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ON STABILITY OF STANDING WAVES OF NONLINEAR DIRAC EQUATIONS

NABILE BOUSSAID AND SCIPIO CUCCAGNA

ABSTRACT. We consider the stability problem for standing waves of nonlinear Dirac models. Under a
suitable definition of linear stability, and under some restriction on the spectrum, we prove at the same
time orbital and asymptotic stability. We are not able to get the full result proved in } for the
nonlinear Schrédinger equation, because of the strong indefiniteness of the energy.

1. INTRODUCTION

In this paper we study the stability of standing waves of a class of nonlinear Dirac equations (NLDE).
We assume a number of hypotheses on these standing waves, about their smoothness and exponential
decay to 0 at infinity. We also assume that they form families smoothly dependent on a parameter.
We then partially characterize, under a number of further technical hypotheses, their stability and their
instability. We succeed partially in transposing to NLDE results proved for the nonlinear Schrodinger
equations (NLS) in [Cucl(]] and in previous references. We recall that [CL83, Bh83, BS8H, fWei8, [Weisd,
, [GSS9(] contain a quite satisfactory characterization of the orbital stability of standing waves of
the NLS. They do not apply to the Dirac equation, due to the strong indefiniteness of the energy. In this
paper we initiate a theory of stability in the case of the NLDE, using ideas coming from the theory of
asymptotic stability which are less sensitive to indefiniteness of the energy. This idea is explored also in
[PS1d] in a very special situation.

1.1. The nonlinear Dirac equation. We consider for m > 0 a NLDE

iuy — Dipyu + g(uw)fu =0
(1.1) { w(0, ) = uo(x) (t,z) € R x R3

where Dy, = =30} a;d,, +mf, with for j =1,2,3

o 0 O'j B_ Ic2 0 o 0 1 o 0 1 o 1 0
Y= N\o; 0) PT 0 —Ie) TP\ 0) T 4 0) BT o -1 )

The unknown u is a C*-valued function and given two vectors of C*, uv = wu - v is the inner product in
C*, v* is the complex conjugate, u - v* is the hermitian product in C*, which we write as uv* = u - v*
and denote

w = fu”
so that vu = u - fu*.
Note that
(12) Q0 + Qpv; = 25]'@I(C4 s Oéjﬂ + ﬂOéj = 0, 52 = I(C4

thus the operator D,, is self-adjoint on L?(R?, C*), with domain H*(R3, C*) and we have D2 = —A+m?.
The spectrum is o(D,,) = (—c0, —m] U [m, +00), see [[[ha93, Theorem 1.1].

1.2. State of the art. The equation in §@ arises in Dirac models used to model either extended
particles with self-interaction or particles in space-time with geometrical structure. In the latter case,
physicists have shown that a relativistic theory sometimes imposes a fourth order nonlinear potential (i.e.,
a cubic nonlinearity) such as the square of a quadratic form on C*; see Rafiada [@] and the references
therein. The associated stationary equation is called the Soler model, [Sol7(]], as it was proposed by Soler
to model the elementary fermions.

In our study, we assume the existence of stationary solutions as well as a number of properties like the
smooth dependence on a parameter, the smoothness and the fact that they are rapidly decaying. These
are not well established properties. Stationary solutions were actively studied in the last thirty years. The
following authors used a dynamical systems approach: Cazenave and Vazquez [CV8(], Merle [Mer8q,
Balabane, Cazenave, Douady and Merle [BCDMSq] and [BCVO( . It is also possible to exploit the
variational structure of the stationary equation, see Esteban and Séré [] A perturbation approach
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2 NABILE BOUSSAID AND SCIPIO CUCCAGNA

yielding stationary solutions of the NLDE from solutions of the NLS is considered in Ounaies [Oun0(]
and Guan .

Turning to the stability of stationary solutions, [ frames the problem of stability of the Soler
model within the framework of [], without attempting a proof.

Some partial results involving small standing waves obtained by bifurcation from linear ones, when
D,,, replaced by H := D,, + V with V a nice potential, are obtained in [Bou0f, Bou08H]. [Bou08H
shows that if a resonance condition holds, the space splits into a stable manifold outside which any initial
condition leads to instability. If the resonance condition is not fulfilled, the stability problem is left open.
The results we present here answer this question and can be used to clarify [Bou0{].

Komech and Komech [] prove the existence of global attractors in model involving a Dirac
equation coupled to an harmonic oscillator.

The stability problem for the 1 dimensional NLDE is discussed under very restrictive hypotheses by
Pelinovsky and Stefanov [PS1(], who reproduce for the 1 D NLDE an analogue of the result in [SW97).
Notice that our theory can be adapted to extend these results.

1.3. Hypotheses. We assume the following hypotheses (H:12)]

(H:1) g(0) =0, g € C*(R,R); g even, g(—r) = g(r).

(H:2) There exists an open interval O C (m/3,m) such that Dy,u —wu — g(u)fu = 0 admits a C>
family of solutions w € O — ¢, € H*™(R?) for any (k, ), see ([.J) for a definition. In spherical
coordinates x = pcos(d) sin(p), y = psin(P) sin(p), z = pcos(p), the standing waves are of the

form
|l
Pu(r) = ib(p) Ligoggo }

sin ¢

with a(p) and b(p) real valued and satisfying the following properties:
a,b e C*([0,00),R),
vr >0, a*(p) —b*(p) > 0,
a9, b9 decay exponentially at infinity for all j.
Moreover, notice that ¢, (—x) = B, (x).
(H:3) Let g(w) = [|¢w||2.. We assume ¢'(w) # 0 for all w € O.
(H:4) For any x € R? we consider in ([L.1]) initial data s.t. ug(—z) = Bug(z).
(H:5) Let H,, be the linearized operator around e*“@,,, see Section 2. We assume that H,, satisfies the
definition of linear stability in Definition E

(H:6) H,, has 2n nonzero eigenvalues, counted with multiplicity, all contained in (w —m,m — w). The
positive eigenvalues can be listed as

0<M(w) <. < \(w)<m—w
where we repeat each eigenvalue according to the multiplicity. For each \;(w), also —A;(w) is an
eigenvalue (this symmetry follows from()). There are no other eigenvalues except for 0.
(H:7) The points and +(m — w) and =£(m + w) are not resonances for H,,, see Definition [A.]].
(H:8) There are no resonances for H,, in the essential spectrum oeqs(H,,)-
(H:9) There are natural numbers N; defined by the property 0 < N;\j(w) <m —w < (N; + 1) (w).
(H:10) There is no multi index p € ZF with |u| := |p1| + ... + |px| < 2Ny + 3 such that p- A = m + w.
(H:11) If \j, < ... < )j, are k distinct \'s, and p € ZF satisfies |u| < 2N; + 3, then we have

A, A, =0 <= pn=0.
(H:12) The nonlinear Fermi golden rule (.57 is true.

1.4. Main results. The main result in this article is the following one.

Theorem 1.1. Suppose that O C (m/3,m) and fix ko > 3. Pick wg € O and let ¢, (x) be a standing

wave of ([L1). Let u(t,x) be a solution to ([L.1]). Assume (H:12). Then, there exist an ey > 0

and a C > 0 such that for any € € (0,¢€0) and for any ug with ||ug — €70y, || gro < €, there exist wy € O,
6 € CH(R;R) and hy € H* with ||hy||gro + |ws — wi| < Ce such that

Jimflu(t,) = @O, — e P v, = 0.
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Remark 1.2. The constraint 3w > m allows to exploit the Fermi golden rule in the same way of what
done in the case of the NLS in [Cucl(]. The constraint 3w > m can be eased to (2N; + 1)w > m for
all j = 1,...,n, see Remark . These constrains are a consequence of the strong indefiniteness of the
Dirac system. We expect that these constraints can be eased.

Remark 1.3. Tt is possible to construct examples of “small solitons” by bifurcation from linear standing
waves like in [Bou0@, Bou0SH, PS1d, FW8J, FW9d], to which our result will apply if we assume an
analogue of and after some relatively minor points of linear theory have been worked out.

Remark 1.4. Except for the smoothness with respect to the parameter w, for some non-linearities
is a consequence of [ES97]. Notice that [[Gua0g proves continuous dependence on w for some examples.

Remark 1.5. The regularity and the exponential decay of the solution can be proved by the Combes-
Thomas method, see [His0(].

Remark 1.6. The hypothesis that there are no eigenvalues A\ € (m — w, m + w) is not obvious. There is
such an eigenvalue in 1D, see [BC0Y].

Remark 1.7. Assumption is just part of. In the case of the NLS it is proved that a resonance
in the interior (in R) of the continuous spectrum of H,, is necessarily and eigenvalue, see [CPVO05]. In
this case is a consequence of [H:7) and [H:6). Unfortunately, in the case of the Dirac system
we are not able to prove an analogous result, except for resonances contained in (—w + m,w — m) or for

large energies. This is yet a consequence of the strong indefiniteness of the energy of the Dirac system.
We expect that can be eliminated whenever Assumption holds.

Consider ¢ € ker(H, — Aj(w)). One of the requirements for linear stability in Definition .7 is that if
€ # 0 then (&,33¢*) > 0. As it might seem artificial, we prove what follows.

Theorem 1.8. Suppose that O C (m/3,m). Pick w € O and let ¢,(x) be a standing wave of ([L).

Replace with the following assumption:

(H:5%) We assume that H,, satisfies all the conditions of Definition @ except for condition (4) which
we restate as follows. That is, we assume that for any eigenvalue A > 0 the quadratic form
& — (£,238*) is non degenerate in ker(H, — A). We assume that there exists at least one
eigenvalue X\ > 0 such that the quadratic form is non positive in ker(H, — \).

Assume (H:1)-(H:4), [(H:5)| and [(H:6)-{(H:12). Then ¢, (z) is orbitally unstable.

In this article we follow the argument developed in ] for the NLS. The Dirac equation is harder
than the NLS also because less is known about the existence of families of solutions in C1(O, H!(R?))
of standing waves. It is well known that the classical methods to prove orbital stability, see ,
Weigd, [GSS87, [GSS9(], which are based on the positivity of certain functionals, do not apply because
of the strong indefiniteness of the energy. As already mentioned, some initial results for the Dirac
equation are in [Bou0d, BouO8H, [PSI{]. Like in these articles, we exploit the dispersive properties of
the linearizations, adapting the methods used to prove asymptotic stability for the Schrédinger equation,
which were initiated in [[SW8Y, BW92, BP92. BP95| and developed by a substantial number of authors,
see the references in [Cucld]. One of the difficult issues for the NLS, is to prove that the energy of
the discrete modes associated to the eigenvalues in [(H:6) leaks either in the radiation part or in the
standing wave. The solution to this problem was initiated in [BP95], where the eigenvalues are close
to the continuous spectrum, and solved in quite general form i], see also [BCOY, [Cucll]. We
refer to [[Cucld] for a discussion of the fact that it is essential to exploit the hamiltonian structure of the
equation. In this article we follow the same framework of obtaining similar results. We need to
develop some of the linear theory of dispersion, which in the case of the NLS had been developed in the
course of a decade, see [[Cuc01], [CPV03. Key to dispersion theory is the proof of smoothing estimates
for Schrodinger operators with magnetic potentials in [EGS0Y]. There are two points in the article where
the strong indefiniteness of the energy interferes with our method. We expects these difficulties to be
technical and solvable. The main difficulty occurs in the proof of the positive semidefiniteness of the
key coefficients in the Fermi golden rule (FGR). Another difficulty occurs with resonances, requiring
the explicit assumption of their absence inside the continuous spectrum, see Remark B Notice that
in the case of small solitons considered in [Bou0d, [Bou08H, PS1(] the absence of resonances comes for
free, while these references do not have to address the FGR because of their restrictive hypotheses. To
prove the positive semidefiniteness and overcome the FGR difficulty, we use the hypothesis 3w > m.
This hypothesis is unnecessary if there are no eigenvalues \’s, or can be weakened if they are close to 0.
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Indeed, in the case all N; in are large, then the hypothesis 3w > m can be considerably relaxed,
see Remark . This is somewhat odd, considering that the case with all N; large was the hardest in
Cucid).

The instability result in Theorem E arises from our desire to justify hypothesis (4) in our definition of
linear stability, see Definition P.7. The proof of Theorem [L.d is similar to [Cuc0d]. That is, we show that
orbital stability implies asymptotic stability, and we then show that this is incompatible with .
All the proofs are conditional on , that is that a certain non negative quantity is actually positive.
Presumably this is true generically.

1.5. Notation and preliminaries. We consider spaces
(1.3) H"*(R*,C") = {f € S'(R?), [{2)*(V)" fll2 < oo}

for s,k € R with norm || f||gr. = [[(x)*(V)* f||2. Sometimes we will write H** to emphasize the inde-
pendent variable z. If k = 0, we write L?* instead of H®*.

For k € R and 1 < p,q < oo, the Besov space Bj’,fyq(R?’, C9) is the space of all tempered distributions
f € 8'(R?,C%) such that

s, = 27 oy + FlI2)T < +
jEN

with @ € Cg°(R™ \ {0}) such that >, P(277¢) =1 for all £ € R3\ {0}, §;(&) = §(277¢) for all j € N*
and for all ¢ € R3, and g =1 — > jen- @j- 1t is endowed with the norm | f]|px .

Given a vector u, by u* we will denote the vector whose coordinates are the complex conjugates of
those of w.

Given two vector of C* or C®, uv = u- v is their inner product, «-v* is their hermitian product, which

we write as uv* = u-v*. We denote by [ either the 4-dimensional hermitian matrix defined above or (by
an abuse of notation and depending on the context) the 8-dimensional hermitian matrix

(1.4) (g g) .

For A a closed operator on a Hilbert space X, we will denote by R4(z) the resolvent of A at any z in the
resolvent set of A. That is the inverse of A — 2z whenever it is invertible with bounded inverse from the
domain of A to X.

8

1.6. Structure of the article. The paper is organized as follows.

In Section E, we study of the linearization of ) around a stationary solution. In particular in a
neighborhood of a stationary state we introduce an appropriate coordinate system related to the spectral
decomposition of the linearized operator. Estimates on such operators are discussed in part here and in
part in the appendix.

In Section ] we discuss the Hamiltonian structure of the system, and in particular we look for canonical
coordinates. We then apply the method of Birkhoff normal forms, referring for proofs to []

In Section E we discuss scattering of the continuous modes and dissipation of discrete modes, proving
the semipositivity of in the Fermi golden rule for w > m/3, or more generally if the elements of o4(H.)
are all close to 0.

2. SET UP AND LINEAR ESTIMATES

2.1. Linearization, modulation and set up. Since our ambient space is H**(R3 C*) with kg > 3
and so in particular kg > 3/2, under [(H:1)] the functional u — g(uw)Pu is locally Lipschitz and () is
locally well posed, see pp. 293294 volume IIT [Tay9§]. Consider the solution u(t,z) of ([L1)). Then by
we have u(t, —z) = Pu(t, z). We write the ansatz

(21) U(t,l‘) = eiﬂ(t) (¢w(t) (:E) +T(t,$))

Inserting (R.1)) in (L.1)) we get from the definition of ¢,

iry = Dt = W) = 9(Bu()u(e)) BT — ' (Bu) Puey) (rbuey) Bdusr)
— ' (D) Pt (B F) Bbuoity + (V() + () (buoia) + 1) — 10(£) Do bs(a) + (1),

(2.2)
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where n(r) = O(r?) is defined by

n(r) := g((buwy + 7)Puw(t) + 7)B(Pu) + 1) — 9(bu() Pu)) But)
— 0 (Bu®)Pur(t)) (T Puo1)) BBty — 9 (Do) Pty (Do) T) Bbs(t) -
We denote by C': C* — C* the charge conjugation operator:
(2.3) u® = Cu :=iBasu’.
it satisfies the following properties (see [[[ha9d, Section 1.4.6]) :
Vi e {1,2,3}, o;C = Ca; and pC = —Cp,
and since it is anti-linear for any u € C*, C(u*) = (Cu)*.

Remark 2.1. For more details we refer to [, Section 1.4.6]. This choice for the charge conjugation
is due the choice we made for the coeflicient of the Dirac operator, which is the standard one. If we
had chosen the Majorana representation for the coefficient then the charge conjugation would have been
simply the complex conjugation. These two representations of Dirac operators are unitary equivalent.

We thus obtain the following lemma.
Lemma 2.2. For any vector v € C* we have C%v = v. Moreover if holds, then we have:
(2.4)  C(iv) = —v®, vo=—-CvCv, g(vD)=g(vw), ¢ WD)=—g V), C(Bv)=—pv".

For any function w € C*(R3, C*) we have C(D,w) = —D,,w. Finally, for ug satisfying we have
uj(—z) = —puf(x).

Applying —C to (£.9) or ([.) we obtain
irf = Dyt + W) = 9(Put) Py BT + 9" (Gut) Pur(e)) (TP o)) BIE (1)

(2.5) 0 (Bustty By ) (850 TE)BI oy — (D(E) + () (6 0y + 1) — 6o()0u ) — Clr).
We set,

() e (2) e () e () - ()
(2.6) Ho = Hopo+ Vi, Hopo = <D’" w)

(BeL B )BeL,

where in this context 3 is meant in the sense of ([[.4) or (@) below and where the parenthesis (¢ )
stands for the map r +— ¢r.
Therefore we have:

(2.7) iR=H,R+ (0(t) +w(t)(SsPy, + L3R) — iwd, P, + N(R),

where
(0 s (0 il (I 0
X1 = (IC4 0 > 22 = <—11C4 0 ) )2 = —IC4) '

(C4
0
Notice that by and Lemma P.2 we have for Y(z) € {®,(x), R(t,z)}

(2.8) Y(—2) = 55T () where § — <§ g) .

Vo = a0+ 0.8 ({00 5. heL. a0

2.2. Energy, charge and symmetries. The following result is an elementary but crucial remark in
our study. It expresses the energy and the charge as a symmetric bilinear (block anti-diagonal) forms on
L?(R3,C?). In the following lemma, we denote by (-,-) the inner product of L?(R3,C¥).

Lemma 2.3. Let UT = (u,Cu). Set for G(0) =0 and G'(s) = g(s)
E(U)=Ex(U)+Ep(U), Ex(U) = /RS(Dmu)u*d:c, Ep(U) = f/RS G(uu)dzx,

(2.9)
QU) = /]RS uu*dz.
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Then E(U) and Q(U) are invariants of motion for (L1) and we have

1 1
EU) = =(ifaxXsX DU, U) —/ G (—U . iagEngU) dx
2 e\ 2
(2.10) 1
QW) = §<U, iBas¥ 1 U)
and U satisfies system
(2.11) iU = iBas¥s  VE(U).

Proof. For any symmetric operator A acting on L?(R?, C*) with the domain invariant by C' and anticom-
muting to C' and any u € D(A),
u- (Au)* +u - (Au)  u-iBayCAu+iBaCu - Au
2 B 2
—u-ifag Au® +ifagu’ - Au  —u-ifasAu® + ufifas - Au

2 2
- %U - BaaXa ¥ AU

()

If A is commuting to C then a similar calculation shows

u- (Au)* =

where we write A for

i
<’LL, (Au)*> = §<U7 ﬂa221AU>
This identities for A = D,,,, A= or A = I proves the lemma. O

We consider now the bilinear map

(2.12) <<2> ; <z§>> = /}R3 (r1 - 87 419 - s5)dx.

By H} we denote the adjoint of H,, w.r.t. (2.19). We have:
Lemma 2.4. We have

(2.13) MW = D3H, s
(2.14) Ho, = — O HLOS, where C = (g g)
(2.15) V(=) = BEsVi(2) 353 with B in the sense of ([R.9).

Proof. First of all, (2.13)-(R.14) hold with #,, replaced by H, 0. It remains to check them with #,,
replaced by V,,. We have V; = X3V, X3 by

(865, )Bow (BOE) IBoS) « _ (—(BoL 8w —(B(é5)" )P
(216) % <—(6¢2: V86, (B(6L)" )ﬁaﬁf;) 23((6@: et (Bls)" )6«55)

and from the fact that the matrix in rhs(R.14) is the adjoint of the matrix in Ths(2.16). (R.14) holds with
‘H,, replaced by H, o by Lemma @ We have

(865 )Bde (BE) B _

% (—(ﬁaﬁz 165 (B(6E)" )ﬁqsz)
(B B (Ben B «

(217) C(—(5(¢>5;)* V8o (60" )ﬁm) %
_((ﬂ(¢$)* VB (86 )*ﬁm)z

(B(gS)* ) B —(Bor ) Bes) "

We have for v € C*
(B(¢5) )" = B(iBasd,)v* = =B, C(v),
(Bov)" = Bouv™ = —B(ifazdy)(ifazv™)

—B(¢5)"C(v).
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Then

(8% 1B (ALY )Beu
(218) s = <—(/3¢;S 1Bet, (B(6%)" )ﬁqsz) 2.

This yields (R.14). The proof of (R.19) goes as follows. Using ¢(—x) = Bo(x) and ¢¢(—x) = —B¢°(z),

where we omit the subindex w, we have

V(=) = g(6(@)(r ))23+<((¢*($) A T

o10) ) o*@) 6@ (6°@)” o
ot ~(B6*(x) o) (Be*@)" o) )
(B6"(2) )¢*@) —(B(e°(@))" )o*(a).
Similarly
o —(B¢*(x) )Bo()  (B(e(x)" )Bo(a)
(220) PPV =90(@)o(@)%s + A% (—qu*(x) 1B6(z)  (B(¢°(2))" quc(w)-)

= second line of (2.19).
The last two formulas yield (P.19). O

2.3. Spectrum, coordinates, linear stability. Identity () and the definition of H,, o imply that
H,, leaves invariant the space of functions for which the symmetry Y (—z) = 8337 () holds for all z € R3.
From now on we focus on the space of vector valued functions satisfying this symmetry.

2.3.1. Spectrum. We consider the spectrum
o(Ho) = {N€C, Hy, — Md : H'(R?,C*) — L*(R®,C") is not invertible}

A point A € o(H,,) is in the essential spectrum ocss(H,,) if H,, — A d is not a Fredholm operator of index
0. This set is stable under relatively compact perturbation (such as a change on the nonlinearity). The
following lemma summarizes what we know about the spectrum.

Lemma 2.5. (1) For the essential spectrum we have, 0ess(He) = (—00,w — m] U [m — w, +00).
(2) For each z € o,(H,.,) the corresponding generalized eigenspace Ng(H,, — z) has finite dimension.
(3) If z € 0(Ho,) then also —z € o(Hy,).
(4) For the generalized kernel we have Ng(HY) D { Py, X30,P0, }-
(5) Ou||dw||3 # O implies that there are no v such that Hyv = 9,9,,.

Proof. We have that (1) and (2) are consequences of the above discussion. If z € 0ess(Hw) then (3) is
a consequence of (1). If z is an eigenvalue, then (3) is a consequence of (B.14). (4) is a consequence
of Ny(H) 2 {E3P,,, 0P, } which can be seen as follows. By the gauge invariance of the nonlinearity,

G((eu)(eiu)) = G(um), where G is a primitive of g, we have

H,, ( i ) — 0 or H,Y3d, = 0.

Cig,,
Then differentiating (m) and its image by C' with respect to w, we obtain
(2.21) He0u Py = =23,

(5) follows by the following argument, if we assume existence of v s.t. Hy,v = 9,P,,,
0= (v, (’H:(I)w)*> = <awq)wa ‘PZ) = <aw¢wa ¢Z;> + <awiﬁa2¢:;a iﬁa2¢w>

= <aw¢w7¢w> =+ <aw¢w7¢w> = aUJHgéUJ”Q 7& 0

O

Remark 2.6. Notice that from (R.13), if z € o(H,) then z € o(H,). Hence if z € o(H,) then
{z,—2,Z,—Z} C 0(Hd).

We have the beginning of H,, invariant Jordan block decomposition
(2.23) L? = Ng(Ho) ® Ny ().
Linear stability means to us what follows, see [Cuc09.

Definition 2.7 (Linear Stability). We will say that a standing wave e'®“¢,, is linearly stable when the
following conditions hold.

(1) o(Ho) CR.
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(2) Ny(H) = {Z3%u, 0uPu}.
(3) For any eigenvalue z # 0 of H,, we have Ny(H,, — z) = ker(H., — 2).
(4) For any positive eigenvalue A > 0 and for any £ € ker(H,, — \), we have (£, 23*) >0

As a consequence of , the Jordan decomposition can be continued as follows:
L2 = N,(Ha) ® (@2 ker(Hy F A (w))) & L2(H,,) with L2(H,) = {L2(H5)}
where for K = H*,H,, we set L3(K,) = Ny(K) ® ®; + ker(K F A (w)).

Let (§;(w,x)); be a basis of @}_; ker(H, — Aj(w)) so that each vector is smooth in both variables, with

109,&(w, )| < coae” %Il for some ¢, > 0 and a, > 0. Notice that this is just exponential decay of
eigenvectors with the smoothness assumption in | .

We normalize &;(w, ) so that £; = (§;, ¥3§}) 6 {1,—1} and (§;,X3&) = 0 for j # i. Notice that in
Theorem E for all j we have €; = 1 while for Theorem E we have €; = —1 for at least one j.

From the calculations of this section, we have built a dual basis. Hence, given any vector X, we have
(2.25)

(2.24)

<X, (ei2319238wq))*>ei231923q) + <X; (ei2319(1))*>

= ) 7@

eizgﬂawq)+
Z E_j <X 123192 é—] 123’!9&- 4 Z 5] lzgﬂzlzscgj)*>ei23ﬁzlc£j + €iESﬂPC(Hw)€7iEB”9X,
with P.(H,,) the projector onto LC(HW) with respect to decomposition (R.24). By duality, we have the

following lemma.

Lemma 2.8. Suppose that for a given w the conditions of Definition are satisfied. Then

(2.26) L2 = Ny(H2) @ (@4 ker(H2 T A (w))) & L2(Hy) with L2(H2) = {L3(H,))} .
Any 1 form o = (af, ) can be decomposed as follows:
<Oéﬁ; eiZgﬂawq)> iY39 g\ * <O‘ﬁ7 ei231923(1)> iXgd *
O[Ii = W (6 X3 (I)) + W (6 3 Zg@w@)
(227) + Zsj <Oéﬁ, ei2319§j> ( 12319235‘7 ZEJ , i23ﬂ210§j> (ei231923210§j)*
j=1

+ e (B (MY e —lzdﬂ(aﬁ)*)
2.3.2. Modulation. Consider the U in (B.§). Then, in the notation of (P.4), (.1)) can be written as
(2.28) U = e (d, + R).
Consider the following two functions
F(U,w,9) = (e =90 —®,, @), G(U,w,0) = (e =90, 530,87).

Notice that R € N;(Hz) if and only if F(U,w,?) = G(U,w,¥) = 0. By the map w € O — ¢, €
H(R3) is C*°. Then F and G are C* functions with

Fo(U,w,9) = —i(X3e 500, @7)
FulU,w,9) = =2q' (W) + (77U, 0,9}),
(2.29) Vo F(U,w,9) = e =500"  VyG(U,w,d) = e V530,07
Go(U,w,¥) = —i{e 27U, 9,®7)
Go (U, w,9) = (72391, 530207,
We have F(eZ39®,,, w, 1) = G(eZ5V D, w,9¥) = 0. For U = Z+?®,, in (R.29)) we get

fg(eizi"ﬁ@w,w,ﬁ) =0
Fo(U,w,9) = —¢'(w),
gﬁ(eizgﬁ@w,w,ﬁ) = —i¢'(w)

gw(eizs%w,w,ﬁ) =0.

(2.30)
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Then by the implicit function theorem and there is a unique choice of functions 6 = 0(U), w = w(U)
which are C°*° and yield to the following Lemma.

Lemma 2.9 (Modulation). For any wy € O there exist e > 0 and C > 0 such that for any u € H'(R?)
with ||[u—e'?1 ¢y, || < € < &, there exists a unique choice of (9,w,r) such that |w —wi| + 9 — V1| < Ce for
a fized C and R € N (H,).

Consider now the two C* functions ¥,w : U € By (e d, ) — R. Inserting (.2§) in (R.29) we

get

Fo=—1(S3R, @); Fuo=—q(w)+(R,0.,P);

VuF = e_iz'“"ﬁ@:, ;. Vug = e_izsﬂEgawil):, ;

Gy = —i(q'(w) + (R, 0.®L));  Gu = (R, Z30,07).
Then, if we set

_ [~ (W) + (R,0,9) —(E3R, @)
230 A= (e ) o a)
we have the following equality
Vw 76—12319@:)

(2.32) A (w) - <eizsﬁzgawq>;) '

This yields the following lemma.

Lemma 2.10. We have the following formulas:
(¢ (w) + (R, 0,®%)) (e™37®)" — (L3R, &) (€77530, )"
(¢'(w))? = (R, 0,9%)? + (V3 R, @5 ) (R, N30207)
(R, 5302®%) (eX370)" + (¢ (w) — (R, 0,®%)) (6727 530,®)"
g ())? = (R, 0,9%)% + (B3R, B ) (R, X3029)]
2.3.3. Coordinates. For w € O we consider decomposition (R.24). By P.(H,) (resp. Pa(H.)), or simply
by Pe(w) (resp. Py(w)), we denote the projection on LZ(H,,) (resp. L3(H.,)). The space L?(H,,) ”depends

continuously” on w, as P.(w) = 1 — P;(w) depends smoothly on w.
By Lemma @ we specify the ansatz imposing that

Vw =
(2.33)
Vi =

(2.34) U=e>"(®,+R) withw € 0, ¥ €R and R € N, (H},).
Fix wp, where q(wo) = |lug||32. For w close to wy the map Pp(H.,) is an isomorphism from LZ(H.,) to
L2(HM,,). In particular we write
(2.35) NF(ML) s R =3 2&() + Y %2108 (w) + Pe(Ho)f £ € Li(Huy):
j=1 j=1
Setting 2 - & =37, 2;¢; and 7- 10¢ = 377, ;51 C¢;, we write
(2.36) U=e>" (0, + 2 §(w)+7 $10w) + Pe(Ho)f)
w € O close to wy, (2, f) € C" x L%(H.,) close to 0, are our coordinates. In the sequel, we set
(2.37) OuR = 20,8(w) + Y Z;51C0uE(w) + 0uPe(Ho) f.
j=1 j=1

Then we have the vector fields

O 09, (@4 B, = ie™ (@ 4 ),
Bl oY

(2.38) 0 eiSede 9 _ e e
9z 1oz o

In particular, given a scalar function F', we have
OuF = (VFE,é¥Y9,(d + R)), 09 F = i(VF, > "S3(d + R)),
0., F = (VF,e™7¢)  0- F = (VF,e™7%,0¢;),

where by definition, given a vector field X, we have XF = (VF, X) = dF(X), with dF the exterior
differential and VF' the gradient.

(2.39)
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Lemma 2.11. We have the following formulas:

£;Vzj = —(83€7, 0, R)Vw — (X387, S3R) VI + e~ 375587
(2.40) £;VZ; = —(153(C&)", 0. R)Vw — (X1 X3(CE&)*, B3 R)VY + e 72278, 33(C¢5)*
F(U) = (Po(w) Po(w0)) ™ Polw) [0, R o — iS5 R + e 1]
with (Pe(w)Pe(wo)) ™!+ L2(Hy) — LE(Huw,) the inverse of P.(w)P.(wo) @ L?(Huw,) — L?(Hy) and ;5 =
(&> X3&;)-
Proof. The proof is similar to the proof of |CuclQ , Lemmas 4.1-4.2 ]. Let us see for example the proof

of the first formula. Equalities Z—Z 0 gz; = % = % =0 and Vjyz; = 0 are equivalent to

<sz,ei2319§g> = 60, <VZJ‘,€12319210££> =0= <vzj’ei231923((1) + R))
(Vzj, 9, (d+R)=0= (Vzj, eV P (W) P.(wo)g) Vg € L2(Hay).

Notice that the last identity implies P.(H}, ) P.(H})e™*"Vz; = 0 which in turn implies P.(H}, )™V Vz; =
0. Then, applying () and using the product row column, we get for some pair of numbers (a, b)

Vz; = ae” =50 ®* 4 be 1 22V¥30, 0% + Eje_i231923§;
6—12319(1)* i " Vw —i
= (a,b) (e_izsﬂzgaw@* +eje 03¢0 = —(a,b) A vy | i€ a0y,

where in the last line we used () Equating the two extreme sides and applying to the formula (-, 6%>
and<,6ﬁ> by (Vz],aw):(sz,66ﬁ> (VY 6> (Vw, aﬁ)zo, by (VY a):(Vw,a%)zland by

(P39) and (R-41), we get $ 0w T
a(5) == ({md 5m)-

* . * v —iX3 *
V’Zj - 7€j(<23§j ) awR>7 1<23§j ) 23]%>) <Vi;> +eje > 1923§j'

(2.41)

This implies

O

2.4. Smoothing and dispersive estimates. In this subsection we collect the statements on linear
theory needed later to prove the nonlinear estimates.

Lemma 2.12. The following facts are true.

(i) For any T > 1 there exists C' independent of w s.t.

(2.42) IRp,, (2)¥||p2— < Cl|¢]|p2.- for all z ¢ R
(2.43) [Br,.0(2)Yl L2 - < Clll|p2- for all z ¢ R.
(ii) For any T > 1 the following limits
(2.44) RS (A = ;1\% Rp, (A *ie) and Ry, (N) = ;1\% Ry, (A Lie)

exist in B(HYT, L>~7) and the convergence is uniform for \ in compact sets.

Proof. Estimate (2:43) implies (R.43). Then (i) is the content of [[M99, Theorem 2.1] while (ii) is contained
in , Theorem 1.6]. O

Lemma 2.13. We have Ry, ,(z,y,A) = Ry, (x —y, ) = (RD”L (2 _Oy’)\ +w) Ro, (« Oy A\ w)>
Do - Y -
for A& 0(Hew,0) with

(A+m)Is ivVm? —A20 -7\ e VAl LAY sy e P
(245)  Rp, (z,A)= (. - +i
ivm?2 — A0 - % (A—m)I, 47| z| 471'|90|2

where T = x/|z| and where for ¢ = ¥r with r >0 and ¥ € (—m,7) we set \/C = eV/2/r.
Proof. This is [[Tha92 Tdentity (1.263) section 1.E]. O
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Remark 2.14. RBM (z,A) for A > m (resp. A < —m) is obtained substituting v/m?2 — A2 in (R.45) with
—iVA2 —m? = 11{% vm? — (A +1ie)? (resp. iV A% —m? = li\r‘% vm? — (A +ie)?).

g g
Theorem 2.15. Foranyt>1 and k € R 3 C s.t.

e P bllzm ey < Cllla

(2.46) I /Reme(t) dt]l e < CIIF || p2gery,

I e P B dt || L2z, ey < CIF | page,prnr-
t'<t

The same estimates with the same constants hold when we replace Dy, with H 0.

Proof. This is [, Theorem 1.1] in the free case. But can be easily deduced from Lemma R.19 using
tools in [RS74, Section XIIL.7]. O

The following theorem is a special case of Theorem 1.1 ]
Theorem 2.16. For any T >5/2 and k € R 3 C s.t.
—i _3
(2.47) e Pmap|| g msy < C(8)7 2|19 e, -
The same estimates with the same constants hold when we replace Dy, with H, 0.

Theorem 2.17. For any 2 < p,q < oo, 0 € [0,1], with (1 — %)(1 +94) = % and (p,0) # (2,0), and for

any reals k, k' with k' — k > a(q), where a(q) = (1+ 4)(1 - %), there exists a positive constant C' such
that

—i DTVL
e 0l o,y oo ey = Ol s,

ePm B (t) dt

(2.48) H / a

‘ / e—i(t—t/)DmF(t/) dt’
v <t

for any (a,b) chosen like (p,q), and h — k > «a(q) + a(b). Ezactly the same estimates hold with D,,
replaced by He 0.

Proof. For D,, see [BouO8H], see also [Bre84] for the Klein-Gordon case. For H, o the statement is an
immediate consequence of the case D,,. 0

< C|F|

LY (R, BY (R?,C4))

< C|FI|, o )
Lf(R7B§,2(R3,C4)) B H ”Lf’ (R’Bg’,2(R3’C4))’

Lemma 2.18. Consider pairs (p,q) as in Theorem with p > 2, k € R arbitrary and k' — k > «(q).
Then for any T > 1 there is a constant Cy = Co(T, k, p,q) such that

t
/ eiDm(t’ft)F(t/)dt/
0

The same estimates hold with D,, replaced by H, o
Proof. For F(t,x) € C§°(R x R?) set

(2.49) ‘ < CollFll v

k
Lf;qu2

+oo o, —+oo .,
TF(t) = / dE=ODmpat | f = / et P p(at'.
0 0

Theorem implies [|TF|| ppr < [fllge for K —k = a(q). By Theorem we have || f]lg» <
CHFHL?H"/”" Since p > 2, by a well known lemma due to Christ and Kiselev [[CKO1]], see Lemma 3.1
[BS0d], the statement of Lemma follows. O

Lemma 2.19. Let 71 > 1 and K be a compact subset of O and let I be a compact subset of oe(He ) \{E(m=E
w)}. Assume that w — V,, is continuous with values in the Schwartz space S(R?; C*). Assume furthermore
that for any w € O there are no eigenvalues of H,, in the continuous spectrum and the points +w are not
resonances. Then there exists a C > 0, such that

(2.50) le™ w0 Rf, (A Pe(w)oll p2 -1 may < C)72 ol p2imas go
for everyt >0, \€ I, w € K and 1y € S(R3;C?).
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Proof. We expand R;Qw \) = RZ:LW ,(A) = RZ:LW()\)VWRZ:LW (A). We have from [BG87, Theorem 2 ]

—i _3 _3
(2.51)  flem "o Ry (Mol -m sy < CU)T2IRY, (Mol L2 @s) < Ci(t)™ 2 [|vollL2m+r @),
with C] locally bounded in A and 7. Hence, by exponential decay of ¢,,,
He_itHW'OR;-r[w,o ()‘)VwRqJ-r[w (M) Pe(w)tboll p2m

< Colt) "2 Vall o g [| Ry, VP oy oy 10l 2

The key fact that HR;QN ()\)HL%1 s < Cforafixed C >0 and for all A € I is a consequence of (NGB
of Lemma @ and of Lemma m O

3. HAMILTONIAN STRUCTURE

The discussion in this section is essentially adapted from [[Cucl(]], rewritten in the context of the Dirac
systems.

3.1. Symplectic structure. We recall that in view of Theorem E we set €; = (&, ng}‘} where ¢; €
{1, —1}. Notice that in Theorem m and in [, we have g; = 1.

Our ambient space is H!(R3,C*) x H'(R3, C*). We focus only on the subspace formed by the points
which satisfy 31U = CU. In view of (), the natural symplectic structure for our problem is

(31) Q(X, Y) = <X, iﬁangng).
The Hamiltonian vector field X¢ of a scalar function G is defined by the equation Q(Xqg,Y) =
—1(VG,Y) for any vector Y and is X¢ = BasXs¥1 VG.
We call Poisson bracket of a pair of scalar valued functions F' and G the scalar valued function
(3.2) {F,G} = (VF, Xqg) =iQ(Xp, Xg) =iQ(VF,VG).
This can be extended to vector valued function using 1-forms or equivalently defining the extension the

following way.

Definition 3.1. Given a function G(U) with values in L?(H,, ), a symplectic form Q and a scalar function
F(U), we define {G,F'} = G'"(U)Xr(U), with Xr the Hamiltonian vector field associated to F. We set
{F,G} = —{G, F}.

Lemma 3.2. Let Q be the function defined by ()and let X¢q its Hamiltonian vectorfield of Q. Then

0

3.3 -9
(3:3) Xe =35

We have the following formulas :
(3.4) {Quwt=0, {QJ}=1, {Qazj}:{Qazj}:Oa {Q. f}=0.
Proof. (B-4) follows from (B-3). The latter follows from (P.3§):
0

(3.5) X = Xz VQ = fasXs¥ ifasX U = —i33U = —55°

O
3.2. Hamiltonian reformulation of the system. For any scalar function F', the time derivative of
F(U(t)) is (VF(U),U) and thus if U satisfies (R.11) it is {F, E}. A similar identity holds for vector
valued function and thus as in ] we write our system as
(3.6) w={w,E}, f={fEB}, %={FE}, 9={ B}
For ug the initial datum in ([L.1]), we introduce a new Hamiltonian for which the stationary solution @y,
with g(wo) = |Juol|%2, is a critical point :

3.7) K(U)=EU) +w(U)QU) — w(U)]luoll7-

By Lemma B.9 and since Q(U) is an invariant of the motion, see Lemma P.3, the solution of the initial
value problem in ([L.1]) solves also

(3.8) w={w,K}, f={fK}, 2z ={z,K}, 9—w={0 K}
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By %K =0 and (B4) the right hand sides in the equations (B.§) do not depend on #J. Hence, if we look
at the new system

(3'9) w:{va}v f:{faK}a 'éj:{zij}v 19:{197[(}7

the evolution of the crucial variables (w, z, f) in (B.6) and (B.9) is the same. Therefore, to prove Theorem
[[.7 it is sufficient to consider system (B.9).

3.3. Application of the Darboux Theorem. In the sequel we will show that a resonances phenomena
is responsible of energy leaking from discrete to continuous spectrum. The main ingredient will be the
use of Birkhoff normal forms. Since the coordinates () are not canonical coordinates for the natural
symplectic structure €2 in (), it is natural to apply Darboux theorem, moving to a different set of
coordinates. It is natural and elementary to reduce as in Theorem 6.35 p. 412 [ the number of
coordinates, using the invariance of Q. However one key issue is that we want our nonlinear Dirac
equation to remain semilinear. Hence we follow the argument of [, Section 7], which takes care of
this, and to which we refer for more details.

Strategy of the proof. For ¢ = q(w) = ||¢WH2L2, we introduce the 2-form
(310) QO = ldﬂ A dq =+ Edej A de 4+ <f/(U), iﬂO&QZngf/(U)'>,
summing on repeated indexes, with f(U) the function in Lemma , f/(U) its Frechét derivative and
the last term in (B.10) acting on pairs (X,Y) like (f'(U)X,iBa2¥3%: f/(U)Y).

The proof of the Darboux Theorem goes as follows. First consider
(3.11) Q, = (1—7) + 72 = Qo + 7Q with Q := Q — Q.
In Lemma .3, we check that Qo(U) = Q(U) at U = €Y ®,, . Then near >’ ®,, Q. is non degenerate.
One considers a differential form (7, U) such that dy(7,U) = Q with y(U) = 0 at U = e*3?®,, (external
differentiation will always be on the U variable only)and the dual vector field Y7 such that iy-Q, = —7.

The flow § generated by V7, close the points eiZw(I)wO is defined up to time 1, and is such that F;Q = Qg
by

d d
L FE) =5 (L Q)+ 5 —Q, =
- (§0) = F (Lo Q) + 52

= 3 iy ) + T = F (—dv + ?2) —0.

This procedure can be carried out abstractly. But here we need to be careful, choosing v appropriately,
because we want the new Hamiltonian K = K o, to be ¢ invariant and yield a semilinear Dirac equation.
It is interesting that the two issues are solved simultaneously.

In the sequel of this section all the work is finalized to the correct choice if 4. In Lemma @ we
compute explicitly a differential form o and we make the preliminary choice v = . This is not yet the
right choice. By the computations in Lemma @ we find the obstruction to the fact that K is of the
desired type. Lemmas @«@ are necessary to find an appropriate solution F' of a differential equation
in Lemma . Then v = a + idF is the right choice of 7. In Lemma we collect a number of useful
estimates for §;. Lemma is valid independently of the precise v chosen and contains information
necessary for the reformulation of our system in (B.7()—(B.71)).

(3.12)

Preliminary remarks. Note that for U in a sufficiently small neigborhood of @, that is R small, from
(R:29) the vector fields defined in (2.3§) can be completed into a basis of Ty L? (tangent space at U). For
any vector Y € Ty L2, we have

0 Xz
(3.13) Y =Yooo+ Yoo +ZY +) Y ]az + eV P (W)Y

and defining the dual basis we set

Yo=dv(Y), Y,=dw(l), Y;=dz(Y)
Y;=dz(Y), Y= f(U)Y.

So similarly, a differential 1-form v decomposes as

(3:15) Y =70+ do + Y Fdz Yy Az + (7 1),

where (y/, f’-) acts on a vector Y as (y/, f'Y), with here v/ € L2(H}, ); 77, 7%, 7/ and ~ are in C.
Notice that we are reversing the standard notation on super and subscripts for forms and vector fields.

(3.14)
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In the sequel, given a differential 1-form v and a point U, we will denote by v the value of v at U.

Given a function x, denote its hamiltonian vector field with respect to 2. by X7 : 1 X7 Q. = —idy.
By (B.10) we have :
0
0 _
(3.16) Xow) = ~ 39"

The proof. We have the following preliminary observation ensuring that €2, is a non degenerate 2-form
in a neighborhood of €37 ®,, .

Lemma 3.3. At U = &37®,, , for any 9, we have Qo(U) = QU).
Proof. See also [, Lemma 7.1]. Using ) we get, summing on repeated indexes,
Q(X,Y) = <X, iﬁa223§]1Y) =
1 . .
— (€T EINE0,07) A (- e TN (X, )+
(3.17) q . .
(e PUSEN A (e RS 85(06) ) (X, Y)
+ (P.(Ho)e 37 X iBaXs ¥ Po(H,, e =20y,
Consider
(3.18) a1 = a1(w, z, f) = Q0,Py, X3R) + QR,33PD,) + Q(R,X3R)
where R = z - {(w) + Z - C&(w) + P.(w)f. Notice that Q(R,X3R) = —(X3R, (CR)*) and as we focus on
the kernel of 1 — C¥4 this is —(¥3R, R*) and thus 0. Hence the function aq is smooth in the arguments
weO, zeC"and f e H K5 (see ) for the definition) for any pair (K’,S’) with, for (z, f) near
0,
(3.19) lax] < C(K', ) (2| + | fll gr-rer —57)?,
we get by Lemmas and , summing on repeated indexes,
Q= (i’ + a1)dd A dw + jdzj A dz;
+ de A\ (<2123(C€j)*, GMR) dw + i(ElEg(ij)*, Z3R> d19)
— dEj A\ (<Z3§;, 6WR> dw + i(zgf;, EgR) dﬂ) +
+ (Pe(w) Pe(wo) '+ 1Baa¥s ¥y Pe(w) Pe(wo) f')+
+ (Pc(w)Pc(wO)f’-, iﬁa223§]1Pc(w)6wR) A dw—+
+ i(PC(w)PC(wo)f’~, iﬂa22321PC(w)EgR> A do.
At points U = e>3Y®_, that is for R = 0, we have
(3.21) Q =1idd ANdq + Edej A\ dEj + (Pc(w)Pc(wo)f'-, iﬁagEngPc(w)Pc(wo)f’->.
which at w = wq gives Q = Q. ]
Since Q, = Qg + 7(Q — Qo) with 7 € [0,1] and Q = Qp at e d,, , and since  is a non degenerate
2-form, €2, is also non degenerate in a neighborhood of €*3?®,, . Thus the map X ~ ix ), from vector
fields to 1-forms is bijective at any point in the neighborhood of €*3?®,, . Notice that Lemma @ is
claimed at wy and not at different standing waves, and that the />3 ®,,  are the only stationary solutions
preserved by our changes of coordinates.

The next lemma states as candidate for the 1 form ~ the choice v = —a, for « see below. This is not
yet the final choice of ~.

(3.20)

Lemma 3.4. Consider the forms, summing on repeated indexes,

1
W(U)Y = 5<iﬂ0&22321U, Y>

o wo(U) = —igdd — e, LIy (1), i60a0gnu f(0) )
Then

(3.23) dwy =Qp, dw=Q.

Set

(3.24) a(U) i= w(U) = wo(U) + d(U) where (U) = %(zg,@*, R).
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We have a = o’ dd + a*dw + (o, f') with

o’ + %Hfl\% =- %Hz £+ Z-D10¢5 - iR(z- €42 210, (Pe(w) f)")
—iR((Pe(w) = Pe(wo)) f, (Pe(w)f)*),

3.25 1
( ) a¥ =— §<R*, Y30, R),

af :%iﬂOéQElESPc(/Hwo) (PC(Hw) - PC(HWO)) f

Proof. Here the proof is almost the same of [Cucl(, Lemma 7.2 ]. We focus on ([8.2), which is the only
nontrivial statement. We will sum over repeated indexes. We have

w =

1 : . 1_, s,
+ §Zj<€_123191ﬁ0422123§j, > — 52]‘ <€ 2301Ba2230£j, >

: 1 :
(e77iBas %y 3@, ) + 5 (e 1P By Pe(w) f, )

DN | =

(3.26)

By Lemma @ and summing on repeated indexes we obtain

(2iBas 1 83®, 0.,P)

1 —iXg9: —iX30 F *
5(@ WifasX1 X3P, ) = 7@ (e7'3V D" )
LiBas3 1 303®, N3 ®) 1 .
(3.27) , (3ihas qf(wg) i ><e_‘2319238w<1>*,-) +&5(31Baa T 5@, &) (e 867 )

1 : . 1
— sj<§iﬂa22123q>, Y10 (e N0 (CE))*, ) + <e—12319(PC(H:;)§1ﬂa22123@*)*, .

By iBasX1® = iBasC® = (iBas)?®* = &* we have

(328) <i/30[22321(1),8wq)> = <¢*aaw¢> - <¢7 aw¢*> = 07
by (¢, D,0*) = / (adya + b9,b) dx = (¢*,0,¢), see [(H:2). Then
R3

1, isg0.

5(6 16&22123@, > =
(3.29) = DeTIR0,8%, ) + & (5i80a i Ta®, &) e s8] )

1. —iXg9 * —iXgd * L *\ %

— Ej<§150422123<1>, 210§j><e 3 2321(06]) ,'> + <€ 3 (PC(HN)§IBCY22123(I) ) ,->.
with by (R.33)
(3.30) — Liem05,0,0% ) = L(R 53020%) dw —i L (¢ + (R, 0.9%)) d.

q q q

Applying Lemma , we get (by iBasXy f = f* which follows from XU = CU)
Ej de —Zj dEj 1
2 2

1 1 1
(3.31) =i (—q + §||R||%2) dy + 5(23]%*, OuR) dw + +§(iﬁa221§]3 (1 — P(wo)Pe(w)) f, f )+

(f(U),iBaaxsXy f1(U)-)

wo = —igdd¥ —¢;

1 : 1 . 1, s
+ 52]‘ <€_12302123(C€j)*, > — 527‘ <€_1230Z3£;, > —|— +§(e_1231916a221§]3Pc(w)f, >

By (R.3€) we have

1 1 1
(332)  d = (Se®" 0, R)dw + 5(E507, &)z + 5 (S8, $10E)0Z; + 5 (Se®, Po(w)f').

DN | =
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Applying to (B-3J) Lemma and the identities (B.34) below, we get dip =
1 * —1i * 1 * —iX: *
dip = 5@3@ RINC 23ﬁ23§j7'>+5<23¢ ,21CE ) (e P08 85(C)", )

(e (Po(H)S3@)" )

N |

+

(3.33) + 5@33@*, 8y R)dw

_ % <<23@*,§j>23€;‘ + (2507, 21 C¢;) 81 %3(C8)" + (Pe(HL)TP)", Z3R> "

Prg )3

H*

To get the third line of (B.33) we have used:

1 1
(X3®", 0 R) — 5 (E3®", §(8s&], 0 R)—

> 3
(331) OB TCENNT(CE) OR) — S(PHL)T0®) 0uR) = 5(250°, D.R);

1 1 2
= [(zgqf,awm — —(T5D", 53P) (30,07, OuR) | = Q—q/<23awq>*,awR>.
q q

Let us consider the sum () There are various cancelations. The first and second (resp. the first term
of the third) line of (B.33) cancel with the second and third lines of (B.29) (resp. the first term of the rhs
of (B:30)). The last three terms in rhs(B.26) cancel with the last two lines of (B:31). The —igdd term in
the rhs of (B.31])) cancels with the —igdd term in (B.30). Adding the fourth line of (B.33) with the last

term of rhs(| ) we get the product of i times the following quantities:
1 " q " [
1 * q *
+ §<PN9(H:)23(I) ,23R> — ?<R, O0,® >

(3.35)

L (D", X3R)(0,P, X3D™)

1
®* R) + —
< ) > 2q,

T2

1
+ 2—q/<23,awq>*, S5 R)(E50%, $38) — §<R, 8, 8% =0,

where for the second equality we have used
1., 1 .
PNH(H::) = ?q) <awq)’ > + ?236(4)(1) <E3(I)a >

The last equality in () can be seen as follows. The two terms in the third line in () are both equal
to 0. Indeed, (X39*,0,,®) = 0 by (B.29) and, by R € N} (H;) and ®* € Ny(Hy), (R, ®*) = 0. The two
terms in the fourth line in (B.33) cancel each other. Then we get formulas for o and of. We get o? also

by |Pe(w) f113 = [If1I3 + 2R((Pe(w) — Pe(wo)).f, (Pe(w) f)*)- O
Lemma 3.5. We have, summing over repeated indexes (also on j and j):
(336) 'L'YQO = inY19dw — inYwdﬂ + gj (ijdzj — }/;—dzj) + (iﬁangZ3Yf, fl>

For the ay in (B19), and for T = iy Q, we have
T =a1 Yy + Y (S155(CE)", 0, R) — Y(Ss€0, 0uR) + (V7,180 S35, P.0,, R);
Ty =a1Y., — iY; (51 55(CE)*, S5 R) +1Y; (5565, S R) — 1(Yy, 182 Es%, PoSs R);
(3.37) ST, =(%195(CE)", B R)Y + (D1 55(CE;), X3 R) Yo
T =(S460, 0. R)Y, + (468, SoR)Yi;
ifas¥s X Ty =(Pe(wo)Pe(w) — 1)Yy + Yo, Po(wo) Pe(w)0uR + 1Yy Po(wo) Pe(w) X3 R.

In particular, for v =iy-Q; =iy-Qo + Tiyfﬁ we have
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Yo =(i¢" +7a1)Yy + 7Y (133(CE;)", 0L R) — TY{<23§;, OuR)
+7(Yf,iBaz¥3¥ PO, R);
—v9 =(1¢" + 7a1)Y] — Y[ (8133(C&;)", L3 R) + TiY;T<Z3§;, Y3R)
— (Y7 ,iBasSs % Py R);
—y =5 (V) + 7(51 55(CE)", ARV + 17 (51 55(C&))", SaR)Y
v =25 (Y7); 4+ 7(8a€8, uR)Y] +i7(S€], Na R) Vs
iBag¥is¥iyy =(Y7)f + 7(Pe(wo) Pe(w) — 1Y/ +
7Y P.(wo)Pe(w)0u R 4 i Yy Pe(wp)Pe(w)X3R .

Proof. Tdentity (B.3q) is straightforward. Identity (B.3§) follows immediately from (B.3¢)-(B-37). Finally,
() is elementary linear algebra, and basically the same of , Lemma 7.3]. 0

Remark 3.6. If we choose v = —ia in Lemma @ with the a of (), and if F. is the flow of Y7, then
the component (Y7)y is an obstruction to the fact that, for 0 < 7 < 1, Ko F; is a ¢ invariant Hamiltonian
and that the hamiltonian K o F; yields a semilinear Dirac equation. We want flows defined from fields
with (Y7)y =0 or dd(Y") = iQ,(X],Y") = 0, with Xj the Hamiltonian fields of ¢ . To this effect we
add a correction to a and define Y7 from o« + dF where (o + dF)(X]) = 0.

(3.38)

Lemma 3.7. Consider the vector field Xj (resp. X[) defined by ix;Qr = —idd (resp. ix;Qr = —idw).
Then we have (here P. = P.(H,) and P® = P.(H.,)):
X:g— :(X;g)w [2 — T<23§{K, 64,.,R>i — 7‘<2123(C§j)*, awR>i
Ow J 0z; 0%;
—7tP°(1 4 7P, — TPCO)_IPCOPC&JR} ,

(3.39) 5

XZ =(XD)o [~ ir{€], R) s +ir{51(CE;)", R)
J

“ 7 Low 0z
—irPY(1+7P. — 7P?) ' P'P.55R],

where, for the ay in (B.1§), we have

i

(3.40) (X§)w = =—(X0)w

i + Tay + Tas

as = iT<Z3€;, awR> <2123(C§j)*, Z3R> — 17(2123(0@)*, GMR) <§;, R>+

3.41
(3.41) +ir(P2(1 + 7P. — 7PY) "' PYP.O, R, 1B ¥3% 1 P.Y3R).

Proof. The proof is almost the same of [Cucl, Lemma 7.5]. By (B.39) for v = —id¥, X} satisfies

(X5)9 =0;
i = (i¢' + 7a1)(X)w — iT(X133(CE;)", B3 R) (X5)+
(3.42) + iT<Z3€;, 23R> (Xg); — iT<(X5)f, iﬁa22321P623R>;

(Xg)f = T(l - PcOPc)(Xq‘g)f - T(Xv‘g)chOPcawR;
(X3)7 = —7(X§)w(Z183(CE)", 0uR); (X35)j = —7(X§)w(Xs&], 0u ).

This yields (B.39) for X7 and the first equality in (B.4]). By (B.3§) for v = —idw, X satisfies

(Xc:)w =0;
—1 =i (X3)o = Ta1(X])o + T(X183(C&)", 0 R) (X)), —
(3.43) — (81835, 0L R)(X3)5 + 7((X[]) £, 183X PO, R);

(XD)p =7(1 = POP)(XD)s —im(X0)o P P-X3R;
(X&) = —17(X0)o(E185(CE;)", B3 R); (X3)j = —17(X5)o (X3, X3 R).

This yields the rest of (B-39)-(B.40). O

The following lemma is an immediate consequence of the formulas in Lemma @ and of ()
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Lemma 3.8. For any (K', S, K, S) we have
11— (XP)wd'| S IRIG - —s

(3.44) ) ; .

[(X9);| + (X551 + (X)) pll s SR gr-rer-s-
and

1+ (XD d| < 2
) 1+ (XD d | S 1RI s

(XD + 1X5 H N XD fll -5t SN RN v
Definition 3.9. Set H%(w) = P.(w)HX* and denote

(3.46) PES = C" x HFS(wg), PIS =R? x PKS
with elements (9w, z, f) € PX5 and (2, f) € PKS.

Lemma 3.10. We consider ¥V 7 € [0,1] the hamiltonian field X and the flow
d

(3.47) d—@S(T, U)=X5(®s(1,U)), ®o(r,U) =U.
s

(1) For any (K',8") there is a so > 0 and a neighborhood U of R x {(wo,0,0)} in P~K"=5" such that
the map (s, 7,U) — ®4(7,U) is smooth

(3.48) (—50,80) X [0,1] x UN{w=wo}) — p-K'.=8"
(2) U can be chosen so that for any T € [0, 1] there is another neighborhood V. of R x {(wo,0,0)} in
P-K'=5" 5t the above map establishes a diffeomorphism

(349) (780, 80) X (L{ N {w = CUO}) — V.
(3) f(®s(1,U)) = f(U) =G(t,s,2, f) is a smooth map for all (K, S)

(—s0,50) x [0,1] x (U N{w =wo}) = HS
with |G(t, s, z, f)llgx.s < Cls|([z| + [ fll g-rr.—s7)-

Proof. The proof is exactly the same of Lemma 7.7 [ We only remark, that the field X, the flow
®,(7,U) and the function F(7,U) in Lemma are defined intrinsically, and so are periodic in . This
is because X satisfies these properties, since ix7€; = —idd with both €2; and d¥ intrinsically defined
and periodic in . O

Lemma 3.11. We consider a scalar function F(r,U) defined as follows:
(3.50) F(r,®4(r,U)) =1 / Qo (t,U) (X} (@ (t,U)))ds", where w(U) = wy .
0

We have F € C*°([0,1] x U, R) for a neighborhood U of R x {(wo,0,0)} in P~5"=5" We have
(351) (6, U)] < C(K", 8" — wol (2] + |l o1)?

We have (exterior differentiation only in U)

(3.52) (a+idF)(Xg) =0.

Proof. The proof is elementary and is exactly the same of Lemma 7.8 [[Cucl(]. O
We now have the desired correction for a and below we introduce the vector field whose flow yields
the wanted change of coordinates.

Lemma 3.12. Denote by X7 the vector field which solves

(3.53) txrQr = —a—1dF (7).
Then the following properties hold.

(1) There is a neighborhood U of R x {(wo,0,0)} in PO such that X™(U) € C>([0,1] x U, P+O).
(2) We have (X7)y = 0.
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(3) For constants C(K,S,K',S")

I1£13

(G AR Iy e
(8:54) X5+ 17 4 M) lrrses S (2l + 1l %
x (o = wol + || + | Fll-wr.-sr + 1F132).
(4) We have
0 A
(3.55) Lo {X M} =0.

Proof. The proof is almost the same of [@, Lemma 7.9 ]. Claim (1) follows from the regularity
properties of a, F and €, and from equations (E) and (B-59) below. (B.53) implies (2) by
(XT)y =1d(XT) = —ix;Q (X7) = ix-Qr (X7) = —(a +1dF)(X) = 0.
We have i(X7), = idw(X7) = —ix-Q(X7), so
(A7) = ixrQr (X]) = ~(XD)o [ + 70,F (6], B) = 70;F(51(CE;)", R)
+7(V¢F +ial,PY(1 + 7P. — 7P)) ' PO P53 R)].
Then by (B-29), (B-40) and (B.41), we get the first inequality in (B.54):

2
(357) (GRS e = E R 1y P
By () we have the following equations
10;F = ej(X7)7 4+ 7(21383(C&;)", 0w R) (X7 )
(3.58) —10;F = ;(X7); + 7(E35, 0w R) (X7 )
iBas¥3Y(af +iViF) = —(X7)p — 7(P'P. = 1)(X7); — 7(X7), PO P.O,R.
Formulas (B.5§) imply

(X5 SN0+ C (|2 + 1 fll g-rr-s) [(XT )]
(X5 <N5F 1+ C (|2 + 1 fll g-rr-s) [(XT)w]
I s < llof || grs + IV Fll s + C (|2l + | fll g-rermsr) (X7
which with (), (B.24) and Lemma () imply () () follows by L 2 (a+idF) = 0 and by

the product rule for the Lie derivative,

L% (ZXTQT) == Z[%,XT]QT +ZX7'Ld_dﬁQT == Z[%,XT]QT

(3.56)

O
The following lemma gathers some properties of the change of coordinates.

Lemma 3.13. Consider the vectorfield X™ in Lemma and denote by F.(U) the corresponding flow.
Then the flow F,(U) for U near *3%®, is defined for all T € [0,1]. We have 9 o F; =1. We have

1 @FEO) =) - LB 1 g,w)
(3:59) 5(FI(0)) = 5(U) + & (V)
FRWY) = FU) + &)
with
(3.60) £ S (o — ol + 21+ [l
(3.61) £+ IE s S (0= ol + 12|+ 1 Lg-re—sr + 1£122)

X(Jw = wol + |z[ + 1 fll gr-xcr.-57)-

For each ¢ = w, zj, f we have

(3.62) EU) =& (Ifl72,w, 2, f)
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with, for a neighborhood U~E"=5" of {(wo,0,0)} in P~5"=5" N {9 = 0} and for some fized ag > 0
(3.63) Ec(o,w, 2, f) € C®((—ao,ap) x U™K=5" C)

for ( = w, z; and with

(3.64) Er(o,w, 2, f) € C=((—ag, ap) x UK~ HES),

Proof. The argument is the same of Lemma 7.10 [[Cucl(], but we review it for the sake of the reader. We
add a new variable p. We define a new field by

2_
(V7). = ~(XD)[a? + 1071222

+7(V¢F +ial , PY(1+ 7P. — 7P)) ' P'P.53R)],

(3.65) + 10 F (&, R) — T0;F(£1(C¢;)", R)
by
10;F = e;(YT)7 + 7(E123(C&))", O R) (YT )w
(3.66) —10:F =¢g;(Y7); 4+ 7(X3§, 0. R) (Y7 )
iBasYs(af +iVF) = —(Y7); — (PP —1)(Y7); — 7(Y ) PO PO, R.
and by Y[ = 2((Y7),iBaz¥1f). Then Y™ = Y7 (w, p, z, f) defines a new flow G (p, U), which reduces to

F-(U) in the invariant manifold defined by p = || f||3. Notice that by p(t) = p(0) + fot Y, ds it is easy to
conclude p(Gi(p,U)) = p(U) + O(rhs(B.60). Using (B.49), (B-29) and (B.63) it is then easy to get

t t
s
() = awO) + [ dwe)¥ids = o) [ Eas+00ns(EaD).
0 0
By standard arguments, see for example the proof of Lemma 4.3 [BC09], we get

4 (@(G(p. U))) = ¢ (w(U) = £ +Eulp,U)
(3.67) 2(G1(p, U)) = 2e(U) + E(p, U)
F(G1(p.U)) = F(U) + &1 (p. U)

with & (p, U) satisfying (B.63) for ¢ = w, 2, and (B.64) for ¢ = f. We have E:(,U) = & (|| f||2, U) satistying
(B-60)) for ¢ = w and (B.61) for ¢ = 2, f. O

Eventually we have the desired Darboux type result:

Lemma 3.14. (Darboux Theorem) Consider the flow F, of Lemma . Then we have

(3.68) FriQ: = Qo.
We have
(3.69) QoF=q.

If x is a function with Oyx = 0, then dy(x o Ft) = 0.

Proof. Identity (B.6§) is Darboux Theorem and the proof of the lemma is the same of Lemma 7.11

[Cucld). O
3.4. Reformulation of (B.g) in the new coordinates. We set
(3.70) H=FKoF.
In the new coordinates (B.9) becomes
0H : 0H
3.71 "o=—-=0 Iy = 2=
(3.71) fo="25=0, ¢ o
and
OH :
(372) IZ] =& > lf = iﬂagEgzlfo.
82]-
Recall that we are solving the initial value problem ([L.1)) and that we have chosen wy with g(wo) = [|uol|2. .

Correspondingly it is enough to focus on () with w = wp. Consider the notation of Theorem m Let
us focus for the moment on the case £; = 1 in system (B.79). Then we prove :
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Theorem 3.15. Assume (H:12). Then for any ko > 3 there exist eg > 0 and C > 0 such that
for |2(0)| + | £(0)| gro < € < €0 the corresponding solution of (B.72) is globally defined and there are
fx+ € H* with || f+|| gro < Ce such that

(3.73) i[O (1) = 00O |, =0
and
(3.74) tlggo z(t) = 0.
Fiz po > 2 and 19 > 1. Let % = % — i and a(q) = %. Then, we can choose €y small enough such that
f(t.z) = A(t,z) + f(t,)
with
VneN, Cp(t) ;== sup (2)"|05A(t,z)] = 0 ast — o0
z€R3,aeN3
and for some fized C
3.75 f s < Ce.
( ) Hf”Lf([QOO),B;C,Oz g)ﬂL?([Oyoo)nyo’”“)ﬂL?([01W)1L:°) B

There exist wy such that |wi — wo| = O(|| f+||3) such that

tig_noow(t) = w;.

Proof that Theorem implies Theorem . . If we denote (w,z’, ') the initial coordinates, and
(wo, 2, f) the coordinates in (B.79), we have from Lemma :
|2" = z[ = O(lz| + || fll j2.—2) and [|f" = fllaxs = O(l2| + | £l p2.-2)
for any (K, S) € (RT)2. The two error terms O converge to 0 as t — co. Hence the asymptotic behavior

of (2, f') and of (z, f) is the same. We also have, from Lemma .19, q (w(t)) = ¢ (wo) — % +O(|=(t)|+
[f()]| ;2.~2) which implies, say at +oo

Jim_q(w(t)) = lim_ <q (wo) —

2

for wy the unique element near wy for which the last inequality holds. So lim;—, 1o w(t) = wy.

—itHawg.0 £ |2 2
||€ f+|2) _ q(WO) - Hf42r||2 _ q(er)

O

In the casee; € {1, -1} with ¢; # 1, using the same argument of Theorem , we prove that solutions

which remain close to the standing wave, actually have remainder which scatters. We state this in terms

of the system (B.74) and the coordinates after Darboux, but of course it can be stated also in terms of
the original coordinates, as in Theorems [L.1] and [L§.

Theorem 3.16. Assume [H:1){H:4), [H:57) and [(H:6)[{H:12)]. Then there exist eg > 0 with the
following property. Suppose that (z(t), f(t)) is a solution of (B.79) such that |z(t)| + || f(0)]| gro < € < €0
for allt > 0. Suppose furthermore that there exists a fized C' > 0 such that || f(t)]| gro < Ce for allt > 0.
Then there exists fi € H* with

(3.76) Jim [0 f (1) — eTHPm VOB £y, = 0

and we have

(3.77) lim z(t) =0.

t— o0

Furthermore, we can write f(t,z) = A(t,x) + f(t,x) as in Theorem in such a way that the same
conclusions of Theorem regarding A(t,x) and f hold.

Remark 3.17. Theorem is analogous to an observation in [MMOY regarding the fact that solutions
remaining for all times close to a standing wave, stable or unstable, converge to it. Among other references

see also [Bec0d, NS1(].

Finally, Theorem @, that is orbital instability, is a consequence of the following theorem.

Theorem 3.18. Assume [(H:1)|-{H:4), (H:5’) and (H:6)(H:12). Then we prove that there is a €, > 0
such that for any 0 > 0 there is a solution (z(t), f(t)) of ) such that |z(0)| + | f(0)|| zrro < O but there

exists t > 0 such that |z(t)| > €.
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3.4.1. Taylor expansions. Werecall that ¢; = (£;,23¢;) € {1, —1} is the Krein signature of the eigenvalues
of H,,. We set

dw) = E(Py,) + wQ(Dy).
We recall that wp is the unique element such that q(wg) = |lugl|3 and G is the primitive of the non-linearity
g vanishing at 0.

Lemma 3.19. The following statements hold.
K = d(w) — wlluol3 + K2 + Kp;

1
Ky = ZEj)\j(W)le|2 + §(iﬁa221237'iwfa f)
J

(378)  Kp=(Ge(w, f(), 1)+ Y (ku(w,2), )"z + Y 2"2"(Ku(w,2),i8a25351 Po(w)f)
vl =3 lut|=2

4

F 3 (Gal,2) (RN + [ (G, f(0). P @)
d=2 k3

where for a small neighborhood U of (wp,0) in O x C™, we have what follows for U like in (1), possibly
smaller.

(1) Go(z,w, f) = G (3(Pe(w) f(2)) - 102351 (Pe(w) f (2)))

(2) k(- w,z) € C®U, HES(R3,C8),

(3) K#”('awaz> € Coo(uaHzK’S(]Rgv(Cg)):

(4) Ga(-,w,z) € O=U, HES(R3, B((C®)®?,C))), for 2 < d <4 and G(-,w,0) = 0.

(5) Let'n = (¢,CC) for ¢ € C*. Then for Gs(-,w, z,1) we have

vl € NU {0}, ||V£U,Z,E,(,C(G5(wa 2, 77)||va5(]1§373((¢;8)®57@) <.
(6) We have ky, =k}, K, = —C¥1K,,,.

v’

Proof. Consider U = ¥ (®,, + R) as in (P-2§) . Decompose R as in (£.3]). Set U = p(w, 2) + P.(w)f.
Let K,(U) = [h(U(x))dz, see Lemma B.3, then after first a Taylor integral expansion around f at first
order and a Taylor integral expansion around ¢ at fourth order, we have

WU) = h (Po(w) ) + / dh(tp + Po(w)f)p dt

(3.79) = hPN+ [ 3G P e

i<4
- 5/ (1- 3)4ld6h(t<p + 5Pe(w) f)(Po(w) ) dids
[071]2 5'

Notice that ®,, is a critical point of K as it is in the kernel of H,X3. So in the Taylor expansion of
K around ®,, there is no first order term. Notice that the second derivative of K is the bilinear form
%(iﬁa221237-[w-, -). This gives K».

The term Kp contains all terms of order higher than 2 in f and z. Thus coincides with the term of
order higher than 2 in f and z in the above expansion after integration in x.

The Hamiltonian K is a real quantity and considering its conjugate will exchange z and z and lead by
a straightforward calculation to the last assertion. (|

The following lemma is a reformulation with some rearrangements of the above one in the canonical
coordinates provided by Lemma B.13. We set d; be for j € {1,...n} the multi index 0; = (1, ..., On;)-
Let )\? = Aj(wp) and X° = (A9, -+ [ A\Y).

Lemma 3.20. Let H = K o Fi. Then, around eizw@wo we have the expansion

(3.80) H = d(wo) — wolluol3 + ¥ (I £112) + HY + RD
where
_, 1.
(3.81) = Y K1)+ S (iBar i Bt £, ).
|p+v|=2

A0 (p—v)=0
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and R = ﬁ(vl) + 7/&2/), with

(3.82)

RO = > KD+ > 2 (Hyu(If1I3),1Ba2SsS1 f),
[ptv]|=2 |utv]=1
A% (p— V);éO

RE) = G( (Pe(wo) f(x)) - i02X551 (Pe(wo) f(x)) dz + Y z“z/ ko (2, 2, f, f (), | FII3)dz
B2 lntv|=3

+ Z Z”Z/ 16a22123Huu($azafaf($)a||f||%)]Tf($)d$

er/\ 2

+§jﬁ”+R”<Jmm@

j=2
and RY = [ Fy(az @) 1) @)

and where the following holds.
(1) We have (s) is smooth with ¢¥(0) = '(0) = 0.
(2) At ||f|l2 = 0 we have:
/{:ELI,/)(O) =0 for |p+v| =2 with (u,v) # (85,0;) for all j;
(3.83) kzéjl_();j (0) = €j\j(wo), where §; = (61j,-..,0m;) and here we are not summing in j,
Hyp(0) = 0 for [u+v] = 1
These kf},,)(g) and H,,(z,0) are smooth in all variables with H,,(-,-) € O (R,, HXS(R3,C?))

for all (K, S).
(8) We have for all indexes

(3.84) k) = (KO, kw =k, Hyu=-CS1H,,.

(4) We have Fy(x,0,0,0,0) = 0.

(5) For all (K,S,K',S') positives there is a neighborhood U~X"=5" of {(0,0)} in P55 see
(B.44), such that
(a) for 'n = (¢,CC) where ¢ € C*. we have, for k. (z,z, f,n,0) with (z, f,(,0) € U-K=5" x

C*xR
(3.85) VIeN®, | Vizeoc okullussgs oy < Ci
(b) for Hyu(x,2, f, 9, 0),
(3.86) VIEN®, |IVizcccrofvllgss s coy < Cis

(c) for Fj(xz,z, f,9,0),
6 l .
Vi e N, HVZ,E,C,CC,ﬁQFj||Hf'S(R3,B((C2)®J',C)) <C

(d) we have ﬁgl)(z,f, 0) € C=(U K5 xR R) with

RSz 1.0 < Cllel + Lol + I fllysrs) I 1o
Proof. The following proof is a continuation of proof of Lemma B.13 . We thus consider H = K o G; as
a function of (o,U). By G1(0, ®uy) = F1(Puy) = oy K'(Puy) = 0 and || F1(U) — Ul|pr.s S ||R|Z2 we
conclude H'(®,,) = 0 and H"(®,,) = K"(Py,). In particular, this yields the formula for H2(1) +RM
for o = |3 = 0.

The other terms are obtained by substituting in Kp of (B.7§) the formula (B-59). The term 1(0)
arises from d(w o G1) — w o Gi|jugl|3. There are no monomials || f||32#2"(H, f)* with |p + v| +1i = 1,
due to (B.60) (applied for w = wp). By (iBa21¥sf, f) = ||f]|3, we have (iBaa¥1Y3Huworswf, f) =
(iBaaXiXsHuo f, ) + |\f||29 + F, where I, can be absorbed in j=2in R® and @ can be absorbed
in ¢ when restricted to Q = |If1I3.

Notice that Rg ) is a remainder term obtained from terms in & of Lemme - g
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3.4.2. Normal form. Here again and in the following sections, we use the notation A} = \;(wo).
Let
(3.87) H =HeoPe(Hew,) and  Ho = Huy 0

Definition 3.21. A function Z(z, f) is in normal form if it is of the form
(3.88) Z =20+ 2y

where we have finite sums of the following types:

(3.89) Zy = Yo T (BariZsGu 13 )

IXO- (v o) [ > —wo

with H,, (z, 0) € C°(R,, HEXS) for all K, S;

(3.90) Zo= > au(Ifl3)="z
A0 (p—v)=0
and a,,, (o) € C®(R,,C). We will always assume the symmetries (B.84). O

We consider the coefficients of the type of (B.81]) (below it will be those of the HQ(T) in Theorem B.25)
and thus let, for 0; = (15, ..., Onj),

(391) 5 = NI = 20+ ks, (1713, A= (e Am).

Let

(392) Dy =3 (IR + 5 (18005 S Ho . )
j=1

We have ()\;(g) is the derivative in o) for F' a scalar valued function that, summing on repeated indexes,
{Ds, F'} := dDs(XF) = 9;D2(XF); + 0;D2(Xp); + (VyD2, (XF)y)
(393) = —18JD26J—F +1 a;DQaJF — <VfD2,ﬁa22321VfF> =
iIX\jzj0; F —i\Z;05F + i(Hf, Vi F) + 2N ([| £113) 121 (f, sV ¢ F).
In particular, we have, for G = G(z), (we use 311¥2 = X3)
{Dy,z/'z"} =i\ (u — v)2"'z",
{ D2, (iBa2X1 X3G, )} = i(H [, i1 E3G) — 212 Nz 2 (iBasXy f, G)
j=1
(3.94) n
= —i(f,iBoaS1 NaHG) — 21 Y Nj|z|* 1By £, G),

j=1
1 1, . . . .
{D27 _||f||§} - {D27 _<f; 150&221f>} = 71<Hf7 150{221f> = 71<VwOf5 150&221f>.
2 2
In the sequel we will prove that || f]2 is small.

Remark 3.22. We will consider only
|+ v| <2N +3.

Then, \° - (1 — v) # 0 implies [A\° - (4 — v)] > ¢ > 0 for some fixed ¢, and so we can assume also
AN (u—v)| > ¢/2. Similarly [A° - (u —v)| < m —wo (resp. |A°- (1 —v)] > m — wp) will be assumed
equivalent to [A- (u —v)| <m —wp (resp. |A- (u—v)| >m —wo).

Lemma 3.23 (Homological equation). Consider

(3.95) K=Y kallfID2+ Y 22(iBaeSi S K (1 £13), f)-

lutv|=Mo+1 |p+v|=Mo
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Suppose that all the terms in (B.93) are not in normal form and that the symmetries (B.84) hold. Consider

= Y w1

— N (p—v)
(3.96) =i
Y T Bea S K (I£13). ).
o A (p—v)=H)" " ’
p4v|=Mo
Then we have
(3.97) (Dox} =K+ 1L

with, summing on repeated indezes,

k/l/ .
L= *szﬂzy<vwof, iBasy f)

. 1
—2)\}z“2”|zj |2 <1Ba221f,

(MV)~/\HKW>
1
(H=v)-A=H

(3.98)

+2)‘I : (,U, - V)ZMEV|Zj|2 <fa iﬁO@ )2 Kuu> <Vw0f; iﬁa221f>

1
P I 74 .
2217 <f72321 (/L—V))\_HKMV> <Vwofvl/3a221f>'
The coefficients in (B.99) satisfy (B.84).

Proof. The proof follows by the tables (), by the product rule for the derivative and by the symmetry
properties of H. O

3.4.3. Canonical transformations. First we consider functions

(3.99) x= > bwlfIDz + 3o 7B T Bu (1 f113), )
|ptv|=Mo+1 |u4v]=Mo

where by, (0) € C°(R,, C) and By, (z, 0) € C®(R, P.(wo)HF*(R3,C?)) for all k and s. Assume

(3.100) by = (by,)” and iBas¥ By, = —(B,,)" for all indexes.

The canonical transformations used in the proof of Theorem are compositions of the Lie transforms

¢ = ¢T }Tzl,
with ¢7 the flow of the Hamiltonian vector field X, (with respect to Qo and only in (2, f)). Let for K > 0
and S > 0 fixed and large

(3.101) Il = > b (LI + D 1B (113 s
Then, the following lemma can be proved like Lemma 9.2 []

Lemma 3.24. Consider the x in (B.99) and its Lie transform ¢. Set (2, f') = &(z, f). Then there are
Gz, f,0), T(z, f,0), Tolz, f,p) and T1(z, f, p) with the following properties.
(1) T € C®UK'"=5" C), Ty,Iy € C°U K5 R), witht! =K"= < C" x H7K'=5"(wp) x R an
appropriately small neighborhood of the origin.
(2) G e C®U K5 HES (W) for any K, S.
(3) The transformation ¢ is of the following form:

(3.102) #'=z+T(z fIF13),
(3.103) 1= TG LTI o) £ 1 Gz, f, || f]13).
(4) There are constants cxr s and cx s k7,5 such that
(3.104) DG LD < errs (Xl + BLO) M7 (1] + 11 gr-rr-50),
(3.105) IG G fllF I s < ersires (Ix] + BLOF) =™,
(3.106) Co(z, £IIFIDN < exr sz (a] + 1 F 1l s -s0)?.
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(5) We have
(3.107) 1113 = 1£13 + Tz, £, 1 F113),
T1(z, £ I1F13)] <
(3.108) ClaM= (2% + 122 fll gr-sermsr + 1F G- —s0)-
(6) We have
(3.109) eiloPe(wo)Bs — oilo¥s 4 (),

where T(r) € C®(R, B(H-K"=5" HK:5)) for all (K, S, K',S"), with norm
1T () g -5t sy < CUK, S, K, S)rl.
More specifically, the range of T(r) is a subspace of LA(H) + LA(H*).
The crux of this section is the following result.
Theorem 3.25. For any integer r > 2 there are a neighborhood Ut of {(0,0)} in PLO see (B.44), and
a smooth canonical transformation Ty : UV° — PLO s.¢.
(3.110) H) i= Ho T, = d(wo) — wolluoll3 + 4 (If13) + Hy” + 27 + R,

where:

(i) HQ(T) = H2(2) for v >2, is of the form (B81) where k:ﬁ;,)(Hng) satisfy (B.89)-(B-84);
(i) Z(") is in normal form, in the sense of Definition below, with monomials of degree < r whose
coefficients satisfy (B.84);
(iii) the transformation T, is of the form (B.103)- (B.103) and satisfies (B.104)~ (B.10d) for My = 1;
(iv) we have R = Zd OR(T) and for all (K, S,K',S") positives there is a neighbourhood U~ -5
0f {(0,0)} in P~K"=5" such that

(1v.0)
RO = Y o [ ks f @)1

=1
and for k: ( . fym, 0) with 'n = (¢,CC), ¢ € C* we have for (z, f) € UK~ and lo] <1

(3.111) ||VZZ,E,C,CC,f,Qka73(" z, fsm, 0)llx.sms,cy < Cp for all I
(iv.1)
RO = 5 o3 [ [aamsatiie s 0@ S)] s
|ptv]=r
(3.112) with HVZ z.c.0¢.f.0H, ( fomy @) lae.s s o8y < Ci for all I;

(iv.2-5) for 2 <d <5,

Ry = / Ey (.2, £ @), I F13)f 2 (@)de + Ry,
with for any 1

(3.113) IV = c e poFa (o 2 £ )l sres (e ((emyence) < Ci,
with F{"(2,0,0,0,0) = 0 and with R T)( I3 s

R (z, f,0) € C®U K5 xR, R),
(3.114) RSV (=, £, 0)] < of [
RS (2, f,0)| < 2l + Lol + 1 fllgg-rcr-s N ser -5

(10.6) RY) = [ra G(A(Po(w)f(2)) - iaXs %1 (Pe(w) f(x)) da.

The proof of Theorem is the same of Theorem 9.1 in [Cucl(] and we skip it. The ingredients
needed in the proof (in particular the notion of normal form) are described above.
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4. NON LINEAR DYNAMICS

4.1. Dispersion. A We apply Theorem for r = 2N; + 1 (recall NjA; < m —wy < (N; +1));). In
the rest of the article we work with the Hamiltonian H (). We will drop the upper index. So we will set
H=H", H=H", A=\ A=\ 7, =2" fora=0,1and R = R"). In particular we will
denote by H,,,, the coefficients G\ of Z{". We will show:

Theorem 4.1. Fiz py > 2 and 19 > 1. Let % =31- %) and a(q) = %, ie. (1+9)(1- %) = % with
0 =1 in Theorem . Consider ko > 3 (as in Theorem Iﬂ) There is a fized C > 0 such that for
g0 > 0 sufficiently small, for € € (0,e9) and for p > py we have the following inequalities:

(4.1) /1] k-2 < O
LY([0,00),B,5 *)
(42) HfHLf([O,OO),H:’jOw*TO) < Ce
(4.3) 1 £12(j0,00), 050y < Ce
(4.4) 2% L2 (j0,00)) < C€ for all multi indezes p with A+ p > m — wo
(4.5) ||ZjHWt1,00([O7OO)) < Ce forallje{l,....,n}.

Notice that, due to time reversibility, it is easy to conclude that @I)f(@) are true over the whole
real line.

The proof of Theorem @ involves a standard continuation argument following [, End of proof
of Theorem I1.2.1]. We assume

(4.6) HfHLp([O .55 1A 20,0y, 150 -70) F Il L2 (p0,77,L50) < Cre
t WU L5, o

(4.7) 12#[| L2 jo,77) < Cae for all multi indexes p with w - 1> m —wo

(4.8) |\zj||Wt},OO([01T]) < Cseforall j € {1,...,n}

for fixed sufficiently large constants C;—C5. Notice that there is an €; > 0 such that this assumption is
true for all [2(0)| + || f(0)]| gro < €1 if say T € (0,1]. We then prove that there exists a fixed g € (0,¢1),
with g9 = £9(C1, O, C3), such that for e € (0,¢0), (.§)-([L§) imply the same estimate but with C;-Cs
replaced by Cy/2-C3/2. This implies that the set of T’ such that ([L6)-(fL.§) is open in R*. Since it is also
closed, it is all R*. Then (f.§)-([L.§) hold with [0, T] replaced by [0, 00) for all |2(0)[+ | £(0)[| gx0 < € < €o.
The proof of Theorem consists in three main steps.
(i) Estimate f in terms of z.
(ii) Substitute the variable f with a new "smaller” variable g and find smoothing estimates for g.
(iii) Reduce the system for z to a closed system involving only the z variables, by insulating the part
of f which interacts with z, and by decoupling the rest (this reminder is g). Then clarify the
nonlinear Fermi golden rule.

Step (i). Using the Proposition [LJ below, we will choose C; > 2K:(C>). This tells us that if we get
upper bounds on Cy and C's, and this is done in Subsection @, then we will have proved Theorem @

Proposition 4.2. Assume ([LA)—([Lg). Then there ezist constants C = C(Cy,Cs, Cs), K1(C2), such that,
if C(Ch,Ca, Cs)e is sufficiently small, then we have

(4-9) HfHLf([O,T],B:Y[);%) + ||f||L$([0,T},H§0'**0) + ||f||L?([O,T],L;o) < Kl(c2)6 :
Proof. Consider Z; of the form (B.89). Set:
(4.10) Hp, = Hyu (LF1I3) for [[£]13 = 0:AF = Aj(wo)-
Then we have (with finite sums)
if = Hf = 20052 H)Pe(wo)Saf = > #Z'HD,
e

(4.11) oSNy

+ Z Z“EV(HM,/ — HSU) + iﬁa22321VfR - 2(6”f”§R)PC(wO)Z3f

A (v—p) [>m—wo,
v <2N 41

In order to obtain bounds on f, we need bounds on the right hand term of the equation especially the
last two terms. They are provided by the following lemma.
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Lemma 4.3. Assume (@) 7(@) and consider a fived 9 > 1. Then there is a constant C = C(Cy,Ca, Cs3)
independent of € such that the following is true: we have BoaX3¥:1V R — 2(8Hf||272) - (wo)Xsf = R1+ Ra
with

[R1]l o < C(Cr, Coy Ca) (|22 + (| £l 11 20)

[ R2l 0.0 < C(Cry Coy Ca)(l2] + 122 + 11l oo ) I FIl oo -
In particular we have for some other fizved constant C = C(Cy,Cs,C3),
(4.13) | Ry toroy < C(Ch, Ca, C3)€?

(4.12)

+ HR2||L2([O T],HE

Proof. ([.13) is a consequence of ([£19) and (f.6)-([.g). We focus on ([.19). For d < 1 and arbitrary
fixed (S, K) we have VRy € H%X. By (iv0-ivl) Theorem

(4.14) HVfRoHHS,K + HVlean,K < C|Z|2N1+2.

”L%([O,T],HZEO)

These terms can be absorbed in R;. For 2 < d < 5 we have

(4.15) 2321VfRd — 2(8”f||2Rd> e (wo) s f = E321Vf73d( z, f,p),
computed at p = ||f||2. By (B.114) we obtain
IV Ra(z, £, 0) | gcrsr < ClFI4E, o for 3<d <5 and

(4.16) _ o
[V R2(z, )”HK’ s SO fll=rr—sr + Clz| | fll gr-xcr =

Since K’ and S’ are arbitrarily large, we have || f|| -« —s/ < || f|| zr+o.—7 - So these terms can be absorbed
in Ry. Other terms are treated as in , Lemma 7.5] : For d = 2,3,4,5 we have schematically

Fyw,z, f, f(t), p) FEAD () + B Fala, 2, fow, plue o) f2UE )

(a1) + 9 ([ Ptz S0 15O L )

9=f
The first line of (f.17) has H**™ norm bounded, for some fixed sufficiently large N, by
C||<ZL'>NFd(:L',Z,f,f(t,SC) )”WkO‘X’H.ﬂ ko —T70

(4.18) ~
+ C||<$>Nade($a Z, fa w, p)w:f(t,z)HWa’;O*“ ||f||d Foo—T0 = Cllf”d ko, =70 + CHinIQ’;o*To

When these terms are bounded by ||f||dlk0 .
from terms in the first line of ({.19) with d = 2. By F) (2,0,0,0,0) = 0 these are less than

(4.19) (Il + 1l yrr=s + IFUZF I oo
and can be absorbed in Ry. Looking at the second line of () and for N sufficiently large, we have

Vg Fa(x, 2,9, f(t,2), || ()lI72)[f (8, 2)] ¥ da ko =
R3

g=f

for d; > 2, we can absorb them in R,. Cases d; = 1 come

(4.20) Iy o DyFa(w,z,g, f(t.2), | f () 72)g=r (W1 [f (£, 2)]*?dc

< CWHsup ) 1Dy Fa(w, z, g, £(t,2), | 0)122)g=r [0l oo I 1 0 ~0 < ClF G500
H;k‘):

So the second line of ([.17]) can be absorbed in Ry. Finally we consider V;Rg = Z1g(|f (¢, x)[>/2) f(t, x).
Then for a fixed C' we have

(4.21) IV Rsll o < ClFINT 11 o

Denote by F the rhs of (f.11]) and set ¢ = 20 5)2H.
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Lemma 4.4. Consider i) — Hi) — o(t)X3P.p = F where P. = P.(wo) and ¥ = P.ap. Let k € R and
70 > 1. Then there exist co > 0 and C > 0 such that if ||| L=[0,7) < co then for p > po > 2 and for (p, q)
as in Theorem E we have

(4.22) Hw”yﬂ (0.11.8" 5 7 )nL2 (o.1],HE~70) — < ClY Oz + CUEN L 0,77, 118+ L3 0,7, 1570

Proof. We apply the argument for the NLS in Lemma B.2 [NS1(], see also Theorem 1.5 [Bec0§. A more
precise statement than Lemma B.2 - is in - Cuc0g], but the proof does not seem easy to
reproduce for Dirac. We fix any § > 0. Let Py = Py(wo) and Ho = Hy,,0. Consider

(4.23) iZ —HP.Z +16PyZ — p¥3P.Z = F.
Then notice that for Z(0) = 1(0) the solution of ([.29) satisfies Z(t) = ¥(t). We rewrite ([29) as
(4.24) \Z —HoZ — p¥3Z = F + (V — HPy —i06Py)Z — o3Py Z.

Let (V — HP; —i0Py) = V1V, with Va(x) a smooth exponentially decaying and invertible matrix, and
with V; bounded from H*s — H*s for all k, s and s'. For U(t) = e~ =2 Jo ¢tV we have

(4.25)  Z(t) =Ut)e P Z(0) — i / t M=y U () [F(') + ViVaZ (1) — o(t' ) Ss PaZ(t)] dt'.
0

coPyVy ' maps H-K'=5" 5 HKS for arbitrarily fixed pairs (K,S) and (K’,S”). By picking ¢y small
enough, we can assume that the related operator norms are small. By Theorems and

12]] .y SCNZO)[ax + CIE Ly g

LpB pﬁL , H o,

+ H‘/l - ( )Z3Pd‘é—1||L?oB(H§1H§*TU)HVYQZ(t)”LfH:’j'

For Tof(t) = Vo [y e ™o =Dt~ (t') Vi f(¢')dt', by (£23) we obtain

k,To

k, +L%H,

(4.26)

t
(I +iTo)VaZ(t) = Vald(t)e™ 0t Z(0) — iVs / =D OU () [F(H) — o(t')SsPaZ()] dt’
0
We then obtain ([.22) if we can show that
(4.27) (7 +1To) ™" = LE([0,T), HY(R?)) — LF([0,T), H*(R?))]| < C1,

for ¢oCy smaller than a fixed number. Tt is enough to prove ({.27) with To replaced by

t
Tof(t) = Vz/ Mo =Dy, £ (¢ dt.
0
Indeed by Theorem we have

~ t . / . ¢! " "
I(To = To) fll2e < | / Voot =0 (25 S )t _ 1Yy (¢ | et | .2
0

~ 1 t _5 1
< CCSH/ (" = )73 f () mrdt || 2 < Ceg [1F ()| L2
0
Set

() V/ (HPA0PO)(E =0V, f() 7‘/2/( (HE =0 p, 4 o=~ PV, ()
0

We have || T} : L2([0,T), H*(R3)) — L2([0,T), H*(R?))|| < Cy for a fixed Cy. For exactly the same
reasons of [NSI(] we have

(I +1To)(I —iTy) = (I —iTy)(I +iTy) = 1.
This yields ([-27) with T, replaced by Ty and with C; = 1+ Cs. 0
Lemma 4.5. Using the notation of Lemma , but this time picking 70 > 3/2, we have
(1.28) ll2o.mr.2) < CIEO) a0 + CIEl Ly 01 s 5 0.10.080 )
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Proof. We proceed as above until ([.25). We claim we have
121z < CNZO) 7m0 + CUE 1y gyro y 2 koo

(4.29) N
+ Vi — p(t) X3PV, )||V22(t)

”LinO'

() will yield ) by the argument in Lemma @ So now we prove () We have for k& > 1/2
le™0t Z(0) | L300 < Clle™ ' Z(0) L2, < C'1Z(0)l|pzrss < C'|Z(0)] v

1||L,L°°B(H§°,H§°’T0

by Theorem . Similarly, splitting F' = Fy + F», we have

t t
H/ eiHo(t’_t)u—l(t/)Fl (t/)dt/”L?Lzo < CH/ eiHo(t/_t)u—l(t/)Fl (t/)dtlHLfBé‘Z
0 0 :
< Ol g v < ClI Bl L1 prvo-

Using B§O72 C L™ for k > 0, by Theorem 3.1 we have for ky > 3

t t )
||/0 eiMolt _t)Z/l_l(t’)Fg(t')dt'HLngo < CH/O min{|t—t’|_%7|tft’|_%}||F2(t')HBfo2dt’

L

S OB 2 pgro < CY[{2) F2
32

Hngl kf’z :C”||F2HL§H’€0va

2255

where we have used |[¢; * a1 < [[(z) 77| p2[[{(z) ™) * Fal|L2 < C"[lp; * ((-)™ F2)]|L2 for fixed C" >0
and fixed 79 > 3/2. With Fy replaced by (ViVa — ¢33P;)Z we get a similar estimate. This yields
inequality ({4.29).

0

Continuation of the proof of Proposition E By () we can apply to f Lemmas @ and @ by
taking ¢(t) = 2() 2 H) and F = rhs(L. 1)) — o(t)[Ss, Pa] f- Then

W om0 Hynzo o —oynizom oy = SV ONite + EWEeyo m mtczio m mto oy
We have
(430) HF”L%HSO-‘,-L?H:O’TU 5 Z HzﬂHif + ||R1||L%H:O + ||R2||L?H:0”'U + erHL?H;kU’*"U'

A-pp>m—wo

For e small this yields Proposition [L.] by Lemma [£.4 and by ([£7).
O

Lemma 4.6. Assume the conclusions of Theorem [ Then there exists a fired C > 0 and fi € Hh
with || fi || gro < Ce such that for J(t) the phase in the ansatz (1) we have

=0.

H*o

(4.31) lim

W9(1)5s Dy i9(0)Ss g
Mgt e f@t)—e € I

Proof. For 4(t) = f(t), for F = rhs([t.11]) — (t)[23, Ps]f and for t; < ta, we have
o= (t2)et ™" f(t2) — U™ (t1)e ™0 f (t1) ] v

< 2 YT [F() + V() — (WU B3 Paf ()] dt! || o <

t1

C( Z ||ZM||L2(t1,t2) + HRlHL}([tl,tQ],HfO) + ||R2||L§([t1,t2],Hf°'s) + ||f||L%([t17t2]7H:0v*T0))'

[XO-pu|>m—wo
Since the latter has limit 0 as t; — +oo, there exists fjr € H*o such that

lim |~ (@) f(t) — e L] e = 0.

t—+oo

Hence, from Ho = D,, — woX3 and U~1(t) = el*s Js )4t we have 0(t) = —two + fot o(t")dt!

(4.32) lim

t—+oo

ei@(t)Zg f(t) o e—itDm f-ll,-

HF*o
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(IL31)) follows from ([.39) if we can prove 0(t) = 9(t) — ¥(0). To prove the claim we substitute R in (2.7)
using (.36) and then replace (z, f) with the last coordinate system obtained from Theorem B.25. Then
we get

(4.33) if —Hf — (0 +wo)Pa(wo)Bsf =G

where G = G1(z, ||f||2) + Ga(z, || f113) f + G5 where G2 € L{° B(H*o:=5 H*0:5) for S a fixed large number,
and G € (LyHF + L?HF0=5). The two equations ([.33) and (f.11)) are equivalent. This implies
G = rhs(f.11]) and ¥ + wo = 20) 7z H. This yields the claim 6(t) = 9(t) — 9(0). O

Step (ii). In the proof of Theorem [.1] consists in introducing the variable

(4.34) g=f+Y, Y := > A2 RY, (A (u—v)HY,.
IN0- ()| >m—wo
Substituting the new variable g in ([.11), the first line on the rhs of (JL11]) cancels out. We have
ig — Hg — 20|53 H Pe(wo)X3g = second line of (.11])+
(4.35)

20, pg HPe(wo)S3Y + Y [0:,Y 05, (Z + R) = 8z,Y 0., (Z+ R)].
k=1

We have:
Lemma 4.7. For e sufficiently small, 71 > 1 and for Co = Co(H) a fixed constant, we have
(436) Hg||L%([O,T],L§’7T1) < CO€+O(€2>'

Proof. Set F = (second line of (f.11]) — ¢(t)[X3, Palg). Then, proceeding as in ({.29), we have
”gHLfLi**"l < He_itHOY(O>HLfLi’7T1 + He_itﬂof(o)”LgLi'*"l =+ CHF”L%H;:CQL?H:’Tl
t
(4.37) +| [ e®~Mogecond line of ()(t’)dt’”L%Li,ffl
+ Vi - @(t)Z3PdV2_1||L$B(L37Li’*’l)||V29(t)||L?m-

x

(4.38) [ Y Ol r2m <€ 3, L

A0 (=) [ >m—wn

We have [le= %0 £(0)[| 2,2 < [[£(0)]z2, < e. We have by Lemma

We have [|second line of )||L,1L2+L5L3n < O(¢*). Similarly [[¢(t)[Ss, Palgll 2,2 < Cellgll 2 2.
AT :

Hence ||F||; 172472727 < Cellgll 2,2~ + O(e?). Now we sketch a bound for the second line of (
thz tlhax il

t
> 1[0y s H(E )2 ()2 (¢) Pe(wo) Ry (X - (= v)Zs Hpdt' | 2201
A0 (p—v)|>m—w
(4-39) [AO-(p—v)|> 0 t
_3 v
< > ||/O (t—t") 2|0y s H(t)2" ()2 (t)]dt || 12 S Ca€?,

IX0- (=) [ >m—wo

where we used Lemma with H replaced by H*. Of the other contributions to the second line of
() we focus on the main ones. Specifically we consider for p; # 0

b 2z 2HzY
@a0) | [ P ) T 0, ZROC (0 D 2 < s, Zol
0 J ' J
(4.41) for Awo) - (p —v) > m — wp.

We need to show

(4.42) 1250z, Zo| 12 = O(?).

Zj
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Let 2°Z° be a generic monomial of Zy. Then O, (222°) = Bj Z?ﬂ, with the nontrivial case for 5; # 0.
J

By Definition we have A(wp) - (o — 8) = 0. can be applied and implies |a| = |G| > 2. Thus

in particular one has

(443) )\(WO) Lo > )\j(wo) = )\(wo) . (M + CY) — )\j (WO) >m — wo .
So the following holds:

27 2270 2¥ 2P ZHz®
ez < = leell——llez < CCC3e "Ml < OOy Cae®.
J J

(4.44) I

5 *d

We conclude that the second line in ([37) is O(€?). The estimates omitted are easier than ([L.4(Q) and
(E43). [Vag|[z2, can be bounded as in Lemma 4. O

4.2. The Fermi golden rule.
Step (iii). We proceed as in [[Cucl(]. We recall Remark B.2J. In particular we will only consider finite

sums
|+ v| < 2N + 3.
We will have X} = Aj(wo) and A; = X;(||f[|3) as in Section B.43. A = \j| S CFe® by [#.4), so in the
sequel we can assume that A" satisfies the same inequalities of \. Set
RY, = RGO (1= ).
We substitute (f1.11)) in i2; = %H(” obtaining

Flarid
i2j = 0z, (Ha + Zo) + Z vi——/{(9,1Bas¥1¥3H,,) + 0z, R

J

A (u—1)|>m—wo J

(4.45) ZIH‘Oth'f‘ﬂ
_ > WT(R;‘ﬁHgﬂ, iBas¥1S5H,,).
A (a—B)|>m—wo J
I\ (u=—v)|[>m—wo

We rewrite this as
(4.46) iz = 8, (Ha + Zo) + &;
v+8 .
(4.47) -3 B> m—wo vy T (R, HY s, 180051 S HY, )

Av>m—wo
AB=Ap<m—woVk s.t. B7#0
Av—Ap<m—woVk s.t. vp#0

(448) - Z ?\-a>m7wg Vj z‘;f” <RIOH205 iﬂa22123H81/>'
‘v>m—wo

Aa—Ap<m—woVk s.t. ap#0
Av—Ap<m—woVk s.t. vp#0

Here the elements in (i.47) will be eliminated through a new change of variables. &; is a reminder term
defined by

&; = rhs(49) — (L47) — ({L49).

Set
U Zv+8 )
C=2 — > R (ﬂﬂ+y) — (RgsHYjs,1BosS N5 H,)
A-B>m—wo J
A-v>m—wo
AB=Apg<m—woVk s.t. B7#0
Av—Ap<m—woVk s.t. vp#0
(4.49) v 24z
+ Z )\0 . (Cj _ V) = <R;—OH20’ iﬂa22123H81/>
J

A-a>m—wq

A-v>m—wo

A%a#X0
Aa—Ap<m—woVk s.t. ap#0
Av—Ap<m—woVk s.t. vp#0

Notice that in (f£49), by A - v > wp — m, we have |v| > 1. Then by ([.7)
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¢ = #llps < Ce S 1212 < CCMe?
(4.50) A A< Tk et an 0
I = 2llzp < C%¢°
with C the constant in ([.5) and M the number of terms in the rhs. In the new variables ([.46) is of the

form

i = 9 Ha((, f) + 0z Zo(C, f) +D;
(451) - Z gac <R(J1r0 aOalﬂa22123H8U>'
A=A\ v>m—wq g-]

Aa—Ap<m—woVk s.t. ap#0
Av—Ap<m—woVk s.t. vp#0

From these equations by >, )\?(Ej&cj (Hy + Zo) — (0¢,(H2 + Zo)) = 0 we get

n

Oy NG =2 Z 7S (D56;)
j=1

4.52 = .
(452) —2 > PUBIS (gag”m;OHgo,1/3a22123H8U>).
A=A\ v>m—wq
Aa—Ap<m—woVk s.t. ap#0
Av—Ap<m—woVk s.t. vp#0

We have the following lemma, whose proof (we skip) is similar to Lemma 4.7 [Cucl]]]:

Lemma 4.8. Assume inequalities (@) Then for a fized constant cy we have

(4.53) Z 1D llLio.ry < (14 Ca)eoe’
J
For the sum in the second line of ([£52) we get

2 Z r\y<R+ Z C*HY,iBasiYs Z H8u>:

(454) r>m—wo A0.a=r A0.y=r .
2 > 9 <R+ > C"HY S5 l > gaHgO] > =2 > (r)H,, $3H?),
r>m-—wo A0-a=r A0-a=r T>m—wo

where H, :=3",.,_, (“HY, and where we have used iﬂOnglEgng = ngiﬂagElHSM = EgiﬂOéQCHBH —
Y3(HY,)* by (B-100).

Lemma 4.9. Consider H, in () Assume m —wo < r <m+wo. Then

(4.55) S (RY(rH,, S3H?) > 0.

If we assume (H:3), in particular if m/3 < wp < m, then () holds for all H,. in (j.54]).

Proof. We proceed as in Lemma 10.5 [] Set F,, = Z,H,, where for Z, see Theorem @ with

w = wg. Set F,. = <Z> Then

S (RS, (r)H,, S3H?) = i S (R (7 + i) Hy, S5H]) = S (R, o (r +i)Fy, S3F7)

b*)

lim &
\O
(456 = mS(Rp, (r+wtic)a,a) = lmS (Rp, (r—w+ieh,
. 1
= 5 lmc|[ R, (r+w +i2)alfe =S (Rp,,(r —w)b.b%) = 3 lim || Rp, (r + +ie)al 32 > 0.

Here we exploited that a,b € L*(R?), that r —w < m and so Rp, (r — w) is a well defined selfadjoint

operator in L?(R?), that Rp,, (z) — Rp,, (2*) = 2iRp,, (2)Rp,, (2*)Sz and that Rp,, (2*) = (Rp,, (2))*.
Let us consider r = A - p with p € Nij, A-pp>m —wp and A - p— A\, <m —w for all k s.t.  pg #0.

Suppose A -y > m + wg. Then we get m —wg + A\ > m +wg = A\ > 2wp. Let N € N such that
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Nidr <m —wo < (Nj, + 1)\, as in [[H:9) Then (2Ny + 1)wo < m. So, if we assume as in that
wo > m/3, we obtain A - u < m + wg. This shows that the assumption A -y > m + wp is absurd. O

Remark 4.10. Notice that to get the conclusions of Lemma @ we can ease the constraint 3w > m to
2N+ 1w >mforallk=1,...,n.

Now we will assume the following hypothesis.
(H:12%) We assume that for some fixed constant C' > 0, for any vector ¢ € C" we have:
b N (ﬁa?’(RIngm1504221231181/))
A=\ v>m—wq

Xa—Ap<m—woVk s.t. ap#0
(457) Av—Ap<m—woVk s.t. vp#0

>C > (Sl

AV a>m—wq
Na—N\)<m—woVE s.t. ap#0

Remark 4.11. Notice that by Lemma @ we have ths(.57)> 0. It is likely then that is true
generically in the class of non linearities we consider. But we do not try to prove this point.

By we have

n

(4.5%) 23 X3 (DG,) 2 0 3 KIGI + > e

Jj=1 Jj=1 AY.a>m—wq
/\O-af)\(,i<m7wg VEk st. ap#0

Then, for ¢t € [0, T] and assuming Lemma @ we have

n
d_NIGOI + > 16 1320, S € + Cae®.
J=1 A a>m—wq

/\U-af)\(,i<m7w0Vk s.t. ap#0

By (.50) this implies HZO‘H%Z(M) < €2+ Cy€? for all the above multi indexes. So, from ||za|\%2(07t) < C3e?
we conclude [|z2%]|7. ) S C2€®.

Note that as the condition | - (1 — v)| > m — w implies that [u + v| > 2, (JL45) implies that # is
integrable so that it has a limit at infinity which is necessarily 0.This yields Theorem @ and completes
the proof of Theorem EI

4.3. Proof of Theorem . We only sketch the proof, which is similar to that of Theorem .
For a particular solution satisfying the hypotheses of Theorem we need to prove the conclusions of
Theorem @ The argument is exactly the same of Section @ until we reach subsection @, that is the
task of estimating z. Instead of ({.51]) we have

i = ej0¢ Ha(C, f) + €0z, Z0(C, f) + ¢4D;

(459) — ¢ > v S (R, HY 1800 %1 Sy HY ).
A=A\ v>m—wq gj

Aa—A<m—woVk s.t. ap7#0
Av—Ag<m—woVk s.t. vp7#0

From these equations by >, )\?(Ej&cj (Hy + Zo) — (0¢, (H2 4 Zo)) = 0 we get
0> NG =2 NS (Di¢;) -
j=1 j=1
(4.60) 9 3 N0 v (T RS Y, 601 S5 )
Aa=2\%v>m—wo

Aa—A<m—woVk s.t. ap#0

Av—Ap<m—woVk s.t. vp#0
The estimate of the reminder term in Lemma @ continues to hold. The last line of () is negative by
(554). We assume it is strictly negative and that in particular ([.57) holds. Then we get
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(4.61) > €S =0 ) e NIGI +2D A3 (D)
' A0 >m—wp j=1 j=1
Na— ) <m—woVE s.t. ap#0

When we integrate in (0,t) for t < T we get

> 1€ 7200,y S € + Coe?.
AYa>m—wq

Na—Al<m—wo Yk s.t. ap#£0

In the rhs we have used the hypothesis |z(t)| < e for all £ > 0 to bound the first summation in the rhs of

(561)). This yields Theorem .14

4.4. Proof of Theorem . Also here we just sketch the proof, which is similar to [Cuc09]. The
proof is by contradiction. If the statement of Theorem B.1§ is wrong, then for |z(0)|+ || f(0)|| gxo < & with
d > 0 sufficiently small, we can assume |z(t)| < € for all t > 0 for any preassigned € > 0. This implies
that we can apply Theorem . When get

(4.62) $ ||ca|\Lz<0t><Zsj (16O — 16®P) +2 / ZA?%(DJ»@)
=1

AYa>m—wq
Aa— A\ <m—woVk st. ap#0

Suppose ¢, = —1. Then take initial datum z;(0) = 0 for j # jo, 2z, = ¢ and f(0) = 0. By f(0) =0 and
Lemma (@) for 1(0) = 0 we get for t € R

2
(463) HfHL 02 meszO 7"00L2L < y + ||R1HL%H§O + HRQHL?HSO,TO
(I
where
(4.64) V? = > 2%l -
A pu>m—wp
)\0~,u7)\2<m7w0Vk s.t. prp#0
Similarly
(4.65) gl 22— S 0%+ X + IRl 1y ko + B2l 2 grio-mo-

Then, proceeding as in [Cuc09, [Cucll] one improves the rhs in (£53). Indeed, see Lemma 4.9 [Cucll],

we have
S IDE ok < CVlgll sz oe + OV + ClIRll syt + CllBall o
J
Then, one can see that ||R1||L1Hk0 + ||R2||L2Hk0 - < 0(1)8, going through Lemma [.3, where o(1) — 0
as § — 0. Then from ([£.63) we get

V* < =6 +o(1)s,

which is absurd.

APPENDIX A. RESOLVENT ESTIMATES
A.1. Resonances for H,.

Definition A.1. We will say that a point A € R with |A\| > m — w is a resonance if one of the following
two equations admits a nontrivial solution:

(A1) (1+Ry, (WVo)u=0, ue L» 7(R?C®) for some 7 > 1/2 and u(~z) = fE3u(z);
(A2)  (1+Ry, (MVo)u=0, ue L>» 7(R?C®) for some 7 > 1/2 and u(—=) = fE5u(z).
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A.2. Estimates on the resolvent.

Lemma A.2. We assume 7. Then for any T > 1 there exists a constant C; = C1(1,w)
upper semicontinuous w s.t. for any ug(z) € L2(R3,C®) and any e > 0 we have

(A.3) [{z) ™" Ry, (A i) Pe(How)uol Ly ,we) < CrllPe(He)uol L2 ws)-
Proof. Notice that by Lemma for any 7 > 1, any ug(z) € L?(R3,C8) and any ¢ > 0 we have

(A.4) 1{2) ™" Ry o (A Ei8)uo| 1 L (rs) < C(7)|uol|L2(s)-

Let ugp = P.(Hw)uo, A(z) = (x)~7 and B(z) € S(R?, B(C8,C?)) s.t. B*A=1V,,. Then

(A.5) ARy, (z)uo = (1 + ARy, ,(2)B*) " ARy, (2)uo.

Pick dp > 0 sufficiently small so that by for any \;(w) € 0q(Ho) we have |\;(w)] < m —w — .
Then by (A4) and (A.H), Lemma [A.] is a consequence of the Lemma [A.3 below. O

Lemma A.3. Let A(z), B(z) be as above in (A5). Then, if we assume [(H:3), [H:6) and [H:T), there

exists a constant Co = Ca(T,w) upper semicontinuous in w such that for any € > 0 we have

(A.6) sup [(1+ AR, (A £i6)B*) I pr2,12) < Co.
A€ (R\[-m~+w+dg,m—w—0d0])

For any T > 1 the following limit
(A7) Ry, (N = &1{% Ry, (A £ i)

exist in B(HY™, L2~7) and the convergence is uniform for X\ in compact sets.
Proof. First of all we prove (@) in low energies. We have

(A.8) sup |(1+ ARy, (A £ iE)B*)_lnB(Lg,Lg) < oo V fixed pq > 0.
AE([—M7/11]\[0—2”*2;'*'501”1—@0—50]
€

We know: z — ARy, ,(z)B* is a holomorphic map with domain C\R and values in B(L3,L2); (1 +
ARy, (A +ie)B*)~! is defined for all z € C\R. Furthermore, lim.\ o ARy, , (X £ie)B*, by (ii) Lemma
, exists in B(L2,L2) and the convergence is uniform for A in compact sets. Then we apply Lemma
7.5 [Ber82 and conclude that, outside closed sets 't C R with 0 Lebesgue measure in R, the map
z— (1+ ARy, ,(2)B*)~! extends in a continuous map defined in {z : Sz > 0}U(R\I'") (resp. {z: Sz <
0}U(R\I'™)) with values in B(L2, L2). Given A € I'" there exists ¢ € L3\{0} with ¢ = —ARy,  (A)B*¢.
But then, by standard arguments u := R;Qw ,(A)B*% is a nonzero solution of (A7]). But by section
and by hypotheses (H7)—(HS), it follows that the intersection I'* with R\(—m + w + dg,m —w — dp) is
empty. Given A\ € '~ there exists 1 € L2\{0} with ¢ = —AR; ((A)B*Y. Then v := Ry, (A\)B* is
a nonzero solution in L?~7, for 7 > 1/2, of (1 + Ry, (MVw)v = 0. But then, by Lemma B4 we have
(1+R7tw70(7/\)vw)210v = 0. Once again, no such nonzero v can exist for A € R\ (—m+w+0dg, m—w—0do).
Having considered the low energy case (@), we consider for p; any fixed large real number:

(A.9) s 10+ AR (B s o) < O
ZH1

For definiteness we will consider A\ > u;. We consider the expansion

oo

(A.10) 3 (AR?E[M(A)B*)@ .

£=0
We start now the implementation of the high energy argument in [EGS0Y. We have

+
(A1) r 0= (0T e (L)) - REAG)



ON STABILITY OF STANDING WAVES OF NONLINEAR DIRAC EQUATIONS 37

where
 (REa e (A +w)D) 0
(A.12) = ( - 0 REN (A= W)2)12>
' _ (ANY) 0 (A= (-Dw+m —ioc -V
A V) = ( 0 A V)) L AY) = ( e (njwm).

For definiteness let us consider RH . Let now xo,%0 € C§°(R) by cutoffs supported near 0 and let
X1:=1—x0 and ¢y :=1— 1. We can choose them so that

(A.13) x1 (lz = wl) = o (|2) ¢1 (1y]) + 1 (J2]) Yo ([y1) + 1 (1)) 1 (1y])) xa (2 = yl)
We split for a fixed large number My > 0

R+A+m2((>\ - (71)jw)2a xz, y) = Z le(/\7 xZ, y) ’

(A.14) =
eV A= (=1)Jw)?+m?|z—y| |z — y|
Rei(A = .
Z]( ,x,y) 47T|ZL' 7y| Xe ( MO )
By (A.13)-(A.14) we have ¢y, with limag, 5400 car, = 0 s.t. for j =0,1
(A.15) [AR1; (M) B* | B(r2,12) < cuo-
Then by [|[ARE \(\)B*||p(z2,12) < C, for fixed C’
(A.16) |ARo;(\)B* || z2,12) < C".
We have
2 2 _
‘ _\pt _(—1Y¥ m- lz =yl
(A.17) Ro;(\, 2,y) = AR, <\/(1 (—1) /\) + 5 ,Ax,Ay) Xo ( )

Key to the fact that ([A.g) follows quite directly from [EGS0{] is the fact that we can write

wy2, m? o —yl\ _ el brj(z — yl)
Al + \/ - (—1)2 = (Jo = yl) + = ———-
(A.18) RA< ( ( ))\) ey xo { Sgp 7 g alle =D+ ==

with

}a&’? }<CMoa Kyt vE>0, al)(r)=0 vYo<r<1

A.19
(A.19) W

(Mo,k) Yk>0, b)(r)=0 Vr>2.

Notice that (A.1§)-(A-19) are formulas of the same type of (3.2)-(3.4) [EGS0J]. As a consequence for
any fixed small §gp > 0 there are £y = £(do) and p1 = p1(dp) such that for A > p; we have

a0 (o (L) i)

< dp.

B(LE,L3)

Then for ¢ large
£
< 2°(20")¢5,° .

| | + * | | + * ‘
(AXO(A Ry oWB" + A (37 ) BB
B(L3,L32)

For 0y sufficiently small, (A.21)) implies ([A.9). O

A.3. Wave operators and similarity. We start stating a corollary of Lemma @

Theorem A.4. Assume the hypotheses of Lemma [A.. Let A, B* € S(R®, B(C?,C?)) s.t. V,, = B*A.
Then there are isomorphisms Wy : L*(R3,C®) — L%(H,) and Z+: L?(H,) — L*(R3,C?), inverses of
each other, defined as follows: for u € L*(R3,C®), v € L%(H,,),

(A.21)

1

Wiu,v*) = (u,v") F 615& 7 / (AR, ,(A £ i€)u, (BRy (N £ i€)v)")dA;

(A.22)

(Zov,u) = (v, u") + lim —— / (ARyy (A i€)v, (BRys (A ie)u)*)dA.
s ,

e—0+ 27i
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For any Borel function f: R — R we have

(A.23) B(Huw,o) = Z4B(Ho)Pe(Hu)Wy = Z_B(Hu) P.(Hu)WV-.

In particular, Wy (resp.Z4 ) define isomorphisms H*(R3, C8) — P.(H.,)H*(R3,C?) (resp. and viceversa)
for all k. We also have

Weu= lim eltMee=itHuoy for all u € L?(R3,C8);

A.24 . .
( ) Ziv= , liin eltHwoe=iHoy for all v € L2(Hy,).
—> 00

Proof. The proof follows by Lemma [A.d by means of the argument for Theorem 1.5 [Kat6d]. (A.24)
follows by Theorem 3.9 [Kat6(]. O

Lemma A.5. For any T > 1 and any u € H*>™ we have:
1
27Ti G'e(Hw)

Proof. By Corollary @ and by the spectral Theorem, see p.81 volume II [[Lay9(], we have

(A.25) P.(Hy)u (Rf,_(\) — Ry (\)) udA.

1
P.(H =WZu=—1limW li R A+ie)— R A —ig)) Zud.
e(HuJu YT o N0 aoo oe(Hw)N[~aa] (Rrtua 3 i€) = Bro 2~ ic)) 20
Hence by Theorem (.4
1
P.(H = —lim li Ry (AN +1ie) — Ry, (A —ig)) udA
(o Ju 27 EI\I(I%) aI/H;o Ue(Hw)ﬁ[—a,a]( ol i) ol ie)u
L i (Ros (A + i) — Rag, (A — ie)) Hou'
= — l1m 1am 1€) — — 1€ U—F
271 eN0a, oo oe(Heo)N[—a,al Ho Ho “ AQ
In the last formula the two limits commute. So
1
A.26 P.(Hy)u = — lim Rf, (\) — Ry, (\)) ud\.
( ) ¢ « 27 a /oo Ue(Hw)m[_a7a] ( He He )
The rhs of (]A.24) is what we mean in the rhs of (|A.2). O
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