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ON STABILITY OF STANDING WAVES OF NONLINEAR DIRAC EQUATIONS

NABILE BOUSSAID AND SCIPIO CUCCAGNA

Abstract. We consider the stability problem for standing waves of nonlinear Dirac models. Under
a suitable definition of linear stability, and under some restriction on the spectrum, we prove at the
same time orbital and asymptotic stability. We are not able to get the full result proved in [27] for the
nonlinear Schrödinger equation, because of the strong indefiniteness of the energy.

1. Introduction

In this paper we study the stability of standing waves of a class of nonlinear Dirac equations (NLDE).
We assume that these standing waves are smooth, have exponential decay to 0 at infinity and that they
are smoothly dependent on a parameter. We then partially characterize, under a number of further
technical hypotheses, their stability and their instability. We succeed partially in transposing to NLDE
results proved for the nonlinear Schrödinger equations (NLS) in [27] and in previous references. We recall
that [16, 50, 51, 62, 63, 36, 37] contain a quite satisfactory characterization of the orbital stability of
standing waves of the NLS. They do not apply to the Dirac equation, due to the strong indefiniteness of
the energy. In this paper we initiate a theory of stability in the case of the NLDE, using ideas coming
from the theory of asymptotic stability which are less sensitive to indefiniteness of the energy. This idea
is explored also in [47] in a very special situation.

1.1. The nonlinear Dirac equation. We consider for m > 0 a NLDE

(1.1)

{
iut −Dmu+ g(uu)βu = 0

u(0, x) = u0(x)
(t, x) ∈ R× R

3

where Dm = −i
∑3
j=1 αj∂xj

+mβ, with for j = 1, 2, 3

αj =

(
0 σj
σj 0

)
, β =

(
IC2 0
0 −IC2

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
.

The unknown u is C4-valued. Given two vectors of C4, uv := u · v is the inner product in C4, v∗ is the
complex conjugate, u ·v∗ is the hermitian product in C4, which we write as uv∗ = u ·v∗. We set u := βu∗,
so that uu = u · βu∗. We have

αjαℓ + αℓαj = 2δjℓIC4 , αjβ + βαj = 0 , β2 = IC4 .

Thus the operatorDm is self-adjoint on L2(R3,C4), with domainH1(R3,C4) and we haveD2
m = −∆+m2.

The spectrum is σ(Dm) = (−∞,−m] ∪ [m,+∞), see [60, Theorem 1.1].

1.2. State of the art. The equation in §1.1 arises in Dirac models used to model either extended
particles with self-interaction or particles in space-time with geometrical structure. In the latter case,
physicists have shown that a relativistic theory sometimes imposes a fourth order nonlinear potential (i.e.,
a cubic nonlinearity) such as the square of a quadratic form on C4; see [48] and the references therein.
The associated stationary equation is called the Soler model, [53], as it was proposed by Soler to model
the elementary fermions.

In our study, we assume the existence of stationary solutions as well as a number of properties like the
smooth dependence on a parameter, the smoothness and the fact that they are rapidly decaying. These
are not well established properties. Stationary solutions were actively studied in the last thirty years.
References [17, 43, 4, 5] used a dynamical systems approach. For the use of the variational structure
of the stationary equation, see [33]. For an approach yielding stationary solutions of the NLDE from
solutions of the NLS, see [46, 38].

Turning to the question of stability, [56] discusses the Soler model within the framework of [51], without
attempting a proof. Some partial results involving small standing waves obtained by bifurcation from
linear ones, with Dm replaced by H := Dm + V with V a nice potential, are in [10, 11]. [11] shows
that if a resonance condition holds, there is a stable manifold outside which any initial condition leads
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to instability. If the resonance condition is not fulfilled, the stability problem is left open. The results
we present here answer this question and can be used to clarify [10]. [42] proves the existence of global
attractors in a model involving a Dirac equation coupled to an harmonic oscillator. The stability problem
for the 1 dimensional NLDE is discussed under very restrictive hypotheses in [47] which reproduces for
the 1 D NLDE an analogue of the result in [58].

1.3. Hypotheses. We assume the following hypotheses (H:1)–(H:12).

(H:1) g(0) = 0, g ∈ C∞(R,R).
(H:2) There exists an open interval O ⊆ (m/3,m) such that Dmu − ωu − g(uu)βu = 0 admits a C∞

family of solutions ω ∈ O → φω ∈ Hk,τ (R3) for any (k, τ), see (1.4) for a definition. In spherical
coordinates x = ρ cos(ϑ) sin(ϕ), y = ρ sin(ϑ) sin(ϕ), z = ρ cos(ϕ), the standing waves are of the
form

φω(x) =




a(ρ)

[
1
0

]

ib(ρ)

[
cosϕ
eiϑ sinϕ

]




with a(ρ) and b(ρ) real valued and satisfying the following properties:

a, b ∈ C∞([0,∞),R) , ∀ρ ≥ 0, a2(ρ)− b2(ρ) ≥ 0,

a(j) and b(j) decay exponentially at infinity for all j.

Notice that φω(−x) = βφω(x).
(H:3) Let q(ω) = ‖φω‖2L2 . We assume q′(ω) 6= 0 for all ω ∈ O.
(H:4) For any x ∈ R3 we consider in (1.1) initial data s.t. u0(−x) = βu0(x).
(H:5) Let Hω be the linearized operator around eitωφω , see Sect. 3. We assume that Hω satisfies the

definition of linear stability in Definition 3.4.
(H:6) Consider the space X := {(Υ1,Υ2) ∈ L2(R3, (C4)2) : (Υ1(−x),Υ2(−x)) ≡ (βΥ1(x),−βΥ1(x))},

see Sect. 3 and under Lemma 2.3, which is invariant for the action of Hω, and the restriction
of Hω in X. Then Hω has 2n nonzero eigenvalues, counted with multiplicity, all contained in
(ω − m,m − ω). The positive eigenvalues can be listed as 0 < λ1(ω) ≤ ... ≤ λn(ω) < m − ω,
where we repeat each eigenvalue according to the multiplicity. For each λj(ω), also −λj(ω) is an
eigenvalue (this symmetry follows from(2.8)). There are no other eigenvalues except for 0.

(H:7) The points and ±(m− ω) and ±(m+ ω) are not resonances for Hω , see (1.2)– (1.3) below.
(H:8) Suppose that λ ∈ R with |λ| > m − ω is a resonance for Hω, that is one of the following two

equations admits a nontrivial solution:

(1 +R+
Hω,0

(λ)Vω)u = 0, u ∈ L2,−τ (R3,C8) for some τ > 1/2 ;(1.2)

(1 +R−
Hω,0

(λ)Vω)u = 0, u ∈ L2,−τ (R3,C8) for some τ > 1/2 .(1.3)

Then if u satisfies either (1.2) or (1.3) we have u ∈ L2(R3,C8) and λ is an eigenvalue of Hω.
(H:9) There are natural numbers Nj defined by the property 0 < Njλj(ω) < m− ω < (Nj + 1)λj(ω).

(H:10) There is no multi index µ ∈ Zk with |µ| := |µ1|+ ...+ |µk| ≤ 2N1 + 3 such that µ · λ = m± ω.
(H:11) If λj1 < ... < λjk are k distinct λ’s, and µ ∈ Z

k satisfies |µ| ≤ 2N1 + 3, then we have

µ1λj1 + · · ·+ µkλjk = 0 ⇐⇒ µ = 0 .

(H:12) The nonlinear Fermi golden rule (11.12) is true.

The space of functions satisfying (H:4) is invariant by (1.1). Except for the smoothness with respect to
the parameter ω, for some non-linearities (H:2) is a consequence of [33]. Continuous dependence on ω
for some examples is proved in [38].

Remark 1.1. 2ω is always an eigenvalue of Hω in L2(R3,C8), [21], see Lemma 3.1 below. In particular
for 3ω > m we have 2ω ∈ (m− ω,m+ ω). We can avoid considering it thanks to the symmetry (H:4).
The space X is associated to this symmetry, which plays a dual role: it helps to eliminate translation; it
allows to avoid potential trouble arising from the eigenvalue 2ω. See recent work [28] and [2] on moving
ground states of the NLS. [2] has a less heavy framework, is abstract and appears more easily amenable
to transposition to the NLDE.

Remark 1.2. By (H:6)–(H:8) there are no resonances for the restriction of Hω in X. (H:8) is proved
in the case of the NLS assumption in [30]. In the case of the Dirac system we are not able to prove it
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except for resonances contained in (−ω +m,ω −m) or for large energies. This is yet a consequence of
the strong indefiniteness of the energy of the Dirac system. We expect that (H:8) can be eliminated.

1.4. Main results. The main result in this article is the following one.

Theorem 1.3. Suppose that O ⊂ (m/3,m) and fix k0 ≥ 4 , k0 ∈ Z. Pick ω1 ∈ O and let φω1(x) be a
standing wave of (1.1). Let u(t, x) be a solution to (1.1). Assume (H:1)–(H:12). Then, there exist an
ǫ0 > 0 and a C > 0 such that for any ǫ ∈ (0, ǫ0) and for any u0 with infγ∈R ‖u0 − eiγφω1‖Hk0 < ǫ, there
exist ω+ ∈ O, θ ∈ C1(R;R) and h+ ∈ Hk0 with ‖h+‖Hk0 + |ω+ − ω1| ≤ Cǫ such that

lim
t→+∞

‖u(t, ·)− eiθ(t)φω+ − e−itDmh+‖Hk0 = 0.

Remark 1.4. The constraint 3ω > m allows to exploit the nonlinear Fermi Golden Rule (FGR) like for
the NLS in [27] by circumventing the strong indefiniteness of the Dirac system. We expect that that the
hypothesis 3ω > m can be eliminated. Specifically, it is used to guarantee that appropriate multiples
of the eigenvalues belong to portions of the spectrum where there is no superposition of the continuous
spectrum of distinct coordinates. This fact and our results continue to hold if 3ω < m and (2Nj+1)ω > m
for all j = 1, ..., n, see Remark 11.3.

Remark 1.5. Energy indefiniteness affects our methods because it results in superposition of the contin-
uous spectrum of distinct coordinates. There are two points where our methods are affected. The first is
discussed in Remark 1.4. The second point is when we take (H:8) as an hypothesis, see Remark 1.2.

Remark 1.6. We do not know of examples of g and ω satisfying our spectral assumptions. The situation is
not very different from the case of the NLS where the spectrum is unknown except in few cases. Rigorous
analysis of examples is certainly a difficult open problem. Like for the NLS, see [18], one can consider
numerical analysis. For some example in 1–D see [7, 20]. For NLDE , by a non relativistic bifurcation
argument, see [46, 38, 32], it is possible to extend what is known for the NLS equation to the NLDE for
ω close to m.

Remark 1.7. A partial justification of our hypotheses can be given using bifurcation theory from linear
problem, see [10, 11, 47, 57, 58]. It is easy to prove the existence of “small solitons” for which (H:1)–
(H:11) hold. In this context the symmetry φω(−x) = βφω(x) and in (H:4) is unnecessary. In particular
(H:6) holds replacing X with L2(R3,C8). In the set up of small solitons, (H:6) and (H:8) are always
true while (H:7) and (H:9)–(H:11) hold generically. In the context of small solitons it is easy to prove
existence of examples with just one eigenvalue λ(ω) with N = 1 for which (H:12) holds, in fact is generic,
thanks to the easy form the FGR takes, see formula (1.5) [61] for the NLS.

Remark 1.8. Under (H:1)–(H:11), we prove that, in an appropriate coordinate system, some key co-
efficients of the discrete modes equations are non negative. If (H:12) holds, then these coefficients are
positive and our proof tells us that the continuous modes disperse and the discrete ones decay to 0.
We expect (H:12) to hold generically. Our proof extends with minor modifications to the case of small
solitons discussed in Remark 1.7, where even the case of just one eigenvalue λ(ω) with N = 1 (in fact
even the case with no eigenvalues) was an open problem.

Remark 1.9. One can envisage using [28] or [2] to extend to extend the Theorem 1.3 to moving solitons.
This would require dropping (H:4). Then, since 3ω > m, one needs to face the embedded eigenvalue
2ω. Problems arising from the possible failure of the dispersive estimates in Sect. 10.1 might be solvable,
considering that [30] proves smoothing estimates in the presence of embedded eigenvalues. However,
looking at the nonlinear FGR (which considers multiples of the eigenvalues), we also have the problem
that 4ω > m+ ω. So 4ω belongs to a portion of the spectrum where there is superposition of continuous
spectrum of distinct components and the hypothesis 3ω > m is of no help to avoid this.

Consider ξ ∈ ker(Hω − λj(ω)). One of the requirements for linear stability in Definition 3.4 is that if
ξ 6= 0 then 〈ξ,Σ3ξ

∗〉 > 0. As it might seem artificial, we prove what follows.

Theorem 1.10. Suppose that O ⊂ (m/3,m). Pick ω ∈ O and let φω(x) be a standing wave of (1.1).
Replace (H:5) with the following assumption:

(H:5’) We assume that Hω satisfies all the conditions of Definition 3.4 except for condition (4) which
we restate as follows. That is, we assume that for any eigenvalue λ > 0 the quadratic form
ξ → 〈ξ,Σ3ξ

∗〉 is non degenerate in ker(Hω − λ). We assume that there exists at least one
eigenvalue λ > 0 such that the quadratic form is non positive in ker(Hω − λ).
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Assume (H:1)–(H:4), (H:5’) and (H:6)–(H:12). Then φω(x) is orbitally unstable.

We will follow the argument developed in [27] for the NLS. The DNLS is harder than the NLS. For
example, the regularity of φω in ω for DNLS is unknown. The classical methods to prove orbital stability
in [16, 63, 36, 37], based as they are on the positivity of certain functionals, do not apply to DNLS because
of the strong indefiniteness of the energy. We already mentioned some initial results for the Dirac equation
in [10, 11, 47]. Like in these articles, we exploit the dispersive properties of the linearizations, adapting
the methods used to prove asymptotic stability for the NLS initiated in [57, 58, 13, 14] and developed by
a substantial number of authors, see the references in [27]. One of the difficult issues for the NLS, was,
and still is, to prove that the energy of the discrete modes associated to the eigenvalues in (H:6) leaks
either in the radiation part or in the standing wave. The solution to this problem was initiated in [14],
where the eigenvalues are close to the continuous spectrum, and solved in quite general form in [27], see
also [3, 26]. We recall that there is leaking because, in appropriate coordinates, the nonlinear interaction
between discrete and continuous modes yields some dissipative coefficients in the equations of the discrete
modes, in a way similar to the classical Fermi Golden Rule (FGR). This phenomenon was first established
in special cases for the NLS in [14]. The coefficients were identified generally in [29], which built on [34].
Their dissipative nature was established in [27]. We refer to [27] for a discussion of the fact that it is
essential to exploit the hamiltonian structure of the equation. For work [2, 28] extending the result in
[27] to moving ground states see Remark 1.1.

In this article we follow the same framework of [27] obtaining similar results. In particular the key
coefficients in the discrete modes equations are shown to be quadratic forms, see Lemma 11.2. By the
energy indefiniteness, see Remark 1.5, the sign of these quadratic forms is unclear. We can overcome this
uncertainty if we assume 3ω > m, since in this case there is no superposition of continuous spectrum of
distinct components and the quadratic forms are easily proved to be non negative.

We need to develop some of the linear theory of dispersion, which in the case of the NLS had been
developed in the course of a decade, see [23, 30]. Key to dispersion theory is the proof of smoothing
estimates for Schrödinger operators with magnetic potentials in [31]. There are two points in the article
where the strong indefiniteness of the energy interferes with our method and they are discussed in Remark
1.5. We expects these difficulties to be technical and solvable. Notice that in in [10, 11, 47] these
difficulties do not arise because smallness of solitons yields absence of resonances for free and the FGR
is not addressed because of their restrictive hypotheses.

The instability result in Theorem 1.10 arises from our desire to justify hypothesis (4) in our definition
of linear stability, see Definition 3.4. The proof of Theorem 1.10 is similar to [25]. That is, we show that
orbital stability implies asymptotic stability, and we then show that this is incompatible with (H:5’).
All the proofs are conditional on (H:12), that is that a certain non negative quantity is actually positive.
Presumably this is true generically.

1.5. Notation and preliminaries. We consider spaces

(1.4) Hk,s(R3,C4) =
{
f ∈ S ′(R3), ‖〈x〉s〈∇〉kf‖2 <∞

}

for s, k ∈ R with norm ‖f‖Hk,s = ‖〈x〉s〈∇〉kf‖2. Sometimes we will write Hk,s
x to emphasize the inde-

pendent variable x. If k = 0, we write L2,s instead of H0,s.
For k ∈ R and 1 ≤ p, q ≤ ∞, the Besov space Bkp,q(R

3,Cd) is the space of all tempered distributions

f ∈ S ′(R3,Cd) such that

‖f‖Bk
p,q

= (
∑

j∈N

2jkq‖ϕj ∗ f‖qp)
1
q < +∞

with ϕ̂ ∈ C∞
0 (Rn \ {0}) such that

∑
j∈Z

ϕ̂(2−jξ) = 1 for all ξ ∈ R3 \ {0}, ϕ̂j(ξ) = ϕ̂(2−jξ) for all j ∈ N∗

and for all ξ ∈ R3, and ϕ̂0 = 1−∑j∈N∗ ϕ̂j . It is endowed with the norm ‖f‖Bk
p,q

.

For A a closed operator on a Hilbert space X we will set RA(z) := (A− z)−1 for any z in the resolvent
set of A.

1.6. Structure of the article. The paper is organized as follows. In Sections 2–4, we study of the
linearization of (1.1) at the stationary solution, we give some information on the spectrum and on
symmetries of the linearization, we define the notion of linear stability and we introduce an appropriate
coordinate system related to the spectral decomposition of the linearized operator. In Sect. 5 and in
the Appendix we discuss estimates on such operators. In Sect. 6 we discuss we reframe the system in a
hamiltonian form. In Sect. 7 we look for canonical coordinates. In Sect. 9.2 we reformulate the system in
these coordinates. In Sect. 9 we apply the method of Birkhoff normal forms. The proofs of the analogous
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parts in [27] work almost unaltered. Having chosen an appropriate coordinate system, in Sect 10.1 we
begin to prove nonlinear dispersion, in particular estimating the continuous modes. We finish with the
closing up of the estimates in Sect. 11 where we prove the Fermi Golden Rule. Specifically we prove that
appropriate coefficients are quadratic forms and that for ω > m/3 they are non negative. Finally, under
hypothesis (H:12), which presumably holds generically, we close up the inequalities and we conclude
the proof of asymptotic stability, Theorem 1.3. We also prove Theorems 1.10 using similar ideas. In the
Appendix we proves smoothing estimates and scattering estimates.

2. Set up and symmetries

2.1. Set up. Since our ambient space is Hk0(R3,C4) with k0 ≥ 4 and so in particular k0 > 3/2, under
(H:1) the functional u → g(uu)βu is locally Lipschitz and (1.1) is locally well posed, see pp. 293–294
volume III [59]. Consider the solution u(t, x) of (1.1). Then by (H:4) we have u(t,−x) = βu(t, x). We
write the ansatz

(2.1) u(t, x) = eiϑ(t)(φω(t)(x) + r(t, x)).

Inserting (2.1) in (1.1) we get from the definition of φω

(2.2)
irt = Dmr − ω(t)r − g(φω(t)φω(t))βr − g′(φω(t)φω(t))(rφω(t))βφω(t)

− g′(φω(t)φω(t))(φω(t)r)βφω(t) + (ϑ̇(t) + ω(t))(φω(t) + r) − iω̇(t)∂ωφω(t) + n(r),

where n(r) = O(r2) is defined by

n(r) : = g((φω(t) + r)φω(t) + r)β(φω(t) + r) − g(φω(t)φω(t))βφω(t)

− g′(φω(t)φω(t))(rφω(t))βφω(t) − g′(φω(t)φω(t))(φω(t)r)βφω(t).

We denote by C : C4 → C4 the charge conjugation operator uc := Cu := iβα2u
∗. We have αjC = Cαj

and βC = −Cβ for all j ∈ {1, 2, 3}, [60, Sect. 1.4.6]. Since it is anti-linear, for any u ∈ C
4, C(u∗) = (Cu)∗.

We state the following simple lemma.

Lemma 2.1. For any vector v ∈ C4 we have C2v = v. Moreover we have:

C(iv) = −ivc, vv = −CvCv, , C(βv) = −βvc, C(Dmw) = −Dmw
c.

For u0 satisfying (H:4) we have uc0(−x) = −βuc0(x).

Applying −C to (2.2), we obtain

irct = Dmr
c + ω(t)rc − g(φω(t)φω(t))βr

c + g′(φω(t)φω(t))(r
cφcω(t))βφ

c
ω(t)

+ g′(φω(t)φω(t))(φ
c
ω(t)r

c)βφcω(t) − (ϑ̇(t) + ω(t))(φcω(t) + rc)− iω̇(t)∂ωφ
c
ω(t) − Cn(r).

We set

(2.3)

U =

(
u
uc

)
, R =

(
r
rc

)
, Φω =

(
φω
φcω

)
, N(R) =

(
n(r)

−Cn(r)

)
,

Hω = Hω,0 + Vω , Hω,0 =

(
Dm − ω 0

0 Dm + ω

)
,

Vω = g(φωφω)β + g′(φωφω)

(
−(βφ∗ω )βφω (β(φcω)

∗ )βφω
−(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)

where the first β in the last line is meant in the sense of (2.5) below and where (φ ) stands for the map
r 7→ φr. Then we have:

(2.4) iṘ = HωR+ (ϑ̇(t) + ω(t))(Σ3Φω +Σ3R)− iω̇∂ωΦω +N(R),

where Σ1 =

(
0 IC4

IC4 0

)
,Σ2 =

(
0 iIC4

−iIC4 0

)
,Σ3 =

(
IC4 0
0 −IC4

)
.

Notice that by (H:4) and Lemma 2.1 we have for Υ(x) ∈ {Φω(x), R(t, x)}

(2.5) Υ(−x) = βΣ3Υ(x) where β =

(
β 0
0 β

)
.
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2.2. Symmetries. We consider now the bilinear map

(2.6)

〈(
r1
r2

)
,

(
s∗1
s∗2

)〉
=

∫

R3

(r1 · s∗1 + r2 · s∗2)dx.

By H∗
ω we denote the adjoint of Hω with respect to this inner product. We have:

Lemma 2.2. We have

H∗
ω = Σ3HωΣ3 ,(2.7)

Hω = −CΣ1HωCΣ1 where C =

(
C 0
0 C

)
,(2.8)

Vω(−x) = βΣ3Vω(x)βΣ3 with β in the sense of (2.5) .(2.9)

Proof. First of all, (2.7)–(2.8) hold with Hω replaced by Hω,0. It remains to check them with Hω

replaced by Vω . We have V ∗
ω = Σ3VωΣ3 by

(2.10) Σ3

(
−(βφ∗ω )βφω (β(φcω)

∗ )βφω
−(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)
Σ3 =

(
−(βφ∗ω )βφω −(β(φcω)

∗ )βφω
(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)

and from the fact that the matrix in rhs(2.10) is the adjoint of the matrix in lhs(2.10). (2.8) holds with
Hω replaced by Hω,0 by Lemma 2.1. We have

(2.11)

CΣ1

(
−(βφ∗ω )βφω (β(φcω)

∗ )βφω
−(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)
=

− C

(
−(β(φcω)

∗ )βφcω (βφ∗ω )βφcω
−(β(φcω)

∗ )βφω (βφ∗ω )βφω

)
Σ1 =

−
(
(β(φcω)

∗ )∗βφω −(βφ∗ω )∗βφω
(β(φcω)

∗ )∗βφcω −(βφ∗ω )∗βφcω

)
Σ1.

We have for v ∈ C4

(β(φcω)
∗v)∗ = β(iβα2φ

∗
ω)v

∗ = −βφ∗ωC(v),
(βφ∗ωv)

∗ = βφωv
∗ = −β(iβα2φω)(iβα2v

∗) = −β(φcω)∗C(v).

Then

rhs(2.11) = −
(
−(βφ∗ω )βφω (β(φcω)

∗ )βφω
−(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)
CΣ1.

This yields (2.8). The proof of (2.9) goes as follows. Using φ(−x) = βφ(x) and φc(−x) = −βφc(x),
where we omit the subindex ω, we have

(2.12)

V (−x)βΣ3 = g(φ(x)φ(x))Σ3 + g′(φω(t)φω(t))

(
−(φ∗(x) )φ(x) −((φc(x))∗ )φ(x)
(φ∗(x) )φc(x) ((φc(x))∗ )φc(x).

)
βΣ3

= g(φ(x)φ(x))Σ3 + g′(φω(t)φω(t))

(
−(βφ∗(x) )φ(x) (β(φc(x))∗ )φ(x)
(βφ∗(x) )φc(x) −(β(φc(x))∗ )φc(x).

)
.

Similarly

βΣ3V (x) = g(φ(x)φ(x))Σ3 + g′(φω(t)φω(t))βΣ3

(
−(βφ∗(x) )βφ(x) (β(φc(x))∗ )βφ(x)
−(βφ∗(x) )βφc(x) (β(φc(x))∗ )βφc(x).

)

= second line of (2.12).

The last two formulas yield (2.9). �

Lemma 2.3. For A the operator in L2(R3,C8) defined by (AX)(x) := βΣ3X(−x), then A2 = Id, A is
selfadjoint and σ(A) = {1,−1}. We have [A,Hω] = [A,Hω0] = 0.

Proof. The first sentence is elementary. The second follows by [A, A] = 0 for A = Dm,Σ3 (straightfor-
ward) and A = Vω , from (2.9). �
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2.3. Energy and charge. We have the following elementary result.

Lemma 2.4. Let UT = (u,Cu). Set for G(0) = 0 and G′(s) = g(s)

E(U) = EK(U) + EP (U) , EK(U) =

∫

R3

(Dmu)u
∗dx , EP (U) = −

∫

R3

G(uu)dx,

Q(U) =

∫

R3

uu∗dx.

Then E(U) and Q(U) are invariants of motion for (1.1) and we have

(2.13)
E(U) =

1

2
〈iβα2Σ3Σ1DmU,U〉 −

∫

R3

G

(
1

2
U · iα2Σ3Σ1U

)
dx

Q(U) =
1

2
〈U, iβα2Σ1U〉,

where for 〈· , ·〉 see (2.6). U satisfies system

(2.14) iU̇ = iβα2Σ3Σ1∇E(U).

Proof. For any symmetric operator A acting on L2(R3,C4) with the domain invariant by C and anticom-
muting to C and any u ∈ D(A),

u · (Au)∗ =
u · (Au)∗ + u∗ · (Au)

2
=
u · iβα2CAu + iβα2Cu ·Au

2

=
−u · iβα2Au

c + iβα2u
c · Au

2
=

−u · iβα2Au
c + uciβα2 ·Au
2

=
i

2
U · βα2Σ3Σ1AU , where we write A for A =

(
A 0
0 A

)
.

If A commutes with C, then a similar calculation shows 〈u, (Au)∗〉 = i
2 〈U, βα2Σ1AU〉. These identities

for A = Dm, A = β or A = I prove the lemma. �

3. Spectrum and linear stability

From now on we restrict attention to X = {Υ ∈ L2(R3,C8) : Υ(−x) ≡ βΣ3Υ(x)} := ker(A − Id) ⊂
L2(R3,C8).

invariant by Hω,0 and Hω , see Lemma 2.3. We consider the spectrum

σ(Hω) =
{
λ ∈ C, Hω − λId : X ∩H1(R3,C8) 7→ X is not invertible

}

We summarize what we know about the spectrum.

Lemma 3.1. (1) For the essential spectrum we have, σess(Hω) = (−∞, ω −m] ∪ [m− ω,+∞).
(2) For each z ∈ σp(Hω) the corresponding generalized eigenspace Ng(Hω − z) has finite dimension.
(3) If z ∈ σ(Hω) then also −z ∈ σ(Hω).
(4) For the generalized kernel we have Ng(H∗

ω) ⊇ {Φω,Σ3∂ωΦω}.
(5) ∂ω‖φω‖22 6= 0 implies that there are no v such that Hωv = ∂ωΦω.

(6) We have HωY = −2ωY and HωCΣ1Y = 2ωCΣ1Y for Y :=

(
α1α2α3βφω

0

)
. We have Υ(−x) ≡

−βΣ3Υ(x) for Υ = Y,CΣ1Y .

Proof. We have that (1) and (2) are consequences of the above discussion. If z ∈ σess(Hω) then (3) is
a consequence of (1). If z is an eigenvalue, then (3) is a consequence of (2.8). (4) is a consequence of
Ng(Hω) ⊇ {Σ3Φω, ∂ωΦω} which can be seen as follows. By the gauge invariance of the nonlinearity,

G((eiθu)(eiθu)) = G(uu), where G is a primitive of g, we have

Hω

(
iφω
Ciφω

)
= 0 or HωΣ3Φω = 0.

Then differentiating with respect to ω (1.1) and taking its image by C, we obtain Hω∂ωΦω = −Σ3Φω.
(5) follows by the following argument, if we assume existence of v s.t. Hωv = ∂ωΦω,

0 = 〈v, (H∗
ωΦω)

∗〉 = 〈∂ωΦω,Φ∗
ω〉 = 〈∂ωφω , φ∗ω〉+ 〈∂ω iβα2φ

∗
ω , iβα2φω〉

= 〈∂ωφω , φ∗ω〉+ 〈∂ωφ∗ω , φω〉 = ∂ω‖φω‖22 6= 0.

(6) is obtained by a direct computation. �
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Remark 3.2. From (2.7), if z ∈ σ(Hω) then z̄ ∈ σ(Hω). So if z ∈ σ(Hω) then {z,−z, z,−z} ⊆ σ(Hω).

Remark 3.3. The observation that 2ω is an eigenvalue of Hω in L2(R3,C2) is due to [21]. For 3ω > m the
eigenvalue 2ω is embedded in the continuous spectrum. The fact that the vectors in Claim (6) Lemma
3.1 do not satisfy the symmetry (2.5) and are not in X, shows that the existence of this eigenvalue does
not interfere with our proof. Obviously the symmetry (H:4) is crucial.

We have the beginning of Hω invariant Jordan block decomposition X = Ng(Hω)⊕N⊥
g (H∗

ω). Linear
stability means to us what follows, see [25].

Definition 3.4 (Linear Stability). A standing wave eitωφω is linearly stable when the following hold:

(1) σ(Hω) ⊂ R;
(2) Ng(H) = {Σ3Φω, ∂ωΦω};
(3) for any eigenvalue z 6= 0 of Hω we have Ng(Hω − z) = ker(Hω − z);
(4) for any positive eigenvalue λ > 0 and for any ξ ∈ ker(Hω − λ), we have 〈ξ,Σ3ξ

∗〉 > 0.

As a consequence of (H:5), the Jordan decomposition can be continued as follows:

(3.1)
X = Ng(Hω)⊕

(
⊕j,± ker(Hω ∓ λj(ω))

)
⊕ L2

c(Hω) with Xc(Hω) = {Xd(H∗
ω)}⊥ ∩X,

where for K = H∗
ω,Hω we set Xd(K) := Ng(K)⊕⊕j,± ker(K ∓ λj(ω)).

Let (ξj(ω, x))j be a basis of ⊕nj=1 ker(Hω − λj(ω)) so that each vector is smooth in both variables, with

|∂αωxξj(ω, x)| < cαe
−aα|x| for some cα > 0 and aα > 0. This can be proved by the Combes-Thomas

method [39] using (H:2). We normalize ξj(ω, x) so that εj = 〈ξj ,Σ3ξ
∗
j 〉 ∈ {1,−1} and 〈ξj ,Σ3ξ

∗
i 〉 = 0 for

j 6= i. In Theorem 1.3 for all j we have εj = 1 while for Theorem 1.10 we have εj = −1 for at least one j.
From the calculations of this section, we have built a dual basis. Hence, given any vector X , we have

(3.2)

X =
〈X,

(
eiΣ3ϑΣ3∂ωΦ

)∗〉
q′(ω)

eiΣ3ϑΣ3Φ+
〈X,

(
eiΣ3ϑΦ

)∗〉
q′(ω)

eiΣ3ϑ∂ωΦ+

n∑

j=1

εj〈X,
(
eiΣ3ϑΣ3ξj

)∗〉eiΣ3ϑξj +

n∑

j=1

εj〈X,
(
eiΣ3ϑΣ1Σ3Cξj

)∗〉eiΣ3ϑΣ1Cξj + eiΣ3ϑPc(Hω)e
−iΣ3ϑX,

with Pc(Hω) the projector onto Xc(Hω) with respect to decomposition (3.1). More generally, for X ∈
L2(R3,C8) = X ⊕X⊥, see the spectral decomposition of A in Lemma 2.3, we denote by Pc(Hω)X the
vector obtained first projecting in X and then in Xc(Hω). By duality, we have the following lemma.

Lemma 3.5. Suppose that for a given ω ∈ O the conditions of Definition 3.4 are satisfied. Then

(3.3) X = Ng(H∗
ω)⊕

(
⊕j,± ker(H∗

ω ∓ λj(ω))
)
⊕Xc(H∗

ω) with Xc(H∗
ω) := {Xd(Hω)}⊥ .

Any 1 form α = 〈α♯, 〉 can be decomposed as follows:

(3.4)

α♯ =
〈α♯, eiΣ3ϑ∂ωΦ〉

q′(ω)

(
eiΣ3ϑΦ

)∗
+

〈α♯, eiΣ3ϑΣ3Φ〉
q′(ω)

(
eiΣ3ϑΣ3∂ωΦ

)∗

+
n∑

j=1

εj〈α♯, eiΣ3ϑξj〉
(
eiΣ3ϑΣ3ξj

)∗ −
n∑

j=1

εj〈α♯, eiΣ3ϑΣ1Cξj〉
(
eiΣ3ϑΣ3Σ1Cξj

)∗

+ e−iΣ3ϑ
(
Pc(H∗

ω)e
−iΣ3ϑ(α♯)∗

)∗
.

4. Modulation and coordinates

4.1. Modulation. Consider the U in (2.3). Then, in the notation of (2.3), (2.1) can be written as

(4.1) U = eiΣ3ϑ(Φω +R).

Consider the following two functions

F(U, ω, ϑ) := 〈e−iΣ3ϑU − Φω,Φ
∗
ω〉 , G(U, ω, ϑ) := 〈e−iΣ3ϑU,Σ3∂ωΦ

∗
ω〉.
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Notice that R ∈ N⊥
g (H∗

ω) if and only if F(U, ω, ϑ) = G(U, ω, ϑ) = 0. By (H:2) the map ω ∈ O → φω ∈
H1(R3) is C∞. Then F and G are C∞ functions with partial derivatives

(4.2)

Fϑ(U, ω, ϑ) = −i〈Σ3e
−iΣ3ϑU,Φ∗

ω〉 ,
Fω(U, ω, ϑ) = −2q′(ω) + 〈e−iΣ3ϑU, ∂ωΦ

∗
ω〉 ,

FU (U, ω, ϑ) = e−iΣ3ϑΦ∗
ω , GU (U, ω, ϑ) = e−iΣ3ϑΣ3∂ωΦ

∗
ω ,

Gϑ(U, ω, ϑ) = −i〈e−iΣ3ϑU, ∂ωΦ
∗
ω〉 , Gω(U, ω, ϑ) = 〈e−iΣ3ϑU,Σ3∂

2
ωΦ

∗
ω〉.

We have F(eiΣ3ϑΦω, ω, ϑ) = G(eiΣ3ϑΦω, ω, ϑ) = 0. For U = eiΣ3ϑΦω in (4.2) we get

Fϑ(eiΣ3ϑΦω, ω, ϑ) = 0 , Fω(U, ω, ϑ) = −q′(ω) ,

Gϑ(eiΣ3ϑΦω, ω, ϑ) = −iq′(ω) , Gω(eiΣ3ϑΦω, ω, ϑ) = 0 .

Then by the implicit function theorem and (H:3) there is a unique choice of functions θ = θ(U), ω = ω(U)
which are C∞ and yield to the following lemma.

Lemma 4.1 (Modulation). For any ω1 ∈ O there exist ε > 0 and C > 0 such that for any u ∈ H1(R3)
with ‖u− eiϑ1φω1‖ < ǫ < ε, there exists a unique choice of (ϑ, ω, r) such that |ω−ω1|+ |ϑ−ϑ1| < Cǫ for
a fixed C, R ∈ N⊥

g (H∗
ω) and (4.1) hold.

Consider the two C∞ functions ϑ, ω : U ∈ BH1 (eiΣϑ0Φω1 , ε) → R. Inserting (4.1) in (4.2) we get

Fϑ = −i〈Σ3R,Φ
∗
ω〉 ; Fω = −q′(ω) + 〈R, ∂ωΦ∗

ω〉 ;
FU = e−iΣ3ϑΦ∗

ω ; GU = e−iΣ3ϑΣ3∂ωΦ
∗
ω ;

Gϑ = −i(q′(ω) + 〈R, ∂ωΦ∗
ω〉) ; Gω = 〈R,Σ3∂

2
ωΦ

∗
ω〉 .

Then, if we set

(4.3) A :=

(
−q′(ω) + 〈R, ∂ωΦ∗

ω〉 −i〈Σ3R,Φ
∗
ω〉

〈R,Σ3∂
2
ωΦ

∗
ω〉 −i(q′(ω) + 〈R, ∂ωΦ∗

ω〉)

)

we have the following equality

(4.4) A
(
∇ω
∇ϑ

)
=

(
−e−iΣ3ϑΦ∗

ω

−e−iΣ3ϑΣ3∂ωΦ
∗
ω

)
,

where given a vector field X and a scalar valued function F , we have XF = 〈∇F,X〉 = dF (X), with dF
the exterior differential and ∇F the gradient.

By the above discussion we obtain the following lemma.

Lemma 4.2. We have the following formulas:

∇ω =
(q′(ω) + 〈R, ∂ωΦ∗

ω〉)
(
eiΣ3ϑΦ

)∗ − 〈Σ3R,Φ
∗
ω〉
(
eiΣ3ϑΣ3∂ωΦ

)∗

(q′(ω))2 − 〈R, ∂ωΦ∗
ω〉2 + 〈Σ3R,Φ∗

ω〉〈R,Σ3∂2ωΦ
∗
ω〉

∇ϑ =
〈R,Σ3∂

2
ωΦ

∗
ω〉
(
eiΣ3ϑΦ

)∗
+ (q′(ω)− 〈R, ∂ωΦ∗

ω〉)
(
eiΣ3ϑΣ3∂ωΦ

)∗

i [q′(ω))2 − 〈R, ∂ωΦ∗
ω〉2 + 〈Σ3R,Φ∗

ω〉〈R,Σ3∂2ωΦ
∗
ω〉]

.

4.2. Coordinates. For ω ∈ O we consider decomposition (3.1). By Pc(Hω) (resp. Pd(Hω)), or simply by
Pc(ω) (resp. Pd(ω)), we denote the projection on Xc(Hω) (resp. Xd(Hω)). The space Xc(Hω) “depends
continuously” on ω, as Pc(ω) = 1− Pd(ω) depends smoothly on ω.

By Lemma 4.1 we specify the ansatz (4.1) imposing ω ∈ O, ϑ ∈ R and R ∈ N⊥
g (H∗

ω). Fix ω0, where

q(ω0) = ‖u0‖2L2 . For ω close to ω0 the map Pc(Hω) is an isomorphism from Xc(Hω0) to Xc(Hω). In
particular we write (zj is the complex conjugate of the scalar zj)

N⊥
g (H∗

ω) � R =

n∑

j=1

zjξj(ω) +

n∑

j=1

zjΣ1Cξj(ω) + Pc(Hω)f , f ∈ Xc(Hω0).(4.5)

Setting z · ξ =∑n
j=1 zjξj and z · Σ1Cξ =

∑n
j=1 zjΣ1Cξj , we write

(4.6) U = eiΣ3ϑ (Φω + z · ξ(ω) + z · Σ1Cξ(ω) + Pc(Hω)f)
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ω ∈ O close to ω0, (z, f) ∈ Cn ×Xc(Hω0) close to 0, are our coordinates. In the sequel, we set

∂ωR :=

n∑

j=1

zj∂ωξj(ω) +

n∑

j=1

zjΣ1C∂ωξj(ω) + ∂ωPc(Hω)f.

Then we have the vector fields

(4.7)

∂

∂ω
= eiΣ3ϑ∂ω(Φ +R) ,

∂

∂ϑ
= ieiΣ3ϑΣ3(Φ +R),

∂

∂zj
= eiΣ3ϑξj ,

∂

∂zj
= eiΣ3ϑΣ1Cξj .

In particular, given a scalar function F , we have

∂ωF = 〈∇F, eiΣ3ϑ∂ω(Φ +R)〉 , ∂ϑF = i〈∇F, eiΣ3ϑΣ3(Φ +R)〉,
∂zjF = 〈∇F, eiΣ3ϑξj〉 , ∂zjF = 〈∇F, eiΣ3ϑΣ1Cξj〉.

Lemma 4.3. We have the following formulas:

εj∇zj = −〈Σ3ξ
∗
j , ∂ωR〉∇ω − i〈Σ3ξ

∗
j ,Σ3R〉∇ϑ+ e−iΣ3ϑΣ3ξ

∗
j

εj∇zj = −〈Σ1Σ3(Cξj)
∗, ∂ωR〉∇ω − i〈Σ1Σ3(Cξj)

∗,Σ3R〉∇ϑ+ e−iΣ3ϑΣ1Σ3(Cξj)
∗

f ′(U) = (Pc(ω)Pc(ω0))
−1Pc(ω)

[
−∂ωRdω − iΣ3Rdϑ+ e−iΣ3ϑ 1l

]
,

with (Pc(ω)Pc(ω0))
−1 : Xc(Hω) → Xc(Hω0) the inverse of Pc(ω)Pc(ω0) : Xc(Hω0) → Xc(Hω) and

εj = 〈ξj ,Σ3ξj〉.

Proof. The proof is similar to the proof of [27, Lemmas 4.1–4.2 ]. Let us see for example the proof of the

first formula. Equalities
∂zj
∂zℓ

= δjℓ,
∂zj
∂zℓ

=
∂zj
∂ω =

∂zj
∂ϑ = 0 and ∇fzj = 0 are equivalent to

(4.8)
〈∇zj , eiΣ3ϑξℓ〉 = δjℓ, 〈∇zj , eiΣ3ϑΣ1Cξℓ〉 ≡ 0 = 〈∇zj , eiΣ3ϑΣ3(Φ +R)〉
〈∇zj , eiΣ3ϑ∂ω(Φ +R)〉 = 0 ≡ 〈∇zj , eiΣ3ϑPc(ω)Pc(ω0)g〉 ∀g ∈ Xc(Hω0).

Notice that the last identity implies Pc(H∗
ω0
)Pc(H∗

ω)e
iΣ3ϑ∇zj = 0 which in turn implies Pc(H∗

ω)e
iΣ3ϑ∇zj =

0. Then, applying (3.2) and using the product row column, we get for some pair of numbers (a, b)

∇zj = ae−iΣ3ϑΦ∗ + be−iΣ3ϑΣ3∂ωΦ
∗ + εje

−iΣ3ϑΣ3ξ
∗
j

= (a, b)

(
e−iΣ3ϑΦ∗

e−iΣ3ϑΣ3∂ωΦ
∗

)
+ εje

−iΣ3ϑΣ3ξ
∗
j = −(a, b)A

(
∇ω
∇ϑ

)
+ εje

−iΣ3ϑΣ3ξ
∗
j ,

where in the last line we used (4.4). Equating the two extreme sides and applying to the formula 〈·, ∂
∂ω 〉

and 〈·, ∂∂ϑ 〉, by 〈∇zj , ∂∂ω 〉 = 〈∇zj , ∂∂ϑ 〉 = 〈∇ϑ, ∂
∂ω 〉 = 〈∇ω, ∂∂ϑ 〉 = 0, by 〈∇ϑ, ∂∂ϑ 〉 = 〈∇ω, ∂

∂ω 〉 = 1 and by
(4.7) and (4.8), we get

A∗
(
a
b

)
= εj

(
〈Σ3ξ

∗
j , ∂ωR〉

i〈Σ3ξ
∗
j ,Σ3R〉

)
.

This implies

∇zj = −εj(〈Σ3ξ
∗
j , ∂ωR〉, i〈Σ3ξ

∗
j ,Σ3R〉)

(
∇ω
∇ϑ

)
+ εje

−iΣ3ϑΣ3ξ
∗
j .

�

5. Smoothing and dispersive estimates

We collect the statements on linear theory needed later to prove the nonlinear estimates.

Lemma 5.1. The following facts are true.

(i) For any τ ≥ 1 there exists C independent of ω s.t.

‖RDm
(z)ψ‖L2,−τ ≤ C‖ψ‖L2,τ for all z 6∈ R(5.1)

‖RHω,0(z)ψ‖L2,−τ ≤ C‖ψ‖L2,τ for all z 6∈ R.(5.2)
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(ii) For any τ > 1 the following limits

(5.3) R+
Dm

(λ) = lim
εց0

RDm
(λ± iε) and R+

Hω,0
(λ) = lim

εց0
RHω,0(λ± iε)

exist in B(H1,τ
x , L2,−τ

x ) and the convergence is uniform for λ in compact sets.

Proof. Estimate (5.1) implies (5.2). Then (i) is the content of [40, Theorem 2.1] while (ii) is contained
in [35, Theorem 1.6]. �

Lemma 5.2. We have RHω,0(x, y, λ) = RHω,0(x − y, λ) =

(
RDm

(x− y, λ+ ω) 0
0 RDm

(x− y, λ− ω)

)

for λ 6∈ σ(Hω,0) with

(5.4) RDm
(x,Λ) =

(
(Λ +m)I2 i

√
m2 − Λ2σ · x̂

i
√
m2 − Λ2σ · x̂ (Λ −m)I2

)
e−

√
m2−Λ2|x|

4π|x| + i
α · x̂
4π|x|2 e

−
√
m2−Λ2|x|

where x̂ = x/|x| and where for ζ = eiϑr with r ≥ 0 and ϑ ∈ (−π, π) we set
√
ζ = eiϑ/2

√
r.

Proof. This is [60, Identity (1.263) section 1.E]. �

Remark 5.3. R+
Dm

(x,Λ) for Λ > m (resp. Λ < −m) is obtained substituting
√
m2 − Λ2 in (5.4) with

−i
√
Λ2 −m2 = lim

εց0

√
m2 − (Λ + iε)2 (resp. i

√
Λ2 −m2 = lim

εց0

√
m2 − (Λ + iε)2).

Theorem 5.4. For any τ > 1 and k ∈ R ∃ C s.t.

‖e−itDmψ‖L2
t(R,H

k,−τ ) ≤ C‖ψ‖Hk ,

‖
∫

R

eitDmF (t) dt‖Hk ≤ C‖F‖L2
t(R,H

k,τ ),

‖
∫

t′<t

e−i(t−t′)DmF (t′) dt′‖L2
t(R,H

k,−τ ) ≤ C‖F‖L2
t(R,H

k,τ ).

The same estimates with the same constants hold when we replace Dm with Hω,0.

Proof. This is [11, Theorem 1.1] in the free case. But can be easily deduced from Lemma 5.1 using tools
in [49, Section XIII.7]. �

The following theorem is a special case of Theorem 1.1 [10].

Theorem 5.5. For any τ > 5/2 and k ∈ R ∃ C s.t. ‖e−itDmψ‖Hk,−τ (R3) ≤ C〈t〉− 3
2 ‖ψ‖Hk,τ . The same

estimates with the same constants hold when we replace Dm with Hω,0.

Theorem 5.6. For any 2 ≤ p, q ≤ ∞, θ ∈ [0, 1], with (1− 2
q )(1± θ

2 ) =
2
p and (p, θ) 6= (2, 0), and for any

reals k, k′ with k′ − k ≥ α(q), where α(q) = (1 + θ
2 )(1 − 2

q ), there exists a positive constant C such that
∥∥e−itDmψ

∥∥
Lp

t (R,B
k
q,2(R

3,C4))
≤ C ‖ψ‖Hk′ (R3,C4) ,

∥∥∥∥
∫
eitDmF (t) dt

∥∥∥∥
Hk

≤ C ‖F‖
Lp′

t (R,Bk′

q′ ,2
(R3,C4))

,

∥∥∥∥
∫

t′<t

e−i(t−t′)DmF (t′) dt′
∥∥∥∥
Lp

t (R,B
k
q,2(R

3,C4))

≤ C ‖F‖La′

t (R,Bh
b′,2

(R3,C4)) ,

for any (a, b) chosen like (p, q), and h − k ≥ α(q) + α(b). Exactly the same estimates hold with Dm

replaced by Hω,0.

Proof. For Dm see [11], see also [15] for the Klein-Gordon case. For Hω,0 the statement is an immediate
consequence of the case Dm. �

Lemma 5.7. Consider pairs (p, q) as in Theorem 5.6 with p > 2, k ∈ R arbitrary and k′ − k ≥ α(q).
Then for any τ > 1 there is a constant C0 = C0(τ, k, p, q) such that

∥∥∥∥
∫ t

0

eiDm(t′−t)F (t′)dt′
∥∥∥∥
Lp

tB
k
q,2

≤ C0‖F‖L2
tH

k′,τ .

The same estimates hold with Dm replaced by Hω,0
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Proof. For F (t, x) ∈ C∞
0 (R× R3) set

TF (t) =

∫ +∞

0

ei(t
′−t)DmF (t′)dt′ , f =

∫ +∞

0

eit
′DmF (t′)dt′.

Theorem 5.6 implies ‖TF‖Lp
tB

k
q,2

≤ ‖f‖Hk′ for k′ − k = α(q). By Theorem 5.4 we have ‖f‖Hk′ ≤
C‖F‖L2

tH
k′ ,τ . Since p > 2, by a well known lemma due to Christ and Kiselev [19], see Lemma 3.1 [54],

the statement of Lemma 5.7 follows. �

Lemma 5.8. Let τ1 > 1, K a compact subset of O and I a compact subset of σe(Hω)\{±(m ± ω)}.
Assume (H:1) and (H:6)–(H:8). Then there exists a C > 0, such that

‖e−itHω,0R+
Hω

(λ)Pc(ω)ψ0‖L2,−τ1 (R3) ≤ C〈t〉− 3
2 ‖ψ0‖L2,τ1+1(R3)

for every t ≥ 0, λ ∈ I, ω ∈ K and ψ0 ∈ S(R3;C2).

Proof. We expand R+
Hω

(λ) = R+
Hω,0

(λ) −R+
Hω0

(λ)VωR
+
Hω

(λ). We have from [9, Theorem 2 ]

‖e−itHω,0R+
Hω,0

(λ)ψ0‖L2,−τ1(R3) ≤ C〈t〉− 3
2 ‖R+

Hω,0
(λ)ψ0‖L2,τ1(R3) ≤ C1〈t〉−

3
2 ‖ψ0‖L2,τ1+1(R3),

with C1 locally bounded in λ and τ1. Hence, by exponential decay of φω and by (5.5) below,

‖e−itHω,0R+
Hω,0

(λ)VωR
+
Hω

(λ)Pc(ω)ψ0‖L2,τ1

≤ C1〈t〉−
3
2 ‖Vω‖B(L2,−τ1 ,L2,τ1+1)

∥∥R+
Hω

(λ)Pc(ω)
∥∥
B(L2,τ1 ,L2,−τ1)

‖ψ0‖L2,τ1 ≤ C′〈t〉− 3
2 .

�

Lemma 5.9. Assume the hypotheses of Lemma 5.8. Then for any τ > 1, for any k ∈ Z with k ≥ 0, for
a constant C2 = C2(τ, ω, k) semicontinuous in ω, for any T > 0 and for any ∀ g(t, x) ∈ S(R4), we have

∥∥∥∥
∫ t

0

e−i(t−s)HωPc(Hω)g(s, ·)ds
∥∥∥∥
L2

t ([0,T ],Hk,−τ
x )

≤ C‖g‖L2
t([0,T ],Hk,τ

x ).

Proof. It is not restrictive to focus only on T = ∞ and k = 0. By Plancherel inequality we have

‖
∫ t

0

e−i(t−s)HωPc(Hω)g(s, ·)ds‖L2
tL

2,−τ
x

≤ ‖R+
Hω

(λ)Pc(Hω)χ̂[0,+∞) ∗λ ĝ(λ, x)‖L2
λ
L2,−τ

x

≤
∥∥∥ ‖R+

Hω
(λ)Pc(Hω)‖B(L2,τ

x ,L2,−τ
x )‖χ̂[0,+∞) ∗λ ĝ(λ, x)‖L2,τ

x

∥∥∥
L2

λ

≤ ‖R+
Hω

(λ)Pc(Hω)‖L∞
λ

(R,B(L2,τ
x ,L2,−τ

x ))‖g‖L2
tL

2,τ
x
.

We are done if we can prove

(5.5) ‖R+
Hω

(λ)Pc(Hω)‖L∞
λ

(R,B(L2,τ
x ,L2,−τ

x )) ≤ C2.

By (A.3) and Lemma A.1 we have

(5.6) ‖R+
Hω

(λ)Pc(Hω)‖B(L2,τ
x ,L2,−τ

x ) ≤ ‖(1 +AR+
Hω,0

(λ)B∗)−1‖B(X,X)‖R+
Hω,0

(λ)‖B(L2,τ
x ,L2,−τ

x ).

To prove (5.6) it is enough to consider λ ∈ (R\[−m + ω + δ0,m − ω − δ0]) as in (A.4). Then we
can exploit inequality (A.4) to bound uniformly in λ the first factor in the rhs of (5.6). The proof
that ‖R+

Hω,0
(λ)‖B(L2,τ

x ,L2,−τ
x ) ≤ C for a fixed C is a consequence of ‖λR+

−∆(λ
2)‖B(L2,τ

x ,L2,−τ
x ) ≤ C′ and

‖∇R+
−∆(λ

2)‖B(L2,τ
x ,L2,−τ

x ) ≤ C′ by (A.7)–(A.8). The last two inequalities are proved in [1]

�

6. Hamiltonian structure

The discussion in Sections 6–7 is almost the same of [27], rewritten in the context of the Dirac systems.
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6.1. Symplectic structure. We recall that in view of Theorem 1.10 we set εj = 〈ξj ,Σ3ξ
∗
j 〉 where

εj ∈ {1,−1}. Notice that in Theorem 1.3 and in [27], we have εj ≡ 1. Our ambient space is X. We
focus only on the subspace formed by the points which satisfy Σ1U = CU . In view of (2.14), the natural
symplectic structure is Ω(X,Y ) := 〈X, iβα2Σ1Σ3Y 〉.

The Hamiltonian vector field XG of a scalar function G is defined by the equation Ω(XG, Y ) =
−i〈∇G, Y 〉 for any vector Y and is XG = βα2Σ3Σ1∇G.

We call Poisson bracket of a pair of scalar valued functions F and G the scalar valued function

(6.1) {F,G} = 〈∇F,XG〉 = iΩ(XF , XG) = iΩ(∇F,∇G).

This can be extended to vector valued function using 1-forms or equivalently defining the extension the
following way.

Definition 6.1. Given a function G(U) with values inXc(Hω0), a symplectic form Ω and a scalar function
F (U), we define {G, F} = G′(U)XF (U), with XF the Hamiltonian vector field associated to F . We set
{F,G} := −{G, F}.

Lemma 6.2. Let Q be the function defined by (2.13)and let XQ its Hamiltonian vectorfield of Q. Then

XQ = − ∂
∂ϑ . We have the following formulas :

(6.2) {Q,ω} = 0 , {Q,ϑ} = 1 , {Q, zj} = {Q, zj} = 0 , {Q, f} = 0.

Proof. (6.2) follows from XQ = − ∂
∂ϑ . The latter follows from (4.7):

XQ = βα2Σ3Σ1∇Q = βα2Σ3Σ1iβα2Σ1U = −iΣ3U = − ∂

∂ϑ
.

�

6.2. Hamiltonian reformulation of the system. For any scalar function F , the time derivative of
F (U(t)) is 〈∇F (U), U̇ 〉 and thus if U satisfies (2.14) it is {F,E}. A similar identity holds for vector
valued function and thus as in [27] we write our system as

(6.3) ω̇ = {ω,E} , ḟ = {f, E} , żj = {zj, E} , ϑ̇ = {ϑ,E}.

For u0 the initial datum in (1.1), we introduce a new Hamiltonian for which the stationary solution Φω0 ,
with q(ω0) = ‖u0‖2L2

x
, is a critical point :

(6.4) K(U) = E(U) + ω(U)Q(U)− ω(U)‖u0‖2L2
x
.

By Lemma 6.2 and since Q(U) is an invariant of the motion, see Lemma 2.4, the solution of the initial
value problem in (1.1) solves also

(6.5) ω̇ = {ω,K} , ḟ = {f,K} , żj = {zj,K} , ϑ̇− ω = {ϑ,K}.

By ∂
∂ϑK = 0 and (6.2) the right hand sides in the equations (6.5) do not depend on ϑ. Hence, if we look

at the new system

(6.6) ω̇ = {ω,K} , ḟ = {f,K} , żj = {zj,K} , ϑ̇ = {ϑ,K},

the evolution of the crucial variables (ω, z, f) in (6.3) and (6.6) is the same. Therefore, to prove Theorem
1.3 it is sufficient to consider system (6.6).

7. Application of the Darboux Theorem

We will show that a resonance phenomenon is responsible for energy leaking from discrete to continuous
spectrum. This will be seen in appropriate coordinates system, obtained by means of Birkhoff normal
forms. Since the coordinates (4.6) are not canonical for the symplectic form Ω, it is natural to apply
Darboux theorem, moving to a different set of coordinates. It is key that our nonlinear Dirac equation
remain semilinear. Hence we follow the argument of [27, Section 7], which takes care of this, and to which
we refer for more details.
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Strategy of the proof. For q = q(ω) = ‖φω‖2L2 , we introduce the 2-form

(7.1) Ω0 = idϑ ∧ dq + εjdzj ∧ dzj + 〈f ′(U)·, iβα2Σ3Σ1f
′(U)·〉,

summing on repeated indexes, with f(U) the function in Lemma 4.3, f ′(U) its Frechét derivative and
the last term in (7.1) acting on pairs (X,Y ) like 〈f ′(U)X, iβα2Σ3Σ1f

′(U)Y 〉.
The proof of the Darboux Theorem goes as follows. First consider

(7.2) Ωτ = (1 − τ)Ω0 + τΩ = Ω0 + τΩ̃ with Ω̃ := Ω− Ω0.

In Lemma 7.1, we check that Ω0(U) = Ω(U) at U = eiΣ3ϑΦω0 . Then Ωτ is non degenerate near eiΣ3ϑΦω0 .

One considers a 1– form γ(τ, U) such that dγ(τ, U) = Ω̃ with γ(U) = 0 at U = eiΣ3ϑΦω0 (external
differentiation will always be on the U variable only) and the vector field Yτ such that iYτΩτ = −γ. The
flow Fτ generated by Yτ , close the points eiΣ3ϑΦω0 is defined up to time 1, and is such that F∗

1Ω = Ω0 by

(7.3)

d

dτ
(F∗
τΩτ ) = F∗

τ (LYτΩτ ) + F∗
τ

d

dτ
Ωτ =

= F∗
τd (iYτΩτ ) + F∗

τ Ω̃ = F∗
τ

(
−dγ + Ω̃

)
= 0.

This procedure can be carried out abstractly. But here we need to be careful, choosing γ appropriately,

because we want the new Hamiltonian K̃ = K ◦F1 to be ϑ invariant and yield a semilinear Dirac equation.
In the sequel of this section all the work is finalized to the correct choice if γ. In Lemma 7.2 we compute

explicitly a differential form α and we make the preliminary choice γ = α. This is not yet the right choice.

By the computations in Lemma 7.3 we find the obstruction to the fact that K̃ is of the desired type.
Lemmas 7.5–7.8 are necessary to find an appropriate solution F of a differential equation in Lemma 7.9.
Then γ = α+ idF is the right choice of γ. In Lemma 7.11 we collect a number of useful estimates for F1.
Lemma 7.12 contains information necessary for the reformulation of our system (8.1)–(8.2).

Preliminary remarks. Note that for U in a sufficiently small neigborhood of Φω, that is R small, from
(3.2) the vector fields defined in (4.7) can be completed into a basis of TUL

2 (tangent space at U). For
any vector Y ∈ TUL

2, we have

Y = Yϑ
∂

∂ϑ
+ Yω

∂

∂ω
+
∑

Yj
∂

∂zj
+
∑

Yj
∂

∂zj
+ eiΣ3ϑPc(ω)Yf

and defining the dual basis we set

Yϑ = dϑ(Y ) , Yω = dω(Y ) , Yj = dzj(Y )

Yj = dzj(Y ) , Yf = f ′(U)Y.

So similarly, a differential 1-form γ decomposes as

γ = γϑdϑ+ γωdω +
∑

γjdzj +
∑

γjdzj + 〈γf , f ′·〉,

where 〈γf , f ′·〉 acts on a vector Y as 〈γf , f ′Y 〉, with here γf ∈ L2
c(H∗

ω0
); γϑ, γω, γj and γj are in C.

Notice that we are reversing the standard notation on super and subscripts for forms and vector fields.
In the sequel, given a differential 1-form γ and a point U , we will denote by γU the value of γ at U .
Given a function χ, denote its hamiltonian vector field with respect to Ωτ by Xτ

χ : iXτ
χ
Ωτ = −i dχ.

By (7.1) we have X0
q(ω) = − ∂

∂ϑ .

The proof. We have the following preliminary observation ensuring that Ωτ is a non degenerate 2-form
in a neighborhood of eiΣ3ϑΦω0 .

Lemma 7.1. At U = eiΣ3ϑΦω0 , for any ϑ, we have Ω0(U) = Ω(U).

Proof. See also [27, Lemma 7.1]. Using (3.2) we get, summing on repeated indexes,

Ω(X,Y ) = 〈X, iβα2Σ3Σ1Y 〉 =
1

q′
〈·, e−iΣ3ϑΣ3∂ωΦ

∗〉 ∧ 〈·, e−iΣ3ϑΦ∗〉(X,Y )+

+ εj〈·, e−iΣ3ϑΣ3ξ
∗
j 〉 ∧ 〈·, e−iΣ3ϑΣ1Σ3(Cξj)

∗〉(X,Y )

+ 〈Pc(Hω)e
−iΣ3ϑX, iβα2Σ3Σ1Pc(Hω)e

−iΣ3ϑY 〉.
Set

(7.4) a1 := −iq′ +
detA
q′

+ 〈PN⊥
g (H∗

ω)iΣ1R, iβα2Σ3Σ1∂ωR〉.
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Then a1 is smooth in the arguments ω ∈ O, z ∈ Cn and f ∈ H−K′,−S′

(see (1.4) for the definition) for
any pair (K ′, S′) with, for (z, f) near 0,

(7.5) |a1| ≤ C(K ′, S′)(|z|+ ‖f‖H−K′,−S′ )2

by (4.3). Furthermore a1 is imaginary valued. By Lemmas 4.2 and 4.3, summing on repeated indexes we
get

Ω = (iq′ + a1)dϑ ∧ dω + εjdzj ∧ dzj
+ dzj ∧ (〈Σ1Σ3(Cξj)

∗, ∂ωR〉 dω + i〈Σ1Σ3(Cξj)
∗,Σ3R〉 dϑ)

− dzj ∧
(
〈Σ3ξ

∗
j , ∂ωR〉 dω + i〈Σ3ξ

∗
j ,Σ3R〉 dϑ

)
+

+ 〈Pc(ω)Pc(ω0)f
′·, iβα2Σ3Σ1Pc(ω)Pc(ω0)f

′·〉+
+ 〈Pc(ω)Pc(ω0)f

′·, iβα2Σ3Σ1Pc(ω)∂ωR〉 ∧ dω+
+ i〈Pc(ω)Pc(ω0)f

′·, iβα2Σ3Σ1Pc(ω)Σ3R〉 ∧ dϑ.
At points U = eiΣ3ϑΦω, that is for R = 0, we have

(7.6) Ω = idϑ ∧ dq + εjdzj ∧ dzj + 〈Pc(ω)Pc(ω0)f
′·, iβα2Σ3Σ1Pc(ω)Pc(ω0)f

′·〉.
which at ω = ω0 gives Ω = Ω0. �

Since Ωτ = Ω0 + τ(Ω − Ω0) with τ ∈ [0, 1] and Ω = Ω0 at eiΣ3ϑΦω0 , and since Ω0 is a non degenerate
2-form, Ωτ is also non degenerate in a neighborhood of eiΣ3ϑΦω0 . Thus the map X 7→ iXΩτ from vector
fields to 1-forms is bijective at any point in the neighborhood of eiΣ3ϑΦω0 . Notice that Lemma 7.1 is
claimed at ω0 and not at different standing waves, and that the eiΣ3ϑΦω0 are the only stationary solutions
preserved by our changes of coordinates.

The next lemma suggests as candidate for the 1 form γ the choice γ = α, for α see below. This is not
yet the final choice of γ.

Lemma 7.2. Consider the forms, summing on repeated indexes,

̟(U)Y :=
1

2
〈iβα2Σ3Σ1U, Y 〉

̟0(U) := −iqdϑ− εj
zjdzj − zjdzj

2
+

1

2
〈f(U), iβα2Σ3Σ1f

′(U) 〉.

Then d̟0 = Ω0, d̟ = Ω. Set

(7.7) α(U) := ̟(U)−̟0(U) + dψ(U) where ψ(U) :=
1

2
〈Σ3Φ

∗, R〉.

We have α = αϑdϑ+ αωdω + 〈αf , f ′〉 with

(7.8)

αϑ +
i

2
‖f‖22 =− i

2
‖z · ξ + z · Σ1Cξ‖22 − iℜ〈z · ξ + z · Σ1Cξ, (Pc(ω)f)

∗〉
− iℜ〈(Pc(ω)− Pc(ω0))f, (Pc(ω)f)

∗〉,

αω =− 1

2
〈R∗,Σ3∂ωR〉,

αf =
1

2
iβα2Σ1Σ3Pc(Hω0) (Pc(Hω)− Pc(Hω0)) f.

Proof. Here the proof is almost the same of [27, Lemma 7.2 ]. We focus on (7.8), the only nontrivial
statement. We will sum over repeated indexes. We have

(7.9)
̟ =

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Φ, ·〉+

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Pc(ω)f, ·〉

+
1

2
zj〈e−iΣ3ϑiβα2Σ1Σ3ξj , ·〉 −

1

2
zj〈e−iΣ3ϑiβα2Σ3Cξj , ·〉.

By Lemma 3.5 and summing on repeated indexes we obtain

(7.10)

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Φ, ·〉 =

〈12 iβα2Σ1Σ3Φ, ∂ωΦ〉
q′(ω)

〈e−iΣ3ϑΦ∗, ·〉

+
〈12 iβα2Σ1Σ3Φ,Σ3Φ〉

q′(ω)
〈e−iΣ3ϑΣ3∂ωΦ

∗, ·〉+ εj〈
1

2
iβα2Σ1Σ3Φ, ξj〉〈e−iΣ3ϑΣ3ξ

∗
j , ·〉

− εj〈
1

2
iβα2Σ1Σ3Φ,Σ1Cξj〉〈e−iΣ3ϑΣ3Σ1(Cξj)

∗, ·〉+ 〈e−iΣ3ϑ(Pc(H∗
ω)

1

2
iβα2Σ1Σ3Φ

∗)∗, ·〉.
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By iβα2Σ1Φ = iβα2CΦ = (iβα2)
2Φ∗ = Φ∗ we have

(7.11) 〈iβα2Σ3Σ1Φ, ∂ωΦ〉 = 〈φ∗, ∂ωφ〉 − 〈φ, ∂ωφ∗〉 = 0,

by 〈φ, ∂ωφ∗〉 =
∫

R3

(a∂ωa+ b∂ωb)dx = 〈φ∗, ∂ωφ〉, see (H:2). Then

(7.12)

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Φ, ·〉 =

− q

q′
〈e−iΣ3ϑΣ3∂ωΦ

∗, ·〉+ εj〈
1

2
iβα2Σ1Σ3Φ, ξj〉〈e−iΣ3ϑΣ3ξ

∗
j , ·〉

− εj〈
1

2
iβα2Σ1Σ3Φ,Σ1Cξj〉〈e−iΣ3ϑΣ3Σ1(Cξj)

∗, ·〉+ 〈e−iΣ3ϑ(Pc(H∗
ω)

1

2
iβα2Σ1Σ3Φ

∗)∗, ·〉.

with by (4.4)

(7.13) − q

q′
〈e−iΣ3ϑΣ3∂ωΦ

∗, ·〉 = q

q′
〈R,Σ3∂

2
ωΦ

∗〉 dω − i
q

q′
(q′ + 〈R, ∂ωΦ∗〉) dϑ.

Applying Lemma 4.3, we get (by iβα2Σ1f = f∗ which follows from Σ1U = CU)

(7.14)

̟0 = −iq dϑ− εj
zj dzj − zj dzj

2
+

1

2
〈f(U), iβα2Σ3Σ1f

′(U)·〉

= i

(
−q + 1

2
‖R‖2L2

)
dϑ+

1

2
〈Σ3R

∗, ∂ωR〉 dω ++
1

2
〈iβα2Σ1Σ3 (1− Pc(ω0)Pc(ω)) f, f

′ 〉+

+
1

2
zj〈e−iΣ3ϑΣ1Σ3(Cξj)

∗, ·〉 − 1

2
zj〈e−iΣ3ϑΣ3ξ

∗
j , ·〉++

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Pc(ω)f, ·〉.

By (4.6) we have

(7.15) dψ =
1

2
〈Σ3Φ

∗, ∂ωR〉dω +
1

2
〈Σ3Φ

∗, ξj〉dzj +
1

2
〈Σ3Φ

∗,Σ1Cξj〉dzj +
1

2
〈Σ3Φ

∗, Pc(ω)f
′·〉.

Applying to (7.15) Lemma 4.3 and the identities (7) below, we get dψ =

(7.16)

dψ =
1

2
〈Σ3Φ

∗, ξj〉〈e−iΣ3ϑΣ3ξ
∗
j , ·〉+

1

2
〈Σ3Φ

∗,Σ1Cξj〉〈e−iΣ3ϑΣ1Σ3(Cξj)
∗, ·〉

+
1

2
〈e−iΣ3ϑ (Pc(H∗

ω)Σ3Φ)
∗
, ·〉

+
q

q′
〈Σ3∂ωΦ

∗, ∂ωR〉dω

− i

2

〈
〈Σ3Φ

∗, ξj〉Σ3ξ
∗
j + 〈Σ3Φ

∗,Σ1Cξj〉Σ1Σ3(Cξj)
∗ + (Pc(H∗

ω)Σ3Φ)
∗

︸ ︷︷ ︸
P

N⊥
g (Hω)

Σ3Φ∗

,Σ3R

〉
dϑ.

To get the third line of (7.16) we have used:

1

2
〈Σ3Φ

∗, ∂ωR〉 −
1

2
〈Σ3Φ

∗, ξj〉〈Σ3ξ
∗
j , ∂ωR〉−

1

2
〈Σ3Φ

∗,Σ1Cξj〉〈Σ1Σ3(Cξj)
∗, ∂ωR〉 −

1

2
〈(Pc(H∗

ω)Σ3Φ)
∗
, ∂ωR〉 =

1

2
〈Σ3Φ

∗, ∂ωR〉;

− 1

2

[
〈Σ3Φ

∗, ∂ωR〉 −
1

q′
〈Σ3Φ

∗,Σ3Φ〉〈Σ3∂ωΦ
∗, ∂ωR〉

]
=

2q

2q′
〈Σ3∂ωΦ

∗, ∂ωR〉.

Let us consider the sum (7.7). There are various cancelations. The first and second (resp. the first term
of the third) line of (7.16) cancel with the second and third lines of (7.12) (resp. the first term of the rhs
of (7.13)). The last three terms in rhs(7.9) cancel with the last two lines of (7.14). The −iqdϑ term in
the rhs of (7.14)) cancels with the −iqdϑ term in (7.13). Adding the fourth line of (7.16) with the last
term of rhs(7.13) we get the product of i times the following quantities:
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(7.17)

− 1

2
〈PN⊥

g (Hω)Σ3Φ
∗,Σ3R〉 −

q

q′
〈R, ∂ωΦ∗〉 = −1

2
〈Φ∗, R〉

+
1

2
〈PNg(H∗

ω)Σ3Φ
∗,Σ3R〉 −

q

q′
〈R, ∂ωΦ∗〉

= −1

2
〈Φ∗, R〉+ 1

2q′
〈Φ∗,Σ3R〉〈∂ωΦ,Σ3Φ

∗〉

+
1

2q′
〈Σ3∂ωΦ

∗,Σ3R〉〈Σ3Φ
∗,Σ3Φ〉 −

q

q′
〈R, ∂ωΦ∗〉 = 0,

where for the second equality we have used

PNg(H∗
ω) =

1

q′
Φ∗〈∂ωΦ, ·〉+

1

q′
Σ3∂ωΦ

∗〈Σ3Φ, ·〉.

The last equality in (7.17) can be seen as follows. The two terms in the third line in (7.17) are both equal
to 0. Indeed, 〈Σ3Φ

∗, ∂ωΦ〉 = 0 by (7.11) and, by R ∈ N⊥
g (H∗

ω) and Φ∗ ∈ Ng(H∗
ω), 〈R,Φ∗〉 = 0. The two

terms in the fourth line in (7.17) cancel each other. Then we get formulas for αω and αf . We get αϑ also
by ‖Pc(ω)f‖22 = ‖f‖22 + 2ℜ〈(Pc(ω)− Pc(ω0))f, (Pc(ω)f)

∗〉. �

Lemma 7.3. We have, summing over repeated indexes (also on j and j):

(7.18) iY Ω0 = iq′Yϑdω − iq′Yωdϑ+ εj(Yjdzj − Yjdzj) + 〈iβα2Σ1Σ3Yf , f
′·〉.

For the a1 in (7.4), and for Γ = iY Ω̃, we have

(7.19)

Γω =a1Yϑ + Yj〈Σ1Σ3(Cξj)
∗, ∂ωR〉 − Yj〈Σ3ξ

∗
j , ∂ωR〉+ 〈Yf , iβα2Σ3Σ1Pc∂ωR〉;

−Γϑ =a1Yω − iYj〈Σ1Σ3(Cξj)
∗,Σ3R〉+ iYj〈Σ3ξ

∗
j ,Σ3R〉 − i〈Yf , iβα2Σ3Σ1PcΣ3R〉;

−Γj =〈Σ1Σ3(Cξj)
∗, ∂ωR〉Yω + i〈Σ1Σ3(Cξj)

∗,Σ3R〉Yϑ;
Γj =〈Σ3ξ

∗
j , ∂ωR〉Yω + i〈Σ3ξ

∗
j ,Σ3R〉Yϑ;

iβα2Σ3Σ1Γf =(Pc(ω0)Pc(ω)− 1)Yf + YωPc(ω0)Pc(ω)∂ωR+ iYϑPc(ω0)Pc(ω)Σ3R.

In particular, for γ = iY τΩτ = iY τΩ0 + τ iY τ Ω̃ we have

(7.20)

γω =(iq′ + τa1)Y
τ
ϑ + τY τj 〈Σ1Σ3(Cξj)

∗, ∂ωR〉 − τY τ
j
〈Σ3ξ

∗
j , ∂ωR〉

+ τ〈Y τf , iβα2Σ3Σ1Pc∂ωR〉;
−γϑ =(iq′ + τa1)Y

τ
ω − τ iY τj 〈Σ1Σ3(Cξj)

∗,Σ3R〉+ τ iY τ
j
〈Σ3ξ

∗
j ,Σ3R〉

− iτ〈Y τf , iβα2Σ3Σ1PcΣ3R〉;
−γj =εj(Y τ )j + τ〈Σ1Σ3(Cξj)

∗, ∂ωR〉Y τω + iτ〈Σ1Σ3(Cξj)
∗,Σ3R〉Y τϑ ;

γj =εj(Y
τ )j + τ〈Σ3ξ

∗
j , ∂ωR〉Y τω + iτ〈Σ3ξ

∗
j ,Σ3R〉Yϑ;

iβα2Σ3Σ1γf =(Y τ )f + τ(Pc(ω0)Pc(ω)− 1)Y τf

+τY τω Pc(ω0)Pc(ω)∂ωR + iτ Y τϑ Pc(ω0)Pc(ω)Σ3R .

Proof. Identity (7.18) is straightforward. Identity (7.20) follows immediately from (7.18)–(7.19). Finally,
(7.19) is elementary linear algebra, and basically the same of [27, Lemma 7.3]. �

Remark 7.4. Choosing γ = α in Lemma 7.3 with Fτ the flow of Y τ , then (Y τ )ϑ 6≡ 0 is an obstruction
to the fact that K ◦ F1 is a ϑ invariant Hamiltonian yielding a semilinear Dirac equation. So we want
(Y τ )ϑ = 0 or dϑ(Y τ ) = iΩτ (X

τ
ϑ , Y

τ ) = 0, with Xτ
ϑ the Hamiltonian fields of ϑ . To this effect we add a

correction to α and define Y τ from α+ idF where (α+ idF )(Xτ
ϑ) = 0.

Lemma 7.5. Consider the vector field Xτ
ϑ (resp. Xτ

ω) defined by iXτ
ϑ
Ωτ = −idϑ (resp. iXτ

ω
Ωτ = −idω).

Then we have (here Pc = Pc(Hω) and P
0
c = Pc(Hω0)):

(7.21)
Xτ
ϑ =(Xτ

ϑ)ω
[ ∂
∂ω

− τ〈Σ3ξ
∗
j , ∂ωR〉

∂

∂zj
− τ〈Σ1Σ3(Cξj)

∗, ∂ωR〉
∂

∂zj

− τP 0
c (1 + τPc − τP 0

c )
−1P 0

c Pc∂ωR
]
, ,
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where (Xτ
ϑ)ω is real valued and given by (for the a1 in (7.4))

(7.22) (Xτ
ϑ)ω =

i

iq′ + τa1 + τa2
= −(Xτ

ω)ϑ

(7.23)
a2 := iτ〈Σ3ξ

∗
j , ∂ωR〉〈Σ1Σ3(Cξj)

∗,Σ3R〉 − iτ〈Σ1Σ3(Cξj)
∗, ∂ωR〉〈ξ∗j , R〉+

+ iτ〈P 0
c (1 + τPc − τP 0

c )
−1P 0

c Pc∂ωR, iβα2Σ3Σ1PcΣ3R〉.

Proof. The proof is almost the same of [27, Lemma 7.5]. By (7.20) for γ = −i dϑ, Xτ
ϑ satisfies

(7.24)

(Xτ
ϑ)ϑ = 0;

i = (iq′ + τa1)(X
τ
ϑ)ω − iτ〈Σ1Σ3(Cξj)

∗,Σ3R〉(Xτ
ϑ)j+

+ iτ〈Σ3ξ
∗
j ,Σ3R〉(Xτ

ϑ)j − iτ〈(Xτ
ϑ)f , iβα2Σ3Σ1PcΣ3R〉;

(Xτ
ϑ)f = τ(1 − P 0

c Pc)(X
τ
ϑ)f − τ(Xτ

ϑ)ωP
0
c Pc∂ωR;

(Xτ
ϑ)j = −τ(Xτ

ϑ)ω〈Σ1Σ3(Cξj)
∗, ∂ωR〉; (Xτ

ϑ)j = −τ(Xτ
ϑ)ω〈Σ3ξ

∗
j , ∂ωR〉.

This yields (7.21) for Xτ
ϑ and the first equality in (7.22). The fact that (Xτ

ϑ)ω is real valued follows from
(7.22) and the fact that a1 and a2 are imaginary valued, which can be checked by the definitions. �

The following lemma is an immediate consequence of the formulas in Lemma 7.5 and of (7.5).

Lemma 7.6. For any (K ′, S′,K, S) we have

(7.25)
|1− (Xτ

ϑ)ω q
′| . ‖R‖2

H−K′,−S′

|(Xτ
ϑ)j |+ |(Xτ

ϑ)j |+ ‖(Xτ
ϑ)f‖HK,S . ‖R‖H−K′,−S′

Definition 7.7. Set HK,S
c (ω) = Pc(ω)H

K,S and denote

(7.26) P̃K,S = C
n ×HK,S

c (ω0) , PK,S = R
2 × P̃K,S

with elements (ϑ, ω, z, f) ∈ PK,S and (z, f) ∈ P̃K,S .
Lemma 7.8. We consider ∀ τ ∈ [0, 1] the hamiltonian field Xτ

ϑ and the flow

d

ds
Φs(τ, U) = Xτ

ϑ(Φs(τ, U)) , Φ0(τ, U) = U.

(1) For any (K ′, S′) there is a s0 > 0 and a neighborhood U of R×{(ω0, 0, 0)} in P−K′,−S′

such that
the map (s, τ, U) → Φs(τ, U) is smooth

(−s0, s0)× [0, 1]× (U ∩ {ω = ω0}) → P−K′,−S′

.

(2) U can be chosen so that for any τ ∈ [0, 1] there is another neighborhood Vτ of R× {(ω0, 0, 0)} in

P−K′,−S′

s.t. the above map establishes a diffeomorphism

(7.27) (−s0, s0)× (U ∩ {ω = ω0}) → Vt.
(3) f(Φs(τ, U))− f(U) = G(t, s, z, f) is a smooth map for all (K,S)

(−s0, s0)× [0, 1]× (U ∩ {ω = ω0}) → HK,S

with ‖G(t, s, z, f)‖HK,S ≤ C|s|(|z|+ ‖f‖H−K′,−S′ ).

Proof. The proof is exactly the same of Lemma 7.7 [27]. We only remark, that the field Xτ
ϑ , the flow

Φs(τ, U) and the function F (τ, U) in Lemma 7.9 are defined intrinsically, and so are periodic in ϑ. This
is because Xτ

ϑ satisfies these properties, since iXτ
ϑ
Ωτ = −idϑ with both Ωτ and dϑ intrinsically defined

and periodic in ϑ. �

Lemma 7.9. We consider a scalar function F (τ, U) defined as follows:

F (τ,Φs(τ, U)) = i

∫ s

0

αΦs′ (t,U) (X
τ
ϑ(Φs′ (t, U))) ds′ , where ω(U) = ω0 .

We have F ∈ C∞([0, 1]× U ,R) for a neighborhood U of R× {(ω0, 0, 0)} in P−K′,−S′

. We have

(7.28) |F (t, U)| ≤ C(K ′, S′)|ω − ω0| (|z|+ ‖f‖H−K′,−S′ )
2
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We have (exterior differentiation only in U)

(7.29) (α+ i dF )(Xτ
ϑ) = 0.

Proof. The proof is elementary and is exactly the same of Lemma 7.8 [27]. �
We now have the desired correction for α and below we introduce the vector field whose flow yields

the wanted change of coordinates.

Lemma 7.10. Denote by X τ the vector field which solves iX τΩτ = −α − i dF (τ). Then the following
properties hold.

(1) There is a neighborhood U of R× {(ω0, 0, 0)} in P1,0 such that X τ (U) ∈ C∞([0, 1]× U ,P1,0).
(2) We have (X τ )ϑ ≡ 0.
(3) For constants C(K,S,K ′, S′)

(7.30)

∣∣∣∣(X τ )ω +
‖f‖22
2q′(ω)

∣∣∣∣ . (|z|+ ‖f‖H−K′,−S′ )2;

|(X τ )j |+ |(X τ )j |+ ‖(X τ )f‖HK,S . (|z|+ ‖f‖H−K′,−S′ )×
× (|ω − ω0|+ |z|+ ‖f‖H−K′,−S′ + ‖f‖2L2).

(4) We have LX τ
∂
∂ϑ :=

[
X τ , ∂∂ϑ

]
= 0.

(5) We have (X τ )j = (X τ )j, (X τ )f = CΣ1(X τ )f . (X τ )ω is real valued.

Proof. The proof is almost the same of [27, Lemma 7.9 ]. Claim (1) follows from the regularity properties
of α, F and Ωτ and from equations (7.31) and (7.33) below. (7.29) implies (2) by

i(X τ )ϑ = idϑ(X τ ) = −iXτ
ϑ
Ωτ (X τ ) = iX τΩτ (X

τ
ϑ) = −(α+ i dF )(Xτ

ϑ) = 0.

We have i(X τ )ω = idω(X τ ) = −iXτ
ω
Ωτ (X τ ), so

(7.31)
i(X τ )ω = iX τΩτ (X

τ
ω) = −(Xτ

ω)ϑ
[
αϑ + τ∂jF 〈ξ∗j , R〉 − τ∂jF 〈Σ1(Cξj)

∗, R〉
+ τ〈∇fF + iαf , P 0

c (1 + τPc − τP 0
c )

−1P 0
c PcΣ3R〉

]
.

Then by (7.8), (7.22) and (7.23), we get the first inequality in (7.30):

(7.32)

∣∣∣∣(X τ )ω +
‖f‖22
2q′(ω)

∣∣∣∣ ≤ C (|z|+ ‖f‖H−K′,−S′ )
2
.

By (7.20) we have the following equations

(7.33)

i ∂jF = εj(X τ )j + τ〈Σ1Σ3(Cξj)
∗, ∂ωR〉(X τ )ω

−i ∂jF = εj(X τ )j + τ〈Σ3ξ
∗
j , ∂ωR〉(X τ )ω

iβα2Σ3Σ1(α
f + i∇fF ) = −(X τ )f − τ(P 0

c Pc − 1)(X τ )f − τ(X τ )ωP
0
c Pc∂ωR.

Formulas (7.33) imply

|(X τ
ω )j | ≤ |∂jF |+ C (|z|+ ‖f‖H−K′,−S′ ) |(X τ )ω |

|(X τ
ω )j | ≤ |∂jF |+ C (|z|+ ‖f‖H−K′,−S′ ) |(X τ )ω |

‖(X τ
ω )f‖HK,S ≤ ‖αf‖HK,S + ‖∇fF‖HK,S + C (|z|+ ‖f‖H−K′,−S′ ) |(X τ )ω |

which with (7.32), (7.8) and Lemma (7.28) imply (7.30). Claim (4) follows by L ∂
∂ϑ

(α+ idF ) = 0 and by

the product rule for the Lie derivative,

L ∂
∂ϑ

(iX τΩτ ) = i[ ∂
∂ϑ
,X τ ]Ωτ + iX τL ∂

∂ϑ
Ωτ = i[ ∂

∂ϑ
,X τ ]Ωτ .

It is elementary to check that (7.31) and (7.33) imply Claim (6), when we use the fact that (Xτ
ω)ϑ is real

valued, we consider (7.8), the fact that F is real valued.
�

The following lemma gathers some properties of the change of coordinates.
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Lemma 7.11. Consider the vectorfield X τ in Lemma 7.9 and denote by Fτ (U) the corresponding flow.
Then the flow Fτ (U) for U near eiΣ3ϑΦω0 is defined for all τ ∈ [0, 1]. We have ϑ ◦ F1 = ϑ. We have

(7.34)

q (ω(F1(U))) = q (ω(U))− ‖f‖22
2

+ Eω(U)

zj(F1(U)) = zj(U) + Ej(U)

f(F1(U)) = f(U) + Ef (U)

with

|Eω(U)| . (|ω − ω0|+ |z|+ ‖f‖H−K′,−S′ )2,(7.35)

|Ej(U)|+ ‖Ef(U)‖HK,S . (|ω − ω0|+ |z|+ ‖f‖H−K′,−S′ + ‖f‖2L2)(7.36)

×(|ω − ω0|+ |z|+ ‖f‖H−K′,−S′ ).

For each ζ = ω, zj, f we have Eζ(U) = Eζ(‖f‖2L2, ω, z, f) with, for a neighborhood U−K′,−S′

of {(ω0, 0, 0)}
in P−K′,−S′ ∩ {ϑ = 0} and for some fixed a0 > 0

(7.37) Eζ(̺, ω, z, f) ∈ C∞((−a0, a0)× U−K′,−S′

,C) for ζ = ω, zj

(7.38) Ef (̺, ω, z, f) ∈ C∞((−a0, a0)× U−K′,−S′

, HK,S ∩X).

Proof. The argument is the same of Lemma 7.10 [27], but we review it for the sake of the reader. We
add a new variable ̺. We define a new field by

(7.39)
i(Y τ )ω = −(Xτ

ω)ϑ
[
αϑ + i

‖f‖22 − ρ

2
+ τ∂jF 〈ξ∗j , R〉 − τ∂jF 〈Σ1(Cξj)

∗, R〉

+ τ〈∇fF + iαf , P 0
c (1 + τPc − τP 0

c )
−1P 0

c PcΣ3R〉
]
,

which implies that (Y τ )ω is real valued, by

i ∂jF = εj(Y
τ )j + τ〈Σ1Σ3(Cξj)

∗, ∂ωR〉(Y τ )ω
−i ∂jF = εj(Y

τ )j + τ〈Σ3ξ
∗
j , ∂ωR〉(Y τ )ω

iβα2Σ3Σ1(α
f + i∇fF ) = −(Y τ )f − τ(P 0

c Pc − 1)(Y τ )f − τ(Y τ )ωP
0
c Pc∂ωR ,

where we see (Y τ )j = (Y τ )j , CΣ1(Y
τ )f = (Y τ )f and (Y τ )f ∈ Xc(Hω0), and by Y τρ = 2〈(Y τ )f , iβα2Σ1f〉.

Then Y τ = Y τ (ω, ρ, z, f) defines a new flow Gτ (ρ, U), which reduces to Fτ (U) in the invariant manifold

defined by ρ = ‖f‖22. Notice that by ρ(t) = ρ(0) +
∫ t
0
Y sρ ds it is easy to conclude ρ(G1(ρ, U)) = ρ(U) +

O(rhs(7.35)). Using (7.8) , (7.22), (7.25) and (7.39) it is then easy to get

q(ω(t)) = q(ω(0)) +

∫ t

0

q′(ω(s))Y sω ds = q(ω(0))−
∫ t

0

ρ(s)

2
ds+O(rhs(7.35)).

By standard arguments, see for example the proof of Lemma 4.3 [3], we get

q (ω(G1(ρ, U))) = q (ω(U))− ρ

2
+ Eω(ρ, U)

zℓ(G1(ρ, U)) = zℓ(U) + Eℓ(ρ, U)

f(G1(ρ, U)) = f(U) + Ef (ρ, U)

with Eζ(ρ, U) satisfying (7.37) for ζ = ω, zℓ, (7.38) for ζ = f and such that CΣ1Ef(ρ, U) = Ef (ρ, U). We
have Eζ(U) = Eζ(‖f‖2, U) satisfying (7.35) for ζ = ω and (7.36) for ζ = zℓ, f . �

Eventually we have the desired Darboux type result:

Lemma 7.12. (Darboux Theorem) Consider the flow Fτ of Lemma 7.11. Then we have F∗
τΩτ = Ω0.

We have Q ◦ F1 = q. If χ is a function with ∂ϑχ ≡ 0, then ∂ϑ(χ ◦ Ft) ≡ 0.

Proof. The proof is the same of Lemma 7.11 [27]. �
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8. Reformulation of (6.6) in the new coordinates

We set H := K ◦ F1. In the new coordinates (6.6) becomes

(8.1) q′ω̇ =
∂H

∂ϑ
≡ 0 , q′ϑ̇ = −∂H

∂ω
,

(8.2) iżj = εj
∂H

∂zj
, iḟ = iβα2Σ3Σ1∇fH.

Recall that we are solving the initial value problem (1.1) and that we have chosen ω0 with q(ω0) = ‖u0‖2L2
x
.

Correspondingly it is enough to focus on (8.2) with ω = ω0. Consider the notation of Theorem 1.3. Let
us focus for the moment on the case εj ≡ 1 in system (8.2). Then we prove :

Theorem 8.1. Assume (H:1)–(H:12). Then for any integer k0 > 3 there exist ǫ0 > 0 and C > 0 such
that for |z(0)|+ ‖f(0)‖Hk0 ≤ ǫ < ǫ0 the corresponding solution of (8.2) is globally defined and there are
f± ∈ Hk0 with ‖f±‖Hk0 ≤ Cǫ such that

(8.3) lim
t→±∞

‖eiϑ(t)Σ3f(t)− e−itDmf±‖Hk0 = 0

and limt→∞ z(t) = 0, for ϑ(t) the exponent in (4.1). Fix p0 > 2 and τ0 > 1. Let 1
p = 1

2 − 1
q and α(q) = 3

p .

Then, we can choose ǫ0 small enough such that f(t, x) = A(t, x) + f̃(t, x) with

∀n ∈ N, Cn(t) := sup
x∈R3,α∈N3

〈x〉n|∂αxA(t, x)| → 0 as t→ ∞

and for some fixed C

(8.4) ‖f̃‖
Lp

t ([0,∞),B
k0− 3

p
q,2 )∩L2

t ([0,∞),H
k0,−τ0
x )∩L2

t([0,∞),L∞
x )

≤ Cǫ.

There exist ω+ such that |ω+ − ω0| = O(‖f+‖22) such that limt→+∞ ω(t) = ω+.

Proof that Theorem 8.1 implies Theorem 1.3. . If we denote (ω, z′, f ′) the initial coordinates, and (ω0, z, f)
the coordinates in (8.2), we have from Lemma 7.11 :

|z′ − z| = O(|z|+ ‖f‖L2,−2
x

) and ‖f ′ − f‖HK,S = O(|z|+ ‖f‖L2,−2
x

)

for any (K,S) ∈ (R+)2. The two error terms O converge to 0 as t→ ∞. Hence the asymptotic behavior

of (z′, f ′) and of (z, f) is the same. We also have, from Lemma 7.11, q (ω(t)) = q (ω0)− ‖f(t)‖2
2

2 +O(|z(t)|+
‖f(t)‖L2,−2

x
) which implies, say at +∞

lim
t→+∞

q (ω(t)) = lim
t→+∞

(
q (ω0)−

‖e−itHω0,0f+‖22
2

)
= q (ω0)−

‖f+‖22
2

= q(ω+)

for ω+ the unique element near ω0 for which the last inequality holds. So limt→+∞ ω(t) = ω+.
�

In the case εj ∈ {1,−1} with εj 6≡ 1, using the same argument of Theorem 8.1, we prove that solutions
which remain close to the standing wave, actually have remainder which scatters. We state this in terms
of the system (8.2) and the coordinates after Darboux, but of course it can be stated also in terms of the
original coordinates, as in Theorems 1.3 and 1.10.

Theorem 8.2. Assume (H:1)–(H:4), (H:5’) and (H:6)–(H:12). Then there exist ǫ0 > 0 with the
following property. Suppose that (z(t), f(t)) is a solution of (8.2) such that |z(t)|+ ‖f(0)‖Hk0 ≤ ǫ < ǫ0
for all t ≥ 0. Suppose furthermore that there exists a fixed C > 0 such that ‖f(t)‖Hk0 ≤ Cǫ for all t ≥ 0.
Then there exist f+ ∈ Hk0 such that (8.3) holds (case +) and we have limt→+∞ z(t) = 0. Furthermore,

we can write f(t, x) = A(t, x) + f̃(t, x) as in Theorem 8.1 in such a way that the same conclusions of

Theorem 8.1 regarding A(t, x) and f̃ hold.

Remark 8.3. Theorem 8.2 is analogous to an observation in [44] regarding the fact that solutions remaining
for all times close to a standing wave, stable or unstable, converge to it. Among other references see also
[6, 45].

Finally, Theorem 1.10, that is orbital instability, is a consequence of the following theorem.

Theorem 8.4. Assume (H:1)–(H:4), (H:5’) and (H:6)–(H:12). Then there is a ǫ1 > 0 such that for
any δ > 0 there is a solution (z(t), f(t)) of (8.2) such that |z(0)|+ ‖f(0)‖Hk0 ≤ δ but there exists t ≥ 0
such that |z(t)| ≥ ǫ1.
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8.1. Taylor expansions. We recall that εj = 〈ξj ,Σ3ξj〉 ∈ {1,−1} is the signature of the eigenvalues of
Hω. We set d(ω) := E(Φω) + ωQ(Φω). We recall that ω0 is the unique element such that q(ω0) = ‖u0‖22
and G is the primitive of the non-linearity g vanishing at 0.

Lemma 8.5. The following statements hold.

(8.5)

K = d(ω)− ω‖u0‖22 +K2 +KP with

K2 :=
∑

j

εjλj(ω)|zj |2 +
1

2
〈iβα2Σ1Σ3Hωf, f〉 and

KP = 〈G6(ω, f(x)), 1〉+
∑

|µ+ν|=3

〈kµν(ω, z), 1〉zµzν +
∑

|µ+ν|=2

zµzν〈Kµν(ω, z), iβα2Σ3Σ1Pc(ω)f〉

+
4∑

d=2

〈Gd(ω, z), (Pc(ω)f)⊗d〉+
∫

R3

〈G5(x, ω, z, f(x)), f
⊗5(x)〉dx,

where for a small neighborhood U of (ω0, 0) in O × Cn, we have what follows.

(1) G6(x, ω, f) = G
(
1
2 (Pc(ω)f(x)) · iα2Σ3Σ1(Pc(ω)f(x))

)
,

(2) kµν(·, ω, z) ∈ C∞(U , HK,S
x (R3,C8),

(3) Kµν(·, ω, z) ∈ C∞(U , HK,S
x (R3,C8) ∩X),

(4) Gd(·, ω, z) ∈ C∞(U , HK,S
x (R3, B((C8)⊗d,C))), for 2 ≤ d ≤ 4 and G2(·, ω, 0) ≡ 0.

(5) Let tη = (ζ, Cζ) for ζ ∈ C4. Then for G5(·, ω, z, η) we have

∀l ∈ N ∪ {0}, ‖∇l
ω,z,z,ζ,CζG5(ω, z, η)‖HK,S

x (R3,B((C8)⊗5,C) ≤ Cl.

(6) We have kµν = k∗νµ, Kµν = −CΣ1Kνµ.

Proof. Consider U = eiΣ3ϑ(Φω + R) as in (4.1) . Decompose R as in (4.5). Set U = ϕ(ω, z) + Pc(ω)f .
Let Kp(U) =

∫
h(U(x)) dx, see Lemma 2.4, then after first a Taylor integral expansion around f at first

order and a Taylor integral expansion around φ at fourth order, we have

h(U) = h (Pc(ω)f) +

∫ 1

0

dh(tϕ+ Pc(ω)f)ϕdt

= h (Pc(ω)f) +

∫ 1

0

∑

i≤4

1

i!
di+1h(tϕ)(Pc(ω)f)

iϕdt+

+ 5

∫

[0,1]2
(1− s)4

1

5!
d6h(tϕ+ sPc(ω)f)(Pc(ω)f)

4ϕdtds

Since Φω is a critical point of K as it is in the kernel of HωΣ3, so in the Taylor expansion of K around
Φω there is no first order term. The second derivative of K is the bilinear form 1

2 〈iβα2Σ1Σ3Hω·, ·〉. This
gives K2.

The term KP contains all terms of order higher than 2 in f and z. Thus coincides with the term of
order higher than 2 in f and z in the above expansion after integration in x.

The Hamiltonian K is a real quantity and considering its conjugate will exchange z̄ and z and
lead by a straightforward calculation to the last assertion. The fact that Kµν(ω, z) ∈ X follows from
〈iβα2Σ1Σ3AX,Y 〉 = 〈iβα2Σ1Σ3X,AY 〉 and f ∈ X, see Lemma 2.3. �

The following lemma is a reformulation with some rearrangements of the above one in the canonical
coordinates provided by Lemma 7.11. We set δj be for j ∈ {1, ...n} the multi index δj = (δ1j , ..., δnj).
Let λ0j = λj(ω0) and λ

0 = (λ01, · · · , λ0n).

Lemma 8.6. Let H := K ◦ F1. Then, around eiΣ3ϑΦω0 we have the expansion

(8.6) H = d(ω0)− ω0‖u0‖22 + ψ(‖f‖22) +H
(1)
2 +R(1), where

(8.7) H
(1)
2 =

∑

|µ+ν|=2

λ0·(µ−ν)=0

k(1)µν (‖f‖22)zµzν +
1

2
〈iβα2Σ1Σ3Hω0f, f〉.
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and R(1) = R̃(1) + R̃(2), with
(8.8)

R̃(1) =
∑

|µ+ν|=2

λ0·(µ−ν) 6=0

k(1)µν (‖f‖22)zµzν +
∑

|µ+ν|=1

zµzν〈Hνµ(‖f‖22), iβα2Σ3Σ1f〉,

R̃(2) =

∫

R3

G(
1

2
(Pc(ω0)f(x)) · iα2Σ3Σ1(Pc(ω0)f(x))) dx +

∑

|µ+ν|=3

zµzν
∫

R3

kµν(x, z, f, f(x), ‖f‖22)dx

+
∑

|µ+ν|=2

zµzν
∫

R3

[
iβα2Σ1Σ3Hνµ(x, z, f, f(x), ‖f‖22)

]T
f(x)dx

+

5∑

j=2

R(1)
j + R̂(1)

2 (z, f, ‖f‖22)

and R(1)
j =

∫

R3

Fj(x, z, f, f(x), ‖f‖22)f⊗j(x)dx

and where the following holds.

(1) We have ψ(s) is smooth with ψ(0) = ψ′(0) = 0.
(2) At ‖f‖2 = 0 we have:

(8.9)

k(1)µν (0) = 0 for |µ+ ν| = 2 with (µ, ν) 6= (δj , δj) for all j;

k
(1)
δjδj

(0) = εjλj(ω0), where δj = (δ1j , ..., δmj) and here we are not summing in j;

Hνµ(0) = 0 for |µ+ ν| = 1.

These k
(1)
µν (̺) and Hνµ(x, ̺) are smooth in all variables with Hνµ(·, ·) ∈ C∞(R̺, H

K,S
x (R3,C8)∩X)

for all (K,S).
(3) We have for all indexes

(8.10) k(1)µν = (k(1)µν )
∗ , kµν = k∗µν , Hνµ = −CΣ1Hµν .

(4) We have F2(x, 0, 0, 0, 0) = 0.

(5) For all (K,S,K ′, S′) positives there is a neighborhood U−K′,−S′

of {(0, 0)} in P̃−K′,−S′

, see
(7.26), such that

(a) for tη = (ζ, Cζ) where ζ ∈ C
4. we have, for kµν(x, z, f, η, ̺) with (z, f, ζ, ̺) ∈ U−K′,−S′ ×

C4 × R

(8.11) ∀l ∈ N
6, ‖∇l

z,z,ζ,Cζ,f,̺kµν‖HK,S
x (R3,C) ≤ Cl;

(b) for Hνµ(x, z, f, g, ̺),

(8.12) ∀l ∈ N
6, ‖∇l

z,z,ζ,Cζ,f,̺Hνµ‖HK,S
x (R3,C2) ≤ Cl;

(c) for Fj(x, z, f, g, ̺),

∀l ∈ N
6, ‖∇l

z,z,ζ,Cζ,f,̺Fj‖HK,S
x (R3,B((C2)⊗j ,C)) ≤ Cl;

(d) we have R̂(1)
2 (z, f, ̺) ∈ C∞(U−K′,−S′ × R,R) with

|R̂(1)
2 (z, f, ̺)| ≤ C(|z|+ |̺|+ ‖f‖H−K′,−S′ )‖f‖2

H−K′,−S′ .

Proof. The following proof is a continuation of proof of Lemma 7.11. We thus consider H = K ◦ G1 as
a function of (̺, U). By G1(0,Φω0) = F1(Φω0) = Φω0 , K

′(Φω0) = 0 and ‖F1(U) − U‖PK,S . ‖R‖2L2 we

conclude H ′(Φω0) = 0 and H ′′(Φω0) = K ′′(Φω0). In particular, this yields the formula for H
(1)
2 + R̃(1)

for ̺ = ‖f‖22 = 0.
The other terms are obtained by substituting in KP of (8.5) the formula (7.34). The term ψ(̺)

arises from d(ω ◦ G1) − ω ◦ G1‖u0‖22. There are no monomials ‖f‖j2zµzν〈H, f〉i with |µ + ν| + i = 1,
due to (7.35) (applied for ω = ω0). By 〈iβα2Σ1Σ3f, f〉 = ‖f‖22, we have 〈iβα2Σ1Σ3Hω0+δωf, f〉 =

〈iβα2Σ1Σ3Hω0f, f〉+ ‖f‖2̺
2 + F̃2 where F̃2 can be absorbed in j = 2 in R̃(2) and ‖f‖2̺

2 can be absorbed

in ψ when restricted to ̺ = ‖f‖22.
Notice that R̂(1)

2 is a remainder term obtained from terms in E of Lemme 7.11. �
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9. Birkhoff normal forms

9.1. Normal form. Here again and in the following sections, we use the notation λ0j = λj(ω0). Set
H := Hω0Pc(Hω0).

Definition 9.1. A function Z(z, f) is in normal form if it is of the form Z = Z0 + Z1 where we have
finite sums of the following types:

(9.1) Z1 =
∑

|λ0·(ν−µ)|>m−ω0

zµzν〈iβα2Σ1Σ3Gµν(‖f‖22), f〉

with Hµν(x, ̺) ∈ C∞(R̺, H
K,S
x ) for all K, S;

(9.2) Z0 =
∑

λ0·(µ−ν)=0

aµ,ν(‖f‖22)zµzν

and aµ,ν(̺) ∈ C∞(R̺,C). We will always assume the symmetries (8.10). �

We consider the coefficients of the type of (8.7) (below it will be those of the H
(r)
2 in Theorem 9.5)

and thus let, for δj = (δ1j , ..., δnj),

(9.3) λj = λj(‖f‖22) = λ0j + kδjδj (‖f‖22), λ = (λ1, · · · , λm).

Let

(9.4) D2 =
n∑

j=1

εjλj(‖f‖22)|zj |+
1

2
〈iβα2Σ1Σ3Hω0f, f〉.

We have (λ′j(̺) is the derivative in ̺) for F a scalar valued function that, summing on repeated indexes,

(9.5)

{D2, F} := dD2(XF ) = ∂jD2(XF )j + ∂jD2(XF )j + 〈∇fD2, (XF )f 〉
= −i∂jD2∂jF + i ∂jD2∂jF − 〈∇fD2, βα2Σ3Σ1∇fF 〉 =
iλjzj∂jF − iλjzj∂jF + i〈Hf,∇fF 〉+ 2iλ′j(‖f‖22)|zj |2〈f,Σ3∇fF 〉.

In particular, we have, for G = G(x), (we use Σ1iΣ2 = Σ3)

(9.6)

{D2, z
µzν} = iλ · (µ− ν)zµzν ,

{D2, 〈iβα2Σ1Σ3G, f〉} = i〈Hf, iβα2Σ1Σ3G〉 − 2 i
n∑

j=1

λ′j |zj |2〈iβα2Σ1f,G〉

= −i〈f, iβα2Σ1Σ3HG〉 − 2 i
n∑

j=1

λ′j |zj |2〈iβα2Σ1f,G〉,

{D2,
1

2
‖f‖22} = {D2,

1

2
〈f, iβα2Σ1f〉} = −i〈Hf, iβα2Σ1f〉 = −i〈Vω0f, iβα2Σ1f〉.

In the sequel we will prove that ‖f‖2 is small.

Remark 9.2. We will consider only |µ+ ν| ≤ 2N + 3. Then, λ0 · (µ− ν) 6= 0 implies |λ0 · (µ− ν)| ≥ c > 0
for some fixed c, and so we can assume also |λ · (µ − ν)| ≥ c/2. Similarly |λ0 · (µ − ν)| < m − ω0 (resp.
|λ0 · (µ− ν)| > m−ω0) will be assumed equivalent to |λ · (µ− ν)| < m−ω0 (resp. |λ · (µ− ν)| > m−ω0).

Lemma 9.3 (Homological equation). Consider

K =
∑

|µ+ν|=M0+1

kµν(‖f‖22)zµzν +
∑

|µ+ν|=M0

zµzν〈iβα2Σ1Σ3Kµν(‖f‖22), f〉.(9.7)

Suppose that all the terms in (9.7) are not in normal form and that the symmetries (8.10) hold. Consider

(9.8)

χ =
∑

|µ+ν|=M0+1

kµν(‖f‖22)
iλ · (µ− ν)

zµzν

+
∑

|µ+ν|=M0

zµzν〈iβα2Σ1Σ3
1

i(λ · (µ− ν)−H)
Kµν(‖f‖22), f〉.
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Then we have {D2, χ} = K + L with, summing on repeated indexes,

L = −2
k′µν

(µ− ν) · λz
µzν〈Vω0f, iβα2Σ1f〉

−2λ′jz
µzν |zj |2

〈
iβα2Σ1f,

1

(µ− ν) · λ−HKµν

〉

+2λ′ · (µ− ν)zµzν |zj|2
〈
f, iβα2

1

((µ− ν) · λ−H)
2Kµν

〉
〈Vω0f, iβα2Σ1f〉

−2zµzν
〈
f,Σ3Σ1

1

(µ− ν) · λ−HK ′
µν

〉
〈Vω0f, iβα2Σ1f〉.

If the coefficients in (9.7) satisfy (8.10), the same is true for the coefficients in (9.8).

Proof. The proof follows by the tables (9.6), by the product rule for the derivative and by the symmetry
properties of H. �

9.2. Canonical transformations. First we consider functions

(9.9) χ =
∑

|µ+ν|=M0+1

bµν(‖f‖22)zµzν +
∑

|µ+ν|=M0

zµzν〈iβα2Σ1Σ3Bµν(‖f‖22), f〉

where bµν(̺) ∈ C∞(R̺,C) and Bµν(x, ̺) ∈ C∞(R, Pc(ω0)H
k,s
x (R3,C8)) for all k and s. Assume

(9.10) bµν = (bνµ)
∗ and iβα2Σ1Bµν = −(Bνµ)

∗ for all indexes.

The canonical transformations used in the proof of Theorem 9.5 are compositions of the Lie transforms
φ := φτ

∣∣
τ=1

, with φτ the flow of the Hamiltonian vector field Xχ (with respect to Ω0 and only in (z, f)).
Let for K > 0 and S > 0 fixed and large

(9.11) ‖χ‖ =
∑

|bµν(‖f‖22)|+
∑

‖Bµν(‖f‖22)‖HK,S .

Then, the following lemma can be proved like Lemma 9.2 [27].

Lemma 9.4. Consider the χ in (9.9) and its Lie transform φ. Set (z′, f ′) = φ(z, f). Then there are
G(z, f, ̺), Γ(z, f, ̺), Γ0(z, f, ρ) and Γ1(z, f, ρ) with the following properties.

(1) Γ ∈ C∞(U−K′,−S′

,Cn), Γ0,Γ1 ∈ C∞(U−K′,−S′

,R), with U−K′,−S′ ⊂ Cn×H−K′,−S′

c (ω0)×R an
appropriately small neighborhood of the origin.

(2) G ∈ C∞(U−K′,−S′

, HK,S
c (ω0)) for any K,S.

(3) The transformation φ is of the following form:

z′ = z + Γ(z, f, ‖f‖22),(9.12)

f ′ = eiΓ0(z,f,‖f‖2
2)Pc(ω0)Σ3f + G(z, f, ‖f‖22).(9.13)

(4) There are constants cK′,S′ and cK,S,K′,S′ such that

|Γ(z, f, ‖f‖22)| ≤ cK′,S′(‖χ‖+ (9.18))|z|M0−1(|z|+ ‖f‖H−K′,−S′ ),(9.14)

‖G(z, f, ‖f‖22)‖HK,S ≤ cK,S,K′,S′(‖χ‖+ (9.18))|z|M0 ,(9.15)

|Γ0(z, f, ‖f‖22)| ≤ cK′,S′ |z|M0−1(|z|+ ‖f‖H−K′,−S′ )2.(9.16)

(5) We have

‖f ′‖22 = ‖f‖22 + Γ1(z, f, ‖f‖22),(9.17) ∣∣Γ1(z, f, ‖f‖22)
∣∣ ≤ C|z|M0−1(|z|+ ‖f‖H−K′,−S′ )2.(9.18)

(6) We have

(9.19) eiΓ0Pc(ω0)Σ3 = eiΓ0Σ3 + T (Γ0),

where T (r) ∈ C∞(R, B(H−K′,−S′

, HK,S)) for all (K,S,K ′, S′), with norm

‖T (r)‖B(H−K′,−S′ ,HK,S) ≤ C(K,S,K ′, S′)|r|.
More specifically, the range of T (r) is a subspace of Xd(H) +Xd(H∗).

The crux of this section is the following result.
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Theorem 9.5. For any integer r ≥ 2 there are a neighborhood U1,0 of {(0, 0)} in P̃1,0, see (7.26), and

a smooth canonical transformation Tr : U1,0 → P̃1,0 s.t.

(9.20) H(r) := H ◦ Tr = d(ω0)− ω0‖u0‖22 + ψ(‖f‖22) +H
(r)
2 + Z(r) +R(r).

where:

(i) H
(r)
2 = H

(2)
2 for r ≥ 2, is of the form (8.7) where k

(r)
µν (‖f‖2) satisfy (8.9)–(8.10);

(ii) Z(r) is in normal form, in the sense of Definition 9.1 above, with monomials of degree ≤ r whose
coefficients satisfy (8.10);

(iii) the transformation Tr is of the form (9.12)– (9.13) and satisfies (9.14)– (9.16) for M0 = 1;

(iv) we have R(r) =
∑6

d=0 R
(r)
d and for all (K,S,K ′, S′) positives there is a neighbourhood U−K′,−S′

of {(0, 0)} in P̃−K′,−S′

such that
(iv.0)

R(r)
0 =

∑

|µ+ν|=r+1

zµzν
∫

R3

k(r)µν (x, z, f, f(x), ‖f‖22)dx

and for k
(r)
µν (z, f, η, ̺) with tη = (ζ, Cζ), ζ ∈ C4 we have for (z, f) ∈ U−K′,−S′

and |̺| ≤ 1

(9.21) ‖∇l
z,z,ζ,Cζ,f,̺k

(r)
µν (·, z, f, η, ̺)‖HK,S(R3,C) ≤ Cl for all l;

(iv.1)

R(r)
1 =

∑

|µ+ν|=r
zµzν

∫

R3

[
iβα2Σ1Σ3H

(r)
µν (x, z, f, f(x), ‖f‖22)

]T
f(x)dx

(9.22) with ‖∇l
z,z,ζ,Cζ,f,̺H

(r)
νµ (·, z, f, η, ̺)‖HK,S(R3,C8) ≤ Cl for all l;

(iv.2–5) for 2 ≤ d ≤ 5,

R(r)
d =

∫

R3

F
(r)
d (x, z, f, f(x), ‖f‖22)f⊗d(x)dx + R̂(r)

d ,

with for any l

(9.23) ‖∇l
z,z,ζ,Cζ,f,̺F

(r)
d (·, z, f, η, ̺)‖HK,S(R3,B((C8)⊗d,C) ≤ Cl,

with F
(r)
2 (x, 0, 0, 0, 0) = 0 and with R̃(r)

d (z, f, ‖f‖22) s.t.

(9.24)

R̂(r)
d (z, f, ̺) ∈ C∞(U−K′,−S′ × R,R),

|R̂(r)
d (z, f, ̺)| ≤ C‖f‖d

H−K′,−S′ ,

|R̂(r)
2 (z, f, ̺)| ≤ C(|z|+ |̺|+ ‖f‖H−K′,−S′ )‖f‖2

H−K′,−S′ ;

(iv.6) R(r)
6 =

∫
R3 G(

1
2 (Pc(ω)f(x)) · iα2Σ3Σ1(Pc(ω)f(x)) dx.

The proof of Theorem 9.5 is the same of Theorem 9.1 in [27] and we skip it. The ingredients needed
in the proof (in particular the notion of normal form) are described above.

10. Non linear dynamics

10.1. Dispersion. λ We apply Theorem 9.5 for r = 2N1 + 1 (recall Njλj < m − ω0 < (Nj + 1)λj). In

the rest of the article we work with the Hamiltonian H(r). We will drop the upper index. So we will set

H = H(r), H2 = H
(r)
2 , λj = λ

(r)
j , λ = λ(r), Za = Z

(r)
a for a = 0, 1 and R = R(r). In particular we will

denote by Hµν the coefficients G
(r)
µν of Z

(r)
1 . We will show:
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Theorem 10.1. Fix p0 > 2 and τ0 > 1. Let 2
p = 3

2 (1 − 2
q ) and α(q) = 2

p , i.e. (1 + θ
2 )(1 − 2

q ) =
2
p with

θ = 1 in Theorem 5.6. Consider k0 ≥ 4, k0 ∈ Z, ǫ ∈ (0, ε0) and ε0 > 0 as in Theorem 1.3). Then there
is a fixed C > 0 such that for ε0 > 0 sufficiently small and for p ≥ p0 we have the following inequalities:

‖f‖
Lp

t ([0,∞),B
k0− 2

p
q,2 )

≤ Cǫ;(10.1)

‖f‖
L2

t([0,∞),H
k0,−τ0
x )

≤ Cǫ(10.2)

‖f‖L2
t([0,∞),L∞

x ) ≤ Cǫ(10.3)

‖zµ‖L2
t([0,∞)) ≤ Cǫ for all multi indexes µ with λ · µ > m− ω0(10.4)

‖zj‖W 1,∞
t ([0,∞)) ≤ Cǫ for all j ∈ {1, . . . , n} .(10.5)

Due to time reversibility, it is easy to conclude that (10.1)–(10.5) are true over the whole real line.
The proof of Theorem 10.1 involves a standard continuation argument following [52, End of proof of

Theorem II.2.1]. We assume

‖f‖
Lp

t ([0,T ],B
k0− 2

p
q,2 )

+ ‖f‖
L2

t([0,T ],H
k0,−τ0
x )

+ ‖f‖L2
t([0,T ],L∞

x ) ≤ C1ǫ(10.6)

‖zµ‖L2
t ([0,T ]) ≤ C2ǫ for all multi indexes µ with ω · µ > m− ω0(10.7)

‖zj‖W 1,∞
t ([0,T ]) ≤ C3ǫ for all j ∈ {1, . . . , n}(10.8)

for fixed sufficiently large constants C1–C3. Notice that there is an ε1 > 0 such that this assumption is
true for all |z(0)|+ ‖f(0)‖Hk0 < ε1 if say T ∈ (0, 1]. We then prove that there exists a fixed ε0 ∈ (0, ε1),
with ε0 = ε0(C1, C2, C3), such that for ǫ ∈ (0, ε0), (10.6)–(10.8) imply the same estimate but with C1–C3

replaced by C1/2–C3/2. This implies that the set of T such that (10.6)–(10.8) is open in R
+. Since it is

also closed, it is all R+. Then (10.6)–(10.8) hold with [0, T ] replaced by [0,∞) for all |z(0)|+‖f(0)‖Hk0 <
ǫ < ε0.

The proof of Theorem 10.1 consists in three main steps.

(i) Estimate f in terms of z.
(ii) Substitute the variable f with a new ”smaller” variable g and find smoothing estimates for g.
(iii) Reduce the system for z to a closed system involving only the z variables, by insulating the part

of f which interacts with z, and by decoupling the rest (this reminder is g). Then clarify the
nonlinear Fermi golden rule.

Step (i). Using the Proposition 10.2 below, we will choose C1 > 2K1(C2). This tells us that if we get
upper bounds on C2 and C3, and this is done in Sect. 11, then we will have proved Theorem 10.1.

Proposition 10.2. Assume (10.6)–(10.8). Then there exist constants C = C(C1, C2, C3),K1(C2), such
that, if C(C1, C2, C3)ǫ is sufficiently small, then we have

‖f‖
Lp

t ([0,T ],B
k0− 2

p
q,2 )

+ ‖f‖
L2

t([0,T ],H
k0,−τ0
x )

+ ‖f‖L2
t([0,T ],L∞

x ) ≤ K1(C2)ǫ .(10.9)

Proof. Consider Z1 of the form (9.1). Set:

(10.10) H0
µν = Hµν(‖f‖22) for ‖f‖22 = 0;λ0j = λj(ω0).

Then we have (with finite sums)

(10.11)

iḟ −Hf − 2(∂‖f‖2
2
H)Pc(ω0)Σ3f =

∑

|λ0·(ν−µ)|>m−ω0,
|µ+ν|≤2N1+1

zµzνH0
µν

+
∑

|λ0·(ν−µ)|>m−ω0,
|µ+ν|≤2N1+1

zµzν(Hµν −H0
µν) + iβα2Σ3Σ1∇fR− 2(∂‖f‖2

2
R)Pc(ω0)Σ3f.

In order to obtain bounds on f , we need bounds on the right hand term of the equation especially the
last two terms. They are provided by the following lemma.

Lemma 10.3. Assume (10.6)–(10.8) and consider a fixed τ0 > 1. Then there is a constant C =
C(C1, C2, C3) independent of ǫ such that the following is true: we have

βα2Σ3Σ1∇fR− 2(∂‖f‖2
2
R)Pc(ω0)Σ3f = R1 +R2
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with

(10.12)
‖R1‖Hk0

x
≤ C(C1, C2, C3)(|z|2N1+2 + ‖f‖2L∞‖f‖

H
k0
x
)

‖R2‖Hk0,τ0
x

≤ C(C1, C2, C3)(|z|+ ‖f‖2L2
x
+ ‖f‖

H
k0,−τ0
x

)‖f‖
H

k0,−τ0
x

.

In particular we have for some other fixed constant C = C(C1, C2, C3),

(10.13) ‖R1‖L1
t([0,T ],H

k0
x )

+ ‖R2‖L2
t ([0,T ],H

k0,τ0
x )

≤ C(C1, C2, C3)ǫ
2.

Proof. (10.13) is a consequence of (10.12) and (10.6)–(10.8). We focus on (10.12). For d ≤ 1 and arbitrary
fixed (S,K) we have ∇fRd ∈ HS,K . By (iv0–iv1) Theorem 9.5

‖∇fR0‖HS,K + ‖∇fR1‖HS,K ≤ C|z|2N1+2.

These terms can be absorbed in R1. For 2 ≤ d ≤ 5 we have

Σ3Σ1∇f R̂d − 2(∂‖f‖2
2
R̂d)Pc(ω0)Σ3f = Σ3Σ1∇f R̂d(z, f, ρ),

computed at ρ = ‖f‖22. By (9.24) we obtain

‖∇f R̂d(z, f, ρ)‖HK′,S′ ≤ C‖f‖d−1
H−K′,−S′ for 3 ≤ d ≤ 5 and

‖∇f R̂2(z, f, ρ)‖HK′,S′ ≤ C‖f‖2
H−K′,−S′ + C|z| ‖f‖H−K′,−S′ .

Since K ′ and S′ are arbitrarily large, we have ‖f‖H−K′,−S′ ≤ ‖f‖Hk0,−τ0 . So these terms can be absorbed
in R2. Other terms are treated as in [3, Lemma 7.5] : For d = 2, 3, 4, 5 we have schematically

(10.14)

Fd(x, z, f, f(t, ·), ρ)f⊗(d−1)(t, ·) + ∂wFd(x, z, f, w, ρ)w=f(t,·)f
⊗d(t, ·)

+∇g

(∫

R3

Fd(x, z, g, f(t, x), ‖f(t)‖2L2
x
)[f(t, x)]⊗ddx

)

g=f

.

The first line of (10.14) has Hk0,τ0
x norm bounded, for some fixed sufficiently large N, by

(10.15)
C̃‖〈x〉NFd(x, z, f, f(t, x), ρ)‖Wk0,∞

x
‖f‖d−1

H
k0,−τ0
x

+ C̃‖〈x〉N∂wFd(x, z, f, w, ρ)w=f(t,x)‖Wk0,∞
x

‖f‖d
H

k0,−τ0
x

≤ C‖f‖d−1

H
k0,−τ0
x

+ C‖f‖d
H

k0,−τ0
x

.

When these terms are bounded by ‖f‖d1
H

k0,−τ0
x

for d1 ≥ 2, we can absorb them in R2. Cases d1 = 1 come

from terms in the first line of (10.15) with d = 2. By F2(x, 0, 0, 0, 0) = 0 these are less than

(|z|+ ‖f‖
H−K′,−S′

x
+ ‖f‖2L2

x
)‖f‖

H
k0,−τ0
x

and can be absorbed in R2. Looking at the second line of (10.14) and for N sufficiently large, we have

‖∇g

(∫

R3

Fd(x, z, g, f(t, x), ‖f(t)‖2L2
x
)[f(t, x)]⊗ddx

)

g=f

‖
H

k0
x

=

∣∣∣∣∣∣
sup

‖ψ‖
H

−k0
x

=1

∫

R3

DgFd(x, z, g, f(t, x), ‖f(t)‖2L2
x
)g=f [ψ][f(t, x)]

⊗ddx

∣∣∣∣∣∣
≤ C sup

‖ψ‖
H

−k0
x

=1

‖DgFd(x, z, g, f(t, x), ‖f(t)‖2L2
x
)g=f [ψ]‖L∞,N

x
‖f‖d

H
k0,−τ0
x

≤ C‖f‖d
H

k0,−τ0
x

.

So the second line of (10.14) can be absorbed in R2. Finally we consider ∇fR6 = Σ1g(|f(t, x)|2/2)f(t, x).
Then for a fixed C we have ‖∇fR6‖Hk0

x
≤ C‖f‖2L∞

x
‖f‖

H
k0
x
. �

Denote by F the rhs of (10.11) and set ϕ = 2∂‖f‖2
2
H .

Lemma 10.4. Consider iψ̇ − Hψ − ϕ(t)Σ3Pcψ = F where Pc = Pc(ω0) and ψ = Pcψ. Let k ∈ Z with
k ≥ 0 and τ0 > 1. Then there exist c0 > 0 and C > 0 such that if ‖ϕ‖L∞

t [0,T ] < c0 then for p ≥ p0 > 2
and for (p, q) as in Theorem 10.1 we have

(10.16) ‖ψ‖
Lp

t ([0,T ],B
k− 2

p
q,2 )∩L2

t([0,T ],H
k,−τ0
x )

≤ C‖ψ(0)‖Hk + C‖F‖
L1

t ([0,T ],Hk
x)+L

2
t ([0,T ],H

k,τ0
x )
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Proof. We apply the argument for the NLS in Lemma B.2 [45], see also Theorem 1.5 [6]. A more precise
statement than Lemma B.2 [45] is in [14, 24], but the proof does not seem easy to reproduce for Dirac.
We fix any δ > 0. Let Pd = Pd(ω0) and H0 = Hω0,0. Consider

(10.17) iŻ −HPcZ + iδPdZ − ϕΣ3PcZ = F.

Then notice that for Z(0) = ψ(0) the solution of (10.17) satisfies Z(t) ≡ ψ(t). We rewrite (10.17) as

iŻ −H0Z − ϕΣ3Z = F + (V −HPd − iδPd)Z − ϕΣ3PdZ.

Let (V − HPd − iδPd) = V1V2 with V2(x) a smooth exponentially decaying and invertible matrix, and

with V1 bounded from Hk,s′ → Hk,s for all k, s and s′. For U(t) = e−iΣ3

∫
t
0
ϕ(t′)dt′ we have

(10.18) Z(t) = U(t)e−iH0tZ(0)− i

∫ t

0

eiH0(t
′−t)U(t)U−1(t′) [F (t′) + V1V2Z(t

′)− ϕ(t′)Σ3PdZ(t
′)] dt′.

c0PdV
−1
2 maps H−K′,−S′ → HK,S for arbitrarily fixed pairs (K,S) and (K ′, S′). By picking c0 small

enough, we can assume that the related operator norms are small. By Theorems 5.4 and 5.6

‖Z‖
Lp

tB
k− 2

p
q,2 ∩L2

tH
k,−τ0
x

≤ C‖Z(0)‖Hk + C‖F‖
L1

tH
k
x+L

2
tH

k,τ0
x

+ ‖V1 − ϕ(t)Σ3PdV
−1
2 ‖

L∞
t B(Hk

x ,H
k,τ0
x )

‖V2Z(t)‖L2
tH

k
x
.

For T̃0f(t) = V2
∫ t
0
eiH0(t

′−t)U(t)U−1(t′)V1f(t′)dt′, by (10.18) we obtain

(I + iT̃0)V2Z(t) = V2U(t)e−iH0tZ(0)− iV2

∫ t

0

eiH0(t
′−t)U(t)U−1(t′) [F (t′)− ϕ(t′)Σ3PdZ(t

′)] dt′

We then obtain (10.16) if we can show that

(10.19) ‖(I + iT̃0)
−1 : L2

t ([0, T ), H
k(R3)) → L2

t ([0, T ), H
k(R3))‖ < C1,

for c0C1 smaller than a fixed number. It is enough to prove (10.19) with T̃0 replaced by

T0f(t) = V2

∫ t

0

eiH0(t
′−t)V1f(t

′)dt′.

Indeed by Theorem 5.5 we have

‖(T̃0 − T0)f‖L2
tH

k
x
≤ ‖

∫ t

0

‖V2eiH0(t
′−t)(eiΣ3

∫
t′

t
ϕ(t′′)dt′′ − 1)V1f(t

′)‖Hk
x
dt′‖L2

t

≤ C̃c
1
4
0 ‖
∫ t

0

〈t′ − t〉− 5
4 ‖f(t′)‖Hk

x
dt′‖L2

t
≤ Cc

1
4
0 ‖f(t′)‖L2

tH
k
x
.

Set

T1f(t) = V2

∫ t

0

e(iHPc+δPd)(t
′−t)V1f(t

′)dt′ = V2

∫ t

0

(e(iH(t′−t)Pc + e−δ|t
′−t|Pd)V1f(t

′)dt′.

By Lemma 5.9 we have ‖T1 : L2
t ([0, T ), H

k(R3)) → L2
t ([0, T ), H

k(R3))‖ < C2 for a fixed C2. For exactly
the same reasons of [45] we have

(I + iT0)(I − iT1) = (I − iT1)(I + iT0) = I.

This yields (10.19) with T̃0 replaced by T0 and with C1 = 1 + C2. �

Lemma 10.5. Using the notation of Lemma 10.4, but this time picking τ0 > 3/2, we have

(10.20) ‖ψ‖L2
t([0,T ],L∞) ≤ C‖ψ(0)‖Hk0 + C‖F‖

L1
t([0,T ],H

k0
x )+L2

t ([0,T ],H
k0,τ0
x )

Proof. We proceed as above until (10.18). We claim we have

(10.21)
‖Z‖L2

tL
∞
x

≤ C‖Z(0)‖Hk0 + C‖F‖
L1

tH
k0
x +L2

tH
k0,τ0
x

+ ‖V1 − ϕ(t)Σ3PdV
−1
2 ‖

L∞
t B(H

k0
x ,H

k0 ,τ0
x )

‖V2Z(t)‖L2
tH

k0
x
.

(10.21) will yield (10.20) by the argument in Lemma 10.4. So now we prove (10.21). We have for k > 1/2

‖e−iH0tZ(0)‖L2
tL

∞
x

≤ C‖e−iH0tZ(0)‖L2
tB

k
6,2

≤ C′‖Z(0)‖Hk+1 ≤ C′‖Z(0)‖Hk0

by Theorem 5.6. Similarly, splitting F = F1 + F2, we have
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‖
∫ t

0

eiH0(t
′−t)U−1(t′)F1(t

′)dt′‖L2
tL

∞
x

≤ C‖
∫ t

0

eiH0(t
′−t)U−1(t′)F1(t

′)dt′‖L2
tB

k
6,2

≤ C′‖F1‖L1
tH

k+1 ≤ C′‖F1‖L1
tH

k0 .

Using Bk∞,2 ⊂ L∞ for k > 0, by Theorem 3.1 [10] we have for k0 > 3

‖
∫ t

0

eiH0(t
′−t)U−1(t′)F2(t

′)dt′‖L2
tL

∞
x

≤ C

∥∥∥∥
∫ t

0

min{|t− t′|− 1
2 , |t− t′|− 3

2 }‖F2(t
′)‖

B
k0
1,2
dt′
∥∥∥∥
L2

t

≤ C′‖F2‖L2
tB

k0
1,2

≤ C′′‖〈x〉τ0F2‖L2
tB

k0
2,2

= C′′‖F2‖L2
tH

k0 ,τ0 ,

where we have used ‖ϕj ∗F2‖L1
x
≤ ‖〈x〉−τ0‖L2

x
‖〈x〉τ0ϕj ∗F2‖L2

x
≤ C′′′‖ϕj ∗ (〈·〉τ0F2)‖L2

x
for fixed C′′′ > 0

and fixed τ0 > 3/2. With F2 replaced by (V1V2 − ϕΣ3Pd)Z we get a similar estimate. This yields
inequality (10.21).

�

Continuation of the proof of Proposition 10.1. By (10.11) we can apply to f Lemmas 10.4 and 10.5
by taking ϕ(t) = 2(∂‖f‖2

2
H) and F = rhs(10.11)− ϕ(t)[Σ3, Pd]f . Then

‖f‖
Lp

t ([0,T ],B
k0− 2

p
q,2 )∩L2

t([0,T ],H
k0,−τ0
x )∩L2

t ([0,T ],L∞
x )

≤ C‖f(0)‖Hk0 + C‖F‖
L1

t ([0,T ],H
k0
x )+L2

t([0,T ],H
k0,s
x )

.

We have

‖F‖
L1

tH
k0
x +L2

tH
k0 ,τ0
x

.
∑

λ·µ>m−ω0

‖zµ‖2L2
t
+ ‖R1‖L1

tH
k0
x

+ ‖R2‖L2
tH

k0 ,τ0
x

+ ǫ‖f‖
L2

tH
−k0 ,−τ0
x

.

For ǫ small this yields Proposition 10.1 by Lemma 10.4 and by (10.7).
�

Lemma 10.6. Assume the conclusions of Theorem 10.1. Then there exists a fixed C > 0 and f ′
+ ∈ Hk0

with ‖f ′
+‖Hk0 < Cǫ such that for for ϑ(t) the phase in the ansatz (4.1) we have

(10.22) lim
t→+∞

∥∥∥eiϑ(t)Σ3f(t)− e−itDmf ′
+

∥∥∥
Hk0

= 0.

Proof. For ψ(t) = f(t), for F = rhs(10.11)− ϕ(t)[Σ3, Pd]f and for t1 < t2, we have

‖U−1(t2)e
iH0t2f(t2)− U−1(t1)e

iH0t1f(t1)‖Hk0

≤ ‖
∫ t2

t1

eiH0t
′U−1(t′)

[
F (t′) + V f(t′)− ϕ(t′)U−1Σ3Pdf(t

′)
]
dt′‖Hk0 ≤

C(
∑

|λ0·µ|>m−ω0

‖zµ‖L2(t1,t2) + ‖R1‖L1
t([t1,t2],H

k0
x )

+ ‖R2‖L2
t ([t1,t2],H

k0,s
x )

+ ‖f‖
L2

t([t1,t2],H
k0,−τ0
x )

).

Since the latter has limit 0 as t1 → +∞, there exists f ′
+ ∈ Hk0 such that

lim
t→+∞

∥∥U−1(t)f(t)− e−iH0tf ′
+

∥∥
Hk0

= 0.

From H0 = Dm − ω0Σ3 and U−1(t) = eiΣ3

∫
t
0
ϕ(t′)dt′ we have for θ(t) = −tω0 +

∫ t
0 ϕ(t

′)dt′

(10.23) lim
t→+∞

∥∥∥eiθ(t)Σ3f(t)− e−itDmf+

∥∥∥
Hk0

= 0.

(10.22) follows from (10.23) if we can prove θ(t) = ϑ(t)−ϑ(0)+ o(1) with o(1) → 0 as t→ +∞. To prove
this claim we substitute R in (2.4) using (4.6) and then replace (z, f) with the last coordinate system
obtained from Theorem 9.5. Then we get

(10.24) iḟ −Hf − (ϑ̇+ ω0 −
2N+1∑

j=2

d

dt
Γ
(j)
0 )Pc(ω0)σ3f = G

where: G = G1(z, ‖f‖22) + G2(z, ‖f‖22)f + G3; G2 ∈ L∞
t B(Hk0,−S , Hk0,S) for S a fixed large number;

G3 ∈ (L1
tH

k0
x + L2

tH
k0,−S
x ); where: G is a functional with values in ∈ C(R, L1

x); Γ
(j)
0 are the functions

in the exponent of (9.13) for each of the transformations in Theorem 9.5. Equations (10.24) and (10.11)

are equivalent. This implies G = rhs(10.11) and ϑ̇+ ω0 = 2∂‖f‖2
2
H +

∑2N+1
j=2

d
dtΓ

(j)
0 . The last inequality

in (9.14) implies that the summation is o(1). This yields the claim θ(t) = ϑ(t) − ϑ(0) + o(1).
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�

Step (ii). In the proof of Theorem 10.1 consists in introducing the variable

g = f + Y , Y :=
∑

|λ0·(µ−ν)|>m−ω0

zµzνR+
H(λ0 · (µ− ν))H0

µν .

Substituting the new variable g in (10.11), the first line on the rhs of (10.11) cancels out. We have

(10.25)

iġ −Hg − 2∂‖f‖2
2
HPc(ω0)Σ3g = second line of (10.11)+

2∂‖f‖2
2
HPc(ω0)Σ3Y +

n∑

k=1

[∂zkY ∂zk (Z +R)− ∂zkY ∂zk (Z +R)] .

Lemma 10.7. For ǫ sufficiently small, τ1 > 1 and C0 = C0(H) a fixed constant, we have

‖g‖
L2

t([0,T ],L
2,−τ1
x )

≤ C0ǫ+O(ǫ2).

Proof. Set F = (second line of (10.11)− ϕ(t)[Σ3, Pd]g). Then, proceeding as in (10.18), we have

(10.26)

‖g‖
L2

tL
2,−τ1
x

≤ ‖e−itH0Y (0)‖
L2

tL
2,−τ1
x

+ ‖e−itH0f(0)‖
L2

tL
2,−τ1
x

+ C‖F‖
L1

tH
k
x+L2

tH
k,τ1
x

+ ‖
∫ t

0

ei(t
′−t)H0second line of (10.25)(t′)dt′‖

L2
tL

2,−τ1
x

+ ‖V1 − ϕ(t)Σ3PdV
−1
2 ‖

L∞
t B(L2

x,L
2,−τ1
x )

‖V2g(t)‖L2
tx
.

We have ‖e−itH0f(0)‖
L2

tL
2,−τ1
x

. ‖f(0)‖L2
tx

. ǫ. We have by Lemma 5.8

‖e−itH0Y (0)‖
L2

tL
2,−τ1
x

≤ C
∑

|λ0·(µ−ν)|>m−ω0

ǫ|µ+ν|.

We have ‖second line of (10.11)‖
L1

tL
2
x+L

2
tL

2,τ1
x

≤ O(ǫ2). Similarly ‖ϕ(t)[Σ3, Pd]g‖L2
tL

2,−τ1
x

≤ Cǫ‖g‖
L2

tL
2,τ1
x

.

Hence ‖F‖
L1

tL
2
x∩L2

tL
2,τ1
x

≤ Cǫ‖g‖
L2

tL
2,−τ1
x

+O(ǫ2). Now we sketch a bound for the second line of (10.26).

∑

|λ0·(µ−ν)|>m−ω0

‖
∫ t

0

ei(t
′−t)H0∂‖f‖2

2
H(t′)zµ(t′)zν(t′)Pc(ω0)R

+
H∗(λ

0 · (µ− ν))Σ3H
0
µνdt

′‖
L2

tL
2,−τ1
x

≤
∑

|λ0·(µ−ν)|>m−ω0

‖
∫ t

0

〈t− t′〉− 3
2 |∂‖f‖2

2
H(t′)zµ(t′)zν(t′)|dt′‖L2

t
. C2ǫ

2,

where we used Lemma 5.8 with H replaced by H∗. Of the other contributions to the second line of (10.26)
we focus on the main ones. Specifically we consider for µj 6= 0

(10.27) ‖
∫ t

0

ei(t
′−t)H0Pc(ω0)

zµzν

zj
∂zjZ0R

+
H(λ0 · (µ− ν))H0

µνdt
′‖
L2

tL
2,−τ1
x

≤ C‖z
µzν

zj
∂zjZ0‖L2

t

for λ(ω0) · (µ− ν) > m− ω0. We need to show

‖ zµzνzj
∂zjZ0‖L2

t
= O(ǫ2).(10.28)

Let zαzβ be a generic monomial of Z0. Then ∂zj (z
αzβ) = βj

zαzβ

zj
, with the nontrivial case for βj 6= 0.

By Definition 9.1 we have λ(ω0) · (α − β) = 0. (H:11) can be applied and implies |α| = |β| ≥ 2. Thus
in particular one has

λ(ω0) · α ≥ λj(ω0) ⇒ λ(ω0) · (µ+ α)− λj(ω0) > m− ω0 .

So the following holds:

‖z
µzν

zj

zαzβ

zj
‖L2

t
≤ ‖z

νzβ

zj
‖L∞

t
‖z

µzα

zj
‖L2

t
≤ CC2C3ǫ

|ν|+|β| ≤ CC2C3ǫ
2.

We conclude that the second line in (10.26) is O(ǫ2). The estimates omitted are easier than (10.27) and
(10.28). ‖V2g‖L2

tx
can be bounded as in Lemma 10.4. �
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11. The Fermi golden rule

Step (iii). We proceed as in [27]. We recall Remark 9.2. In particular we will only consider finite sums
|µ+ν| < 2N+3.We will have λ0j = λj(ω0) and λj = λj(‖f‖22) as in Section 9.1. |λ0j−λj | . C2

1 ǫ
2 by (10.6),

so in the sequel we can assume that λ0 satisfies the same inequalities of λ. Set R+
µν = R+

H(λ0 · (µ − ν)).

We substitute (10.11) in iżj =
∂
∂zj

H(r) obtaining

(11.1)

iżj = ∂zj (H2 + Z0) +
∑

|λ·(µ−ν)|>m−ω0

νj
zµzν

zj
〈g, iβα2Σ1Σ3Hµν〉+ ∂zjR

−
∑

|λ·(α−β)|>m−ω0

|λ·(µ−ν)|>m−ω0

νj
zµ+αzν+β

zj
〈R+

αβH
0
αβ , iβα2Σ1Σ3Hµν〉.

We rewrite this as

iżj = ∂zj (H2 + Z0) + Ej(11.2)

−
∑

λ·β>m−ω0

λ·ν>m−ω0
λ·β−λk<m−ω0 ∀ k s.t. βk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

νj
zν+β

zj
〈R+

0βH
0
0β , iβα2Σ1Σ3H

0
0ν〉(11.3)

−∑ λ·α>m−ω0
λ·ν>m−ω0

λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

νj
zαzν

zj
〈R+

α0H
0
α0, iβα2Σ1Σ3H

0
0ν〉.(11.4)

Here the elements in (11.3) will be eliminated through a new change of variables. Ej is a reminder term
defined by

Ej := rhs(11.1)− (11.3)− (11.4).

Set

(11.5)

ζj = zj −
∑

(β,ν) as in (11.3)

νj
λ0 · (β + ν)

zν+β

zj
〈R+

0βH
0
0β , iβα2Σ1Σ3H

0
0ν〉

+
∑

(α,ν) as in (11.4)

νj
λ0 · (α− ν)

zαzν

zj
〈R+

α0H
0
α0, iβα2Σ1Σ3H

0
0ν〉

Notice that in (11.5), by λ · ν > ω0 −m, we have |ν| > 1. Then by (10.7)

(11.6)

‖ζ − z‖L2
t
≤ Cǫ

∑

λ·α>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0

‖zα‖L2
t
≤ CC2Mǫ2

‖ζ − z‖L∞
t

≤ C3ǫ3

with C the constant in (10.5) and M the number of terms in the rhs. In the new variables (11.2) is of
the form

(11.7)

iζ̇j = ∂ζj
H2(ζ, f) + ∂ζj

Z0(ζ, f) +Dj

−
∑

λ0·α=λ0·ν>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

νj
ζαζ

ν

ζj
〈R+

α0H
0
α0, iβα2Σ1Σ3H

0
0ν〉.

From these equations by
∑
j λ

0
j (ζj∂ζj (H2 + Z0)− ζj∂ζj (H2 + Z0)) = 0 we get

(11.8)

∂t

n∑

j=1

λ0j |ζj |2 = 2

n∑

j=1

λ0jℑ
(
Djζj

)
−

− 2
∑

(α,ν) as in (11.7)

λ0 · νℑ
(
ζαζ

ν〈R+
α0H

0
α0, iβα2Σ1Σ3H

0
0ν〉
)
.

We have the following lemma, whose proof (we skip) is similar to Lemma 4.7 [26]:
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Lemma 11.1. Assume inequalities (10.7). Then for a fixed constant c0 we have
∑

j

‖Djζj‖L1[0,T ] ≤ (1 + C2)c0ǫ
2.(11.9)

For the sum in the second line of (11.8) we get

(11.10)

2
∑

r>m−ω0

rℑ
〈
R+

H(r)
∑

λ0·α=r
ζαH0

α0, iβα2Σ1Σ3

∑

λ0·ν=r
(ζν)∗H0

0ν

〉
=

2
∑

r>m−ω0

rℑ
〈
R+

H(r)
∑

λ0·α=r
ζαH0

α0,Σ3

[ ∑

λ0·α=r
ζαH0

α0

]∗〉
= 2

∑

r>m−ω0

rℑ
〈
R+

H(r)Hr ,Σ3H
∗
r

〉
,

whereHr :=
∑

λ0·α=r ζ
αH0

α0 and where we have used iβα2Σ1Σ3H
0
µν = −Σ3iβα2Σ1H

0
νµ = Σ3iβα2CH

0
νµ =

Σ3(H
0
νµ)

∗ by (9.10).

Lemma 11.2. Consider Hr in (11.10). Assume m− ω0 < r < m+ ω0. Then

(11.11) ℑ
〈
R+

H(r)Hr,Σ3H
∗
r

〉
≥ 0.

If we assume (H:3), in particular if m/3 < ω0 < m, then (11.11) holds for all Hr in (11.10).

Proof. We proceed as in Lemma 10.5 [27]. Set Fr = Z+Hr, where for Z+ with ω = ω0, see Theorem A.3

in the Appendix. Set Fr =

(
a
b

)
. Then

ℑ
〈
R+

H(r)Hr ,Σ3H
∗
r

〉
= lim

εց0
ℑ 〈RH(r + iε)Hr,Σ3H

∗
r〉 = lim

εց0
ℑ
〈
RHω0,0(r + iε)Fr,Σ3F

∗
r

〉

= lim
εց0

ℑ 〈RDm
(r + ω + iε)a, a∗〉 − lim

εց0
ℑ 〈RDm

(r − ω + iε)b, b∗〉

=
1

2
lim
εց0

ε‖RDm
(r + ω + iε)a‖2L2 −ℑ〈RDm

(r − ω)b, b∗〉 = 1

2
lim
εց0

ε‖RDm
(r + ω + iε)a‖2L2 ≥ 0.

Here we exploited that a, b ∈ L2(R3), that r − ω < m and so RDm
(r − ω) is a well defined selfadjoint

operator in L2(R3), that RDm
(z)−RDm

(z∗) = 2iRDm
(z)RDm

(z∗)ℑz and that RDm
(z∗) = (RDm

(z))∗.
Let us consider r = λ · µ with µ ∈ Nn0 , λ · µ > m− ω0 and λ · µ− λk < m− ω0 for all k s.t. µk 6= 0.

Suppose λ · µ > m + ω0. Then we get m − ω0 + λk > m + ω0 ⇒ λk > 2ω0. Let Nk ∈ N such that
Nkλk < m − ω0 < (Nk + 1)λk as in (H:9). Then (2Nk + 1)ω0 < m. So, if we assume as in (H:3) that
ω0 > m/3, we obtain λ · µ < m+ ω0. This shows that the assumption λ · µ > m+ ω0 is absurd. �

Remark 11.3. Notice that to get the conclusions of Lemma 11.2 we can ease the constraint 3ω > m to
(2Nk + 1)ω > m for all k = 1, ..., n.

Now we will assume the following hypothesis.

(H:12’) We assume that for some fixed constant C > 0, for any vector ζ ∈ Cn we have:

(11.12)

∑

(α,ν) as in (11.7)

λ0 · νℑ
(
ζαζ

ν〈R+
α0H

0
α0, iβα2Σ1Σ3H

0
0ν〉
)

≥ C
∑

λ0·α>m−ω0

λ0·α−λ0
k<m−ω0 ∀k s.t. αk 6=0

|ζα|2.

Remark 11.4. By Lemma 11.2 we have lhs(11.12)≥ 0. It is likely then that (H:12’) is true generically
in the class of non linearities we consider. But we do not try to prove this point.

By (H:12’) we have

(11.13)
2

n∑

j=1

λ0jℑ
(
Djζj

)
& ∂t

n∑

j=1

λ0j |ζj |2 +
∑

λ0·α>m−ω0

λ0·α−λ0
k<m−ω0 ∀k s.t. αk 6=0

|ζα|2.

Then, for t ∈ [0, T ] and assuming Lemma 11.1 we have
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n∑

j=1

λ0j |ζj(t)|2 +
∑

α as in (11.13)

‖ζα‖2L2(0,t) . ǫ2 + C2ǫ
2.

By (11.6) this implies ‖zα‖2L2(0,t) . ǫ2+C2ǫ
2 for all the above multi indexes. So, from ‖zα‖2L2(0,t) . C2

2 ǫ
2

we conclude ‖zα‖2L2(0,t) . C2ǫ
2.

Note that as the condition |λ · (µ − ν)| > m − ω implies that |µ + ν| ≥ 2, (11.1) implies that ż is
integrable so that it has a limit at infinity which is necessarily 0.This yields Theorem 10.1 and completes
the proof of Theorem 1.3.

11.1. Proof of Theorem 8.2. We only sketch the proof, which is similar to that of Theorem 8.1. For a
particular solution satisfying the hypotheses of Theorem 8.2 we need to prove the conclusions of Theorem
10.1. The argument is exactly the same of Section 10.1 until we reach subsection 11, that is the task of
estimating z. Instead of (11.7) we have

iζ̇j = εj∂ζjH2(ζ, f) + εj∂ζjZ0(ζ, f) + εjDj

− εj
∑

(α,ν) as in (11.7)

νj
ζαζ

ν

ζj
〈R+

α0H
0
α0, iβα2Σ1Σ3H

0
0ν〉.

From these equations by
∑
j λ

0
j (ζj∂ζj (H2 + Z0)− ζj∂ζj (H2 + Z0)) = 0 we get

(11.14)

∂t

n∑

j=1

εjλ
0
j |ζj |2 = 2

n∑

j=1

λ0jℑ
(
Djζj

)
−

− 2
∑

(α,ν) as in (11.7)

λ0 · νℑ
(
ζαζ

ν〈R+
α0H

0
α0, iβα2Σ1Σ3H

0
0ν〉
)
.

The estimate of the reminder term in Lemma 11.1 continues to hold. The last line of (11.14) is negative
by (11.10). We assume it is strictly negative and that in particular (11.12) holds. Then we get

(11.15)
∑

α as in (11.13)

|ζα|2 . −∂t
n∑

j=1

εjλ
0
j |ζj |2 + 2

n∑

j=1

λ0jℑ
(
Djζj

)
.

When we integrate in (0, t) for t ≤ T we get

∑

α as in (11.13)

‖ζα‖2L2(0,t) . ǫ2 + C2ǫ
2.

In the rhs we have used the hypothesis |z(t)| ≤ ǫ for all t ≥ 0 to bound the first summation in the rhs of
(11.15). This yields Theorem 8.2.

11.2. Proof of Theorem 8.4. Also here we just sketch the proof, which is similar to [25]. The proof is
by contradiction. If the statement of Theorem 8.4 is wrong, then for |z(0)|+ ‖f(0)‖Hk0 ≤ δ with δ > 0
sufficiently small, we can assume |z(t)| ≤ ǫ for all t ≥ 0 for any preassigned ǫ > 0. This implies that we
can apply Theorem 8.2. When get

(11.16)
∑

α as in (11.13)

‖ζα‖2L2(0,t) .

n∑

j=1

εjλ
0
j (|ζj(0)|2 − |ζj(t)|2) + 2

∫ t

0

n∑

j=1

λ0jℑ
(
Djζj

)
.

Suppose εj0 = −1. Then take initial datum zj(0) = 0 for j 6= j0, zj0 = δ and f(0) = 0. By f(0) = 0 and
Lemma 10.4 for ψ(0) = 0 we get for t ∈ R+

‖f‖
Lp

tB
k0− 3

p
q,2 ∩L2

tH
k0 ,−τ0
x ∩L2

tL
∞
x

. Y2 + ‖R1‖L1
tH

k0
x

+ ‖R2‖L2
tH

k0,τ0
x

Y2 :=
∑

α as in (11.13)

‖zα‖L2
t
.

Similarly
‖g‖

L2
tL

2,−τ1
x

. δ2 + ǫY2 + ‖R1‖L1
tH

k0
x

+ ‖R2‖L2
tH

k0 ,τ0
x

.
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Then, proceeding as in [25, 26] one improves the rhs in (11.9). Indeed, see Lemma 4.9 [26], we have
∑

j

‖Djζj‖L1(R+) ≤ CY‖g‖L2
tH

−4,−s
x

+ CǫY2 + C‖R1‖L1
tH

k0
x

+ C‖R2‖L2
tH

k0 ,τ0
x

.

Then, one can see that ‖R1‖L1
tH

k0
x

+ ‖R2‖L2
tH

k0 ,τ1
x

. o(1)δ, going through Lemma 10.3, where o(1) → 0

as δ → 0. Then from (11.16) we get Y2 . −δ + o(1)δ, which is absurd.

Appendix A. Resolvent estimates and wave operators

Lemma A.1. We assume (H:1) and (H:6)–(H:8). Then for any τ > 1 there exists a constant C1 =
C1(τ, ω) upper semicontinuous in ω s.t. for any u0(x) ∈ L2(R3,C8) and any ε > 0 we have

(A.1) ‖〈x〉−τRHω
(λ± iε)Pc(Hω)u0‖L2

λ,x
(R4) ≤ C1‖Pc(Hω)u0‖L2(R3).

Proof. Notice that by Lemma 5.1 for any τ > 1, any u0(x) ∈ L2(R3,C8) and any ε > 0 we have

(A.2) ‖〈x〉−τRHω,0(λ± iε)u0‖L2
λ,x

(R4) ≤ C(τ)‖u0‖L2(R3).

Let u0 = Pc(Hω)u0, A(x) = 〈x〉−τ and B(x) ∈ S(R3, B(C8,C8)) s.t. B∗A = Vω. Then

(A.3) ARHω
(z)u0 = (1 +ARHω,0(z)B

∗)−1ARHω,0(z)u0.

The following operators preserve X: A, B∗, RHω
(z) and RHω0(z). Pick δ0 > 0 sufficiently small so that

by (H:6) for any λj(ω) ∈ σd(Hω) we have |λj(ω)| < m− ω − δ0. Then by (A.2) and (A.3), Lemma A.1
is a consequence of the Lemma A.2 below. �

Lemma A.2. Let A(x), B(x) be as above in (A.3). Then, if we assume (H:3), (H:6) and (H:7), there
exists a constant C2 = C2(τ, ω) upper semicontinuous in ω such that for any ε > 0 we have

(A.4) sup
λ∈(R\[−m+ω+δ0,m−ω−δ0])

‖(1 +ARHω,0(λ± iε)B∗)−1‖B(X,X) ≤ C2.

For any τ > 1 the limit R+
Hω

(λ) = lim
εց0

RHω
(λ ± iε) exist in B(H1,τ

x ∩X, L2,−τ
x ) and the convergence is

uniform for λ in compact sets.

Proof. First of all we prove (A.4) in low energies. We want to prove

(A.5) sup
λ∈([−µ1,µ1]\[−m+ω+δ0,m−ω−δ0]

0<ε<1

‖(1 +ARHω,0(λ± iε)B∗)−1‖B(X,X) <∞ ∀ fixed µ1 > 0.

We know: z → ARHω,0(z)B
∗ is a holomorphic map with domain C\R and values in B(X,X); for

all z ∈ C\R, (1 + ARHω,0(λ ± iε)B∗)−1 is defined . Furthermore, limεց0 ARHω,0(λ ± iε)B∗, by (ii)
Lemma 5.1, exists in B(X,X) and the convergence is uniform for λ in compact sets. Then we apply
Lemma 7.5 [8] and conclude that, outside closed sets Γ± ⊂ R with 0 Lebesgue measure in R, the map
z → (1+ARHω,0(z)B

∗)−1 extends in a continuous map defined in {z : ℑz > 0}∪(R\Γ+) (resp. {z : ℑz <
0}∪ (R\Γ−)) with values in B(X,X). Given λ ∈ Γ+ there exists ψ ∈ X\{0} with ψ = −AR+

Hω,0
(λ)B∗ψ.

But then, by standard arguments u := R+
Hω,0

(λ)B∗ψ ∈ L2,−τ (R3,C8) is a nonzero solution of (1.2). By

(H7)–(H8) we have u ∈ L2(R3,C8). Furthermore ψ ∈ X implies u ∈ X. But by (H6) no such u ∈ X can
exist. So the intersection of Γ+ with R\(−m+ ω + δ0,m− ω − δ0) is empty. A similar argument shows
that the intersection of Γ− with R\(−m+ ω + δ0,m− ω − δ0) is empty.

Having considered the low energy case (A.5), we consider for µ1 any fixed large real number:

(A.6) sup
|λ|≥µ1

‖(1 +AR±
Hω,0

(λ)B∗)−1‖B(L2
x,L

2
x)

≤ C3.

For definiteness we will consider λ ≥ µ1. We consider the expansion
∑∞
ℓ=0

(
AR±

Hω,0
(λ)B∗

)ℓ
. We start

now the implementation of the high energy argument in [31]. We have

(A.7) R±
Hω,0

(λ) =

(
R±
Dm

(λ + ω) 0

0 R±
Dm

(λ− ω)

)
= R±

0 (λ)A(λ,∇)
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(A.8)

R±
0 (λ) :=

(
R±

−∆+m2((λ+ ω)2)I2 0

0 R±
−∆+m2((λ − ω)2)I2

)

A(λ,∇) :=

(
A1(λ,∇) 0

0 A2(λ,∇)

)
, Aj(λ,∇) :=

(
λ− (−1)jω +m −iσ · ∇

−iσ · ∇ λ− (−1)jω −m

)
.

For definiteness let us consider R+
Hω,0

. Let now χ0, ψ0 ∈ C∞
0 (R) by cutoffs supported near 0 and let

χ1 := 1− χ0 and ψ1 := 1− ψ0. We can choose them so that

(A.9) χ1 (|x− y|) = (ψ0 (|x|)ψ1 (|y|) + ψ1 (|x|)ψ0 (|y|) + ψ1 (|x|)ψ1 (|y|))χ1 (|x− y|)
We split for a fixed large number M0 > 0

(A.10)

R+
−∆+m2((λ− (−1)jω)2, x, y) =

1∑

ℓ=0

Rℓj(λ, x, y) ,

Rℓj(λ, x, y) :=
ei
√

(λ−(−1)jω)2+m2|x−y|

4π|x− y| χℓ

( |x− y|
M0

)
.

We have a decomposition R+
Hω,0

= R0+
Hω,0

+R1+
Hω,0

with kernels Rj+Hω,0
= χj

(
|·|
M0

)
R+

Hω,0
. By (A.9)–(A.10)

and by [1] there exists cM0 with limM0→+∞ cM0 = 0 s.t.

(A.11) sup
λ∈R

‖AR1+
Hω,0

(λ)B∗‖B(L2
x,L

2
x)

≤ cM0 .

By ‖AR±
Hω,0

(λ)B∗‖B(L2
x,L

2
x)

≤ C, for fixed C′ we have

(A.12) ‖AR0±
Hω,0

(λ)B∗‖B(L2
x,L

2
x)

≤ C′.

We have

(A.13) R0j(λ, x, y) = λR+
−∆

(√(
1− (−1)j

ω

λ

)2
+
m2

λ2
, λx, λy

)
χ0

( |x− y|
M0

)
.

Key to showing that (A.6) follows directly from [31] is the observation that we can write

(A.14) R+
−∆

(√(
1− (−1)j

ω

λ

)2
+
m2

λ2
, x, y

)
χ0

( |x− y|
λM0

)
=
ei|x−y|

|x− y|aλ,j(|x − y|) + bλ,j(|x− y|)
|x− y| ,

with

(A.15)

∣∣∣a(k)λ,j(r)
∣∣∣ ≤ C(M0, k)r

−k ∀ k ≥ 0, a
(k)
λ,j(r) = 0 ∀ 0 < r < 1

∣∣∣b(k)λ,j(r)
∣∣∣ ≤ C(M0, k) ∀ k ≥ 0, b

(k)
λ,j(r) = 0 ∀ r > 2.

Notice that (A.14)–(A.15) are formulas of the same type of (3.2)–(3.4) [31]. As a consequence for any
fixed small δ0 > 0 there are ℓ0 = ℓ(δ0) and µ1 = µ1(δ0) such that for λ ≥ µ1 we have

(A.16)

∥∥∥∥
(
Aχ0R

0+
Hω,0

(λ)B∗
)ℓ0∥∥∥∥

B(L2
x,L

2
x)

≤ δ0.

For ℓ large and δ0 ≤ cM0 , by (A.11), (A.12) and (A.16) we get

(A.17)

∥∥∥∥
(
A R0+

Hω,0
(λ)B∗ +AR1+

Hω,0
(λ)B∗

)ℓ∥∥∥∥
B(L2

x,L
2
x)

≤ 2ℓ(2C′)ℓc
ℓ
ℓ0

M0
.

For cM0 sufficiently small, (A.17) implies (A.6). �

We finish with the following corollary of Lemma A.1.

Theorem A.3. Assume the hypotheses of Lemma A.1. Pick the A,B∗ of (A.3). Then there are isomor-
phisms W± : X → Xc(Hω) and Z± : Xc(Hω) → X, inverses of each other, defined as follows: for u ∈ X,
v ∈ Xc(Hω),

(A.18)

〈W±u, v
∗〉 = 〈u, v∗〉 ∓ lim

ǫ→0+

1

2πi

∫

R

〈ARHω,0(λ± iǫ)u, (BRH∗
ω
(λ ± iǫ)v)∗〉dλ;

〈Z±v, u
∗〉 = 〈v, u∗〉 ± lim

ǫ→0+

1

2πi

∫

R

〈ARHω
(λ± iǫ)v, (BRH∗

ω,0
(λ± iǫ)u)∗〉dλ.
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W± (resp.Z±) define isomorphisms Hk(R3,C8) ∩X → Pc(Hω)H
k(R3,C8) (resp. and viceversa) for all

k. We also have

(A.19)
W±u = lim

t→±∞
eitHωe−itHω,0u for all u ∈ X;

Z±v = lim
t→±∞

eitHω,0e−itHωv for all v ∈ Xc(Hω).

Proof. The proof follows by Lemma A.1 by means of the argument for Theorem 1.5 [41]. (A.19) follows
by Theorem 3.9 [41]. �
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