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ON STABILITY OF STANDING WAVES OF NONLINEAR DIRAC EQUATIONS

NABILE BOUSSAID AND SCIPIO CUCCAGNA

Abstract. We consider the stability problem for standing waves of nonlinear Dirac models. Under a
suitable definition of linear stability, and under some restriction on the spectrum, we prove at the same
time orbital and asymptotic stability. We are not able to get the full result proved in [Cuc10] for the
nonlinear Schrödinger equation, because of the strong indefiniteness of the energy.

1. Introduction

In this paper we study the stability of standing waves of a class of nonlinear Dirac equations (NLDE).
We assume a number of hypotheses on these standing waves, about their smoothness and exponential
decay to 0 at infinity. We also assume that they form families smoothly dependent on a parameter.
We then partially characterize, under a number of further technical hypotheses, their stability and their
instability. We succeed partially in transposing to NLDE results proved for the nonlinear Schrödinger
equations (NLS) in [Cuc10] and in previous references. We recall that [CL82, Sh83, SS85, Wei85, Wei86,
GSS87, GSS90] contain a quite satisfactory characterization of the orbital stability of standing waves of
the NLS. They do not apply to the Dirac equation, due to the strong indefiniteness of the energy. In this
paper we initiate a theory of stability in the case of the NLDE, using ideas coming from the theory of
asymptotic stability which are less sensitive to indefiniteness of the energy. This idea is explored also in
[PS10] in a very special situation.

1.1. The nonlinear Dirac equation. We consider for m > 0 a NLDE

(1.1)

{
iut −Dmu+ g(uu)βu = 0

u(0, x) = u0(x)
(t, x) ∈ R× R

3

where Dm = −i
∑3
j=1 αj∂xj

+mβ, with for j = 1, 2, 3

αj =

(
0 σj
σj 0

)
, β =

(
IC2 0
0 −IC2

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
.

The unknown u is a C4-valued function and given two vectors of C4, uv = u · v is the inner product in
C4, v∗ is the complex conjugate, u · v∗ is the hermitian product in C4, which we write as uv∗ = u · v∗
and denote

u = βu∗

so that uu = u · βu∗.
Note that

(1.2) αjαℓ + αℓαj = 2δjℓIC4 , αjβ + βαj = 0 , β2 = IC4

thus the operatorDm is self-adjoint on L2(R3,C4), with domainH1(R3,C4) and we haveD2
m = −∆+m2.

The spectrum is σ(Dm) = (−∞,−m] ∪ [m,+∞), see [Tha92, Theorem 1.1].

1.2. State of the art. The equation in §1.1 arises in Dirac models used to model either extended
particles with self-interaction or particles in space-time with geometrical structure. In the latter case,
physicists have shown that a relativistic theory sometimes imposes a fourth order nonlinear potential (i.e.,
a cubic nonlinearity) such as the square of a quadratic form on C

4; see Rañada [Ran] and the references
therein. The associated stationary equation is called the Soler model, [Sol70], as it was proposed by Soler
to model the elementary fermions.

In our study, we assume the existence of stationary solutions as well as a number of properties like the
smooth dependence on a parameter, the smoothness and the fact that they are rapidly decaying. These
are not well established properties. Stationary solutions were actively studied in the last thirty years. The
following authors used a dynamical systems approach: Cazenave and Vázquez [CV86], Merle [Mer88],
Balabane, Cazenave, Douady and Merle [BCDM88] and [BCV90] . It is also possible to exploit the
variational structure of the stationary equation, see Esteban and Séré [ES95]. A perturbation approach
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yielding stationary solutions of the NLDE from solutions of the NLS is considered in Ounaies [Oun00]
and Guan [Gua08].

Turning to the stability of stationary solutions, [SV86] frames the problem of stability of the Soler
model within the framework of [SS85], without attempting a proof.

Some partial results involving small standing waves obtained by bifurcation from linear ones, when
Dm replaced by H := Dm + V with V a nice potential, are obtained in [Bou06, Bou08b]. [Bou08b]
shows that if a resonance condition holds, the space splits into a stable manifold outside which any initial
condition leads to instability. If the resonance condition is not fulfilled, the stability problem is left open.
The results we present here answer this question and can be used to clarify [Bou06].

Komech and Komech [KK10] prove the existence of global attractors in model involving a Dirac
equation coupled to an harmonic oscillator.

The stability problem for the 1 dimensional NLDE is discussed under very restrictive hypotheses by
Pelinovsky and Stefanov [PS10], who reproduce for the 1 D NLDE an analogue of the result in [SW92].
Notice that our theory can be adapted to extend these results.

1.3. Hypotheses. We assume the following hypotheses (H:1)–(H:12).

(H:1) g(0) = 0, g ∈ C∞(R,R); g even, g(−r) = g(r).
(H:2) There exists an open interval O ⊆ (m/3,m) such that Dmu − ωu − g(uu)βu = 0 admits a C∞

family of solutions ω ∈ O → φω ∈ Hk,τ (R3) for any (k, τ), see (1.3) for a definition. In spherical
coordinates x = ρ cos(ϑ) sin(ϕ), y = ρ sin(ϑ) sin(ϕ), z = ρ cos(ϕ), the standing waves are of the
form

φω(x) =




a(ρ)

[
1
0

]

ib(ρ)

[
cosϕ
eiϑ sinϕ

]




with a(ρ) and b(ρ) real valued and satisfying the following properties:

a, b ∈ C∞([0,∞),R) ,

∀r ≥ 0, a2(ρ)− b2(ρ) ≥ 0,

a(j), b(j) decay exponentially at infinity for all j.

Moreover, notice that φω(−x) = βφω(x).
(H:3) Let q(ω) = ‖φω‖2L2 . We assume q′(ω) 6= 0 for all ω ∈ O.
(H:4) For any x ∈ R3 we consider in (1.1) initial data s.t. u0(−x) = βu0(x).
(H:5) Let Hω be the linearized operator around eitωφω , see Section 2. We assume that Hω satisfies the

definition of linear stability in Definition 2.7.
(H:6) Hω has 2n nonzero eigenvalues, counted with multiplicity, all contained in (ω −m,m− ω). The

positive eigenvalues can be listed as

0 < λ1(ω) ≤ ... ≤ λn(ω) < m− ω

where we repeat each eigenvalue according to the multiplicity. For each λj(ω), also −λj(ω) is an
eigenvalue (this symmetry follows from(2.14)). There are no other eigenvalues except for 0.

(H:7) The points and ±(m− ω) and ±(m+ ω) are not resonances for Hω , see Definition A.1.
(H:8) There are no resonances for Hω in the essential spectrum σess(Hω).
(H:9) There are natural numbers Nj defined by the property 0 < Njλj(ω) < m− ω < (Nj + 1)λj(ω).

(H:10) There is no multi index µ ∈ Zk with |µ| := |µ1|+ ...+ |µk| ≤ 2N1 + 3 such that µ · λ = m± ω.
(H:11) If λj1 < ... < λjk are k distinct λ’s, and µ ∈ Zk satisfies |µ| ≤ 2N1 + 3, then we have

µ1λj1 + · · ·+ µkλjk = 0 ⇐⇒ µ = 0 .

(H:12) The nonlinear Fermi golden rule (4.57) is true.

1.4. Main results. The main result in this article is the following one.

Theorem 1.1. Suppose that O ⊂ (m/3,m) and fix k0 > 3. Pick ω0 ∈ O and let φω1(x) be a standing
wave of (1.1). Let u(t, x) be a solution to (1.1). Assume (H:1)–(H:12). Then, there exist an ǫ0 > 0
and a C > 0 such that for any ǫ ∈ (0, ǫ0) and for any u0 with ‖u0 − eiγ0φω1‖Hk0 < ǫ, there exist ω+ ∈ O,
θ ∈ C1(R;R) and h+ ∈ Hk0 with ‖h+‖Hk0 + |ω+ − ω1| ≤ Cǫ such that

lim
t→+∞

‖u(t, ·)− eiθ(t)φω+ − e−itDmh+‖Hk0 = 0.
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Remark 1.2. The constraint 3ω > m allows to exploit the Fermi golden rule in the same way of what
done in the case of the NLS in [Cuc10]. The constraint 3ω > m can be eased to (2Nj + 1)ω > m for
all j = 1, ..., n, see Remark 4.10. These constrains are a consequence of the strong indefiniteness of the
Dirac system. We expect that these constraints can be eased.

Remark 1.3. It is possible to construct examples of “small solitons” by bifurcation from linear standing
waves like in [Bou06, Bou08b, PS10, SW89, SW92], to which our result will apply if we assume an
analogue of (H:12) and after some relatively minor points of linear theory have been worked out.

Remark 1.4. Except for the smoothness with respect to the parameter ω, for some non-linearities (H:2)
is a consequence of [ES95]. Notice that [Gua08] proves continuous dependence on ω for some examples.

Remark 1.5. The regularity and the exponential decay of the solution can be proved by the Combes-
Thomas method, see [His00].

Remark 1.6. The hypothesis that there are no eigenvalues λ ∈ (m − ω,m+ ω) is not obvious. There is
such an eigenvalue in 1D, see [BC09].

Remark 1.7. Assumption (H:7) is just part of (H:8). In the case of the NLS it is proved that a resonance
in the interior (in R) of the continuous spectrum of Hω is necessarily and eigenvalue, see [CPV05]. In
this case (H:8) is a consequence of (H:7) and (H:6). Unfortunately, in the case of the Dirac system
we are not able to prove an analogous result, except for resonances contained in (−ω +m,ω −m) or for
large energies. This is yet a consequence of the strong indefiniteness of the energy of the Dirac system.
We expect that (H:8) can be eliminated whenever Assumption (H:6) holds.

Consider ξ ∈ ker(Hω − λj(ω)). One of the requirements for linear stability in Definition 2.7 is that if
ξ 6= 0 then 〈ξ,Σ3ξ

∗〉 > 0. As it might seem artificial, we prove what follows.

Theorem 1.8. Suppose that O ⊂ (m/3,m). Pick ω ∈ O and let φω(x) be a standing wave of (1.1).
Replace (H:5) with the following assumption:

(H:5’) We assume that Hω satisfies all the conditions of Definition 2.7 except for condition (4) which
we restate as follows. That is, we assume that for any eigenvalue λ > 0 the quadratic form
ξ → 〈ξ,Σ3ξ

∗〉 is non degenerate in ker(Hω − λ). We assume that there exists at least one
eigenvalue λ > 0 such that the quadratic form is non positive in ker(Hω − λ).

Assume (H:1)–(H:4), (H:5’) and (H:6)–(H:12). Then φω(x) is orbitally unstable.

In this article we follow the argument developed in [Cuc10] for the NLS. The Dirac equation is harder
than the NLS also because less is known about the existence of families of solutions in C1(O, H1(R3))
of standing waves. It is well known that the classical methods to prove orbital stability, see [CL82,
Wei86, GSS87, GSS90], which are based on the positivity of certain functionals, do not apply because
of the strong indefiniteness of the energy. As already mentioned, some initial results for the Dirac
equation are in [Bou06, Bou08b, PS10]. Like in these articles, we exploit the dispersive properties of
the linearizations, adapting the methods used to prove asymptotic stability for the Schrödinger equation,
which were initiated in [SW89, SW92, BP92, BP95] and developed by a substantial number of authors,
see the references in [Cuc10]. One of the difficult issues for the NLS, is to prove that the energy of
the discrete modes associated to the eigenvalues in (H:6) leaks either in the radiation part or in the
standing wave. The solution to this problem was initiated in [BP95], where the eigenvalues are close
to the continuous spectrum, and solved in quite general form in [Cuc10], see also [BC09, Cuc11]. We
refer to [Cuc10] for a discussion of the fact that it is essential to exploit the hamiltonian structure of the
equation. In this article we follow the same framework of [Cuc10] obtaining similar results. We need to
develop some of the linear theory of dispersion, which in the case of the NLS had been developed in the
course of a decade, see [Cuc01, CPV05]. Key to dispersion theory is the proof of smoothing estimates
for Schrödinger operators with magnetic potentials in [EGS09]. There are two points in the article where
the strong indefiniteness of the energy interferes with our method. We expects these difficulties to be
technical and solvable. The main difficulty occurs in the proof of the positive semidefiniteness of the
key coefficients in the Fermi golden rule (FGR). Another difficulty occurs with resonances, requiring
the explicit assumption of their absence inside the continuous spectrum, see Remark 1.7. Notice that
in the case of small solitons considered in [Bou06, Bou08b, PS10] the absence of resonances comes for
free, while these references do not have to address the FGR because of their restrictive hypotheses. To
prove the positive semidefiniteness and overcome the FGR difficulty, we use the hypothesis 3ω > m.
This hypothesis is unnecessary if there are no eigenvalues λ’s, or can be weakened if they are close to 0.
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Indeed, in the case all Nj in (H:9) are large, then the hypothesis 3ω > m can be considerably relaxed,
see Remark 4.10. This is somewhat odd, considering that the case with all Nj large was the hardest in
[Cuc10].

The instability result in Theorem 1.8 arises from our desire to justify hypothesis (4) in our definition of
linear stability, see Definition 2.7. The proof of Theorem 1.8 is similar to [Cuc09]. That is, we show that
orbital stability implies asymptotic stability, and we then show that this is incompatible with (H:5’).
All the proofs are conditional on (H:12), that is that a certain non negative quantity is actually positive.
Presumably this is true generically.

1.5. Notation and preliminaries. We consider spaces

(1.3) Hk,s(R3,C4) =
{
f ∈ S ′(R3), ‖〈x〉s〈∇〉kf‖2 <∞

}

for s, k ∈ R with norm ‖f‖Hk,s = ‖〈x〉s〈∇〉kf‖2. Sometimes we will write Hk,s
x to emphasize the inde-

pendent variable x. If k = 0, we write L2,s instead of H0,s.
For k ∈ R and 1 ≤ p, q ≤ ∞, the Besov space Bkp,q(R

3,Cd) is the space of all tempered distributions

f ∈ S ′(R3,Cd) such that

‖f‖Bk
p,q

= (
∑

j∈N

2jkq‖ϕj ∗ f‖qp)
1
q < +∞

with ϕ̂ ∈ C∞
0 (Rn \ {0}) such that

∑
j∈Z

ϕ̂(2−jξ) = 1 for all ξ ∈ R3 \ {0}, ϕ̂j(ξ) = ϕ̂(2−jξ) for all j ∈ N∗

and for all ξ ∈ R
3, and ϕ̂0 = 1−

∑
j∈N∗ ϕ̂j . It is endowed with the norm ‖f‖Bk

p,q
.

Given a vector u, by u∗ we will denote the vector whose coordinates are the complex conjugates of
those of u.

Given two vector of C4 or C8, uv = u · v is their inner product, u · v∗ is their hermitian product, which
we write as uv∗ = u · v∗. We denote by β either the 4-dimensional hermitian matrix defined above or (by
an abuse of notation and depending on the context) the 8-dimensional hermitian matrix

(1.4)

(
β 0
0 β

)
.

For A a closed operator on a Hilbert space X , we will denote by RA(z) the resolvent of A at any z in the
resolvent set of A. That is the inverse of A− z whenever it is invertible with bounded inverse from the
domain of A to X .

1.6. Structure of the article. The paper is organized as follows.
In Section 2, we study of the linearization of (1.1) around a stationary solution. In particular in a

neighborhood of a stationary state we introduce an appropriate coordinate system related to the spectral
decomposition of the linearized operator. Estimates on such operators are discussed in part here and in
part in the appendix.

In Section 3 we discuss the Hamiltonian structure of the system, and in particular we look for canonical
coordinates. We then apply the method of Birkhoff normal forms, referring for proofs to [Cuc10].

In Section 4 we discuss scattering of the continuous modes and dissipation of discrete modes, proving
the semipositivity of in the Fermi golden rule for ω > m/3, or more generally if the elements of σd(Hω)
are all close to 0.

2. Set up and linear estimates

2.1. Linearization, modulation and set up. Since our ambient space is Hk0(R3,C4) with k0 > 3
and so in particular k0 > 3/2, under (H:1) the functional u → g(uu)βu is locally Lipschitz and (1.1) is
locally well posed, see pp. 293–294 volume III [Tay96]. Consider the solution u(t, x) of (1.1). Then by
(H:4) we have u(t,−x) = βu(t, x). We write the ansatz

(2.1) u(t, x) = eiϑ(t)(φω(t)(x) + r(t, x)).

Inserting (2.1) in (1.1) we get from the definition of φω

(2.2)
irt = Dmr − ω(t)r − g(φω(t)φω(t))βr − g′(φω(t)φω(t))(rφω(t))βφω(t)

− g′(φω(t)φω(t))(φω(t)r)βφω(t) + (ϑ̇(t) + ω(t))(φω(t) + r) − iω̇(t)∂ωφω(t) + n(r),
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where n(r) = O(r2) is defined by

n(r) := g((φω(t) + r)φω(t) + r)β(φω(t) + r)− g(φω(t)φω(t))βφω(t)

− g′(φω(t)φω(t))(rφω(t))βφω(t) − g′(φω(t)φω(t))(φω(t)r)βφω(t).

We denote by C : C4 → C4 the charge conjugation operator:

(2.3) uc := Cu := iβα2u
∗.

it satisfies the following properties (see [Tha92, Section 1.4.6]) :

∀j ∈ {1, 2, 3}, αjC = Cαj and βC = −Cβ,
and since it is anti-linear for any u ∈ C4, C(u∗) = (Cu)∗.

Remark 2.1. For more details we refer to [Tha92, Section 1.4.6]. This choice for the charge conjugation
is due the choice we made for the coefficient of the Dirac operator, which is the standard one. If we
had chosen the Majorana representation for the coefficient then the charge conjugation would have been
simply the complex conjugation. These two representations of Dirac operators are unitary equivalent.

We thus obtain the following lemma.

Lemma 2.2. For any vector v ∈ C4 we have C2v = v. Moreover if (H:1) holds, then we have:

(2.4) C(iv) = −ivc, vv = −CvCv, g(vv) = g(vcvc), g′(vv) = −g′(vcvc), C(βv) = −βvc.
For any function w ∈ C1(R3,C4) we have C(Dmw) = −Dmw

c. Finally, for u0 satisfying (H:4) we have
uc0(−x) = −βuc0(x).

Applying −C to (2.2) or (1.1) we obtain

(2.5)
irct = Dmr

c + ω(t)rc − g(φω(t)φω(t))βr
c + g′(φω(t)φω(t))(r

cφcω(t))βφ
c
ω(t)

+ g′(φω(t)φω(t))(φ
c
ω(t)r

c)βφcω(t) − (ϑ̇(t) + ω(t))(φcω(t) + rc)− iω̇(t)∂ωφ
c
ω(t) − Cn(r).

We set

(2.6)

U =

(
u
uc

)
, R =

(
r
rc

)
, Φω =

(
φω
φcω

)
, N(R) =

(
n(r)

−Cn(r)

)
=

(
n(r)

−n(rc)

)

Hω = Hω,0 + Vω, Hω,0 =

(
Dm − ω 0

0 Dm + ω

)
,

Vω = g(φωφω)β + g′(φωφω)

(
−(βφ∗ω )βφω (β(φcω)

∗ )βφω
−(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)
.

where in this context β is meant in the sense of (1.4) or (2.8) below and where the parenthesis (φ )
stands for the map r 7→ φr.

Therefore we have:

(2.7) iṘ = HωR+ (ϑ̇(t) + ω(t))(Σ3Φω +Σ3R)− iω̇∂ωΦω +N(R),

where

Σ1 =

(
0 IC4

IC4 0

)
,Σ2 =

(
0 iIC4

−iIC4 0

)
,Σ3 =

(
IC4 0
0 −IC4

)
.

Notice that by (H:4) and Lemma 2.2 we have for Υ(x) ∈ {Φω(x), R(t, x)}

(2.8) Υ(−x) = βΣ3Υ(x) where β =

(
β 0
0 β

)
.

2.2. Energy, charge and symmetries. The following result is an elementary but crucial remark in
our study. It expresses the energy and the charge as a symmetric bilinear (block anti-diagonal) forms on
L2(R3,C8). In the following lemma, we denote by 〈· , ·〉 the inner product of L2(R3,C8).

Lemma 2.3. Let UT = (u,Cu). Set for G(0) = 0 and G′(s) = g(s)

(2.9)

E(U) = EK(U) + EP (U) , EK(U) =

∫

R3

(Dmu)u
∗dx , EP (U) = −

∫

R3

G(uu)dx,

Q(U) =

∫

R3

uu∗dx.
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Then E(U) and Q(U) are invariants of motion for (1.1) and we have

(2.10)
E(U) =

1

2
〈iβα2Σ3Σ1DmU,U〉 −

∫

R3

G

(
1

2
U · iα2Σ3Σ1U

)
dx

Q(U) =
1

2
〈U, iβα2Σ1U〉

and U satisfies system

(2.11) iU̇ = iβα2Σ3Σ1∇E(U).

Proof. For any symmetric operator A acting on L2(R3,C4) with the domain invariant by C and anticom-
muting to C and any u ∈ D(A),

u · (Au)∗ =
u · (Au)∗ + u∗ · (Au)

2
=
u · iβα2CAu + iβα2Cu ·Au

2

=
−u · iβα2Au

c + iβα2u
c · Au

2
=

−u · iβα2Au
c + uciβα2 ·Au
2

=
i

2
U · βα2Σ3Σ1AU

where we write A for

A =

(
A 0
0 A

)
.

If A is commuting to C then a similar calculation shows

〈u, (Au)∗〉 = i

2
〈U, βα2Σ1AU〉

This identities for A = Dm, A = β or A = I proves the lemma. �

We consider now the bilinear map

(2.12)

〈(
r1
r2

)
,

(
s∗1
s∗2

)〉
=

∫

R3

(r1 · s∗1 + r2 · s∗2)dx.

By H∗
ω we denote the adjoint of Hω w.r.t. (2.12). We have:

Lemma 2.4. We have

H∗
ω = Σ3HωΣ3(2.13)

Hω = −CΣ1HωCΣ1 where C =

(
C 0
0 C

)
(2.14)

Vω(−x) = βΣ3Vω(x)βΣ3 with β in the sense of (2.8).(2.15)

Proof. First of all, (2.13)–(2.14) hold with Hω replaced by Hω,0. It remains to check them with Hω

replaced by Vω . We have V ∗
ω = Σ3VωΣ3 by

(2.16) Σ3

(
−(βφ∗ω )βφω (β(φcω)

∗ )βφω
−(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)
Σ3 =

(
−(βφ∗ω )βφω −(β(φcω)

∗ )βφω
(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)

and from the fact that the matrix in rhs(2.16) is the adjoint of the matrix in lhs(2.16). (2.14) holds with
Hω replaced by Hω,0 by Lemma 2.2. We have

(2.17)

CΣ1

(
−(βφ∗ω )βφω (β(φcω)

∗ )βφω
−(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)
=

− C

(
−(β(φcω)

∗ )βφcω (βφ∗ω )βφcω
−(β(φcω)

∗ )βφω (βφ∗ω )βφω

)
Σ1 =

−
(
(β(φcω)

∗ )∗βφω −(βφ∗ω )∗βφω
(β(φcω)

∗ )∗βφcω −(βφ∗ω )∗βφcω

)
Σ1.

We have for v ∈ C4

(β(φcω)
∗v)∗ = β(iβα2φ

∗
ω)v

∗ = −βφ∗ωC(v),
(βφ∗ωv)

∗ = βφωv
∗ = −β(iβα2φω)(iβα2v

∗) = −β(φcω)∗C(v).
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Then

(2.18) rhs(2.17) = −
(
−(βφ∗ω )βφω (β(φcω)

∗ )βφω
−(βφ∗ω )βφcω (β(φcω)

∗ )βφcω

)
CΣ1.

This yields (2.14). The proof of (2.15) goes as follows. Using φ(−x) = βφ(x) and φc(−x) = −βφc(x),
where we omit the subindex ω, we have

(2.19)

V (−x)βΣ3 = g(φ(x)φ(x))Σ3 +

(
−(φ∗(x) )φ(x) −((φc(x))∗ )φ(x)
(φ∗(x) )φc(x) ((φc(x))∗ )φc(x).

)
βΣ3

= g(φ(x)φ(x))Σ3 +

(
−(βφ∗(x) )φ(x) (β(φc(x))∗ )φ(x)
(βφ∗(x) )φc(x) −(β(φc(x))∗ )φc(x).

)
.

Similarly

(2.20)
βΣ3V (x) = g(φ(x)φ(x))Σ3 + βΣ3

(
−(βφ∗(x) )βφ(x) (β(φc(x))∗ )βφ(x)
−(βφ∗(x) )βφc(x) (β(φc(x))∗ )βφc(x).

)

= second line of (2.19).

The last two formulas yield (2.15). �

2.3. Spectrum, coordinates, linear stability. Identity (2.15) and the definition of Hω,0 imply that
Hω leaves invariant the space of functions for which the symmetry Υ(−x) = βΣ3Υ(x) holds for all x ∈ R3.
From now on we focus on the space of vector valued functions satisfying this symmetry.

2.3.1. Spectrum. We consider the spectrum

σ(Hω) =
{
λ ∈ C, Hω − λId : H1(R3,C4) 7→ L2(R3,C4) is not invertible

}

A point λ ∈ σ(Hω) is in the essential spectrum σess(Hω) if Hω−λId is not a Fredholm operator of index
0. This set is stable under relatively compact perturbation (such as a change on the nonlinearity). The
following lemma summarizes what we know about the spectrum.

Lemma 2.5. (1) For the essential spectrum we have, σess(Hω) = (−∞, ω −m] ∪ [m− ω,+∞).
(2) For each z ∈ σp(Hω) the corresponding generalized eigenspace Ng(Hω − z) has finite dimension.
(3) If z ∈ σ(Hω) then also −z ∈ σ(Hω).
(4) For the generalized kernel we have Ng(H∗

ω) ⊇ {Φω,Σ3∂ωΦω}.
(5) ∂ω‖φω‖22 6= 0 implies that there are no v such that Hωv = ∂ωΦω.

Proof. We have that (1) and (2) are consequences of the above discussion. If z ∈ σess(Hω) then (3) is
a consequence of (1). If z is an eigenvalue, then (3) is a consequence of (2.14). (4) is a consequence
of Ng(Hω) ⊇ {Σ3Φω, ∂ωΦω} which can be seen as follows. By the gauge invariance of the nonlinearity,

G((eiθu)(eiθu)) = G(uu), where G is a primitive of g, we have

Hω

(
iφω
Ciφω

)
= 0 or HωΣ3Φω = 0.

Then differentiating (1.1) and its image by C with respect to ω, we obtain

(2.21) Hω∂ωΦω = −Σ3Φω.

(5) follows by the following argument, if we assume existence of v s.t. Hωv = ∂ωΦω,

(2.22)
0 = 〈v, (H∗

ωΦω)
∗〉 = 〈∂ωΦω,Φ∗

ω〉 = 〈∂ωφω , φ∗ω〉+ 〈∂ω iβα2φ
∗
ω , iβα2φω〉

= 〈∂ωφω , φ∗ω〉+ 〈∂ωφ∗ω , φω〉 = ∂ω‖φω‖22 6= 0.

�

Remark 2.6. Notice that from (2.13), if z ∈ σ(Hω) then z̄ ∈ σ(Hω). Hence if z ∈ σ(Hω) then
{z,−z, z,−z} ⊆ σ(Hω).

We have the beginning of Hω invariant Jordan block decomposition

(2.23) L2 = Ng(Hω)⊕N⊥
g (H∗

ω).

Linear stability means to us what follows, see [Cuc09].

Definition 2.7 (Linear Stability). We will say that a standing wave eitωφω is linearly stable when the
following conditions hold.

(1) σ(Hω) ⊂ R.
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(2) Ng(H) = {Σ3Φω, ∂ωΦω}.
(3) For any eigenvalue z 6= 0 of Hω we have Ng(Hω − z) = ker(Hω − z).
(4) For any positive eigenvalue λ > 0 and for any ξ ∈ ker(Hω − λ), we have 〈ξ,Σ3ξ

∗〉 > 0.

As a consequence of (H:5), the Jordan decomposition can be continued as follows:

(2.24)
L2 = Ng(Hω)⊕

(
⊕j,± ker(Hω ∓ λj(ω))

)
⊕ L2

c(Hω) with L
2
c(Hω) =

{
L2
d(H∗

ω)
}⊥

,

where for K = H∗
ω,Hω we set L2

d(Kω) := Ng(K)⊕⊕j,± ker(K ∓ λj(ω)).

Let (ξj(ω, x))j be a basis of ⊕nj=1 ker(Hω − λj(ω)) so that each vector is smooth in both variables, with

|∂αωxξj(ω, x)| < cαe
−aα|x| for some cα > 0 and aα > 0. Notice that this is just exponential decay of

eigenvectors with the smoothness assumption in (H:2).
We normalize ξj(ω, x) so that εj = 〈ξj ,Σ3ξ

∗
j 〉 ∈ {1,−1} and 〈ξj ,Σ3ξ

∗
i 〉 = 0 for j 6= i. Notice that in

Theorem 1.1 for all j we have εj = 1 while for Theorem 1.8 we have εj = −1 for at least one j.
From the calculations of this section, we have built a dual basis. Hence, given any vector X , we have

(2.25)

X =
〈X,

(
eiΣ3ϑΣ3∂ωΦ

)∗〉
q′(ω)

eiΣ3ϑΣ3Φ+
〈X,

(
eiΣ3ϑΦ

)∗〉
q′(ω)

eiΣ3ϑ∂ωΦ+

n∑

j=1

εj〈X,
(
eiΣ3ϑΣ3ξj

)∗〉eiΣ3ϑξj +

n∑

j=1

εj〈X,
(
eiΣ3ϑΣ1Σ3Cξj

)∗〉eiΣ3ϑΣ1Cξj + eiΣ3ϑPc(Hω)e
−iΣ3ϑX,

with Pc(Hω) the projector onto L2
c(Hω) with respect to decomposition (2.24). By duality, we have the

following lemma.

Lemma 2.8. Suppose that for a given ω the conditions of Definition 2.7 are satisfied. Then

(2.26) L2 = Ng(H∗
ω)⊕

(
⊕j,± ker(H∗

ω ∓ λj(ω))
)
⊕ L2

c(H∗
ω) with L

2
c(H∗

ω) :=
{
L2
d(Hω)

}⊥
.

Any 1 form α = 〈α♯, 〉 can be decomposed as follows:

(2.27)

α♯ =
〈α♯, eiΣ3ϑ∂ωΦ〉

q′(ω)

(
eiΣ3ϑΦ

)∗
+

〈α♯, eiΣ3ϑΣ3Φ〉
q′(ω)

(
eiΣ3ϑΣ3∂ωΦ

)∗

+

n∑

j=1

εj〈α♯, eiΣ3ϑξj〉
(
eiΣ3ϑΣ3ξj

)∗ −
n∑

j=1

εj〈α♯, eiΣ3ϑΣ1Cξj〉
(
eiΣ3ϑΣ3Σ1Cξj

)∗

+ e−iΣ3ϑ
(
Pc(H∗

ω)e
−iΣ3ϑ(α♯)∗

)∗
.

2.3.2. Modulation. Consider the U in (2.6). Then, in the notation of (2.6), (2.1) can be written as

(2.28) U = eiΣ3ϑ(Φω +R).

Consider the following two functions

F(U, ω, ϑ) := 〈e−iΣ3ϑU − Φω,Φ
∗
ω〉 , G(U, ω, ϑ) := 〈e−iΣ3ϑU,Σ3∂ωΦ

∗
ω〉.

Notice that R ∈ N⊥
g (H∗

ω) if and only if F(U, ω, ϑ) = G(U, ω, ϑ) = 0. By (H:2) the map ω ∈ O → φω ∈
H1(R3) is C∞. Then F and G are C∞ functions with

(2.29)

Fϑ(U, ω, ϑ) = −i〈Σ3e
−iΣ3ϑU,Φ∗

ω〉
Fω(U, ω, ϑ) = −2q′(ω) + 〈e−iΣ3ϑU, ∂ωΦ

∗
ω〉,

∇UF(U, ω, ϑ) = e−iΣ3ϑΦ∗
ω , ∇UG(U, ω, ϑ) = e−iΣ3ϑΣ3∂ωΦ

∗
ω

Gϑ(U, ω, ϑ) = −i〈e−iΣ3ϑU, ∂ωΦ
∗
ω〉

Gω(U, ω, ϑ) = 〈e−iΣ3ϑU,Σ3∂
2
ωΦ

∗
ω〉.

We have F(eiΣ3ϑΦω, ω, ϑ) = G(eiΣ3ϑΦω, ω, ϑ) = 0. For U = eiΣ3ϑΦω in (2.29) we get

(2.30)

Fϑ(eiΣ3ϑΦω, ω, ϑ) = 0

Fω(U, ω, ϑ) = −q′(ω),
Gϑ(eiΣ3ϑΦω, ω, ϑ) = −iq′(ω)

Gω(eiΣ3ϑΦω, ω, ϑ) = 0.
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Then by the implicit function theorem and (H:3) there is a unique choice of functions θ = θ(U), ω = ω(U)
which are C∞ and yield to the following Lemma.

Lemma 2.9 (Modulation). For any ω1 ∈ O there exist ε > 0 and C > 0 such that for any u ∈ H1(R3)
with ‖u− eiϑ1φω1‖ < ǫ < ε, there exists a unique choice of (ϑ, ω, r) such that |ω−ω1|+ |ϑ−ϑ1| < Cǫ for
a fixed C and R ∈ N⊥

g (H∗
ω).

Consider now the two C∞ functions ϑ, ω : U ∈ BH1 (eiΣϑ0Φω1 , ε) → R. Inserting (2.28) in (2.29) we
get

Fϑ = −i〈Σ3R,Φ
∗
ω〉 ; Fω = −q′(ω) + 〈R, ∂ωΦ∗

ω〉 ;
∇UF = e−iΣ3ϑΦ∗

ω ; ∇UG = e−iΣ3ϑΣ3∂ωΦ
∗
ω ;

Gϑ = −i(q′(ω) + 〈R, ∂ωΦ∗
ω〉) ; Gω = 〈R,Σ3∂

2
ωΦ

∗
ω〉 .

Then, if we set

(2.31) A :=

(
−q′(ω) + 〈R, ∂ωΦ∗

ω〉 −i〈Σ3R,Φ
∗
ω〉

〈R,Σ3∂
2
ωΦ

∗
ω〉 −i(q′(ω) + 〈R, ∂ωΦ∗

ω〉)

)

we have the following equality

(2.32) A
(
∇ω
∇ϑ

)
=

(
−e−iΣ3ϑΦ∗

ω

−e−iΣ3ϑΣ3∂ωΦ
∗
ω

)
.

This yields the following lemma.

Lemma 2.10. We have the following formulas:

(2.33)

∇ω =
(q′(ω) + 〈R, ∂ωΦ∗

ω〉)
(
eiΣ3ϑΦ

)∗ − 〈Σ3R,Φ
∗
ω〉
(
eiΣ3ϑΣ3∂ωΦ

)∗

(q′(ω))2 − 〈R, ∂ωΦ∗
ω〉2 + 〈Σ3R,Φ∗

ω〉〈R,Σ3∂2ωΦ
∗
ω〉

∇ϑ =
〈R,Σ3∂

2
ωΦ

∗
ω〉
(
eiΣ3ϑΦ

)∗
+ (q′(ω)− 〈R, ∂ωΦ∗

ω〉)
(
eiΣ3ϑΣ3∂ωΦ

)∗

i [q′(ω))2 − 〈R, ∂ωΦ∗
ω〉2 + 〈Σ3R,Φ∗

ω〉〈R,Σ3∂2ωΦ
∗
ω〉]

.

2.3.3. Coordinates. For ω ∈ O we consider decomposition (2.24). By Pc(Hω) (resp. Pd(Hω)), or simply
by Pc(ω) (resp. Pd(ω)), we denote the projection on L2

c(Hω) (resp. L
2
d(Hω)). The space L

2
c(Hω) ”depends

continuously” on ω, as Pc(ω) = 1− Pd(ω) depends smoothly on ω.
By Lemma 2.9 we specify the ansatz imposing that

(2.34) U = eiΣ3ϑ(Φω +R) with ω ∈ O, ϑ ∈ R and R ∈ N⊥
g (H∗

ω).

Fix ω0, where q(ω0) = ‖u0‖2L2. For ω close to ω0 the map Pc(Hω) is an isomorphism from L2
c(Hω0) to

L2
c(Hω). In particular we write

N⊥
g (H∗

ω) � R =

n∑

j=1

zjξj(ω) +

n∑

j=1

zjΣ1Cξj(ω) + Pc(Hω)f , f ∈ L2
c(Hω0).(2.35)

Setting z · ξ =
∑n

j=1 zjξj and z · Σ1Cξ =
∑n

j=1 zjΣ1Cξj , we write

(2.36) U = eiΣ3ϑ (Φω + z · ξ(ω) + z · Σ1Cξ(ω) + Pc(Hω)f)

ω ∈ O close to ω0, (z, f) ∈ Cn × L2
c(Hω0) close to 0, are our coordinates. In the sequel, we set

(2.37) ∂ωR :=
n∑

j=1

zj∂ωξj(ω) +
n∑

j=1

zjΣ1C∂ωξj(ω) + ∂ωPc(Hω)f.

Then we have the vector fields

(2.38)

∂

∂ω
= eiΣ3ϑ∂ω(Φ +R) ,

∂

∂ϑ
= ieiΣ3ϑΣ3(Φ +R),

∂

∂zj
= eiΣ3ϑξj ,

∂

∂zj
= eiΣ3ϑΣ1Cξj .

In particular, given a scalar function F , we have

(2.39)
∂ωF = 〈∇F, eiΣ3ϑ∂ω(Φ +R)〉 , ∂ϑF = i〈∇F, eiΣ3ϑΣ3(Φ +R)〉,
∂zjF = 〈∇F, eiΣ3ϑξj〉 , ∂zjF = 〈∇F, eiΣ3ϑΣ1Cξj〉,

where by definition, given a vector field X , we have XF = 〈∇F,X〉 = dF (X), with dF the exterior
differential and ∇F the gradient.
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Lemma 2.11. We have the following formulas:

(2.40)

εj∇zj = −〈Σ3ξ
∗
j , ∂ωR〉∇ω − i〈Σ3ξ

∗
j ,Σ3R〉∇ϑ+ e−iΣ3ϑΣ3ξ

∗
j

εj∇zj = −〈Σ1Σ3(Cξj)
∗, ∂ωR〉∇ω − i〈Σ1Σ3(Cξj)

∗,Σ3R〉∇ϑ+ e−iΣ3ϑΣ1Σ3(Cξj)
∗

f ′(U) = (Pc(ω)Pc(ω0))
−1Pc(ω)

[
−∂ωRdω − iΣ3Rdϑ+ e−iΣ3ϑ 1l

]
,

with (Pc(ω)Pc(ω0))
−1 : L2

c(Hω) → L2
c(Hω0) the inverse of Pc(ω)Pc(ω0) : L

2
c(Hω0) → L2

c(Hω) and εj =
〈ξj ,Σ3ξj〉.
Proof. The proof is similar to the proof of [Cuc10, Lemmas 4.1–4.2 ]. Let us see for example the proof

of the first formula. Equalities
∂zj
∂zℓ

= δjℓ,
∂zj
∂zℓ

=
∂zj
∂ω =

∂zj
∂ϑ = 0 and ∇f zj = 0 are equivalent to

(2.41)
〈∇zj , eiΣ3ϑξℓ〉 = δjℓ, 〈∇zj , eiΣ3ϑΣ1Cξℓ〉 ≡ 0 = 〈∇zj , eiΣ3ϑΣ3(Φ +R)〉
〈∇zj , eiΣ3ϑ∂ω(Φ +R)〉 = 0 ≡ 〈∇zj , eiΣ3ϑPc(ω)Pc(ω0)g〉 ∀g ∈ L2

c(Hω0).

Notice that the last identity implies Pc(H∗
ω0
)Pc(H∗

ω)e
iΣ3ϑ∇zj = 0 which in turn implies Pc(H∗

ω)e
iΣ3ϑ∇zj =

0. Then, applying (2.25) and using the product row column, we get for some pair of numbers (a, b)

∇zj = ae−iΣ3ϑΦ∗ + be−iΣ3ϑΣ3∂ωΦ
∗ + εje

−iΣ3ϑΣ3ξ
∗
j

= (a, b)

(
e−iΣ3ϑΦ∗

e−iΣ3ϑΣ3∂ωΦ
∗

)
+ εje

−iΣ3ϑΣ3ξ
∗
j = −(a, b)A

(
∇ω
∇ϑ

)
+ εje

−iΣ3ϑΣ3ξ
∗
j ,

where in the last line we used (2.32). Equating the two extreme sides and applying to the formula 〈·, ∂
∂ω 〉

and 〈·, ∂∂ϑ 〉, by 〈∇zj , ∂∂ω 〉 = 〈∇zj , ∂∂ϑ 〉 = 〈∇ϑ, ∂
∂ω 〉 = 〈∇ω, ∂∂ϑ 〉 = 0, by 〈∇ϑ, ∂∂ϑ 〉 = 〈∇ω, ∂

∂ω 〉 = 1 and by
(2.38) and (2.41), we get

A∗
(
a
b

)
= εj

(
〈Σ3ξ

∗
j , ∂ωR〉

i〈Σ3ξ
∗
j ,Σ3R〉

)
.

This implies

∇zj = −εj(〈Σ3ξ
∗
j , ∂ωR〉, i〈Σ3ξ

∗
j ,Σ3R〉)

(
∇ω
∇ϑ

)
+ εje

−iΣ3ϑΣ3ξ
∗
j .

�

2.4. Smoothing and dispersive estimates. In this subsection we collect the statements on linear
theory needed later to prove the nonlinear estimates.

Lemma 2.12. The following facts are true.

(i) For any τ ≥ 1 there exists C independent of ω s.t.

‖RDm
(z)ψ‖L2,−τ ≤ C‖ψ‖L2,τ for all z 6∈ R(2.42)

‖RHω,0(z)ψ‖L2,−τ ≤ C‖ψ‖L2,τ for all z 6∈ R.(2.43)

(ii) For any τ > 1 the following limits

(2.44) R+
Dm

(λ) = lim
εց0

RDm
(λ± iε) and R+

Hω,0
(λ) = lim

εց0
RHω,0(λ± iε)

exist in B(H1,τ
x , L2,−τ

x ) and the convergence is uniform for λ in compact sets.

Proof. Estimate (2.42) implies (2.43). Then (i) is the content of [IM99, Theorem 2.1] while (ii) is contained
in [GM01, Theorem 1.6]. �

Lemma 2.13. We have RHω,0(x, y, λ) = RHω,0(x − y, λ) =

(
RDm

(x− y, λ+ ω) 0
0 RDm

(x− y, λ− ω)

)

for λ 6∈ σ(Hω,0) with

(2.45) RDm
(x,Λ) =

(
(Λ +m)I2 i

√
m2 − Λ2σ · x̂

i
√
m2 − Λ2σ · x̂ (Λ−m)I2

)
e−

√
m2−Λ2|x|

4π|x| + i
α · x̂
4π|x|2 e

−
√
m2−Λ2|x|

where x̂ = x/|x| and where for ζ = eiϑr with r ≥ 0 and ϑ ∈ (−π, π) we set
√
ζ = eiϑ/2

√
r.

Proof. This is [Tha92, Identity (1.263) section 1.E]. �
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Remark 2.14. R+
Dm

(x,Λ) for Λ > m (resp. Λ < −m) is obtained substituting
√
m2 − Λ2 in (2.45) with

−i
√
Λ2 −m2 = lim

εց0

√
m2 − (Λ + iε)2 (resp. i

√
Λ2 −m2 = lim

εց0

√
m2 − (Λ + iε)2).

Theorem 2.15. For any τ > 1 and k ∈ R ∃ C s.t.

(2.46)

‖e−itDmψ‖L2
t(R,H

k,−τ ) ≤ C‖ψ‖Hk ,

‖
∫

R

eitDmF (t) dt‖Hk ≤ C‖F‖L2
t(R,H

k,τ ),

‖
∫

t′<t

e−i(t−t′)DmF (t′) dt′‖L2
t(R,H

k,−τ ) ≤ C‖F‖L2
t(R,H

k,τ ).

The same estimates with the same constants hold when we replace Dm with Hω,0.

Proof. This is [Bou08b, Theorem 1.1] in the free case. But can be easily deduced from Lemma 2.12 using
tools in [RS78, Section XIII.7]. �

The following theorem is a special case of Theorem 1.1 [Bou06].

Theorem 2.16. For any τ > 5/2 and k ∈ R ∃ C s.t.

(2.47) ‖e−itDmψ‖Hk,−τ (R3) ≤ C〈t〉− 3
2 ‖ψ‖Hk,τ , .

The same estimates with the same constants hold when we replace Dm with Hω,0.

Theorem 2.17. For any 2 ≤ p, q ≤ ∞, θ ∈ [0, 1], with (1 − 2
q )(1 ± θ

2 ) =
2
p and (p, θ) 6= (2, 0), and for

any reals k, k′ with k′ − k ≥ α(q), where α(q) = (1 + θ
2 )(1 − 2

q ), there exists a positive constant C such

that

(2.48)

∥∥e−itDmψ
∥∥
Lp

t (R,B
k
q,2(R

3,C4))
≤ C ‖ψ‖Hk′ (R3,C4) ,

∥∥∥∥
∫
eitDmF (t) dt

∥∥∥∥
Hk

≤ C ‖F‖
Lp′

t (R,Bk′

q′ ,2
(R3,C4))

,

∥∥∥∥
∫

t′<t

e−i(t−t′)DmF (t′) dt′
∥∥∥∥
Lp

t (R,B
k
q,2(R

3,C4))

≤ C ‖F‖La′

t (R,Bh
b′,2

(R3,C4)) ,

for any (a, b) chosen like (p, q), and h − k ≥ α(q) + α(b). Exactly the same estimates hold with Dm

replaced by Hω,0.

Proof. For Dm see [Bou08b], see also [Bre84] for the Klein-Gordon case. For Hω,0 the statement is an
immediate consequence of the case Dm. �

Lemma 2.18. Consider pairs (p, q) as in Theorem 2.17 with p > 2, k ∈ R arbitrary and k′ − k ≥ α(q).
Then for any τ > 1 there is a constant C0 = C0(τ, k, p, q) such that

(2.49)

∥∥∥∥
∫ t

0

eiDm(t′−t)F (t′)dt′
∥∥∥∥
Lp

tB
k
q,2

≤ C0‖F‖L2
tH

k′,τ .

The same estimates hold with Dm replaced by Hω,0

Proof. For F (t, x) ∈ C∞
0 (R× R3) set

TF (t) =

∫ +∞

0

ei(t
′−t)DmF (t′)dt′ , f =

∫ +∞

0

eit
′DmF (t′)dt′.

Theorem 2.17 implies ‖TF‖Lp
tB

k
q,2

≤ ‖f‖Hk′ for k′ − k = α(q). By Theorem 2.15 we have ‖f‖Hk′ ≤
C‖F‖L2

tH
k′ ,τ . Since p > 2, by a well known lemma due to Christ and Kiselev [CK01], see Lemma 3.1

[SS00], the statement of Lemma 2.18 follows. �

Lemma 2.19. Let τ1 > 1 and K be a compact subset of O and let I be a compact subset of σe(Hω)\{±(m±
ω)}. Assume that ω → Vω is continuous with values in the Schwartz space S(R3;C4). Assume furthermore
that for any ω ∈ O there are no eigenvalues of Hω in the continuous spectrum and the points ±ω are not
resonances. Then there exists a C > 0, such that

(2.50) ‖e−itHω,0R+
Hω

(λ)Pc(ω)ψ0‖L2,−τ1 (R3) ≤ C〈t〉− 3
2 ‖ψ0‖L2,τ1+1(R3)

for every t ≥ 0, λ ∈ I, ω ∈ K and ψ0 ∈ S(R3;C2).
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Proof. We expand R+
Hω

(λ) = R+
Hω,0

(λ) −R+
Hω0

(λ)VωR
+
Hω

(λ). We have from [BG87, Theorem 2 ]

(2.51) ‖e−itHω,0R+
Hω,0

(λ)ψ0‖L2,−τ1(R3) ≤ C〈t〉− 3
2 ‖R+

Hω,0
(λ)ψ0‖L2,τ1(R3) ≤ C1〈t〉−

3
2 ‖ψ0‖L2,τ1+1(R3),

with C1 locally bounded in λ and τ1. Hence, by exponential decay of φω,

‖e−itHω,0R+
Hω,0

(λ)VωR
+
Hω

(λ)Pc(ω)ψ0‖L2,τ1

≤ C1〈t〉−
3
2 ‖Vω‖L2,−τ1 ,L2,τ1+1

∥∥R+
Hω

(λ)Pc(ω)
∥∥
L2,τ1 ,L2,−τ1

‖ψ0‖L2,τ1 .

The key fact that
∥∥R+

Hω
(λ)
∥∥
L2,τ1 ,L2,−τ1

≤ C for a fixed C > 0 and for all λ ∈ I is a consequence of (A.5),

of Lemma A.3 and of Lemma 2.12. �

3. Hamiltonian structure

The discussion in this section is essentially adapted from [Cuc10], rewritten in the context of the Dirac
systems.

3.1. Symplectic structure. We recall that in view of Theorem 1.8 we set εj = 〈ξj ,Σ3ξ
∗
j 〉 where εj ∈

{1,−1}. Notice that in Theorem 1.1 and in [Cuc10], we have εj ≡ 1.
Our ambient space is H1(R3,C4)×H1(R3,C4). We focus only on the subspace formed by the points

which satisfy Σ1U = CU . In view of (2.11), the natural symplectic structure for our problem is

(3.1) Ω(X,Y ) = 〈X, iβα2Σ1Σ3Y 〉.
The Hamiltonian vector field XG of a scalar function G is defined by the equation Ω(XG, Y ) =

−i〈∇G, Y 〉 for any vector Y and is XG = βα2Σ3Σ1∇G.
We call Poisson bracket of a pair of scalar valued functions F and G the scalar valued function

(3.2) {F,G} = 〈∇F,XG〉 = iΩ(XF , XG) = iΩ(∇F,∇G).
This can be extended to vector valued function using 1-forms or equivalently defining the extension the
following way.

Definition 3.1. Given a function G(U) with values in L2
c(Hω0), a symplectic form Ω and a scalar function

F (U), we define {G, F} = G′(U)XF (U), with XF the Hamiltonian vector field associated to F . We set
{F,G} := −{G, F}.
Lemma 3.2. Let Q be the function defined by (2.10)and let XQ its Hamiltonian vectorfield of Q. Then

(3.3) XQ = − ∂

∂ϑ
.

We have the following formulas :

(3.4) {Q,ω} = 0 , {Q,ϑ} = 1 , {Q, zj} = {Q, zj} = 0 , {Q, f} = 0.

Proof. (3.4) follows from (3.3). The latter follows from (2.38):

(3.5) XQ := βα2Σ3Σ1∇Q = βα2Σ3Σ1iβα2Σ1U = −iΣ3U = − ∂

∂ϑ
.

�

3.2. Hamiltonian reformulation of the system. For any scalar function F , the time derivative of
F (U(t)) is 〈∇F (U), U̇ 〉 and thus if U satisfies (2.11) it is {F,E}. A similar identity holds for vector
valued function and thus as in [Cuc10] we write our system as

(3.6) ω̇ = {ω,E} , ḟ = {f, E} , żj = {zj, E} , ϑ̇ = {ϑ,E}.
For u0 the initial datum in (1.1), we introduce a new Hamiltonian for which the stationary solution Φω0 ,
with q(ω0) = ‖u0‖2L2

x
, is a critical point :

(3.7) K(U) = E(U) + ω(U)Q(U)− ω(U)‖u0‖2L2
x
.

By Lemma 3.2 and since Q(U) is an invariant of the motion, see Lemma 2.3, the solution of the initial
value problem in (1.1) solves also

(3.8) ω̇ = {ω,K} , ḟ = {f,K} , żj = {zj,K} , ϑ̇− ω = {ϑ,K}.
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By ∂
∂ϑK = 0 and (3.4) the right hand sides in the equations (3.8) do not depend on ϑ. Hence, if we look

at the new system

(3.9) ω̇ = {ω,K} , ḟ = {f,K} , żj = {zj,K} , ϑ̇ = {ϑ,K},
the evolution of the crucial variables (ω, z, f) in (3.6) and (3.9) is the same. Therefore, to prove Theorem
1.1 it is sufficient to consider system (3.9).

3.3. Application of the Darboux Theorem. In the sequel we will show that a resonances phenomena
is responsible of energy leaking from discrete to continuous spectrum. The main ingredient will be the
use of Birkhoff normal forms. Since the coordinates (2.36) are not canonical coordinates for the natural
symplectic structure Ω in (3.1), it is natural to apply Darboux theorem, moving to a different set of
coordinates. It is natural and elementary to reduce as in Theorem 6.35 p. 412 [Ol93] the number of
coordinates, using the invariance of Q. However one key issue is that we want our nonlinear Dirac
equation to remain semilinear. Hence we follow the argument of [Cuc10, Section 7], which takes care of
this, and to which we refer for more details.

Strategy of the proof. For q = q(ω) = ‖φω‖2L2 , we introduce the 2-form

(3.10) Ω0 = idϑ ∧ dq + εjdzj ∧ dzj + 〈f ′(U)·, iβα2Σ3Σ1f
′(U)·〉,

summing on repeated indexes, with f(U) the function in Lemma 2.11, f ′(U) its Frechét derivative and
the last term in (3.10) acting on pairs (X,Y ) like 〈f ′(U)X, iβα2Σ3Σ1f

′(U)Y 〉.
The proof of the Darboux Theorem goes as follows. First consider

(3.11) Ωτ = (1 − τ)Ω0 + τΩ = Ω0 + τΩ̃ with Ω̃ := Ω− Ω0.

In Lemma 3.3, we check that Ω0(U) = Ω(U) at U = eiΣ3ϑΦω0 . Then near eiΣ3ϑΦω0 Ωτ is non degenerate.

One considers a differential form γ(τ, U) such that dγ(τ, U) = Ω̃ with γ(U) = 0 at U = eiΣ3ϑΦω0 (external
differentiation will always be on the U variable only)and the dual vector field Yτ such that iYτΩτ = −γ.
The flow Fτ generated by Yτ , close the points eiΣ3ϑΦω0 is defined up to time 1, and is such that F∗

1Ω = Ω0

by

(3.12)

d

dτ
(F∗
τΩτ ) = F∗

τ (LYτΩτ ) + F∗
τ

d

dτ
Ωτ =

= F∗
τd (iYτΩτ ) + F∗

τ Ω̃ = F∗
τ

(
−dγ + Ω̃

)
= 0.

This procedure can be carried out abstractly. But here we need to be careful, choosing γ appropriately,

because we want the new Hamiltonian K̃ = K ◦F1 to be ϑ invariant and yield a semilinear Dirac equation.
It is interesting that the two issues are solved simultaneously.

In the sequel of this section all the work is finalized to the correct choice if γ. In Lemma 3.4 we
compute explicitly a differential form α and we make the preliminary choice γ = α. This is not yet the

right choice. By the computations in Lemma 3.5 we find the obstruction to the fact that K̃ is of the
desired type. Lemmas 3.7–3.10 are necessary to find an appropriate solution F of a differential equation
in Lemma 3.11. Then γ = α+ idF is the right choice of γ. In Lemma 3.13 we collect a number of useful
estimates for F1. Lemma 3.14 is valid independently of the precise γ chosen and contains information
necessary for the reformulation of our system in (3.70)–(3.71).

Preliminary remarks. Note that for U in a sufficiently small neigborhood of Φω, that is R small, from
(2.25) the vector fields defined in (2.38) can be completed into a basis of TUL

2 (tangent space at U). For
any vector Y ∈ TUL

2, we have

(3.13) Y = Yϑ
∂

∂ϑ
+ Yω

∂

∂ω
+
∑

Yj
∂

∂zj
+
∑

Yj
∂

∂zj
+ eiΣ3ϑPc(ω)Yf

and defining the dual basis we set

(3.14)
Yϑ = dϑ(Y ) , Yω = dω(Y ) , Yj = dzj(Y )

Yj = dzj(Y ) , Yf = f ′(U)Y.

So similarly, a differential 1-form γ decomposes as

(3.15) γ = γϑdϑ+ γωdω +
∑

γjdzj +
∑

γjdzj + 〈γf , f ′·〉,

where 〈γf , f ′·〉 acts on a vector Y as 〈γf , f ′Y 〉, with here γf ∈ L2
c(H∗

ω0
); γϑ, γω, γj and γj are in C.

Notice that we are reversing the standard notation on super and subscripts for forms and vector fields.
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In the sequel, given a differential 1-form γ and a point U , we will denote by γU the value of γ at U .
Given a function χ, denote its hamiltonian vector field with respect to Ωτ by Xτ

χ : iXτ
χ
Ωτ = −i dχ.

By (3.10) we have :

(3.16) X0
q(ω) = − ∂

∂ϑ
.

The proof. We have the following preliminary observation ensuring that Ωτ is a non degenerate 2-form
in a neighborhood of eiΣ3ϑΦω0 .

Lemma 3.3. At U = eiΣ3ϑΦω0 , for any ϑ, we have Ω0(U) = Ω(U).

Proof. See also [Cuc10, Lemma 7.1]. Using (2.25) we get, summing on repeated indexes,

(3.17)

Ω(X,Y ) = 〈X, iβα2Σ3Σ1Y 〉 =
1

q′
〈·, e−iΣ3ϑΣ3∂ωΦ

∗〉 ∧ 〈·, e−iΣ3ϑΦ∗〉(X,Y )+

+ εj〈·, e−iΣ3ϑΣ3ξ
∗
j 〉 ∧ 〈·, e−iΣ3ϑΣ1Σ3(Cξj)

∗〉(X,Y )

+ 〈Pc(Hω)e
−iΣ3ϑX, iβα2Σ3Σ1Pc(Hω)e

−iΣ3ϑY 〉.
Consider

(3.18) a1 = a1(ω, z, f) := Ω(∂ωΦω,Σ3R) + Ω(R,Σ3Φω) + Ω(R,Σ3R)

where R = z · ξ(ω) + z̄ · Cξ(ω) + Pc(ω)f . Notice that Ω(R,Σ3R) = −〈Σ3R, (CR)
∗〉 and as we focus on

the kernel of 1− CΣ1 this is −〈Σ3R,R
∗〉 and thus 0. Hence the function a1 is smooth in the arguments

ω ∈ O, z ∈ Cn and f ∈ H−K′,−S′

(see (1.3) for the definition) for any pair (K ′, S′) with, for (z, f) near
0,

(3.19) |a1| ≤ C(K ′, S′)(|z|+ ‖f‖H−K′,−S′ )2,

we get by Lemmas 2.10 and 2.11, summing on repeated indexes,

(3.20)

Ω = (iq′ + a1)dϑ ∧ dω + εjdzj ∧ dzj
+ dzj ∧ (〈Σ1Σ3(Cξj)

∗, ∂ωR〉 dω + i〈Σ1Σ3(Cξj)
∗,Σ3R〉 dϑ)

− dzj ∧
(
〈Σ3ξ

∗
j , ∂ωR〉 dω + i〈Σ3ξ

∗
j ,Σ3R〉 dϑ

)
+

+ 〈Pc(ω)Pc(ω0)f
′·, iβα2Σ3Σ1Pc(ω)Pc(ω0)f

′·〉+
+ 〈Pc(ω)Pc(ω0)f

′·, iβα2Σ3Σ1Pc(ω)∂ωR〉 ∧ dω+
+ i〈Pc(ω)Pc(ω0)f

′·, iβα2Σ3Σ1Pc(ω)Σ3R〉 ∧ dϑ.
At points U = eiΣ3ϑΦω, that is for R = 0, we have

(3.21) Ω = idϑ ∧ dq + εjdzj ∧ dzj + 〈Pc(ω)Pc(ω0)f
′·, iβα2Σ3Σ1Pc(ω)Pc(ω0)f

′·〉.
which at ω = ω0 gives Ω = Ω0. �

Since Ωτ = Ω0 + τ(Ω − Ω0) with τ ∈ [0, 1] and Ω = Ω0 at eiΣ3ϑΦω0 , and since Ω0 is a non degenerate
2-form, Ωτ is also non degenerate in a neighborhood of eiΣ3ϑΦω0 . Thus the map X 7→ iXΩτ from vector
fields to 1-forms is bijective at any point in the neighborhood of eiΣ3ϑΦω0 . Notice that Lemma 3.3 is
claimed at ω0 and not at different standing waves, and that the eiΣ3ϑΦω0 are the only stationary solutions
preserved by our changes of coordinates.

The next lemma states as candidate for the 1 form γ the choice γ = −α, for α see below. This is not
yet the final choice of γ.

Lemma 3.4. Consider the forms, summing on repeated indexes,

(3.22)
̟(U)Y :=

1

2
〈iβα2Σ3Σ1U, Y 〉

̟0(U) := −iqdϑ− εj
zjdzj − zjdzj

2
+

1

2
〈f(U), iβα2Σ3Σ1f

′(U) 〉.

Then

(3.23) d̟0 = Ω0 , d̟ = Ω.

Set

(3.24) α(U) := ̟(U)−̟0(U) + dψ(U) where ψ(U) :=
1

2
〈Σ3Φ

∗, R〉.
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We have α = αϑdϑ+ αωdω + 〈αf , f ′〉 with

(3.25)

αϑ +
i

2
‖f‖22 =− i

2
‖z · ξ + z · Σ1Cξ‖22 − iℜ〈z · ξ + z · Σ1Cξ, (Pc(ω)f)

∗〉
− iℜ〈(Pc(ω)− Pc(ω0))f, (Pc(ω)f)

∗〉,

αω =− 1

2
〈R∗,Σ3∂ωR〉,

αf =
1

2
iβα2Σ1Σ3Pc(Hω0) (Pc(Hω)− Pc(Hω0)) f.

Proof. Here the proof is almost the same of [Cuc10, Lemma 7.2 ]. We focus on (3.25), which is the only
nontrivial statement. We will sum over repeated indexes. We have

(3.26)
̟ =

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Φ, ·〉+

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Pc(ω)f, ·〉

+
1

2
zj〈e−iΣ3ϑiβα2Σ1Σ3ξj , ·〉 −

1

2
zj〈e−iΣ3ϑiβα2Σ3Cξj , ·〉.

By Lemma 2.8 and summing on repeated indexes we obtain

(3.27)

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Φ, ·〉 =

〈12 iβα2Σ1Σ3Φ, ∂ωΦ〉
q′(ω)

〈e−iΣ3ϑΦ∗, ·〉

+
〈12 iβα2Σ1Σ3Φ,Σ3Φ〉

q′(ω)
〈e−iΣ3ϑΣ3∂ωΦ

∗, ·〉+ εj〈
1

2
iβα2Σ1Σ3Φ, ξj〉〈e−iΣ3ϑΣ3ξ

∗
j , ·〉

− εj〈
1

2
iβα2Σ1Σ3Φ,Σ1Cξj〉〈e−iΣ3ϑΣ3Σ1(Cξj)

∗, ·〉+ 〈e−iΣ3ϑ(Pc(H∗
ω)

1

2
iβα2Σ1Σ3Φ

∗)∗, ·〉.

By iβα2Σ1Φ = iβα2CΦ = (iβα2)
2Φ∗ = Φ∗ we have

(3.28) 〈iβα2Σ3Σ1Φ, ∂ωΦ〉 = 〈φ∗, ∂ωφ〉 − 〈φ, ∂ωφ∗〉 = 0,

by 〈φ, ∂ωφ∗〉 =
∫

R3

(a∂ωa+ b∂ωb)dx = 〈φ∗, ∂ωφ〉, see (H:2). Then

(3.29)

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Φ, ·〉 =

− q

q′
〈e−iΣ3ϑΣ3∂ωΦ

∗, ·〉+ εj〈
1

2
iβα2Σ1Σ3Φ, ξj〉〈e−iΣ3ϑΣ3ξ

∗
j , ·〉

− εj〈
1

2
iβα2Σ1Σ3Φ,Σ1Cξj〉〈e−iΣ3ϑΣ3Σ1(Cξj)

∗, ·〉+ 〈e−iΣ3ϑ(Pc(H∗
ω)

1

2
iβα2Σ1Σ3Φ

∗)∗, ·〉.

with by (2.32)

(3.30) − q

q′
〈e−iΣ3ϑΣ3∂ωΦ

∗, ·〉 = q

q′
〈R,Σ3∂

2
ωΦ

∗〉 dω − i
q

q′
(q′ + 〈R, ∂ωΦ∗〉) dϑ.

Applying Lemma 2.11, we get (by iβα2Σ1f = f∗ which follows from Σ1U = CU)

(3.31)

̟0 = −iq dϑ− εj
zj dzj − zj dzj

2
+

1

2
〈f(U), iβα2Σ3Σ1f

′(U)·〉

= i

(
−q + 1

2
‖R‖2L2

)
dϑ+

1

2
〈Σ3R

∗, ∂ωR〉 dω ++
1

2
〈iβα2Σ1Σ3 (1− Pc(ω0)Pc(ω)) f, f

′ 〉+

+
1

2
zj〈e−iΣ3ϑΣ1Σ3(Cξj)

∗, ·〉 − 1

2
zj〈e−iΣ3ϑΣ3ξ

∗
j , ·〉++

1

2
〈e−iΣ3ϑiβα2Σ1Σ3Pc(ω)f, ·〉.

By (2.36) we have

(3.32) dψ =
1

2
〈Σ3Φ

∗, ∂ωR〉dω +
1

2
〈Σ3Φ

∗, ξj〉dzj +
1

2
〈Σ3Φ

∗,Σ1Cξj〉dzj +
1

2
〈Σ3Φ

∗, Pc(ω)f
′·〉.
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Applying to (3.32) Lemma 2.11 and the identities (3.34) below, we get dψ =

(3.33)

dψ =
1

2
〈Σ3Φ

∗, ξj〉〈e−iΣ3ϑΣ3ξ
∗
j , ·〉+

1

2
〈Σ3Φ

∗,Σ1Cξj〉〈e−iΣ3ϑΣ1Σ3(Cξj)
∗, ·〉

+
1

2
〈e−iΣ3ϑ (Pc(H∗

ω)Σ3Φ)
∗
, ·〉

+
q

q′
〈Σ3∂ωΦ

∗, ∂ωR〉dω

− i

2

〈
〈Σ3Φ

∗, ξj〉Σ3ξ
∗
j + 〈Σ3Φ

∗,Σ1Cξj〉Σ1Σ3(Cξj)
∗ + (Pc(H∗

ω)Σ3Φ)
∗

︸ ︷︷ ︸
P

N⊥
g (Hω)

Σ3Φ∗

,Σ3R

〉
dϑ.

To get the third line of (3.33) we have used:

(3.34)

1

2
〈Σ3Φ

∗, ∂ωR〉 −
1

2
〈Σ3Φ

∗, ξj〉〈Σ3ξ
∗
j , ∂ωR〉−

1

2
〈Σ3Φ

∗,Σ1Cξj〉〈Σ1Σ3(Cξj)
∗, ∂ωR〉 −

1

2
〈(Pc(H∗

ω)Σ3Φ)
∗
, ∂ωR〉 =

1

2
〈Σ3Φ

∗, ∂ωR〉;

− 1

2

[
〈Σ3Φ

∗, ∂ωR〉 −
1

q′
〈Σ3Φ

∗,Σ3Φ〉〈Σ3∂ωΦ
∗, ∂ωR〉

]
=

2q

2q′
〈Σ3∂ωΦ

∗, ∂ωR〉.

Let us consider the sum (3.24). There are various cancelations. The first and second (resp. the first term
of the third) line of (3.33) cancel with the second and third lines of (3.29) (resp. the first term of the rhs
of (3.30)). The last three terms in rhs(3.26) cancel with the last two lines of (3.31). The −iqdϑ term in
the rhs of (3.31)) cancels with the −iqdϑ term in (3.30). Adding the fourth line of (3.33) with the last
term of rhs(3.30) we get the product of i times the following quantities:

(3.35)

− 1

2
〈PN⊥

g (Hω)Σ3Φ
∗,Σ3R〉 −

q

q′
〈R, ∂ωΦ∗〉 = −1

2
〈Φ∗, R〉

+
1

2
〈PNg(H∗

ω)Σ3Φ
∗,Σ3R〉 −

q

q′
〈R, ∂ωΦ∗〉

= −1

2
〈Φ∗, R〉+ 1

2q′
〈Φ∗,Σ3R〉〈∂ωΦ,Σ3Φ

∗〉

+
1

2q′
〈Σ3∂ωΦ

∗,Σ3R〉〈Σ3Φ
∗,Σ3Φ〉 −

q

q′
〈R, ∂ωΦ∗〉 = 0,

where for the second equality we have used

PNg(H∗
ω) =

1

q′
Φ∗〈∂ωΦ, ·〉+

1

q′
Σ3∂ωΦ

∗〈Σ3Φ, ·〉.

The last equality in (3.35) can be seen as follows. The two terms in the third line in (3.35) are both equal
to 0. Indeed, 〈Σ3Φ

∗, ∂ωΦ〉 = 0 by (3.28) and, by R ∈ N⊥
g (H∗

ω) and Φ∗ ∈ Ng(H∗
ω), 〈R,Φ∗〉 = 0. The two

terms in the fourth line in (3.35) cancel each other. Then we get formulas for αω and αf . We get αϑ also
by ‖Pc(ω)f‖22 = ‖f‖22 + 2ℜ〈(Pc(ω)− Pc(ω0))f, (Pc(ω)f)

∗〉. �

Lemma 3.5. We have, summing over repeated indexes (also on j and j):

(3.36) iY Ω0 = iq′Yϑdω − iq′Yωdϑ+ εj(Yjdzj − Yjdzj) + 〈iβα2Σ1Σ3Yf , f
′·〉.

For the a1 in (3.18), and for Γ = iY Ω̃, we have

(3.37)

Γω =a1Yϑ + Yj〈Σ1Σ3(Cξj)
∗, ∂ωR〉 − Yj〈Σ3ξ

∗
j , ∂ωR〉+ 〈Yf , iβα2Σ3Σ1Pc∂ωR〉;

−Γϑ =a1Yω − iYj〈Σ1Σ3(Cξj)
∗,Σ3R〉+ iYj〈Σ3ξ

∗
j ,Σ3R〉 − i〈Yf , iβα2Σ3Σ1PcΣ3R〉;

−Γj =〈Σ1Σ3(Cξj)
∗, ∂ωR〉Yω + i〈Σ1Σ3(Cξj)

∗,Σ3R〉Yϑ;
Γj =〈Σ3ξ

∗
j , ∂ωR〉Yω + i〈Σ3ξ

∗
j ,Σ3R〉Yϑ;

iβα2Σ3Σ1Γf =(Pc(ω0)Pc(ω)− 1)Yf + YωPc(ω0)Pc(ω)∂ωR+ iYϑPc(ω0)Pc(ω)Σ3R.

In particular, for γ = iY τΩτ = iY τΩ0 + τ iY τ Ω̃ we have
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(3.38)

γω =(iq′ + τa1)Y
τ
ϑ + τY τj 〈Σ1Σ3(Cξj)

∗, ∂ωR〉 − τY τ
j
〈Σ3ξ

∗
j , ∂ωR〉

+ τ〈Y τf , iβα2Σ3Σ1Pc∂ωR〉;
−γϑ =(iq′ + τa1)Y

τ
ω − τ iY τj 〈Σ1Σ3(Cξj)

∗,Σ3R〉+ τ iY τ
j
〈Σ3ξ

∗
j ,Σ3R〉

− iτ〈Y τf , iβα2Σ3Σ1PcΣ3R〉;
−γj =εj(Y τ )j + τ〈Σ1Σ3(Cξj)

∗, ∂ωR〉Y τω + iτ〈Σ1Σ3(Cξj)
∗,Σ3R〉Y τϑ ;

γj =εj(Y
τ )j + τ〈Σ3ξ

∗
j , ∂ωR〉Y τω + iτ〈Σ3ξ

∗
j ,Σ3R〉Yϑ;

iβα2Σ3Σ1γf =(Y τ )f + τ(Pc(ω0)Pc(ω)− 1)Y τf +

τY τω Pc(ω0)Pc(ω)∂ωR + iτ Y τϑ Pc(ω0)Pc(ω)Σ3R .

Proof. Identity (3.36) is straightforward. Identity (3.38) follows immediately from (3.36)–(3.37). Finally,
(3.37) is elementary linear algebra, and basically the same of [Cuc10, Lemma 7.3]. �

Remark 3.6. If we choose γ = −iα in Lemma 3.5 with the α of (3.24), and if Fτ is the flow of Y τ , then
the component (Y τ )ϑ is an obstruction to the fact that, for 0 < τ ≤ 1, K ◦Fτ is a ϑ invariant Hamiltonian
and that the hamiltonian K ◦ F1 yields a semilinear Dirac equation. We want flows defined from fields
with (Y τ )ϑ = 0 or dϑ(Y τ ) = iΩτ (X

τ
ϑ , Y

τ ) = 0, with Xτ
ϑ the Hamiltonian fields of ϑ . To this effect we

add a correction to α and define Y τ from α+ dF where (α+ dF )(Xτ
ϑ) = 0.

Lemma 3.7. Consider the vector field Xτ
ϑ (resp. Xτ

ω) defined by iXτ
ϑ
Ωτ = −idϑ (resp. iXτ

ω
Ωτ = −idω).

Then we have (here Pc = Pc(Hω) and P
0
c = Pc(Hω0)):

(3.39)

Xτ
ϑ =(Xτ

ϑ)ω
[ ∂
∂ω

− τ〈Σ3ξ
∗
j , ∂ωR〉

∂

∂zj
− τ〈Σ1Σ3(Cξj)

∗, ∂ωR〉
∂

∂zj

− τP 0
c (1 + τPc − τP 0

c )
−1P 0

c Pc∂ωR
]
,

Xτ
ω =(Xτ

ω)ϑ
[ ∂
∂ϑ

− iτ〈ξ∗j , R〉
∂

∂zj
+ iτ〈Σ1(Cξj)

∗, R〉 ∂

∂zj

− iτP 0
c (1 + τPc − τP 0

c )
−1P 0

c PcΣ3R
]
,

where, for the a1 in (3.18), we have

(3.40) (Xτ
ϑ)ω =

i

iq′ + τa1 + τa2
= −(Xτ

ω)ϑ

(3.41)
a2 := iτ〈Σ3ξ

∗
j , ∂ωR〉〈Σ1Σ3(Cξj)

∗,Σ3R〉 − iτ〈Σ1Σ3(Cξj)
∗, ∂ωR〉〈ξ∗j , R〉+

+ iτ〈P 0
c (1 + τPc − τP 0

c )
−1P 0

c Pc∂ωR, iβα2Σ3Σ1PcΣ3R〉.

Proof. The proof is almost the same of [Cuc10, Lemma 7.5]. By (3.38) for γ = −i dϑ, Xτ
ϑ satisfies

(3.42)

(Xτ
ϑ)ϑ = 0;

i = (iq′ + τa1)(X
τ
ϑ)ω − iτ〈Σ1Σ3(Cξj)

∗,Σ3R〉(Xτ
ϑ)j+

+ iτ〈Σ3ξ
∗
j ,Σ3R〉(Xτ

ϑ)j − iτ〈(Xτ
ϑ)f , iβα2Σ3Σ1PcΣ3R〉;

(Xτ
ϑ)f = τ(1 − P 0

c Pc)(X
τ
ϑ)f − τ(Xτ

ϑ)ωP
0
c Pc∂ωR;

(Xτ
ϑ)j = −τ(Xτ

ϑ)ω〈Σ1Σ3(Cξj)
∗, ∂ωR〉; (Xτ

ϑ)j = −τ(Xτ
ϑ)ω〈Σ3ξ

∗
j , ∂ωR〉.

This yields (3.39) for Xτ
ϑ and the first equality in (3.40). By (3.38) for γ = −i dω, Xτ

ω satisfies

(3.43)

(Xτ
ω)ω = 0;

− i − i q′(Xτ
ω)ϑ = τa1(X

τ
ω)ϑ + τ〈Σ1Σ3(Cξj)

∗, ∂ωR〉(Xτ
ω)j−

− τ〈Σ1Σ3ξ
∗
j , ∂ωR〉(Xτ

ω)j + τ〈(Xτ
ω)f , iβα2Σ3Σ1Pc∂ωR〉;

(Xτ
ω)f = τ(1 − P 0

c Pc)(X
τ
ω)f − i τ(Xτ

ω)ϑP
0
c PcΣ3R;

(Xτ
ω)j = −i τ(Xτ

ω)ϑ〈Σ1Σ3(Cξj)
∗,Σ3R〉; (Xτ

ω)j = −i τ(Xτ
ω)ϑ〈Σ3ξ

∗
j ,Σ3R〉.

This yields the rest of (3.39)–(3.40). �

The following lemma is an immediate consequence of the formulas in Lemma 3.7 and of (3.19).
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Lemma 3.8. For any (K ′, S′,K, S) we have

(3.44)
|1− (Xτ

ϑ)ω q
′| . ‖R‖2

H−K′,−S′

|(Xτ
ϑ)j |+ |(Xτ

ϑ)j |+ ‖(Xτ
ϑ)f‖HK,S . ‖R‖H−K′,−S′ .

and

(3.45)
|1 + (Xτ

ω)ϑ q
′| . ‖R‖2

H−K′,−S′ ,

|(Xτ
ω)j |+ |(Xτ

ω)j |+ ‖(Xτ
ω)f‖H−K′,−S′ . ‖R‖H−K′,−S′ .

Definition 3.9. Set HK,S
c (ω) = Pc(ω)H

K,S and denote

(3.46) P̃K,S = C
n ×HK,S

c (ω0) , PK,S = R
2 × P̃K,S

with elements (ϑ, ω, z, f) ∈ PK,S and (z, f) ∈ P̃K,S .
Lemma 3.10. We consider ∀ τ ∈ [0, 1] the hamiltonian field Xτ

ϑ and the flow

(3.47)
d

ds
Φs(τ, U) = Xτ

ϑ(Φs(τ, U)) , Φ0(τ, U) = U.

(1) For any (K ′, S′) there is a s0 > 0 and a neighborhood U of R×{(ω0, 0, 0)} in P−K′,−S′

such that
the map (s, τ, U) → Φs(τ, U) is smooth

(3.48) (−s0, s0)× [0, 1]× (U ∩ {ω = ω0}) → P−K′,−S′

.

(2) U can be chosen so that for any τ ∈ [0, 1] there is another neighborhood Vτ of R× {(ω0, 0, 0)} in

P−K′,−S′

s.t. the above map establishes a diffeomorphism

(3.49) (−s0, s0)× (U ∩ {ω = ω0}) → Vt.
(3) f(Φs(τ, U))− f(U) = G(t, s, z, f) is a smooth map for all (K,S)

(−s0, s0)× [0, 1]× (U ∩ {ω = ω0}) → HK,S

with ‖G(t, s, z, f)‖HK,S ≤ C|s|(|z|+ ‖f‖H−K′,−S′ ).

Proof. The proof is exactly the same of Lemma 7.7 [Cuc10]. We only remark, that the field Xτ
ϑ , the flow

Φs(τ, U) and the function F (τ, U) in Lemma 3.11 are defined intrinsically, and so are periodic in ϑ. This
is because Xτ

ϑ satisfies these properties, since iXτ
ϑ
Ωτ = −idϑ with both Ωτ and dϑ intrinsically defined

and periodic in ϑ. �

Lemma 3.11. We consider a scalar function F (τ, U) defined as follows:

(3.50) F (τ,Φs(τ, U)) = i

∫ s

0

αΦs′ (t,U) (X
τ
ϑ(Φs′ (t, U))) ds′ , where ω(U) = ω0 .

We have F ∈ C∞([0, 1]× U ,R) for a neighborhood U of R× {(ω0, 0, 0)} in P−K′,−S′

. We have

(3.51) |F (t, U)| ≤ C(K ′, S′)|ω − ω0| (|z|+ ‖f‖H−K′,−S′ )
2

We have (exterior differentiation only in U)

(3.52) (α+ i dF )(Xτ
ϑ) = 0.

Proof. The proof is elementary and is exactly the same of Lemma 7.8 [Cuc10]. �

We now have the desired correction for α and below we introduce the vector field whose flow yields
the wanted change of coordinates.

Lemma 3.12. Denote by X τ the vector field which solves

(3.53) iX τΩτ = −α− i dF (τ).

Then the following properties hold.

(1) There is a neighborhood U of R× {(ω0, 0, 0)} in P1,0 such that X τ (U) ∈ C∞([0, 1]× U ,P1,0).
(2) We have (X τ )ϑ ≡ 0.
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(3) For constants C(K,S,K ′, S′)

(3.54)

∣∣∣∣(X τ )ω +
‖f‖22
2q′(ω)

∣∣∣∣ . (|z|+ ‖f‖H−K′,−S′ )2;

|(X τ )j |+ |(X τ )j |+ ‖(X τ )f‖HK,S . (|z|+ ‖f‖H−K′,−S′ )×
× (|ω − ω0|+ |z|+ ‖f‖H−K′,−S′ + ‖f‖2L2).

(4) We have

(3.55) LX τ

∂

∂ϑ
:=

[
X τ ,

∂

∂ϑ

]
= 0.

Proof. The proof is almost the same of [Cuc10, Lemma 7.9 ]. Claim (1) follows from the regularity
properties of α, F and Ωτ and from equations (3.56) and (3.58) below. (3.52) implies (2) by

i(X τ )ϑ = idϑ(X τ ) = −iXτ
ϑ
Ωτ (X τ ) = iX τΩτ (X

τ
ϑ) = −(α+ i dF )(Xτ

ϑ) = 0.

We have i(X τ )ω = idω(X τ ) = −iXτ
ω
Ωτ (X τ ), so

(3.56)
i(X τ )ω = iX τΩτ (X

τ
ω) = −(Xτ

ω)ϑ
[
αϑ + τ∂jF 〈ξ∗j , R〉 − τ∂jF 〈Σ1(Cξj)

∗, R〉
+ τ〈∇fF + iαf , P 0

c (1 + τPc − τP 0
c )

−1P 0
c PcΣ3R〉

]
.

Then by (3.25), (3.40) and (3.41), we get the first inequality in (3.54):

(3.57)

∣∣∣∣(X τ )ω +
‖f‖22
2q′(ω)

∣∣∣∣ ≤ C (|z|+ ‖f‖H−K′,−S′ )
2
.

By (3.38) we have the following equations

(3.58)

i ∂jF = εj(X τ )j + τ〈Σ1Σ3(Cξj)
∗, ∂ωR〉(X τ )ω

−i ∂jF = εj(X τ )j + τ〈Σ3ξ
∗
j , ∂ωR〉(X τ )ω

iβα2Σ3Σ1(α
f + i∇fF ) = −(X τ )f − τ(P 0

c Pc − 1)(X τ )f − τ(X τ )ωP
0
c Pc∂ωR.

Formulas (3.58) imply

|(X τ
ω )j | ≤ |∂jF |+ C (|z|+ ‖f‖H−K′,−S′ ) |(X τ )ω |

|(X τ
ω )j | ≤ |∂jF |+ C (|z|+ ‖f‖H−K′,−S′ ) |(X τ )ω |

‖(X τ
ω )f‖HK,S ≤ ‖αf‖HK,S + ‖∇fF‖HK,S + C (|z|+ ‖f‖H−K′,−S′ ) |(X τ )ω |

which with (3.57), (3.25) and Lemma (3.51) imply (3.54). (3.55) follows by L ∂
∂ϑ

(α+ idF ) = 0 and by

the product rule for the Lie derivative,

L ∂
∂ϑ

(iX τΩτ ) = i[ ∂
∂ϑ
,X τ ]Ωτ + iX τL ∂

∂ϑ
Ωτ = i[ ∂

∂ϑ
,X τ ]Ωτ .

�

The following lemma gathers some properties of the change of coordinates.

Lemma 3.13. Consider the vectorfield X τ in Lemma 3.11 and denote by Fτ (U) the corresponding flow.
Then the flow Fτ (U) for U near eiΣ3ϑΦω0 is defined for all τ ∈ [0, 1]. We have ϑ ◦ F1 = ϑ. We have

(3.59)

q (ω(F1(U))) = q (ω(U))− ‖f‖22
2

+ Eω(U)

zj(F1(U)) = zj(U) + Ej(U)

f(F1(U)) = f(U) + Ef (U)

with

|Eω(U)| . (|ω − ω0|+ |z|+ ‖f‖H−K′,−S′ )2,(3.60)

|Ej(U)|+ ‖Ef(U)‖HK,S . (|ω − ω0|+ |z|+ ‖f‖H−K′,−S′ + ‖f‖2L2)(3.61)

×(|ω − ω0|+ |z|+ ‖f‖H−K′,−S′ ).

For each ζ = ω, zj, f we have

(3.62) Eζ(U) = Eζ(‖f‖2L2, ω, z, f)
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with, for a neighborhood U−K′,−S′

of {(ω0, 0, 0)} in P−K′,−S′ ∩ {ϑ = 0} and for some fixed a0 > 0

(3.63) Eζ(̺, ω, z, f) ∈ C∞((−a0, a0)× U−K′,−S′

,C)

for ζ = ω, zj and with

(3.64) Ef (̺, ω, z, f) ∈ C∞((−a0, a0)× U−K′,−S′

, HK,S).

Proof. The argument is the same of Lemma 7.10 [Cuc10], but we review it for the sake of the reader. We
add a new variable ̺. We define a new field by

(3.65)
i(Y τ )ω = −(Xτ

ω)ϑ
[
αϑ + i

‖f‖22 − ρ

2
+ τ∂jF 〈ξ∗j , R〉 − τ∂jF 〈Σ1(Cξj)

∗, R〉

+ τ〈∇fF + iαf , P 0
c (1 + τPc − τP 0

c )
−1P 0

c PcΣ3R〉
]
,

by

(3.66)

i ∂jF = εj(Y
τ )j + τ〈Σ1Σ3(Cξj)

∗, ∂ωR〉(Y τ )ω
−i ∂jF = εj(Y

τ )j + τ〈Σ3ξ
∗
j , ∂ωR〉(Y τ )ω

iβα2Σ3Σ1(α
f + i∇fF ) = −(Y τ )f − τ(P 0

c Pc − 1)(Y τ )f − τ(Y τ )ωP
0
c Pc∂ωR.

and by Y τρ = 2〈(Y τ )f , iβα2Σ1f〉. Then Y τ = Y τ (ω, ρ, z, f) defines a new flow Gτ (ρ, U), which reduces to

Fτ (U) in the invariant manifold defined by ρ = ‖f‖22. Notice that by ρ(t) = ρ(0) +
∫ t
0 Y

s
ρ ds it is easy to

conclude ρ(G1(ρ, U)) = ρ(U) +O(rhs(3.60)). Using (3.45), (3.25) and (3.65) it is then easy to get

q(ω(t)) = q(ω(0)) +

∫ t

0

q′(ω(s))Y sω ds = q(ω(0))−
∫ t

0

ρ(s)

2
ds+O(rhs(3.60)).

By standard arguments, see for example the proof of Lemma 4.3 [BC09], we get

(3.67)

q (ω(G1(ρ, U))) = q (ω(U))− ρ

2
+ Eω(ρ, U)

zℓ(G1(ρ, U)) = zℓ(U) + Eℓ(ρ, U)

f(G1(ρ, U)) = f(U) + Ef (ρ, U)

with Eζ(ρ, U) satisfying (3.63) for ζ = ω, zℓ and (3.64) for ζ = f . We have Eζ(, U) = Eζ(‖f‖2, U) satisfying
(3.60) for ζ = ω and (3.61) for ζ = zℓ, f . �

Eventually we have the desired Darboux type result:

Lemma 3.14. (Darboux Theorem) Consider the flow Fτ of Lemma 3.13. Then we have

(3.68) F∗
τΩτ = Ω0.

We have

(3.69) Q ◦ F1 = q.

If χ is a function with ∂ϑχ ≡ 0, then ∂ϑ(χ ◦ Ft) ≡ 0.

Proof. Identity (3.68) is Darboux Theorem and the proof of the lemma is the same of Lemma 7.11
[Cuc10]. �

3.4. Reformulation of (3.9) in the new coordinates. We set

(3.70) H = K ◦ F1.

In the new coordinates (3.9) becomes

(3.71) q′ω̇ =
∂H

∂ϑ
≡ 0 , q′ϑ̇ = −∂H

∂ω

and

(3.72) iżj = εj
∂H

∂zj
, iḟ = iβα2Σ3Σ1∇fH.

Recall that we are solving the initial value problem (1.1) and that we have chosen ω0 with q(ω0) = ‖u0‖2L2
x
.

Correspondingly it is enough to focus on (3.72) with ω = ω0. Consider the notation of Theorem 1.1. Let
us focus for the moment on the case εj ≡ 1 in system (3.72). Then we prove :
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Theorem 3.15. Assume (H:1)–(H:12). Then for any k0 > 3 there exist ǫ0 > 0 and C > 0 such that
for |z(0)| + ‖f(0)‖Hk0 ≤ ǫ < ǫ0 the corresponding solution of (3.72) is globally defined and there are
f± ∈ Hk0 with ‖f±‖Hk0 ≤ Cǫ such that

(3.73) lim
t→±∞

‖eiϑ(t)Σ3f(t)− e−itDmeiϑ(0)Σ3f±‖Hk0 = 0

and

(3.74) lim
t→∞

z(t) = 0.

Fix p0 > 2 and τ0 > 1. Let 1
p = 1

2 − 1
q and α(q) = 3

p . Then, we can choose ǫ0 small enough such that

f(t, x) = A(t, x) + f̃(t, x)

with
∀n ∈ N, Cn(t) := sup

x∈R3,α∈N3

〈x〉n|∂αxA(t, x)| → 0 as t→ ∞

and for some fixed C

(3.75) ‖f̃‖
Lp

t ([0,∞),B
k0− 3

p
q,2 )∩L2

t ([0,∞),H
k0,−τ0
x )∩L2

t([0,∞),L∞
x )

≤ Cǫ.

There exist ω+ such that |ω+ − ω0| = O(‖f+‖22) such that

lim
t→+∞

ω(t) = ω+.

Proof that Theorem 3.15 implies Theorem 1.1. . If we denote (ω, z′, f ′) the initial coordinates, and
(ω0, z, f) the coordinates in (3.72), we have from Lemma 3.13 :

|z′ − z| = O(|z|+ ‖f‖L2,−2
x

) and ‖f ′ − f‖HK,S = O(|z|+ ‖f‖L2,−2
x

)

for any (K,S) ∈ (R+)2. The two error terms O converge to 0 as t→ ∞. Hence the asymptotic behavior

of (z′, f ′) and of (z, f) is the same. We also have, from Lemma 3.13, q (ω(t)) = q (ω0)− ‖f(t)‖2
2

2 +O(|z(t)|+
‖f(t)‖L2,−2

x
) which implies, say at +∞

lim
t→+∞

q (ω(t)) = lim
t→+∞

(
q (ω0)−

‖e−itHω0,0f+‖22
2

)
= q (ω0)−

‖f+‖22
2

= q(ω+)

for ω+ the unique element near ω0 for which the last inequality holds. So limt→+∞ ω(t) = ω+.
�

In the case εj ∈ {1,−1} with εj 6≡ 1, using the same argument of Theorem 3.15, we prove that solutions
which remain close to the standing wave, actually have remainder which scatters. We state this in terms
of the system (3.72) and the coordinates after Darboux, but of course it can be stated also in terms of
the original coordinates, as in Theorems 1.1 and 1.8.

Theorem 3.16. Assume (H:1)–(H:4), (H:5’) and (H:6)–(H:12). Then there exist ǫ0 > 0 with the
following property. Suppose that (z(t), f(t)) is a solution of (3.72) such that |z(t)|+ ‖f(0)‖Hk0 ≤ ǫ < ǫ0
for all t ≥ 0. Suppose furthermore that there exists a fixed C > 0 such that ‖f(t)‖Hk0 ≤ Cǫ for all t ≥ 0.
Then there exists f+ ∈ Hk0 with

(3.76) lim
t→±∞

‖|eiϑ(t)Σ3f(t)− e−itDmeiϑ(0)Σ3f±‖Hk0 = 0

and we have

(3.77) lim
t→+∞

z(t) = 0.

Furthermore, we can write f(t, x) = A(t, x) + f̃(t, x) as in Theorem 3.15 in such a way that the same

conclusions of Theorem 3.15 regarding A(t, x) and f̃ hold.

Remark 3.17. Theorem 3.16 is analogous to an observation in [MM08] regarding the fact that solutions
remaining for all times close to a standing wave, stable or unstable, converge to it. Among other references
see also [Bec08, NS10].

Finally, Theorem 1.8, that is orbital instability, is a consequence of the following theorem.

Theorem 3.18. Assume (H:1)–(H:4), (H:5’) and (H:6)–(H:12). Then we prove that there is a ǫ1 > 0
such that for any δ > 0 there is a solution (z(t), f(t)) of (3.72) such that |z(0)|+‖f(0)‖Hk0 ≤ δ but there
exists t ≥ 0 such that |z(t)| ≥ ǫ1.
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3.4.1. Taylor expansions. We recall that εj = 〈ξj ,Σ3ξj〉 ∈ {1,−1} is the Krein signature of the eigenvalues
of Hω. We set

d(ω) = E(Φω) + ωQ(Φω).

We recall that ω0 is the unique element such that q(ω0) = ‖u0‖22 and G is the primitive of the non-linearity
g vanishing at 0.

Lemma 3.19. The following statements hold.

(3.78)

K = d(ω)− ω‖u0‖22 +K2 +KP ;

K2 =
∑

j

εjλj(ω)|zj |2 +
1

2
〈iβα2Σ1Σ3Hωf, f〉

KP = 〈G6(ω, f(x)), 1〉+
∑

|µ+ν|=3

〈kµν(ω, z), 1〉zµzν +
∑

|µ+ν|=2

zµzν〈Kµν(ω, z), iβα2Σ3Σ1Pc(ω)f〉

+

4∑

d=2

〈Gd(ω, z), (Pc(ω)f)⊗d〉+
∫

R3

〈G5(x, ω, z, f(x)), f
⊗5(x)〉dx,

where for a small neighborhood U of (ω0, 0) in O × Cn, we have what follows for U like in (1), possibly
smaller.

(1) G6(x, ω, f) = G
(
1
2 (Pc(ω)f(x)) · iα2Σ3Σ1(Pc(ω)f(x))

)
,

(2) kµν(·, ω, z) ∈ C∞(U , HK,S
x (R3,C8),

(3) Kµν(·, ω, z) ∈ C∞(U , HK,S
x (R3,C8)),

(4) Gd(·, ω, z) ∈ C∞(U , HK,S
x (R3, B((C8)⊗d,C))), for 2 ≤ d ≤ 4 and G2(·, ω, 0) ≡ 0.

(5) Let tη = (ζ, Cζ) for ζ ∈ C4. Then for G5(·, ω, z, η) we have

∀l ∈ N ∪ {0}, ‖∇l
ω,z,z,ζ,CζG5(ω, z, η)‖HK,S

x (R3,B((C8)⊗5,C) ≤ Cl.

(6) We have kµν = k∗νµ, Kµν = −CΣ1Kνµ.

Proof. Consider U = eiΣ3ϑ(Φω +R) as in (2.28) . Decompose R as in (2.35). Set U = ϕ(ω, z) + Pc(ω)f .
Let Kp(U) =

∫
h(U(x)) dx, see Lemma 2.3, then after first a Taylor integral expansion around f at first

order and a Taylor integral expansion around φ at fourth order, we have

(3.79)

h(U) = h (Pc(ω)f) +

∫ 1

0

dh(tϕ+ Pc(ω)f)ϕdt

= h (Pc(ω)f) +

∫ 1

0

∑

i≤4

1

i!
di+1h(tϕ)(Pc(ω)f)

iϕdt+

+ 5

∫

[0,1]2
(1− s)4

1

5!
d6h(tϕ+ sPc(ω)f)(Pc(ω)f)

4ϕdtds

Notice that Φω is a critical point of K as it is in the kernel of HωΣ3. So in the Taylor expansion of
K around Φω there is no first order term. Notice that the second derivative of K is the bilinear form
1
2 〈iβα2Σ1Σ3Hω ·, ·〉. This gives K2.

The term KP contains all terms of order higher than 2 in f and z. Thus coincides with the term of
order higher than 2 in f and z in the above expansion after integration in x.

The Hamiltonian K is a real quantity and considering its conjugate will exchange z̄ and z and lead by
a straightforward calculation to the last assertion. �

The following lemma is a reformulation with some rearrangements of the above one in the canonical
coordinates provided by Lemma 3.13. We set δj be for j ∈ {1, ...n} the multi index δj = (δ1j , ..., δnj).
Let λ0j = λj(ω0) and λ

0 = (λ01, · · · , λ0n).

Lemma 3.20. Let H = K ◦ F1. Then, around eiΣ3ϑΦω0 we have the expansion

(3.80) H = d(ω0)− ω0‖u0‖22 + ψ(‖f‖22) +H
(1)
2 +R(1)

where

(3.81) H
(1)
2 =

∑

|µ+ν|=2

λ0·(µ−ν)=0

k(1)µν (‖f‖22)zµzν +
1

2
〈iβα2Σ1Σ3Hω0f, f〉.
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and R(1) = R̃(1) + R̃(2), with
(3.82)

R̃(1) =
∑

|µ+ν|=2

λ0·(µ−ν) 6=0

k(1)µν (‖f‖22)zµzν +
∑

|µ+ν|=1

zµzν〈Hνµ(‖f‖22), iβα2Σ3Σ1f〉,

R̃(2) =

∫

R3

G(
1

2
(Pc(ω0)f(x)) · iα2Σ3Σ1(Pc(ω0)f(x))) dx +

∑

|µ+ν|=3

zµzν
∫

R3

kµν(x, z, f, f(x), ‖f‖22)dx

+
∑

|µ+ν|=2

zµzν
∫

R3

[
iβα2Σ1Σ3Hνµ(x, z, f, f(x), ‖f‖22)

]T
f(x)dx

+

5∑

j=2

R(1)
j + R̂(1)

2 (z, f, ‖f‖22)

and R(1)
j =

∫

R3

Fj(x, z, f, f(x), ‖f‖22)f⊗j(x)dx.

and where the following holds.

(1) We have ψ(s) is smooth with ψ(0) = ψ′(0) = 0.
(2) At ‖f‖2 = 0 we have:

(3.83)

k(1)µν (0) = 0 for |µ+ ν| = 2 with (µ, ν) 6= (δj , δj) for all j;

k
(1)
δjδj

(0) = εjλj(ω0), where δj = (δ1j , ..., δmj) and here we are not summing in j,

Hνµ(0) = 0 for |µ+ ν| = 1

These k
(1)
µν (̺) and Hνµ(x, ̺) are smooth in all variables with Hνµ(·, ·) ∈ C∞(R̺, H

K,S
x (R3,C8))

for all (K,S).
(3) We have for all indexes

(3.84) k(1)µν = (k(1)µν )
∗ , kµν = k∗µν , Hνµ = −CΣ1Hµν .

(4) We have F2(x, 0, 0, 0, 0) = 0.

(5) For all (K,S,K ′, S′) positives there is a neighborhood U−K′,−S′

of {(0, 0)} in P̃−K′,−S′

, see
(3.46), such that

(a) for tη = (ζ, Cζ) where ζ ∈ C
4. we have, for kµν(x, z, f, η, ̺) with (z, f, ζ, ̺) ∈ U−K′,−S′ ×

C4 × R

(3.85) ∀l ∈ N
6, ‖∇l

z,z,ζ,Cζ,f,̺kµν‖HK,S
x (R3,C) ≤ Cl;

(b) for Hνµ(x, z, f, g, ̺),

(3.86) ∀l ∈ N
6, ‖∇l

z,z,ζ,Cζ,f,̺Hνµ‖HK,S
x (R3,C2) ≤ Cl;

(c) for Fj(x, z, f, g, ̺),

∀l ∈ N
6, ‖∇l

z,z,ζ,Cζ,f,̺Fj‖HK,S
x (R3,B((C2)⊗j ,C)) ≤ Cl;

(d) we have R̂(1)
2 (z, f, ̺) ∈ C∞(U−K′,−S′ × R,R) with

|R̂(1)
2 (z, f, ̺)| ≤ C(|z|+ |̺|+ ‖f‖H−K′,−S′ )‖f‖2

H−K′,−S′ .

Proof. The following proof is a continuation of proof of Lemma 3.13. We thus consider H = K ◦ G1 as
a function of (̺, U). By G1(0,Φω0) = F1(Φω0) = Φω0 , K

′(Φω0) = 0 and ‖F1(U) − U‖PK,S . ‖R‖2L2 we

conclude H ′(Φω0) = 0 and H ′′(Φω0) = K ′′(Φω0). In particular, this yields the formula for H
(1)
2 + R̃(1)

for ̺ = ‖f‖22 = 0.
The other terms are obtained by substituting in KP of (3.78) the formula (3.59). The term ψ(̺)

arises from d(ω ◦ G1) − ω ◦ G1‖u0‖22. There are no monomials ‖f‖j2zµzν〈H, f〉i with |µ + ν| + i = 1,
due to (3.60) (applied for ω = ω0). By 〈iβα2Σ1Σ3f, f〉 = ‖f‖22, we have 〈iβα2Σ1Σ3Hω0+δωf, f〉 =

〈iβα2Σ1Σ3Hω0f, f〉+ ‖f‖2̺
2 + F̃2 where F̃2 can be absorbed in j = 2 in R̃(2) and ‖f‖2̺

2 can be absorbed

in ψ when restricted to ̺ = ‖f‖22.
Notice that R̂(1)

2 is a remainder term obtained from terms in E of Lemme 3.13. �
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3.4.2. Normal form. Here again and in the following sections, we use the notation λ0j = λj(ω0).
Let

(3.87) H = Hω0Pc(Hω0) and H0 = Hω0,0.

Definition 3.21. A function Z(z, f) is in normal form if it is of the form

(3.88) Z = Z0 + Z1

where we have finite sums of the following types:

(3.89) Z1 =
∑

|λ0·(ν−µ)|>m−ω0

zµzν〈iβα2Σ1Σ3Gµν(‖f‖22), f〉

with Hµν(x, ̺) ∈ C∞(R̺, H
K,S
x ) for all K, S;

(3.90) Z0 =
∑

λ0·(µ−ν)=0

aµ,ν(‖f‖22)zµzν

and aµ,ν(̺) ∈ C∞(R̺,C). We will always assume the symmetries (3.84). �

We consider the coefficients of the type of (3.81) (below it will be those of the H
(r)
2 in Theorem 3.25)

and thus let, for δj = (δ1j , ..., δnj),

(3.91) λj = λj(‖f‖22) = λ0j + kδjδj (‖f‖22), λ = (λ1, · · · , λm).

Let

(3.92) D2 =

n∑

j=1

εjλj(‖f‖22)|zj |+
1

2
〈iβα2Σ1Σ3Hω0f, f〉.

We have (λ′j(̺) is the derivative in ̺) for F a scalar valued function that, summing on repeated indexes,

(3.93)

{D2, F} := dD2(XF ) = ∂jD2(XF )j + ∂jD2(XF )j + 〈∇fD2, (XF )f 〉
= −i∂jD2∂jF + i ∂jD2∂jF − 〈∇fD2, βα2Σ3Σ1∇fF 〉 =
iλjzj∂jF − iλjzj∂jF + i〈Hf,∇fF 〉+ 2iλ′j(‖f‖22)|zj |2〈f,Σ3∇fF 〉.

In particular, we have, for G = G(x), (we use Σ1iΣ2 = Σ3)

(3.94)

{D2, z
µzν} = iλ · (µ− ν)zµzν ,

{D2, 〈iβα2Σ1Σ3G, f〉} = i〈Hf, iβα2Σ1Σ3G〉 − 2 i

n∑

j=1

λ′j |zj |2〈iβα2Σ1f,G〉

= −i〈f, iβα2Σ1Σ3HG〉 − 2 i

n∑

j=1

λ′j |zj |2〈iβα2Σ1f,G〉,

{D2,
1

2
‖f‖22} = {D2,

1

2
〈f, iβα2Σ1f〉} = −i〈Hf, iβα2Σ1f〉 = −i〈Vω0f, iβα2Σ1f〉.

In the sequel we will prove that ‖f‖2 is small.

Remark 3.22. We will consider only

|µ+ ν| ≤ 2N + 3.

Then, λ0 · (µ − ν) 6= 0 implies |λ0 · (µ − ν)| ≥ c > 0 for some fixed c, and so we can assume also
|λ · (µ − ν)| ≥ c/2. Similarly |λ0 · (µ − ν)| < m − ω0 (resp. |λ0 · (µ − ν)| > m − ω0) will be assumed
equivalent to |λ · (µ− ν)| < m− ω0 (resp. |λ · (µ− ν)| > m− ω0).

Lemma 3.23 (Homological equation). Consider

K =
∑

|µ+ν|=M0+1

kµν(‖f‖22)zµzν +
∑

|µ+ν|=M0

zµzν〈iβα2Σ1Σ3Kµν(‖f‖22), f〉.(3.95)
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Suppose that all the terms in (3.95) are not in normal form and that the symmetries (3.84) hold. Consider

(3.96)

χ =
∑

|µ+ν|=M0+1

kµν(‖f‖22)
iλ · (µ− ν)

zµzν

+
∑

|µ+ν|=M0

zµzν〈iβα2Σ1Σ3
1

i(λ · (µ− ν)−H)
Kµν(‖f‖22), f〉.

Then we have

(3.97) {D2, χ} = K + L

with, summing on repeated indexes,

(3.98)

L = −2
k′µν

(µ− ν) · λz
µzν〈Vω0f, iβα2Σ1f〉

−2λ′jz
µzν |zj |2

〈
iβα2Σ1f,

1

(µ− ν) · λ−HKµν

〉

+2λ′ · (µ− ν)zµzν |zj|2
〈
f, iβα2

1

((µ− ν) · λ−H)
2Kµν

〉
〈Vω0f, iβα2Σ1f〉

−2zµzν
〈
f,Σ3Σ1

1

(µ− ν) · λ−HK ′
µν

〉
〈Vω0f, iβα2Σ1f〉.

The coefficients in (3.96) satisfy (3.84).

Proof. The proof follows by the tables (3.94), by the product rule for the derivative and by the symmetry
properties of H. �

3.4.3. Canonical transformations. First we consider functions

(3.99) χ =
∑

|µ+ν|=M0+1

bµν(‖f‖22)zµzν +
∑

|µ+ν|=M0

zµzν〈iβα2Σ1Σ3Bµν(‖f‖22), f〉

where bµν(̺) ∈ C∞(R̺,C) and Bµν(x, ̺) ∈ C∞(R, Pc(ω0)H
k,s
x (R3,C8)) for all k and s. Assume

(3.100) bµν = (bνµ)
∗ and iβα2Σ1Bµν = −(Bνµ)

∗ for all indexes.

The canonical transformations used in the proof of Theorem 3.25 are compositions of the Lie transforms
:

φ = φτ
∣∣
τ=1

,

with φτ the flow of the Hamiltonian vector field Xχ (with respect to Ω0 and only in (z, f)). Let for K > 0
and S > 0 fixed and large

(3.101) ‖χ‖ =
∑

|bµν(‖f‖22)|+
∑

‖Bµν(‖f‖22)‖HK,S .

Then, the following lemma can be proved like Lemma 9.2 [Cuc10].

Lemma 3.24. Consider the χ in (3.99) and its Lie transform φ. Set (z′, f ′) = φ(z, f). Then there are
G(z, f, ̺), Γ(z, f, ̺), Γ0(z, f, ρ) and Γ1(z, f, ρ) with the following properties.

(1) Γ ∈ C∞(U−K′,−S′

,Cn), Γ0,Γ1 ∈ C∞(U−K′,−S′

,R), with U−K′,−S′ ⊂ Cn×H−K′,−S′

c (ω0)×R an
appropriately small neighborhood of the origin.

(2) G ∈ C∞(U−K′,−S′

, HK,S
c (ω0)) for any K,S.

(3) The transformation φ is of the following form:

z′ = z + Γ(z, f, ‖f‖22),(3.102)

f ′ = eiΓ0(z,f,‖f‖2
2)Pc(ω0)Σ3f + G(z, f, ‖f‖22).(3.103)

(4) There are constants cK′,S′ and cK,S,K′,S′ such that

|Γ(z, f, ‖f‖22)| ≤ cK′,S′(‖χ‖+ (3.108))|z|M0−1(|z|+ ‖f‖H−K′,−S′ ),(3.104)

‖G(z, f, ‖f‖22)‖HK,S ≤ cK,S,K′,S′(‖χ‖+ (3.108))|z|M0 ,(3.105)

|Γ0(z, f, ‖f‖22)| ≤ cK′,S′ |z|M0−1(|z|+ ‖f‖H−K′,−S′ )2.(3.106)
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(5) We have

‖f ′‖22 = ‖f‖22 + Γ1(z, f, ‖f‖22),(3.107) ∣∣Γ1(z, f, ‖f‖22)
∣∣ ≤

C|z|M0−1(|z|M0+2 + |z|2‖f‖H−K′,−S′ + ‖f‖3
H−K′,−S′ ).(3.108)

(6) We have

(3.109) eiΓ0Pc(ω0)Σ3 = eiΓ0Σ3 + T (Γ0),

where T (r) ∈ C∞(R, B(H−K′,−S′

, HK,S)) for all (K,S,K ′, S′), with norm

‖T (r)‖B(H−K′,−S′ ,HK,S) ≤ C(K,S,K ′, S′)|r|.
More specifically, the range of T (r) is a subspace of L2

d(H) + L2
d(H∗).

The crux of this section is the following result.

Theorem 3.25. For any integer r ≥ 2 there are a neighborhood U1,0 of {(0, 0)} in P̃1,0, see (3.46), and

a smooth canonical transformation Tr : U1,0 → P̃1,0 s.t.

(3.110) H(r) := H ◦ Tr = d(ω0)− ω0‖u0‖22 + ψ(‖f‖22) +H
(r)
2 + Z(r) +R(r).

where:

(i) H
(r)
2 = H

(2)
2 for r ≥ 2, is of the form (3.81) where k

(r)
µν (‖f‖2) satisfy (3.83)–(3.84);

(ii) Z(r) is in normal form, in the sense of Definition 3.21 below, with monomials of degree ≤ r whose
coefficients satisfy (3.84);

(iii) the transformation Tr is of the form (3.102)– (3.103) and satisfies (3.104)– (3.106) for M0 = 1;

(iv) we have R(r) =
∑6

d=0 R
(r)
d and for all (K,S,K ′, S′) positives there is a neighbourhood U−K′,−S′

of {(0, 0)} in P̃−K′,−S′

such that
(iv.0)

R(r)
0 =

∑

|µ+ν|=r+1

zµzν
∫

R3

k(r)µν (x, z, f, f(x), ‖f‖22)dx

and for k
(r)
µν (z, f, η, ̺) with tη = (ζ, Cζ), ζ ∈ C4 we have for (z, f) ∈ U−K′,−S′

and |̺| ≤ 1

(3.111) ‖∇l
z,z,ζ,Cζ,f,̺k

(r)
µν (·, z, f, η, ̺)‖HK,S(R3,C) ≤ Cl for all l;

(iv.1)

R(r)
1 =

∑

|µ+ν|=r
zµzν

∫

R3

[
iβα2Σ1Σ3H

(r)
µν (x, z, f, f(x), ‖f‖22)

]T
f(x)dx

(3.112) with ‖∇l
z,z,ζ,Cζ,f,̺H

(r)
νµ (·, z, f, η, ̺)‖HK,S(R3,C8) ≤ Cl for all l;

(iv.2–5) for 2 ≤ d ≤ 5,

R(r)
d =

∫

R3

F
(r)
d (x, z, f, f(x), ‖f‖22)f⊗d(x)dx + R̂(r)

d ,

with for any l

(3.113) ‖∇l
z,z,ζ,Cζ,f,̺F

(r)
d (·, z, f, η, ̺)‖HK,S(R3,B((C8)⊗d,C) ≤ Cl,

with F
(r)
2 (x, 0, 0, 0, 0) = 0 and with R̃(r)

d (z, f, ‖f‖22) s.t.

(3.114)

R̂(r)
d (z, f, ̺) ∈ C∞(U−K′,−S′ × R,R),

|R̂(r)
d (z, f, ̺)| ≤ C‖f‖d

H−K′,−S′ ,

|R̂(r)
2 (z, f, ̺)| ≤ C(|z|+ |̺|+ ‖f‖H−K′,−S′ )‖f‖2

H−K′,−S′ ;

(iv.6) R(r)
6 =

∫
R3 G(

1
2 (Pc(ω)f(x)) · iα2Σ3Σ1(Pc(ω)f(x)) dx.

The proof of Theorem 3.25 is the same of Theorem 9.1 in [Cuc10] and we skip it. The ingredients
needed in the proof (in particular the notion of normal form) are described above.
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4. Non linear dynamics

4.1. Dispersion. λ We apply Theorem 3.25 for r = 2N1 + 1 (recall Njλj < m − ω0 < (Nj + 1)λj). In

the rest of the article we work with the Hamiltonian H(r). We will drop the upper index. So we will set

H = H(r), H2 = H
(r)
2 , λj = λ

(r)
j , λ = λ(r), Za = Z

(r)
a for a = 0, 1 and R = R(r). In particular we will

denote by Hµν the coefficients G
(r)
µν of Z

(r)
1 . We will show:

Theorem 4.1. Fix p0 > 2 and τ0 > 1. Let 2
p = 3

2 (1 − 2
q ) and α(q) = 2

p , i.e. (1 + θ
2 )(1 − 2

q ) =
2
p with

θ = 1 in Theorem 2.17. Consider k0 > 3 (as in Theorem 1.1). There is a fixed C > 0 such that for
ε0 > 0 sufficiently small, for ǫ ∈ (0, ε0) and for p ≥ p0 we have the following inequalities:

‖f‖
Lp

t ([0,∞),B
k0− 2

p
q,2 )

≤ Cǫ;(4.1)

‖f‖
L2

t([0,∞),H
k0,−τ0
x )

≤ Cǫ(4.2)

‖f‖L2
t([0,∞),L∞

x ) ≤ Cǫ(4.3)

‖zµ‖L2
t([0,∞)) ≤ Cǫ for all multi indexes µ with λ · µ > m− ω0(4.4)

‖zj‖W 1,∞
t ([0,∞)) ≤ Cǫ for all j ∈ {1, . . . , n} .(4.5)

Notice that, due to time reversibility, it is easy to conclude that (4.1)–(4.5) are true over the whole
real line.

The proof of Theorem 4.1 involves a standard continuation argument following [Sog95, End of proof
of Theorem II.2.1]. We assume

‖f‖
Lp

t ([0,T ],B
k0− 2

p
q,2 )

+ ‖f‖
L2

t([0,T ],H
k0,−τ0
x )

+ ‖f‖L2
t([0,T ],L∞

x ) ≤ C1ǫ(4.6)

‖zµ‖L2
t ([0,T ]) ≤ C2ǫ for all multi indexes µ with ω · µ > m− ω0(4.7)

‖zj‖W 1,∞
t ([0,T ]) ≤ C3ǫ for all j ∈ {1, . . . , n}(4.8)

for fixed sufficiently large constants C1–C3. Notice that there is an ε1 > 0 such that this assumption is
true for all |z(0)|+ ‖f(0)‖Hk0 < ε1 if say T ∈ (0, 1]. We then prove that there exists a fixed ε0 ∈ (0, ε1),
with ε0 = ε0(C1, C2, C3), such that for ǫ ∈ (0, ε0), (4.6)–(4.8) imply the same estimate but with C1–C3

replaced by C1/2–C3/2. This implies that the set of T such that (4.6)–(4.8) is open in R+. Since it is also
closed, it is all R+. Then (4.6)–(4.8) hold with [0, T ] replaced by [0,∞) for all |z(0)|+‖f(0)‖Hk0 < ǫ < ε0.

The proof of Theorem 4.1 consists in three main steps.

(i) Estimate f in terms of z.
(ii) Substitute the variable f with a new ”smaller” variable g and find smoothing estimates for g.
(iii) Reduce the system for z to a closed system involving only the z variables, by insulating the part

of f which interacts with z, and by decoupling the rest (this reminder is g). Then clarify the
nonlinear Fermi golden rule.

Step (i). Using the Proposition 4.2 below, we will choose C1 > 2K1(C2). This tells us that if we get
upper bounds on C2 and C3, and this is done in Subsection 4.2, then we will have proved Theorem 4.1.

Proposition 4.2. Assume (4.6)–(4.8). Then there exist constants C = C(C1, C2, C3),K1(C2), such that,
if C(C1, C2, C3)ǫ is sufficiently small, then we have

‖f‖
Lp

t ([0,T ],B
k0− 2

p
q,2 )

+ ‖f‖
L2

t([0,T ],H
k0,−τ0
x )

+ ‖f‖L2
t([0,T ],L∞

x ) ≤ K1(C2)ǫ .(4.9)

Proof. Consider Z1 of the form (3.89). Set:

(4.10) H0
µν = Hµν(‖f‖22) for ‖f‖22 = 0;λ0j = λj(ω0).

Then we have (with finite sums)

(4.11)

iḟ −Hf − 2(∂‖f‖2
2
H)Pc(ω0)Σ3f =

∑

|λ0·(ν−µ)|>m−ω0,
|µ+ν|≤2N1+1

zµzνH0
µν

+
∑

|λ0·(ν−µ)|>m−ω0,
|µ+ν|≤2N1+1

zµzν(Hµν −H0
µν) + iβα2Σ3Σ1∇fR− 2(∂‖f‖2

2
R)Pc(ω0)Σ3f.

In order to obtain bounds on f , we need bounds on the right hand term of the equation especially the
last two terms. They are provided by the following lemma.
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Lemma 4.3. Assume (4.6)–(4.8) and consider a fixed τ0 > 1. Then there is a constant C = C(C1, C2, C3)
independent of ǫ such that the following is true: we have βα2Σ3Σ1∇fR−2(∂‖f‖2

2
R)Pc(ω0)Σ3f = R1+R2

with

(4.12)
‖R1‖Hk0

x
≤ C(C1, C2, C3)(|z|2N1+2 + ‖f‖2L∞‖f‖

H
k0
x
)

‖R2‖Hk0,τ0
x

≤ C(C1, C2, C3)(|z|+ ‖f‖2L2
x
+ ‖f‖

H
k0,−τ0
x

)‖f‖
H

k0,−τ0
x

.

In particular we have for some other fixed constant C = C(C1, C2, C3),

(4.13) ‖R1‖L1
t([0,T ],H

k0
x )

+ ‖R2‖L2
t ([0,T ],H

k0,τ0
x )

≤ C(C1, C2, C3)ǫ
2.

Proof. (4.13) is a consequence of (4.12) and (4.6)–(4.8). We focus on (4.12). For d ≤ 1 and arbitrary
fixed (S,K) we have ∇fRd ∈ HS,K . By (iv0–iv1) Theorem 3.25

(4.14) ‖∇fR0‖HS,K + ‖∇fR1‖HS,K ≤ C|z|2N1+2.

These terms can be absorbed in R1. For 2 ≤ d ≤ 5 we have

(4.15) Σ3Σ1∇f R̂d − 2(∂‖f‖2
2
R̂d)Pc(ω0)Σ3f = Σ3Σ1∇f R̂d(z, f, ρ),

computed at ρ = ‖f‖22. By (3.114) we obtain

(4.16)
‖∇f R̂d(z, f, ρ)‖HK′,S′ ≤ C‖f‖d−1

H−K′,−S′ for 3 ≤ d ≤ 5 and

‖∇f R̂2(z, f, ρ)‖HK′,S′ ≤ C‖f‖2
H−K′,−S′ + C|z| ‖f‖H−K′,−S′ .

Since K ′ and S′ are arbitrarily large, we have ‖f‖H−K′,−S′ ≤ ‖f‖Hk0,−τ0 . So these terms can be absorbed
in R2. Other terms are treated as in [BC09, Lemma 7.5] : For d = 2, 3, 4, 5 we have schematically

(4.17)

Fd(x, z, f, f(t, ·), ρ)f⊗(d−1)(t, ·) + ∂wFd(x, z, f, w, ρ)w=f(t,·)f
⊗d(t, ·)

+∇g

(∫

R3

Fd(x, z, g, f(t, x), ‖f(t)‖2L2
x
)[f(t, x)]⊗ddx

)

g=f

.

The first line of (4.17) has Hk0,τ0
x norm bounded, for some fixed sufficiently large N, by

(4.18)
C̃‖〈x〉NFd(x, z, f, f(t, x), ρ)‖Wk0,∞

x
‖f‖d−1

H
k0,−τ0
x

+ C̃‖〈x〉N∂wFd(x, z, f, w, ρ)w=f(t,x)‖Wk0,∞
x

‖f‖d
H

k0,−τ0
x

≤ C‖f‖d−1

H
k0,−τ0
x

+ C‖f‖d
H

k0,−τ0
x

.

When these terms are bounded by ‖f‖d1
H

k0,−τ0
x

for d1 ≥ 2, we can absorb them in R2. Cases d1 = 1 come

from terms in the first line of (4.18) with d = 2. By F2(x, 0, 0, 0, 0) = 0 these are less than

(4.19) (|z|+ ‖f‖
H−K′,−S′

x
+ ‖f‖2L2

x
)‖f‖

H
k0,−τ0
x

and can be absorbed in R2. Looking at the second line of (4.17) and for N sufficiently large, we have

(4.20)

‖∇g

(∫

R3

Fd(x, z, g, f(t, x), ‖f(t)‖2L2
x
)[f(t, x)]⊗ddx

)

g=f

‖
H

k0
x

=

∣∣∣∣∣∣
sup

‖ψ‖
H

−k0
x

=1

∫

R3

DgFd(x, z, g, f(t, x), ‖f(t)‖2L2
x
)g=f [ψ][f(t, x)]

⊗ddx

∣∣∣∣∣∣
≤ C sup

‖ψ‖
H

−k0
x

=1

‖DgFd(x, z, g, f(t, x), ‖f(t)‖2L2
x
)g=f [ψ]‖L∞,N

x
‖f‖d

H
k0,−τ0
x

≤ C‖f‖d
H

k0,−τ0
x

.

So the second line of (4.17) can be absorbed in R2. Finally we consider ∇fR6 = Σ1g(|f(t, x)|2/2)f(t, x).
Then for a fixed C we have

(4.21) ‖∇fR6‖Hk0
x

≤ C‖f‖2L∞
x
‖f‖

H
k0
x
.

�

Denote by F the rhs of (4.11) and set ϕ = 2∂‖f‖2
2
H .
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Lemma 4.4. Consider iψ̇ − Hψ − ϕ(t)Σ3Pcψ = F where Pc = Pc(ω0) and ψ = Pcψ. Let k ∈ R and
τ0 > 1. Then there exist c0 > 0 and C > 0 such that if ‖ϕ‖L∞

t [0,T ] < c0 then for p ≥ p0 > 2 and for (p, q)
as in Theorem 4.1 we have

(4.22) ‖ψ‖
Lp

t ([0,T ],B
k− 2

p
q,2 )∩L2

t ([0,T ],H
k,−τ0
x )

≤ C‖ψ(0)‖Hk + C‖F‖
L1

t([0,T ],Hk
x)+L

2
t ([0,T ],H

k,τ0
x )

Proof. We apply the argument for the NLS in Lemma B.2 [NS10], see also Theorem 1.5 [Bec08]. A more
precise statement than Lemma B.2 [NS10] is in [BP95, Cuc08], but the proof does not seem easy to
reproduce for Dirac. We fix any δ > 0. Let Pd = Pd(ω0) and H0 = Hω0,0. Consider

(4.23) iŻ −HPcZ + iδPdZ − ϕΣ3PcZ = F.

Then notice that for Z(0) = ψ(0) the solution of (4.23) satisfies Z(t) ≡ ψ(t). We rewrite (4.23) as

(4.24) iŻ −H0Z − ϕΣ3Z = F + (V −HPd − iδPd)Z − ϕΣ3PdZ.

Let (V − HPd − iδPd) = V1V2 with V2(x) a smooth exponentially decaying and invertible matrix, and

with V1 bounded from Hk,s′ → Hk,s for all k, s and s′. For U(t) = e−iΣ3

∫
t
0
ϕ(t′)dt′ we have

(4.25) Z(t) = U(t)e−iH0tZ(0)− i

∫ t

0

eiH0(t
′−t)U(t)U−1(t′) [F (t′) + V1V2Z(t

′)− ϕ(t′)Σ3PdZ(t
′)] dt′.

c0PdV
−1
2 maps H−K′,−S′ → HK,S for arbitrarily fixed pairs (K,S) and (K ′, S′). By picking c0 small

enough, we can assume that the related operator norms are small. By Theorems 2.15 and 2.17

(4.26)

‖Z‖
Lp

tB
k− 2

p
q,2 ∩L2

tH
k,−τ0
x

≤ C‖Z(0)‖Hk + C‖F‖
L1

tH
k
x+L

2
tH

k,τ0
x

+ ‖V1 − ϕ(t)Σ3PdV
−1
2 ‖

L∞
t B(Hk

x ,H
k,τ0
x )

‖V2Z(t)‖L2
tH

k
x
.

For T̃0f(t) = V2
∫ t
0
eiH0(t

′−t)U(t)U−1(t′)V1f(t′)dt′, by (4.25) we obtain

(I + iT̃0)V2Z(t) = V2U(t)e−iH0tZ(0)− iV2

∫ t

0

eiH0(t
′−t)U(t)U−1(t′) [F (t′)− ϕ(t′)Σ3PdZ(t

′)] dt′

We then obtain (4.22) if we can show that

(4.27) ‖(I + iT̃0)
−1 : L2

t ([0, T ), H
k(R3)) → L2

t ([0, T ), H
k(R3))‖ < C1,

for c0C1 smaller than a fixed number. It is enough to prove (4.27) with T̃0 replaced by

T0f(t) = V2

∫ t

0

eiH0(t
′−t)V1f(t

′)dt′.

Indeed by Theorem 2.16 we have

‖(T̃0 − T0)f‖L2
tH

k
x
≤ ‖

∫ t

0

‖V2eiH0(t
′−t)(eiΣ3

∫
t′

t
ϕ(t′′)dt′′ − 1)V1f(t

′)‖Hk
x
dt′‖L2

t

≤ C̃c
1
4
0 ‖
∫ t

0

〈t′ − t〉− 5
4 ‖f(t′)‖Hk

x
dt′‖L2

t
≤ Cc

1
4
0 ‖f(t′)‖L2

tH
k
x
.

Set

T1f(t) = V2

∫ t

0

e(iHPc+δPd)(t
′−t)V1f(t

′)dt′ = V2

∫ t

0

(e(iH(t′−t)Pc + e−δ|t
′−t|Pd)V1f(t

′)dt′.

We have ‖T1 : L2
t ([0, T ), H

k(R3)) → L2
t ([0, T ), H

k(R3))‖ < C2 for a fixed C2. For exactly the same
reasons of [NS10] we have

(I + iT0)(I − iT1) = (I − iT1)(I + iT0) = I.

This yields (4.27) with T̃0 replaced by T0 and with C1 = 1 + C2. �

Lemma 4.5. Using the notation of Lemma 4.4, but this time picking τ0 > 3/2, we have

(4.28) ‖ψ‖L2
t([0,T ],L∞) ≤ C‖ψ(0)‖Hk0 + C‖F‖

L1
t([0,T ],H

k0
x )+L2

t ([0,T ],H
k0,τ0
x )
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Proof. We proceed as above until (4.25). We claim we have

(4.29)
‖Z‖L2

tL
∞
x

≤ C‖Z(0)‖Hk0 + C‖F‖
L1

tH
k0
x +L2

tH
k0,τ0
x

+ ‖V1 − ϕ(t)Σ3PdV
−1
2 ‖

L∞
t B(H

k0
x ,H

k0 ,τ0
x )

‖V2Z(t)‖L2
tH

k0
x
.

(4.29) will yield (4.28) by the argument in Lemma 4.4. So now we prove (4.29). We have for k > 1/2

‖e−iH0tZ(0)‖L2
tL

∞
x

≤ C‖e−iH0tZ(0)‖L2
tB

k
6,2

≤ C′‖Z(0)‖Hk+1 ≤ C′‖Z(0)‖Hk0

by Theorem 2.17. Similarly, splitting F = F1 + F2, we have

‖
∫ t

0

eiH0(t
′−t)U−1(t′)F1(t

′)dt′‖L2
tL

∞
x

≤ C‖
∫ t

0

eiH0(t
′−t)U−1(t′)F1(t

′)dt′‖L2
tB

k
6,2

≤ C′‖F1‖L1
tH

k+1 ≤ C′‖F1‖L1
tH

k0 .

Using Bk∞,2 ⊂ L∞ for k > 0, by Theorem 3.1 [Bou06] we have for k0 > 3

‖
∫ t

0

eiH0(t
′−t)U−1(t′)F2(t

′)dt′‖L2
tL

∞
x

≤ C

∥∥∥∥
∫ t

0

min{|t− t′|− 1
2 , |t− t′|− 3

2 }‖F2(t
′)‖

B
k0
1,2
dt′
∥∥∥∥
L2

t

≤ C′‖F2‖L2
tB

k0
1,2

≤ C′′‖〈x〉τ0F2‖L2
tB

k0
2,2

= C′′‖F2‖L2
tH

k0 ,τ0 ,

where we have used ‖ϕj ∗F2‖L1
x
≤ ‖〈x〉−τ0‖L2

x
‖〈x〉τ0ϕj ∗F2‖L2

x
≤ C′′′‖ϕj ∗ (〈·〉τ0F2)‖L2

x
for fixed C′′′ > 0

and fixed τ0 > 3/2. With F2 replaced by (V1V2 − ϕΣ3Pd)Z we get a similar estimate. This yields
inequality (4.29).

�

Continuation of the proof of Proposition 4.1. By (4.11) we can apply to f Lemmas 4.4 and 4.5 by
taking ϕ(t) = 2(∂‖f‖2

2
H) and F = rhs(4.11)− ϕ(t)[Σ3, Pd]f . Then

‖f‖
Lp

t ([0,T ],B
k0− 2

p
q,2 )∩L2

t([0,T ],H
k0,−τ0
x )∩L2

t ([0,T ],L∞
x )

≤ C‖f(0)‖Hk0 + C‖F‖
L1

t ([0,T ],H
k0
x )∩L2

t([0,T ],H
k0,s
x )

.

We have

(4.30) ‖F‖
L1

tH
k0
x +L2

tH
k0 ,τ0
x

.
∑

λ·µ>m−ω0

‖zµ‖2L2
t
+ ‖R1‖L1

tH
k0
x

+ ‖R2‖L2
tH

k0 ,τ0
x

+ ǫ‖f‖
L2

tH
−k0 ,−τ0
x

.

For ǫ small this yields Proposition 4.1 by Lemma 4.4 and by (4.7).
�

Lemma 4.6. Assume the conclusions of Theorem 4.1. Then there exists a fixed C > 0 and f ′
+ ∈ Hk0

with ‖f ′
+‖Hk0 < Cǫ such that for ϑ(t) the phase in the ansatz (2.1) we have

(4.31) lim
t→+∞

∥∥∥eiϑ(t)Σ3f(t)− e−itDmeiϑ(0)Σ3f ′
+

∥∥∥
Hk0

= 0.

Proof. For ψ(t) = f(t), for F = rhs(4.11)− ϕ(t)[Σ3, Pd]f and for t1 < t2, we have

‖U−1(t2)e
iH0t2f(t2)− U−1(t1)e

iH0t1f(t1)‖Hk0

≤ ‖
∫ t2

t1

eiH0t
′U−1(t′)

[
F (t′) + V f(t′)− ϕ(t′)U−1Σ3Pdf(t

′)
]
dt′‖Hk0 ≤

C(
∑

|λ0·µ|>m−ω0

‖zµ‖L2(t1,t2) + ‖R1‖L1
t([t1,t2],H

k0
x )

+ ‖R2‖L2
t ([t1,t2],H

k0,s
x )

+ ‖f‖
L2

t([t1,t2],H
k0,−τ0
x )

).

Since the latter has limit 0 as t1 → +∞, there exists f ′
+ ∈ Hk0 such that

lim
t→+∞

∥∥U−1(t)f(t) − e−iH0tf ′
+

∥∥
Hk0

= 0.

Hence, from H0 = Dm − ω0Σ3 and U−1(t) = eiΣ3

∫
t

0
ϕ(t′)dt′ we have θ(t) = −tω0 +

∫ t
0 ϕ(t

′)dt′

(4.32) lim
t→+∞

∥∥∥eiθ(t)Σ3f(t)− e−itDmf ′
+

∥∥∥
Hk0

= 0.
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(4.31) follows from (4.32) if we can prove θ(t) = ϑ(t)− ϑ(0). To prove the claim we substitute R in (2.7)
using (2.36) and then replace (z, f) with the last coordinate system obtained from Theorem 3.25. Then
we get

(4.33) iḟ −Hf − (ϑ̇+ ω0)Pc(ω0)Σ3f = G

where G = G1(z, ‖f‖22)+G2(z, ‖f‖22)f+G3 where G2 ∈ L∞
t B(Hk0,−S, Hk0,S) for S a fixed large number,

and G3 ∈ (L1
tH

k0
x + L2

tH
k0,−S
x ). The two equations (4.33) and (4.11) are equivalent. This implies

G = rhs(4.11) and ϑ̇+ ω0 = 2∂‖f‖2
2
H. This yields the claim θ(t) = ϑ(t)− ϑ(0). �

Step (ii). In the proof of Theorem 4.1 consists in introducing the variable

(4.34) g = f + Y , Y :=
∑

|λ0·(µ−ν)|>m−ω0

zµzνR+
H(λ0 · (µ− ν))H0

µν .

Substituting the new variable g in (4.11), the first line on the rhs of (4.11) cancels out. We have

(4.35)

iġ −Hg − 2∂‖f‖2
2
HPc(ω0)Σ3g = second line of (4.11)+

2∂‖f‖2
2
HPc(ω0)Σ3Y +

n∑

k=1

[∂zkY ∂zk (Z +R)− ∂zkY ∂zk (Z +R)] .

We have:

Lemma 4.7. For ǫ sufficiently small, τ1 > 1 and for C0 = C0(H) a fixed constant, we have

(4.36) ‖g‖
L2

t([0,T ],L
2,−τ1
x )

≤ C0ǫ+O(ǫ2).

Proof. Set F = (second line of (4.11)− ϕ(t)[Σ3, Pd]g). Then, proceeding as in (4.25), we have

(4.37)

‖g‖
L2

tL
2,−τ1
x

≤ ‖e−itH0Y (0)‖
L2

tL
2,−τ1
x

+ ‖e−itH0f(0)‖
L2

tL
2,−τ1
x

+ C‖F‖
L1

tH
k
x∩L2

tH
k,τ1
x

+ ‖
∫ t

0

ei(t
′−t)H0second line of (4.35)(t′)dt′‖

L2
tL

2,−τ1
x

+ ‖V1 − ϕ(t)Σ3PdV
−1
2 ‖

L∞
t B(L2

x,L
2,−τ1
x )

‖V2g(t)‖L2
tx
.

We have ‖e−itH0f(0)‖
L2

tL
2,−τ1
x

. ‖f(0)‖L2
tx

. ǫ. We have by Lemma 2.19

(4.38) ‖e−itH0Y (0)‖
L2

tL
2,−τ1
x

≤ C
∑

|λ0·(µ−ν)|>m−ω0

ǫ|µ+ν|.

We have ‖second line of (4.11)‖
L1

tL
2
x+L

2
tL

2,τ1
x

≤ O(ǫ2). Similarly ‖ϕ(t)[Σ3, Pd]g‖L2
tL

2,−τ1
x

≤ Cǫ‖g‖
L2

tL
2,τ1
x

.

Hence ‖F‖
L1

tL
2
x∩L2

tL
2,τ1
x

≤ Cǫ‖g‖
L2

tL
2,−τ1
x

+O(ǫ2). Now we sketch a bound for the second line of (4.37).

(4.39)

∑

|λ0·(µ−ν)|>m−ω0

‖
∫ t

0

ei(t
′−t)H0∂‖f‖2

2
H(t′)zµ(t′)zν(t′)Pc(ω0)R

+
H∗(λ

0 · (µ− ν))Σ3H
0
µνdt

′‖
L2

tL
2,−τ1
x

≤
∑

|λ0·(µ−ν)|>m−ω0

‖
∫ t

0

〈t− t′〉− 3
2 |∂‖f‖2

2
H(t′)zµ(t′)zν(t′)|dt′‖L2

t
. C2ǫ

2,

where we used Lemma 2.19 with H replaced by H∗. Of the other contributions to the second line of
(4.37) we focus on the main ones. Specifically we consider for µj 6= 0

(4.40) ‖
∫ t

0

ei(t
′−t)H0Pc(ω0)

zµzν

zj
∂zjZ0R

+
H(λ0 · (µ− ν))H0

µνdt
′‖
L2

tL
2,−τ1
x

≤ C‖z
µzν

zj
∂zjZ0‖L2

t

for λ(ω0) · (µ− ν) > m− ω0.(4.41)

We need to show

‖ zµzνzj
∂zjZ0‖L2

t
= O(ǫ2).(4.42)
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Let zαzβ be a generic monomial of Z0. Then ∂zj (z
αzβ) = βj

zαzβ

zj
, with the nontrivial case for βj 6= 0.

By Definition 3.21 we have λ(ω0) · (α− β) = 0. (H:11) can be applied and implies |α| = |β| ≥ 2. Thus
in particular one has

(4.43) λ(ω0) · α ≥ λj(ω0) ⇒ λ(ω0) · (µ+ α)− λj(ω0) > m− ω0 .

So the following holds:

(4.44) ‖z
µzν

zj

zαzβ

zj
‖L2

t
≤ ‖z

νzβ

zj
‖L∞

t
‖z

µzα

zj
‖L2

t
≤ CC2C3ǫ

|ν|+|β| ≤ CC2C3ǫ
2.

We conclude that the second line in (4.37) is O(ǫ2). The estimates omitted are easier than (4.40) and
(4.42). ‖V2g‖L2

tx
can be bounded as in Lemma 4.4. �

4.2. The Fermi golden rule.
Step (iii). We proceed as in [Cuc10]. We recall Remark 3.22. In particular we will only consider finite
sums

|µ+ ν| < 2N + 3.

We will have λ0j = λj(ω0) and λj = λj(‖f‖22) as in Section 3.4.2. |λ0j − λj | . C2
1 ǫ

2 by (4.6), so in the

sequel we can assume that λ0 satisfies the same inequalities of λ. Set

R+
µν = R+

H(λ0 · (µ− ν)).

We substitute (4.11) in iżj =
∂
∂zj

H(r) obtaining

(4.45)

iżj = ∂zj (H2 + Z0) +
∑

|λ·(µ−ν)|>m−ω0

νj
zµzν

zj
〈g, iβα2Σ1Σ3Hµν〉+ ∂zjR

−
∑

|λ·(α−β)|>m−ω0

|λ·(µ−ν)|>m−ω0

νj
zµ+αzν+β

zj
〈R+

αβH
0
αβ , iβα2Σ1Σ3Hµν〉.

We rewrite this as

iżj = ∂zj (H2 + Z0) + Ej(4.46)

−
∑

λ·β>m−ω0

λ·ν>m−ω0
λ·β−λk<m−ω0 ∀ k s.t. βk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

νj
zν+β

zj
〈R+

0βH
0
0β , iβα2Σ1Σ3H

0
0ν〉(4.47)

−∑ λ·α>m−ω0
λ·ν>m−ω0

λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

νj
zαzν

zj
〈R+

α0H
0
α0, iβα2Σ1Σ3H

0
0ν〉.(4.48)

Here the elements in (4.47) will be eliminated through a new change of variables. Ej is a reminder term
defined by

Ej := rhs(4.45)− (4.47)− (4.48).

Set

(4.49)

ζj = zj −
∑

λ·β>m−ω0

λ·ν>m−ω0
λ·β−λk<m−ω0 ∀ k s.t. βk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

νj
λ0 · (β + ν)

zν+β

zj
〈R+

0βH
0
0β , iβα2Σ1Σ3H

0
0ν〉

+
∑

λ·α>m−ω0
λ·ν>m−ω0

λ0·α6=λ0·ν
λ·α−λk<m−ω0 ∀k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀k s.t. νk 6=0

νj
λ0 · (α− ν)

zαzν

zj
〈R+

α0H
0
α0, iβα2Σ1Σ3H

0
0ν〉

Notice that in (4.49), by λ · ν > ω0 −m, we have |ν| > 1. Then by (4.7)
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(4.50)

‖ζ − z‖L2
t
≤ Cǫ

∑

λ·α>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0

‖zα‖L2
t
≤ CC2Mǫ2

‖ζ − z‖L∞
t

≤ C3ǫ3

with C the constant in (4.5) and M the number of terms in the rhs. In the new variables (4.46) is of the
form

(4.51)

iζ̇j = ∂ζj
H2(ζ, f) + ∂ζj

Z0(ζ, f) +Dj

−
∑

λ0·α=λ0·ν>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

νj
ζαζ

ν

ζj
〈R+

α0H
0
α0, iβα2Σ1Σ3H

0
0ν〉.

From these equations by
∑
j λ

0
j (ζj∂ζj

(H2 + Z0)− ζj∂ζj (H2 + Z0)) = 0 we get

(4.52)

∂t

n∑

j=1

λ0j |ζj |2 = 2

n∑

j=1

λ0jℑ
(
Djζj

)
−

− 2
∑

λ0·α=λ0·ν>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

λ0 · νℑ
(
ζαζ

ν〈R+
α0H

0
α0, iβα2Σ1Σ3H

0
0ν〉
)
.

We have the following lemma, whose proof (we skip) is similar to Lemma 4.7 [Cuc11]:

Lemma 4.8. Assume inequalities (4.7). Then for a fixed constant c0 we have
∑

j

‖Djζj‖L1[0,T ] ≤ (1 + C2)c0ǫ
2.(4.53)

For the sum in the second line of (4.52) we get

(4.54)

2
∑

r>m−ω0

rℑ
〈
R+

H(r)
∑

λ0·α=r
ζαH0

α0, iβα2Σ1Σ3

∑

λ0·ν=r
(ζν)∗H0

0ν

〉
=

2
∑

r>m−ω0

rℑ
〈
R+

H(r)
∑

λ0·α=r
ζαH0

α0,Σ3

[ ∑

λ0·α=r
ζαH0

α0

]∗〉
= 2

∑

r>m−ω0

rℑ
〈
R+

H(r)Hr ,Σ3H
∗
r

〉
,

whereHr :=
∑

λ0·α=r ζ
αH0

α0 and where we have used iβα2Σ1Σ3H
0
µν = −Σ3iβα2Σ1H

0
νµ = Σ3iβα2CH

0
νµ =

Σ3(H
0
νµ)

∗ by (3.100).

Lemma 4.9. Consider Hr in (4.54). Assume m− ω0 < r < m+ ω0. Then

(4.55) ℑ
〈
R+

H(r)Hr,Σ3H
∗
r

〉
≥ 0.

If we assume (H:3), in particular if m/3 < ω0 < m, then (4.55) holds for all Hr in (4.54).

Proof. We proceed as in Lemma 10.5 [Cuc10]. Set Fr = Z+Hr, where for Z+ see Theorem A.4 with

ω = ω0. Set Fr =

(
a
b

)
. Then

(4.56)

ℑ
〈
R+

H(r)Hr ,Σ3H
∗
r

〉
= lim

εց0
ℑ 〈RH(r + iε)Hr,Σ3H

∗
r〉 = lim

εց0
ℑ
〈
RHω0,0(r + iε)Fr,Σ3F

∗
r

〉

= lim
εց0

ℑ 〈RDm
(r + ω + iε)a, a∗〉 − lim

εց0
ℑ 〈RDm

(r − ω + iε)b, b∗〉

=
1

2
lim
εց0

ε‖RDm
(r + ω + iε)a‖2L2 −ℑ〈RDm

(r − ω)b, b∗〉 = 1

2
lim
εց0

ε‖RDm
(r + ω + iε)a‖2L2 ≥ 0.

Here we exploited that a, b ∈ L2(R3), that r − ω < m and so RDm
(r − ω) is a well defined selfadjoint

operator in L2(R3), that RDm
(z)−RDm

(z∗) = 2iRDm
(z)RDm

(z∗)ℑz and that RDm
(z∗) = (RDm

(z))∗.
Let us consider r = λ · µ with µ ∈ Nn0 , λ · µ > m− ω0 and λ · µ− λk < m− ω0 for all k s.t. µk 6= 0.

Suppose λ · µ > m + ω0. Then we get m − ω0 + λk > m + ω0 ⇒ λk > 2ω0. Let Nk ∈ N such that
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Nkλk < m − ω0 < (Nk + 1)λk as in (H:9). Then (2Nk + 1)ω0 < m. So, if we assume as in (H:3) that
ω0 > m/3, we obtain λ · µ < m+ ω0. This shows that the assumption λ · µ > m+ ω0 is absurd. �

Remark 4.10. Notice that to get the conclusions of Lemma 4.9 we can ease the constraint 3ω > m to
(2Nk + 1)ω > m for all k = 1, ..., n.

Now we will assume the following hypothesis.

(H:12’) We assume that for some fixed constant C > 0, for any vector ζ ∈ Cn we have:

(4.57)

∑

λ0·α=λ0·ν>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

λ0 · νℑ
(
ζαζ

ν〈R+
α0H

0
α0, iβα2Σ1Σ3H

0
0ν〉
)

≥ C
∑

λ0·α>m−ω0

λ0·α−λ0
k<m−ω0 ∀ k s.t. αk 6=0

|ζα|2.

Remark 4.11. Notice that by Lemma 4.9 we have rhs(4.57)≥ 0. It is likely then that (H:12’) is true
generically in the class of non linearities we consider. But we do not try to prove this point.

By (H:12’) we have

(4.58)
2

n∑

j=1

λ0jℑ
(
Djζj

)
& ∂t

n∑

j=1

λ0j |ζj |2 +
∑

λ0·α>m−ω0

λ0·α−λ0
k<m−ω0 ∀k s.t. αk 6=0

|ζα|2.

Then, for t ∈ [0, T ] and assuming Lemma 4.8 we have

n∑

j=1

λ0j |ζj(t)|2 +
∑

λ0·α>m−ω0

λ0·α−λ0
k<m−ω0 ∀ k s.t. αk 6=0

‖ζα‖2L2(0,t) . ǫ2 + C2ǫ
2.

By (4.50) this implies ‖zα‖2L2(0,t) . ǫ2+C2ǫ
2 for all the above multi indexes. So, from ‖zα‖2L2(0,t) . C2

2 ǫ
2

we conclude ‖zα‖2L2(0,t) . C2ǫ
2.

Note that as the condition |λ · (µ − ν)| > m − ω implies that |µ + ν| ≥ 2, (4.45) implies that ż is
integrable so that it has a limit at infinity which is necessarily 0.This yields Theorem 4.1 and completes
the proof of Theorem 1.1.

4.3. Proof of Theorem 3.16. We only sketch the proof, which is similar to that of Theorem 3.15.
For a particular solution satisfying the hypotheses of Theorem 3.16 we need to prove the conclusions of
Theorem 4.1. The argument is exactly the same of Section 4.1 until we reach subsection 4.2, that is the
task of estimating z. Instead of (4.51) we have

(4.59)

iζ̇j = εj∂ζjH2(ζ, f) + εj∂ζjZ0(ζ, f) + εjDj

− εj
∑

λ0·α=λ0·ν>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

νj
ζαζ

ν

ζj
〈R+

α0H
0
α0, iβα2Σ1Σ3H

0
0ν〉.

From these equations by
∑
j λ

0
j (ζj∂ζj

(H2 + Z0)− ζj∂ζj (H2 + Z0)) = 0 we get

(4.60)

∂t

n∑

j=1

εjλ
0
j |ζj |2 = 2

n∑

j=1

λ0jℑ
(
Djζj

)
−

− 2
∑

λ0·α=λ0·ν>m−ω0
λ·α−λk<m−ω0 ∀ k s.t. αk 6=0
λ·ν−λk<m−ω0 ∀ k s.t. νk 6=0

λ0 · νℑ
(
ζαζ

ν〈R+
α0H

0
α0, iβα2Σ1Σ3H

0
0ν〉
)
.

The estimate of the reminder term in Lemma 4.8 continues to hold. The last line of (4.60) is negative by
(4.54). We assume it is strictly negative and that in particular (4.57) holds. Then we get
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(4.61)

∑

λ0·α>m−ω0

λ0·α−λ0
k<m−ω0 ∀ k s.t. αk 6=0

|ζα|2 . −∂t
n∑

j=1

εjλ
0
j |ζj |2 + 2

n∑

j=1

λ0jℑ
(
Djζj

)
.

When we integrate in (0, t) for t ≤ T we get

∑

λ0·α>m−ω0

λ0·α−λ0
k<m−ω0 ∀ k s.t. αk 6=0

‖ζα‖2L2(0,t) . ǫ2 + C2ǫ
2.

In the rhs we have used the hypothesis |z(t)| ≤ ǫ for all t ≥ 0 to bound the first summation in the rhs of
(4.61). This yields Theorem 3.16.

4.4. Proof of Theorem 3.18. Also here we just sketch the proof, which is similar to [Cuc09]. The
proof is by contradiction. If the statement of Theorem 3.18 is wrong, then for |z(0)|+‖f(0)‖Hk0 ≤ δ with
δ > 0 sufficiently small, we can assume |z(t)| ≤ ǫ for all t ≥ 0 for any preassigned ǫ > 0. This implies
that we can apply Theorem 3.16. When get

(4.62)
∑

λ0·α>m−ω0

λ0·α−λ0
k<m−ω0 ∀ k s.t. αk 6=0

‖ζα‖2L2(0,t) .

n∑

j=1

εjλ
0
j(|ζj(0)|2 − |ζj(t)|2) + 2

∫ t

0

n∑

j=1

λ0jℑ
(
Djζj

)
.

Suppose εj0 = −1. Then take initial datum zj(0) = 0 for j 6= j0, zj0 = δ and f(0) = 0. By f(0) = 0 and
Lemma (4.4) for ψ(0) = 0 we get for t ∈ R+

(4.63) ‖f‖
Lp

tB
k0− 3

p
q,2 ∩L2

tH
k0 ,−τ0
x ∩L2

tL
∞
x

. Y2 + ‖R1‖L1
tH

k0
x

+ ‖R2‖L2
tH

k0,τ0
x

where

(4.64) Y2 :=
∑

λ0·µ>m−ω0

λ0·µ−λ0
k<m−ω0 ∀ k s.t. µk 6=0

‖zµ‖L2
t
.

Similarly

(4.65) ‖g‖
L2

tL
2,−τ1
x

. δ2 + ǫY2 + ‖R1‖L1
tH

k0
x

+ ‖R2‖L2
tH

k0 ,τ0
x

.

Then, proceeding as in [Cuc09, Cuc11] one improves the rhs in (4.53). Indeed, see Lemma 4.9 [Cuc11],
we have ∑

j

‖Djζj‖L1(R+) ≤ CY‖g‖L2
tH

−4,−s
x

+ CǫY2 + C‖R1‖L1
tH

k0
x

+ C‖R2‖L2
tH

k0 ,τ0
x

.

Then, one can see that ‖R1‖L1
tH

k0
x

+ ‖R2‖L2
tH

k0 ,τ1
x

. o(1)δ, going through Lemma 4.3, where o(1) → 0

as δ → 0. Then from (4.62) we get

Y2 . −δ + o(1)δ,

which is absurd.

Appendix A. Resolvent estimates

A.1. Resonances for Hω.

Definition A.1. We will say that a point λ ∈ R with |λ| ≥ m− ω is a resonance if one of the following
two equations admits a nontrivial solution:

(1 +R+
Hω,0

(λ)Vω)u = 0, u ∈ L2,−τ (R3,C8) for some τ > 1/2 and u(−x) ≡ βΣ3u(x);(A.1)

(1 +R−
Hω,0

(λ)Vω)u = 0, u ∈ L2,−τ (R3,C8) for some τ > 1/2 and u(−x) ≡ βΣ3u(x).(A.2)
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A.2. Estimates on the resolvent.

Lemma A.2. We assume (H:6)–(H:8). Then for any τ > 1 there exists a constant C1 = C1(τ, ω)
upper semicontinuous ω s.t. for any u0(x) ∈ L2(R3,C8) and any ε > 0 we have

(A.3) ‖〈x〉−τRHω
(λ± iε)Pc(Hω)u0‖Lλ,x(R4) ≤ C1‖Pc(Hω)u0‖L2(R3).

Proof. Notice that by Lemma 2.12 for any τ > 1, any u0(x) ∈ L2(R3,C8) and any ε > 0 we have

(A.4) ‖〈x〉−τRHω,0(λ± iε)u0‖Lλ,x(R4) ≤ C(τ)‖u0‖L2(R3).

Let u0 = Pc(Hω)u0, A(x) = 〈x〉−τ and B(x) ∈ S(R3, B(C8,C8)) s.t. B∗A = Vω. Then

(A.5) ARHω
(z)u0 = (1 +ARHω,0(z)B

∗)−1ARHω,0(z)u0.

Pick δ0 > 0 sufficiently small so that by (H:6) for any λj(ω) ∈ σd(Hω) we have |λj(ω)| < m − ω − δ0.
Then by (A.4) and (A.5), Lemma A.2 is a consequence of the Lemma A.3 below. �

Lemma A.3. Let A(x), B(x) be as above in (A.5). Then, if we assume (H:3), (H:6) and (H:7), there
exists a constant C2 = C2(τ, ω) upper semicontinuous in ω such that for any ε > 0 we have

(A.6) sup
λ∈(R\[−m+ω+δ0,m−ω−δ0])

‖(1 +ARHω,0 (λ± iε)B∗)−1‖B(L2
x,L

2
x)

≤ C2.

For any τ > 1 the following limit

(A.7) R+
Hω

(λ) = lim
εց0

RHω
(λ± iε)

exist in B(H1,τ
x , L2,−τ

x ) and the convergence is uniform for λ in compact sets.

Proof. First of all we prove (A.6) in low energies. We have

(A.8) sup
λ∈([−µ1,µ1]\[−m+ω+δ0,m−ω−δ0]

0<ε<1

‖(1 +ARHω,0(λ± iε)B∗)−1‖B(L2
x,L

2
x)
<∞ ∀ fixed µ1 > 0.

We know: z → ARHω,0(z)B
∗ is a holomorphic map with domain C\R and values in B(L2

x, L
2
x); (1 +

ARHω,0(λ± iε)B∗)−1 is defined for all z ∈ C\R. Furthermore, limεց0ARHω,0(λ± iε)B∗, by (ii) Lemma

2.12, exists in B(L2
x, L

2
x) and the convergence is uniform for λ in compact sets. Then we apply Lemma

7.5 [Ber82] and conclude that, outside closed sets Γ± ⊂ R with 0 Lebesgue measure in R, the map
z → (1+ARHω,0(z)B

∗)−1 extends in a continuous map defined in {z : ℑz > 0}∪(R\Γ+) (resp. {z : ℑz <
0}∪(R\Γ−)) with values in B(L2

x, L
2
x). Given λ ∈ Γ+ there exists ψ ∈ L2

x\{0} with ψ = −AR+
Hω,0

(λ)B∗ψ.

But then, by standard arguments u := R+
Hω,0

(λ)B∗ψ is a nonzero solution of (A.1). But by section A.1

and by hypotheses (H7)–(H8), it follows that the intersection Γ+ with R\(−m+ ω + δ0,m − ω − δ0) is
empty. Given λ ∈ Γ− there exists ψ ∈ L2

x\{0} with ψ = −AR−
Hω,0

(λ)B∗ψ. Then v := R−
Hω,0

(λ)B∗ψ is

a nonzero solution in L2,−τ , for τ > 1/2, of (1 + R−
Hω,0

(λ)Vω)v = 0. But then, by Lemma 2.4 we have

(1+R+
Hω,0

(−λ)Vω)Σ1Cv = 0. Once again, no such nonzero v can exist for λ ∈ R\(−m+ω+δ0,m−ω−δ0).
Having considered the low energy case (A.8), we consider for µ1 any fixed large real number:

(A.9) sup
|λ|≥µ1

‖(1 +AR±
Hω,0

(λ)B∗)−1‖B(L2
x,L

2
x)

≤ C3.

For definiteness we will consider λ ≥ µ1. We consider the expansion

(A.10)

∞∑

ℓ=0

(
AR±

Hω,0
(λ)B∗

)ℓ
.

We start now the implementation of the high energy argument in [EGS09]. We have

(A.11) R±
Hω,0

(λ) =

(
R±
Dm

(λ + ω) 0

0 R±
Dm

(λ− ω)

)
= R±

0 (λ)A(λ,∇)
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where

(A.12)

R±
0 (λ) :=

(
R±

−∆+m2((λ + ω)2)I2 0

0 R±
−∆+m2((λ− ω)2)I2

)

A(λ,∇) :=

(
A1(λ,∇) 0

0 A2(λ,∇)

)
, Aj(λ,∇) :=

(
λ− (−1)jω +m −iσ · ∇

−iσ · ∇ λ− (−1)jω −m

)
.

For definiteness let us consider R+
Hω,0

. Let now χ0, ψ0 ∈ C∞
0 (R) by cutoffs supported near 0 and let

χ1 := 1− χ0 and ψ1 := 1− ψ0. We can choose them so that

(A.13) χ1 (|x− y|) = (ψ0 (|x|)ψ1 (|y|) + ψ1 (|x|)ψ0 (|y|) + ψ1 (|x|)ψ1 (|y|))χ1 (|x− y|)
We split for a fixed large number M0 > 0

(A.14)

R+
−∆+m2((λ− (−1)jω)2, x, y) =

1∑

ℓ=0

Rℓj(λ, x, y) ,

Rℓj(λ, x, y) :=
ei
√

(λ−(−1)jω)2+m2|x−y|

4π|x− y| χℓ

( |x− y|
M0

)
.

By (A.13)–(A.14) we have cM0 with limM0→+∞ cM0 = 0 s.t. for j = 0, 1

(A.15) ‖AR1j(λ)B
∗‖B(L2

x,L
2
x)

≤ cM0 .

Then by ‖AR±
−∆(λ)B

∗‖B(L2
x,L

2
x)

≤ C, for fixed C′

(A.16) ‖AR0j(λ)B
∗‖B(L2

x,L
2
x)

≤ C′.

We have

(A.17) R0j(λ, x, y) = λR+
−∆

(√(
1− (−1)j

ω

λ

)2
+
m2

λ2
, λx, λy

)
χ0

( |x− y|
M0

)
.

Key to the fact that (A.9) follows quite directly from [EGS09] is the fact that we can write

(A.18) R+
−∆

(√(
1− (−1)j

ω

λ

)2
+
m2

λ2
, x, y

)
χ0

( |x− y|
λM0

)
=
ei|x−y|

|x− y|aλ,j(|x − y|) + bλ,j(|x− y|)
|x− y| ,

with

(A.19)

∣∣∣a(k)λ,j(r)
∣∣∣ ≤ C(M0, k)r

−k ∀ k ≥ 0, a
(k)
λ,j(r) = 0 ∀ 0 < r < 1

∣∣∣b(k)λ,j(r)
∣∣∣ ≤ C(M0, k) ∀ k ≥ 0, b

(k)
λ,j(r) = 0 ∀ r > 2.

Notice that (A.18)–(A.19) are formulas of the same type of (3.2)–(3.4) [EGS09]. As a consequence for
any fixed small δ0 > 0 there are ℓ0 = ℓ(δ0) and µ1 = µ1(δ0) such that for λ ≥ µ1 we have

(A.20)

∥∥∥∥∥

(
Aχ0

( | · |
λM0

)
R+

Hω,0
(λ)B∗

)ℓ0∥∥∥∥∥
B(L2

x,L
2
x)

≤ δ0.

Then for ℓ large

(A.21)

∥∥∥∥∥

(
Aχ0

( | · |
λM0

)
R+

Hω,0
(λ)B∗ +Aχ1

( | · |
λM0

)
R+

Hω,0
(λ)B∗

)ℓ∥∥∥∥∥
B(L2

x,L
2
x)

≤ 2ℓ(2C′)ℓδ
ℓ
ℓ0
0 .

For δ0 sufficiently small, (A.21) implies (A.9). �

A.3. Wave operators and similarity. We start stating a corollary of Lemma A.2.

Theorem A.4. Assume the hypotheses of Lemma A.2. Let A,B∗ ∈ S(R3, B(C8,C8)) s.t. Vω = B∗A.
Then there are isomorphisms W± : L2(R3,C8) → L2

c(Hω) and Z± : L2
c(Hω) → L2(R3,C8), inverses of

each other, defined as follows: for u ∈ L2(R3,C8), v ∈ L2
c(Hω),

(A.22)

〈W±u, v
∗〉 = 〈u, v∗〉 ∓ lim

ǫ→0+

1

2πi

∫

R

〈ARHω,0(λ± iǫ)u, (BRH∗
ω
(λ ± iǫ)v)∗〉dλ;

〈Z±v, u
∗〉 = 〈v, u∗〉 ± lim

ǫ→0+

1

2πi

∫

R

〈ARHω
(λ± iǫ)v, (BRH∗

ω,0
(λ± iǫ)u)∗〉dλ.
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For any Borel function β : R → R we have

(A.23) β(Hω,0) = Z+β(Hω)Pc(Hω)W+ = Z−β(Hω)Pc(Hω)W−.

In particular, W± (resp.Z±) define isomorphisms Hk(R3,C8) → Pc(Hω)H
k(R3,C8) (resp. and viceversa)

for all k. We also have

(A.24)
W±u = lim

t→±∞
eitHωe−itHω,0u for all u ∈ L2(R3,C8);

Z±v = lim
t→±∞

eitHω,0e−itHωv for all v ∈ L2
c(Hω).

Proof. The proof follows by Lemma A.2 by means of the argument for Theorem 1.5 [Kat66]. (A.24)
follows by Theorem 3.9 [Kat66]. �

Lemma A.5. For any τ > 1 and any u ∈ H2,τ we have:

(A.25) Pc(Hω)u =
1

2πi

∫

σe(Hω)

(
R+

Hω
(λ) −R−

Hω
(λ)
)
udλ.

Proof. By Corollary A.4 and by the spectral Theorem, see p.81 volume II [Tay96], we have

Pc(Hω)u = WZu =
1

2πi
lim
εց0

W lim
aր∞

∫

σe(Hω)∩[−a,a]

(
RHω,0(λ+ iε)−RHω,0(λ− iε)

)
Zudλ.

Hence by Theorem A.4

Pc(Hω)u =
1

2πi
lim
εց0

lim
aր∞

∫

σe(Hω)∩[−a,a]
(RHω

(λ+ iε)−RHω
(λ− iε)) udλ

=
1

2πi
lim
εց0

lim
aր∞

∫

σe(Hω)∩[−a,a]
(RHω

(λ+ iε)−RHω
(λ− iε))Hωu

dλ

λ2
.

In the last formula the two limits commute. So

(A.26) Pc(Hω)u =
1

2πi
lim
aր∞

∫

σe(Hω)∩[−a,a]

(
R+

Hω
(λ)−R−

Hω
(λ)
)
udλ.

The rhs of (A.26) is what we mean in the rhs of (A.25). �
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[ES95] M.J. Esteban and É. Séré. Stationary states of the nonlinear Dirac equation: a variational approach. Comm.
Math. Phys., 171(2):323–350, 1995.
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