{Ds, F'} := dDs(XF) = 9;D2(XF); + 0;D2(Xp); + (VyD2, (XF)y)

9.5) = —10;D20;F +1 0;D20;F — (V; Dy, BanSs51V  F) =
iIX\jzj0; F —i\Z;05F + i(Hf, Vi F) + 2N ([ £113) 121 *(f, sV ¢ F).

In particular, we have, for G = G(z), (we use ¥11¥2 = X3)

{Dg, z"'z"} =i\ - (u — v)2'z",

{D2, (iBasXiE3G, f)} = i(H [f,iBasX: E3G) — 212 Nz 2 (iBasXy f, G)

=1
(9.6) . ’
= —i(f,iBaaS1 NaHG) — 21 ) Nj|z|* (1B £, G),

j=1
1 1,.,. . . . .
{DQ’ §||f||§} = {DQa §<fa 1ﬁ0¢221f>} = _1<Hfa 16a221f> = _1<Vwofa 1ﬁ0¢221f>-
In the sequel we will prove that || f]|2 is small.

Remark 9.2. We will consider only |u+ v| < 2N + 3. Then, \° - (1 —v) # 0 implies [A\°- (u—v)| > ¢ >0
for some fixed ¢, and so we can assume also |\ - (u — v)| > ¢/2. Similarly [A\° - (u — v)| < m — wp (resp.
IO (u—v)| > m —wp) will be assumed equivalent to |\- (u —v)| < m—wp (resp. |A-(u—v)| >m—wp).

Lemma 9.3 (Homological equation). Consider

9.7) K= Y kalflD"z"+ Y 2"2(iBasiSsKu (I1113), £)-

|ptv|=Mo+1 |u4v|=Mo
Suppose that all the terms in (9.7) are not in normal form and that the symmetries (8.10) hold. Consider

= Y B

PR LR Cl?)

1
FY eSS K1)
|u+v|=Mo :

(9.8)
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Then we have {Da, x} = K + L with, summing on repeated indexes,

/

k
L=—2—F_—:tz" iBaX
(M*I/)'AZ z <Vw0falﬁa2 1f>

. 1
—2)\;2:“2”|zj ? <1Ba221f,

(MV)~/\HKW>
1
(=) A—H)

+2>\/ . (‘u — Z/)Z“EV|Z]-|2 <f, iﬂOéQ Kl“’> <Vw0f, iﬂa221f>

v 1 .
—2zM7Z <f’ 2321 M—)\HK;“’> <VUJofa ZBCYQZlf).
If the coefficients in (9.7) satisfy (8.10), the same is true for the coefficients in (9.8).

Proof. The proof follows by the tables (9.6), by the product rule for the derivative and by the symmetry
properties of H. a

9.2. Canonical transformations. First we consider functions

(9.9) x= > bullfl®z+ Y E(BaaTiSsBu (| fI13), f)
|ptv|=Mo+1 |u4-v|=Mo

where by, (0) € C*(R,,C) and By, (z,0) € C°(R, P.(wo)HF*(R3,C?)) for all k and s. Assume

(9.10) by = (by,)” and iBas¥ By, = —(B,,)* for all indexes.

The canonical transformations used in the proof of Theorem 9.5 are compositions of the Lie transforms
¢ = ¢T|T:1, with ¢7 the flow of the Hamiltonian vector field X, (with respect to o and only in (z, f)).
Let for K > 0 and S > 0 fixed and large

(9-11) Il = > b (I3 + D 1B (LF 1) s

Then, the following lemma can be proved like Lemma 9.2 [26].

Lemma 9.4. Consider the x in (9.9) and its Lie transform ¢. Set (2', f') = &(z, f). Then there are
G(z, f,0), T(z, f,0), Tolz, f,p) and T1(z, f, p) with the following properties.
(1) T € C®UK'=5" ), Ty,Iy € C°U K5 R), witht! =55 c C" x H7 K"~ (wp) x R an
appropriately small neighborhood of the origin.
(2) GeCoU K =5 HES(wy)) for any K, S.
(8) The transformation ¢ is of the following form:

(9.12) 2 =z+T( £ 113,

(9.13) f = TG LIIDP0Ss £ 4 Gz, f, |1 £13):
(4) There are constants cxs s and ci s k.5 such that

(9.14) IC( LAFIDE < s (el + Q18D (2] + (11l s -s7),

(9.15) IGC, £ I s < ersaer,se (Xl + (9.18))]2[ M,

(9.16) Loz, AIFID < cxorsrle™0 (2] + [ llg-ser-or)2.
(5) We have

(9.17) 1F13 = 103 + T (= £, F13),

(9.18) Ta(z, fIFID] < Clel™ = (2] + 1 £l g-nr-50)?.
(6) We have

(9.19) eiloPe(wo)Bs — oilo¥s 4 (),

where T(r) € C®(R, B(H-K"=5" HK:5)) for all (K, S, K',S"), with norm
1T () g5 grcsy < CUK, S, K S,
More specifically, the range of T(r) is a subspace of Xq(H) + Xa(H*).

The crux of this section is the following result.
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Theorem 9.5. For any integer r > 2 there are a neighborhood U™ of {(0,0)} in 751’0, see (7.26), and
a smooth canonical transformation Ty : U0 — PLO s.¢.

(9.20) H" := HoT, = d(wo) — wolluo|? + v (| £12) + HS + 27 + R™.

where:
(i) H(T) H(Q) for r > 2, is of the form (8.7) where kff,,)(||f|| ) satisfy (8.9)—(8.10);

(i) Z(T) is in normal form, in the sense of Definition 9.1 above, with monomials of degree < r whose
coefficients satisfy (8.10);
(iii) the transformation Ty is of the form (9.12)- (9.13) and satisfies (9.14)— (9.16) for My = 1;

(iv) we have R = Zd oR T) and for all (K, S,K',8") positives there is a neighbourhood U~'-=5'
0of {(0,0)} in P~K'-=5" such that
(1v.0)

R = S o [ ks @) R

|tv|=rt1

and for k: ( . fym, 0) with t'n = (¢,CC), ¢ € C* we have for (z, f) ceU K5 and lo] <1

(9.21) IV 2 c.ccp.0k ) 2 £, @) ams ve o) < C for all I;
(iv.1)
T
RO = % o2 [ [iBeenimat e s 5@ IS1B)] S(o)da
tvl=r
(9.22) with |V, 2 OO, QH (-, 2, £, o)l x5 ms csy < Cp for all I;

(iv.2-5) for 2 <d <5,

R(T):/RSFé%,z,f, (@), 1713 (@)dz + Ry},

with for any 1

(9.23) IVL 2 c.oc.p.0F, ( fomy @) las.s ws B((csyed,c) < Cly

with F{"”(2,0,0,0,0) = 0 and with R (z, f,[|f]12) s.t

R (z, f,0) € C®U K5 xR, R),
(9.24) IR (2, fo )| < CIFN%—ser st
H
RS (2, f,0)| < Cl2l + Lol + 1fllgg-rcr-s N ser -5

(10.6) RY) = [rs G(A(Po(w)f(2)) - iaXs %1 (Pe(w) f(x)) da.

The proof of Theorem 9.5 is the same of Theorem 9.1 in [26] and we skip it. The ingredients needed
in the proof (in particular the notion of normal form) are described above.

10. NON LINEAR DYNAMICS

10.1. Dispersion. A We apply Theorem 9.5 for r = 2N; + 1 (recall N;jA; < m —wp < (N; +1)A;). In
the rest of the article we work with the Hamiltonian H (). We will drop the upper index. So we will set
H=H", H, = (T) LA = )\(T) A=), 2, =7 for a = 0,1 and R = R(™. In particular we will

denote by H,,, the coeflicients wa of ZY). We will show:
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Theorem 10.1. Fiz py > 2 and 79 > 1. Let % =3(1- %) and a(q) = %, ie. (1+2)(1— %) = % with
0 =1 in Theorem 5.6. Consider ko >4, ko € Z, € € (0,e9) and €9 > 0 as in Theorem 1.8). Then there
is a fixzed C > 0 such that for eg > 0 sufficiently small and for p > pg we have the following inequalities:

10.1 2 < (g

(10.1 151 05, < C°

(10'2) HfHLf([O,OO),H:’jU’*"O) < Ce

(10.3) 1 £1122(j0,00),L50) < Cee

10.4 zH| 12 < Ce for all multi indexes p with X -y > m — wg
L%([0,00)) H 12

(10.5) ||zj|\Wt1,m([07m)) < Ce forallje{l,....,n}.

Due to time reversibility, it is easy to conclude that (10.1)—(10.5) are true over the whole real line.
The proof of Theorem 10.1 involves a standard continuation argument following [51, End of proof of
Theorem I1.2.1]. We assume

(10.6) 141

oty T Wz mtomo) Flflzzqom.oz) < Cre

(10.7) 2% L2 (jo,r7) < Cae for all multi indexes p with w - > m —wo
(10.8) |\zj||Wt},OO([01T]) < Cseforall je{1,...,n}

for fixed sufficiently large constants C;—C3. Notice that there is an €; > 0 such that this assumption is
true for all [2(0)| + || f(0)|| gro < €1 if say T € (0,1]. We then prove that there exists a fixed g € (0,¢1),
with €9 = £9(C4, Cs, C3), such that for € € (0,¢¢), (10.6)—(10.8) imply the same estimate but with C;—C3
replaced by C/2-C3/2. This implies that the set of T' such that (10.6)-(10.8) is open in RT. Since it is
also closed, it is all R*. Then (10.6)—(10.8) hold with [0, T] replaced by [0, 0o) for all [2(0)|+ || £ (0)|| rro <
€ < E€g.
The proof of Theorem 10.1 consists in three main steps.
(i) Estimate f in terms of z.
(ii) Substitute the variable f with a new "smaller” variable g and find smoothing estimates for g.
(iii) Reduce the system for z to a closed system involving only the z variables, by insulating the part
of f which interacts with z, and by decoupling the rest (this reminder is g). Then clarify the
nonlinear Fermi golden rule.

Step (i). Using the Proposition 10.2 below, we will choose Cy > 2K;(C5). This tells us that if we get
upper bounds on C5 and C's, and this is done in Sect. 11, then we will have proved Theorem 10.1.

Proposition 10.2. Assume (10.6)—(10.8). Then there exist constants C = C(C1, Cs, Cs), K1(Cs), such
that, if C(C1, Cs,C3)e is sufficiently small, then we have

(109) 1, 0 o2, 1 o)+ ooz < Ka(Cale
t WU L5y o
Proof. Consider Z; of the form (9.1). Set:
(10.10) Hp,, = Hyu (I £113) for [ II5 = 0527 = Aj(wo).
Then we have (with finite sums)
lf - Hf - 2(8||f”§H)Pc(wO)Z3f = Z Z#EVHSV
e o
(10-11) |[ptv|<2N1+
+ > 7Y (Hyuy — HY),) +1B025351 VR — 2(09) 712 R) Pe(wo) Ss -
IX®- (v =) [ >m—wo,
v <2Ny 1

In order to obtain bounds on f, we need bounds on the right hand term of the equation especially the
last two terms. They are provided by the following lemma.

Lemma 10.3. Assume (10.6)—(10.8) and consider a fized 79 > 1. Then there is a constant C =
C(Cy,Cq,C3) independent of € such that the following is true: we have

ﬂOQEgElvij - 2((9”f||§R)PC(wO>23f = R1 + RQ
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with
[R1ll yro < C(Ch,y Coy Ca)([|2PMF2 4 || fll T | 1] o)
[ R2l om0 < C(Cr, Co, Ca)(l2] + 1122 + 11 £l o o) | Il oo -
In particular we have for some other fized constant C = C(Cy,Cs,C3),
(10.13) ||R1||L%([01T]7H:0) + ||R2||L%([01T]7H§0,70) < C(Cy,0y,C3)e?

(10.12)

Proof. (10.13) is a consequence of (10.12) and (10.6)—(10.8). We focus on (10.12). For d < 1 and arbitrary
fixed (S, K) we have V;R4 € HSX. By (iv0-ivl) Theorem 9.5

IVsRoll s + IV ¢ Rallgrs.se < Cf[*MF2.
These terms can be absorbed in R;. For 2 < d < 5 we have
2351V Ra — 2(8|\f||2Rd) e (w0) s f = S3%1V i Ra(z, f,p),
computed at p = ||f||3. By (9.24) we obtain
IV s Ra(z, fo )| gracrsr < ClLFING er -
IVR2(z, f 7p)||HK"S/ < OfI=wr—sr + Clzl | fll s

o for 3 <d <5 and

Since K’ and S’ are arbitrarily large, we have || f|| y—x/,—s' < || f|l grro.—70 . So these terms can be absorbed
in Ry. Other terms are treated as in [2, Lemma 7.5] : For d = 2,3,4,5 we have schematically

Fd((E, Z, fa f(ta ')ap)f®(d_1)(ta ) + Gde(x, Z, fawap)w:f(t,~)f®d(ta )

(10.14) +9, ([ Fule. 20,500, O16. )]

g=f
The first line of (10.14) has H¥o>™ norm bounded, for some fixed sufficiently large N, by
C||<.T>NFd(.T,Z,f,f( ) )HWkU“”fl ko -7

(10.15) _
+ C||<:C>Nade(xv 2, fvva)w:f(t,z)”WIkva ”f”d ko -0 = C”f”d ko —70 =+ CHin{g’:o,*m'

When these terms are bounded by ||f||dlk0 .
from terms in the first line of (10.15) with d = 2. By F»(z,0,0,0,0) = 0 these are less than

(2l + 11l gy rermsr 4 NFNZD NS g0 =mo

and can be absorbed in Rs. Looking at the second line of (10.14) and for N sufficiently large, we have

19 ([, Fite.z.a S o) ISR de) e =

g=f

for d; > 2, we can absorb them in R,. Cases d; = 1 come

e DyFa(w, 2,9, f(t,2), | ($)72)g=s (W1 [f (£, 2)]**de

<C o 1D Fulx, 2, g, f(t,2), | £ O)1F2)g=r Il oo [ 10 ~0 < ClF I m0.-0-
gy~

So the second line of (10.14) can be absorbed in Rs. Finally we consider VRg = Z1g(| f (¢, z)[>/2) f (¢, z).
Then for a fixed C' we have ||V Rg|| o < Cllf[[Fo0 |1l 50 - O
Denote by F the rhs of (10.11) and set o = 20) ;2 H.

Lemma 10.4. Consider it) — Hip — p(t)S3P.ap = F where P. = Pu(wo) and ¢ = Pup. Let k € Z with
k>0 and 7o > 1. Then there exist co > 0 and C' > 0 such that if ||¢||Lse0,7) < co then for p > po > 2
and for (p,q) as in Theorem 10.1 we have

(10.16) ”wHLf([O,T],B(’;%)ﬂLf([O,TLHf’*’U) < CloOllae + CUEN Ly 0,21, m0)+ L2 10.71,1570)
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Proof. We apply the argument for the NLS in Lemma B.2 [44], see also Theorem 1.5 [5]. A more precise
statement than Lemma B.2 [44] is in [13, 23], but the proof does not seem easy to reproduce for Dirac.
We fix any 0 > 0. Let Py = Py(wo) and Ho = Hey,,0- Consider

(10.17) iZ — HP.Z +16PyZ — ¢X3P.Z = F.
Then notice that for Z(0) = ¢(0) the solution of (10.17) satisfies Z(t) = ¢ (t). We rewrite (10.17) as
\Z —HoZ — p¥3Z = F + (V — HPy —i06Py)Z — o3Py Z.
Let (V — HP; —i6P,) = V1V with Va(z) a smooth exponentially decaying and invertible matrix, and
with V4 bounded from H®* — HF* for all k, s and s'. For U(t) = e~ =3 Jo ¢4 we have

(10.18)  Z(t) = U(t)e "ot Z(0) — i/t =Y DU () [F() + ViVaZ () — o(t') 83 PaZ(t')] dt’.
0

coPyVyt maps H-K'=5" — HKS for arbitrarily fixed pairs (K,S) and (K’,S’). By picking ¢y small
enough, we can assume that the related operator norms are small. By Theorems 5.4 and 5.6

”ZHLka;%mL?H’“”O < ClZ (Ol + CHF”L%HHL?H?TO
q, f x
+ H‘/l - @(t)23pd‘/2_1||L?OB(H£,H"”'U)||‘/2Z(t)||L%H§'

x

For Tof(t) = Vo [y o =Dt~ (t')Vi f(¢')d#', by (10.18) we obtain

t
(I +iTo)VaZ(t) = Vald (t)e Mot Z(0) — iV3 / MDY OUTH ) [F() — o(t' ) SsPaZ(t)) dt’
0
We then obtain (10.16) if we can show that
(10.19) (7 +1To) ™"+ LZ([0,T), H*(R®)) — LF((0,T), H*(R?))|| < O,
for ¢oCy smaller than a fixed number. It is enough to prove (10.19) with TO replaced by
t
Tof(t) = Vs / MOV, F(t )t

0
Indeed by Theorem 5.5 we have

~ t . / . ¢! " "
1(To = To) fll Lz rs < II/ [Vae Mot =0 (s [ o@D 1)V £ (8| yydt| 12
0

~ 1 t 5 1
<Cq ||/ (" = )73 ) N eedt | 2 < Ceg I1f ()] 2
0
Set
t : ’ t B ’ ’
Tlf(t) _ ‘/2/ e(lHPc-i-éPd)(t _t)‘/lf(t/)dtl _ ‘/2/ (6(17-[(15 —t)PC + e—6|t —t\Pd>‘/1f(t/)dt/.
0 0

By Lemma 5.9 we have ||T1 : L2([0,T), H*(R3)) — L2([0,T), H*(R?))|| < Cy for a fixed Cy. For exactly
the same reasons of [44] we have
(I +1To)(I —iTy) = (I —iTy)(I +iTy) = I.

This yields (10.19) with Ty replaced by Ty and with C; = 1 + C. O
Lemma 10.5. Using the notation of Lemma 10.4, but this time picking 7o > 3/2, we have
(10.20) HwHLf([O,T],LOO) < Cl[(0)][ o + CHF”L}([O,T],H§0)+Lf([O,T],H§“’T“)
Proof. We proceed as above until (10.18). We claim we have

121z < CNZO) 1m0 + CUE 1y gyro 4 2 gromo

+ H‘/l - @(t)23pd‘/271||L?OB(H:07H§0”'U) ||‘/QZ(t)
(10.21) will yield (10.20) by the argument in Lemma 10.4. So now we prove (10.21). We have for k > 1/2

le™ 0t Z(0)l| 200 < Clle™™'Z(0) L2, < C'IZ(0)l|sarss < C'|Z(0)] v

(10.21)

”LfHﬁ“'

by Theorem 5.6. Similarly, splitting F' = F; + F», we have
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I [ e U R i e < O [0 R0
< CRlggapns < C gy

Using BY, , C L* for k > 0, by Theorem 3.1 [9] we have for ko > 3

t t
II/ MY Fy (¢t || 2 SCH/ min{|t—t’|_5,|t—t’|_g}||F2(t’)|Bf%dt” 2
0 0 ’ L

t

S CllEll s pro, < C7I(2) ™ F = C"||Fall L2 rvo.mo

HLZB HLfB;OZ

where we have used [|¢; * Falp1 < [[(z) 77| p2[[{z) @) * Fallr2 < C"[lp; * ((-)™ F2)]|r> for fixed C" > 0
and fixed 79 > 3/2. With Fy replaced by (V1Va — ¢33P;)Z we get a similar estimate. This yields
inequality (10.21).

]

Continuation of the proof of Proposition 10.1. By (10.11) we can apply to f Lemmas 10.4 and 10.5
by taking ¢(t) = 2(0) s 2H) and F = rhs(10.11) — ¢()[E3, Pg]f. Then

HfHLP (10.71,BL% P )nL2([0,7], 70~ 0 )NL2([0,7),L50) < O OMrreo + CUEN s 0,71 50y 2210, 1207
We have
HF”LtngoJrLgngo S Z quHig + ||R1||L%H§o + ||R2HL§H§0v*0 + GHfHLgH;’mv*TO-
A-pu>m—wo

For € small this yields Proposition 10.1 by Lemma 10.4 and by (10.7).
O

Lemma 10.6. Assume the conclusions of Theorem 10.1. Then there exists a fized C > 0 and f! € HPo
with || f1|| g0 < C€ such that for for ¥(t) the phase in the ansatz (4.1) we have

H*o

Proof. For (t) = f(t), for F = rhs(10.11) — o(t)[X3, P4]f and for ¢; < t2, we have
e =" (t2)et ™" f(ta) — U™ (tr)e ™0 f(t1) ] v

(10.22) lim

19(t)5s  _itDy g1
om € f(t) —e f+

t2
<| [ eEMruUTME) [FE)+VEE) — o U SsPaf ()] dt' || gro <
t1
C( Z HZMHLQ(M,Q) + HRlHL}([tl,tQ],HfO) + ||R2||L§([t1,t2],Hf°'s) + ||f||L%([t17t2]7H:0v*T0))'
[AO-p]|>m—wo

Since the latter has limit 0 as t; — +oo, there exists fjr € H*o guch that

lm_ [ ()£0) ¢ £, =0

t——+oo

From Ho = Dy, — woX3 and U~1(t) = €23 Js 214 e have for O(t) = —twy + f(f o(t")dt’

¥ f(p) _ eitDm f H _

Hko

(10.23) lim

(10.22) follows from (10.23) if we can prove 0(t) = 9(t) —9(0) + o(1) with o(1) — 0 as t — +o00. To prove
this claim we substitute R in (2.4) using (4.6) and then replace (z, f) with the last coordinate system
obtained from Theorem 9.5. Then we get

2N+1
d

(10.24) if —Hf— O +wo— Y EFBj))Pc(wO)ng =G
j=2
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ng ) are the functions in the exponent of (9.13) for

where G is a functional with values in L>°(R, L1);
each of the transformations in Theorem 9.5. Set now
2N+1

G = -G +rhs (10.11) .
Then taking the difference of the two equations (10.11) and (10.24) we have
X f =x()E3Pa(wo)Esf + E3G
G (resp . x ) is a functional from a neighborhood of the origin in L°°(R, H**(R?)) to L>(R, L*(R3))
(resp . L*™(R) ) . If x(to) # 0 for a given solution, we can find solutions for which f,(¢,x) such that
fn(to, ) — f(to, ) in Hko (RB), ||fn(t0)HL1(]R3) / o0, Gn(to) — G(to) and Xn(tO) — Xo(to) This yields a
contradiction. So x = 0 and G = 0. This implies D — wy — Z?NQH F(J) = 28Hf||zH This and the last
inequality in (9.14) yield the claim 6(t) = ¥(t) — 9(0) + o(1). O

Step (ii). In the proof of Theorem 10.1 consists in introducing the variable

g=f+Y, Y= > 2 RY, (N (u—v)HY,.
A (p=v)[>m—wo
Substituting the new variable g in (10.11), the first line on the rhs of (10.11) cancels out. We have
ig — Hg — 20| )2 H Pe(wo)X39 = second line of (10.11)+

10.25 -
( ) 2(9||f|‘§HPc(wO)23Y + Z [8zkY82k (Z + R) - &kYazk (Z + R)] .

k=1
Lemma 10.7. For € sufficiently small, 71 > 1 and Cy = Co(H) a fized constant, we have
I 20:20.22) < Ce + O(e).
Proof. Set F = (second line of (10.11) — ¢(t )[23, Pj]g). Then, proceeding as in (10.18), we have

||g|\L2L2,41 < He_itHOY(O)HL?Li,fn + ||e—it”°f(0)||L?Li,ﬂ + C||F|\L%H§+L§H§,q
(10.26) + / ~HHogecond line of (10.25)(t )dt/”LfLi””

Vs = GO PaVs e g g2 Va0
We have ||e~ "o f(0 )HL2L2 -m1 SIf(0)][z2, S e We have by Lemma 5.8
(O TR )
A0 () [ S m—wo

We have ||second line of (10.11)HL1L2+L2L2 7 < O(€?). Similarly [|p(t [23,Pd]g|\L2L2 - < Ce||g|\L2L2 .
Hence |F||;1;2472027 < Cellgll 2, 2-m 4+ O(€%). Now we sketch a bound for the second line of (10 26).
tLaMby Ly tLa

t
> e -t”‘oa”f”gH(t')z“<t'>z”<t'>Pc<wo>R;*<A°-<u—u>>23H2Udt'HLng,ﬂ

IXO- (=) [ >m—wo
IXO- (=) [ >m—wo

where we used Lemma 5.8 with # replaced by H*. Of the other contributions to the second line of (10.26)
we focus on the main ones. Specifically we consider for p; # 0

(1027) ||/ i(t’ 7t)H0P wo) @JZORH()\O ( — V))H‘Sudt/”LfL37ﬁ < 7 ||L?
for AM(wo) - (p —v) > m — wy. We need to show
(10.28) I 'f 0z, Zol 12 = O(€?).
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2°z?

Let 2°Z° be a generic monomial of Zy. Then 0z, (222°) = Bj %5, with the nontrivial case for 3; # 0.
J

By Definition 9.1 we have A(wp) - (& — 8) = 0. (H:11) can be applied and implies || = |G| > 2. Thus
in particular one has

)\(wo) o> )\j(wo) = )\(wo) . (M + CY) — )\j(bdo) >m — wp .

So the following holds:

2HZY Z07P 2V 2P ZHze
ez < = leell——llez < CCyCselHIPl < 0Oy Cse?.
J J

5%

We conclude that the second line in (10.26) is O(e?). The estimates omitted are easier than (10.27) and
(10.28). [|Vag|| 2, can be bounded as in Lemma 10.4. O

11. THE FERMI GOLDEN RULE
Step (iii). We proceed as in [26]. We recall Remark 9.2. In particular we will only consider finite sums
lutv] < 2N+3. We will have XY = X;(wo) and A; = A;(|| f]|3) as in Section 9.1. [A)—);| < C7e® by (10.6),
so in the sequel we can assume that A\° satisfies the same inequalities of . Set R, = RI,(\° - (u—v)).
We substitute (10.11) in i%; = 52 H") obtaining

.. ZMEU i
izj = 0z, (Ha + Zo) + Z Vit (g, 1fesXi X Hu) + 0z, R
A(p—v)[>m—wo 7
(11.1) ptazyth
- Y (RS, 1Ban ST H,).
A (a—B)|>m—wo %
[A-(u—v)[>m—wo

We rewrite this as
(11.2) iz; = 0z, (Ha + Zo) + &;
zv+8 .
(113) *Z A-B>m—wq VjE—j<R6rﬂH85’lﬂa22123H8U>

A-v>m—wo
AB=A<m—woVk s.t. Bp#0
Av—Ap<m—woVk s.t. vy#0

z%z¥ + 70 0
(114) _E Aa>m—wo vj Zj <RaOHaO’lﬁa22123HOV>'
A v>m—wq
Aa—Ag<m—woVk s.t. ap#0
Av=Ap<m—woVk s.t. vp#0

Here the elements in (11.3) will be eliminated through a new change of variables. &; is a reminder term
defined by

& :=rhs(11.1) — (11.3) — (11.4).

Set
V. El/-‘,—ﬂ )
G =2 — Z )0 . (ﬂj+ v % <RarﬁH8ﬁ’16a22123Hgy>
(11.5) (B,v) as in (11.3) J
Vj z2%z" REHO S
* Z )\O . (Oé — l/) Z < a0 aO?l/BQQ 143 OI/>
J

(o,v) as in (11.4)

Notice that in (11.5), by A - v > wg —m, we have |v| > 1. Then by (10.7)

IC = 2z < Ce > 12212 < CCoMe?
(116) /\~a7/\k<)'r\r;boii)7grlv_lzdos.t. ap#0
¢ — zlloee < C%€

with C' the constant in (10.5) and M the number of terms in the rhs. In the new variables (11.2) is of
the form
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i = 0z Ha((, f) + 0z Zo(C, f) +D;
(1L.7) - 3 0, S R HY, 00T D HY)
)\0~a:)\0~u>m7wg gJ

Aa—Ap<m—woVEk s.t. ap#0
Av—Ap<m—woVk s.t. vp#0

From these equations by », )\g(zjﬁzj (Ha + Zo) — (0¢, (Ha 4 Zp)) = 0 we get

S

0D NG = Z 73 (Di0))

(11.8) =1 =
—2 > N (CTURE HY 180s T T ) )
(e,v) as in (11.7)

We have the following lemma, whose proof (we skip) is similar to Lemma 4.7 [25]:

Lemma 11.1. Assume inequalities (10.7). Then for a fized constant ¢y we have

(11.9) D IDiCi oy < (14 Ca)eoe®.
j

For the sum in the second line of (11.8) we get

2 Z r\y<R+ Z C*HY),iBas¥ X3 Z H0u>

(1110) T>m—wo A0.a=r A0p=p .
2 Y 1S <R,§(r) > CUHYSs | Y CQHQO] > =2 Y r (rH,, S3H;),
T>m—wo A0.a=r A0.q=r r>m—uwo
where H, := ", ,_. (*HY, and where we have used iBas % EgH = —EgiﬁagleSu = EgiﬁOéQCHB# =

Eg(HB#) by (9.10).

Lemma 11.2. Consider H, in (11.10). Assume m —wo <1 < m + wg. Then

(11.11) S (RS (r)H,, S3H) > 0.

If we assume (H:3), in particular if m/3 < wo < m, then (11.11) holds for all H, in (11.10).

Proof. We proceed as in Lemma 10.5 [26]. Set F, = Z, H,., where for Z; with w = wy, see Theorem A.3
in the Appendix. Set F,. = <Z> Then

S (R (r)Hy, S5H) = i S (Ryg(r + ie)Hy, SgH) = L S (Rag,, (7 + i) Fr, SoF7)

=lim S (Rp,, (r + w+ie)a,a”) — lim S(Rp, (r —w +ie)b, b*)
eNO0 eN0
1 1
=3 811{% el Rp,, (r +w+ie)all7: — S(Rp,, (r — w)b, b*) = 3 gi{% el Rp,, (r +w +ig)al|72 > 0.

Here we exploited that a,b € L?(R?), that r —w < m and so Rp,, (r — w) is a well defined selfadjoint
operator in L?(R3), that Rp,, (z) — Rp,, (%) = 2iRp,, (2)Rp,, (2*)Sz and that Rp,, (2*) = (Rp,, (2))*.
Let us consider r = A - p with p e Ng, A-p>m —wpand A-pp— Ay <m —wp forall k& s.t. pug #0.
Suppose A - > m + wg. Then we get m —wg + A\ > m +wg = A\ > 2wp. Let Ny € N such that
Nedp <m —wp < (N + 1) as in (H:9). Then (2Nj + 1wy < m. So, if we assume as in (H:3) that
wo > m/3, we obtain A - u < m + wg. This shows that the assumption A -y > m 4 wp is absurd. ]

Remark 11.3. Notice that to get the conclusions of Lemma 11.2 we can ease the constraint 3w > m to
2N+ 1w>mforallk=1,..,n

Now we will assume the following hypothesis.
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(H:12%) We assume that for some fixed constant C' > 0, for any vector { € C™ we have:

P (gaz”mgoﬂgo, iﬂa22123H8V>)
(e,v) as in (11.7)

>C > [l

AC.a>m—wq
/\O-af)\(,i<m7wg VEk st. ap#0

(11.12)

Remark 11.4. By Lemma 11.2 we have lhs(11.12)> 0. It is likely then that (H:12’) is true generically
in the class of non linearities we consider. But we do not try to prove this point.

By (H:12’) we have

(11.13) 22)\9S (Djzj) RatZ/\E)ICJFJr Z |<a|2.

Jj=1 Jj=1 A%.a>m—wq
/\O-af)\(,i<m7wg VEk st. ap#0

Then, for ¢t € [0, 7] and assuming Lemma 11.1 we have

Z)‘9|<j(t)|2+ Z ||<aHL2(0t) < €+ Coé’.
J=1 o as in (11.13)
By (11.6) this implies HZO‘H%Q ) S €+ Ca¢? for all the above multi indexes. So, from [[2%[|72(y ,y S C3e€?
we conclude ||z ||L2(O n < 026
Note that as the condition |A - (u — v)| > m — w implies that |x 4+ v| > 2, (11.1) implies that 2 is
integrable so that it has a limit at infinity which is necessarily 0.This yields Theorem 10.1 and completes
the proof of Theorem 1.3.

11.1. Proof of Theorem 8.2. We only sketch the proof, which is similar to that of Theorem 8.1. For a
particular solution satisfying the hypotheses of Theorem 8.2 we need to prove the conclusions of Theorem
10.1. The argument is exactly the same of Section 10.1 until we reach subsection 11, that is the task of
estimating z. Instead of (11.7) we have

G = £;0¢ Ha(C, )+ ;0 Zo(C, f) + ;D

—&j > C C (R¥Hgo,iBa2S1 53 H, ).

(e,v) as in (11.7) J

From these equations by >, A9 (Ej&cj (Hy + Zo) — (0¢,(H2 + Zo)) = 0 we get

n

0y e NG = Z 03 (Ds¢;)
(11.14) =1 =1
—2 Y AN (gag (R*,HO, . 150422123H8V>) .
(e,v) as in (11.7)

The estimate of the reminder term in Lemma 11.1 continues to hold. The last line of (11.14) is negative
by (11.10). We assume it is strictly negative and that in particular (11.12) holds. Then we get

(11.15) S KPS -0 NG +2> IS (D).
j=1 j=1

o as in (11.13)

When we integrate in (0,¢) for t < T we get

Yo ey S €€+ Caé’.

o as in (11.13)

In the rhs we have used the hypothesis |z(t)| < e for all £ > 0 to bound the first summation in the rhs of
(11.15). This yields Theorem 8.2.
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11.2. Proof of Theorem 8.4. Also here we just sketch the proof, which is similar to [24]. The proof is
by contradiction. If the statement of Theorem 8.4 is wrong, then for |z(0)| + || f(0)|| gro < 6 with § > 0
sufficiently small, we can assume |z(t)| < € for all ¢ > 0 for any preassigned € > 0. This implies that we
can apply Theorem 8.2. When get

(11.16) > ||ca||L2(0t)<Zsj (GO 1607 +2 [ ZA?%(%)
=1

« as in (11.13)

Suppose ¢, = —1. Then take initial datum z;(0) = 0 for j # jo, z;, = ¢ and f(()) =0. By f(0) =0 and
Lemma 10.4 for 1(0) = 0 we get for t € RT

Hf” <J}2+||R1HL%H§0 +HR2HL5H§0vTo

ko= ﬁLQHkO TTONLZLge

B, o
V= > 1%k

« as in (11.13)
Similarly
Hg||L2L2 TR < 6 + 63}2 + HRlHLlH’m + HRZHLZH’m 70+

Then, proceeding as in [24, 25] one improves the rhs in (11.9). Indeed, see Lemma 4.9 [25], we have
D¢l ey < CVNgll 2 gz + Ce¥? + Cll Rl 1 yro + CllR2l 2 k070
J 2H; LIH! L2HY

J
Then, one can see that ||R1|, 1k + [[R2ll 2500 S 0(1)d, going through Lemma 10.3, where o(1) — 0
tttT t x
as 6 — 0. Then from (11.16) we get Y? < —d + o(1)d, which is absurd.
APPENDIX A. RESOLVENT ESTIMATES AND WAVE OPERATORS

Lemma A.1. We assume (H:1) and (H:6)-(H:8). Then for any 7 > 1 there exists a constant C; =
C1(7,w) upper semicontinuous in w s.t. for any ug(z) € L*(R®,C®) and any ¢ > 0 we have

(A.1) (@)™ Ra,, (A £ie) Pe(Ho)uoll 2z ma) < Crl| Pe(Ho)uol L2 (rs)-

Proof. Notice that by Lemma 5.1 for any 7 > 1, any ug(z) € L?(R?,C8) and any € > 0 we have

(A.2) 1{x) ™" R, o (A £ ie)uoll 3 (ray < C(7)l|uollL2(es)-
Let ugp = P.(Hw)uo, A(z) = (z)~7 and B(z) € S(R3, B(C3,C?)) s.t. B*A=1V,,. Then
(AS) ARy, (Z)UO = (1 + ARH%O (Z)B*)_lARHwYO (Z)UO

The following operators preserve X: A, B*, Ry _(z) and Ry, (z). Pick d9 > 0 sufficiently small so that
by (H:6) for any \j(w) € o4(H.,) we have |\;(w)| < m —w — dp. Then by (A.2) and (A.3), Lemma A.1
is a consequence of the Lemma A.2 below. O

Lemma A.2. Let A(x), B(x) be as above in (A.3). Then, if we assume (H:3), (H:6) and (H:T), there
exists a constant Cy = Ca(T,w) upper semicontinuous in w such that for any € > 0 we have

(A.4) sup |(1+ ARy, (A £ie)B*)~ ||B(X x) < Ca.
A€ (R\[-m~+w+dg,m—w—0dp])

For any 7 > 1 the limit R}, (\) = li\r‘% Ry, (X L ie) exist in B(HY™ N X, L277) and the convergence is
« €

uniform for A in compact sets.

Proof. First of all we prove (A.4) in low energies. We want to prove

(A.5) sup [(1+ ARy (A £ie)B*) | pxx) < o0 V fixed p1 > 0.
AG([*M1#1]\[0*2142*1%5017”*“)*50]
g

We know: z — ARy, ,(2)B* is a holomorphic map with domain C\R and values in B(X,X); for
all z € C\R, (1 + ARy, (A £ie)B*)~! is defined . Furthermore, lim.\ 0 ARy, ,(\ & ie)B*, by (ii)
Lemma 5.1, exists in B(X,X) and the convergence is uniform for A in compact sets. Then we apply
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Lemma 7.5 [7] and conclude that, outside closed sets ['* C R with 0 Lebesgue measure in R, the map
z— (1+ ARy, ,(2)B*)~! extends in a continuous map defined in {z : Sz > 0}U(R\I'") (resp. {z: Sz <
0} U (R\I'")) with values in B(X,X). Given A € I'* there exists 1 € X\{0} with ¢ = —AR;__L%O()\)B*’L/J.
But then, by standard arguments u := Ry, (A\)B*¢ € L>77(R? C*) is a nonzero solution of (1.2). By
(H7)—(H8) we have u € L?(R? C®). Furthermore ¢ € X implies u € X. But by (H6) no such u € X can
exist. So the intersection of I't with R\(—m + w + dg, m — w — &) is empty. A similar argument shows
that the intersection of I'~ with R\(—m + w 4 dg, m — w — dp) is empty.
Having considered the low energy case (A.5), we consider for p; any fixed large real number:

(A.6) sup [|(1+ AR (MB*) 2.2y < Ca.

[Al>pe1

¢
For definiteness we will consider A > u;. We consider the expansion Z;’;O (AR%LW O()\)B"‘) . We start

now the implementation of the high energy argument in [30]. We have

+
(A7) r 0= (0T e (L)) - REMA)
RE, . (N +w)?)h 0
ny T (o ey
' _ (A(NY) 0 (A= (- w+m —io -V
AR V) = ( 0 AQ(A,V)) ALY = ( Sig Vo A— (l)jwm)'

For definiteness let us consider R;Qw ,- Let now xo,%0 € Cg° (R) by cutoffs supported near 0 and let
x1:=1— xo0 and 91 := 1 — ). We can choose them so that

(A.9) xa (Jz = yl) = (o (|2[) Y1 (Jy1) + 1 ([2]) Yo (yl) + 1 (J2]) 1 () xa (|2 = )
We split for a fixed large number My > 0

1
REp e (A= (1) w)® 2,y) = Y Res(\z,y)
£=0

VO Em eyl /15y
xel 50 )

(A.10)
RN\ z,y) ==

4|z — y|

We have a decomposition Rf; = R + R with kernels R} = y; LY Ry By (A.9)—-(A.10
Hw,o He,0 Hw,o He 0 J \ My He,0

and by [1] there exists cpy, with limps, 400 ¢ar, = 0 S.t.

(All) iug”AR'}'Z,U(/\)B*”B(LivLi) < CMy -
S

By | ARy, (N B*|(r2.12) < C, for fixed C’ we have

(A.12) ||AR2{%,,0(A)B*||B(L§,L;) <.
We have

—\pt w2 m? [z —y|
(A.13) Roj(\,z,y) = AR, <\/(1 —(-19%) + F,/\z,/\y> Xo <To .

Key to showing that (A.6) follows directly from [30] is the observation that we can write

w\2 m?2 |z — y| elle=vl brj(lxz —yl)
A.14 R \/ 1—(-1)12) + — = (|l — hEVAN e V)
( ) —A ( ( ( ) )\) 2 5$ay> X0 ( AMO |SC y|aA7J(|‘T yl) |SC y| ;

with

}ag\kg(r)} < C(Mo,k)r=% VE>o0, af\lf;(r) =0 Vo<r<l1

A.15
o b))

< C(Mo, k) YE>0, b)) =0 Vr>2
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Notice that (A.14)—(A.15) are formulas of the same type of (3.2)—(3.4) [30]. As a consequence for any
fixed small g > 0 there are £y = €(dp) and p1 = p1(do) such that for A > py we have

(A.16) H (AXOR%J; YO()\)B*)% < b.

B(L3,L3)
For ¢ large and dp < cpy,, by (A.11), (A.12) and (A.16) we get

J4 A
(A.17) (4 BY, (VB + AR ()B) <2120 gy,
’ ’ B(L3,L3)
For ¢y, sufficiently small, (A.17) implies (A.6). O

We finish with the following corollary of Lemma A.1.

Theorem A.3. Assume the hypotheses of Lemma A.1. Pick the A, B* of (A.3). Then there are isomor-
phisms Wi : X — X.(Hy) and Z4: X.(Ho) — X, inverses of each other, defined as follows: for u € X,
v € X (Hy),
1

Wiu,v*) = (u,v*) F lim — / (ARy,, (A £i€)u, (BRyx (A £ie)v)*)dA;

e—0+ 27 Jp © @
(A.18) 1
(Zyv,u*) = (v,u*) £ lim —,/(ARHM(/\ +ie)v, (BRy+ (A tie)u)*)dA.

e—0+ 27 Jp @0
W (resp.2+) define isomorphisms H*(R3,C®) N X — P.(H,)H*(R? C8) (resp. and viceversa) for all
k. We also have

Wiu = . hin eltMwe=itHe0y for all u € X;
(A.19) i
Ziv= ) hin etHtwoe= ey for all v € Xo(Hy,).
— 00

Proof. The proof follows by Lemma A.1 by means of the argument for Theorem 1.5 [40]. (A.19) follows
by Theorem 3.9 [40]. O
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