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Some works of Furtwängler and Vandiver

revisited and the Fermat last theorem

by Georges Gras and Roland Quême

Abstract. From some works of P. Furtwängler and H.S. Vandiver, we put
the basis of a new cyclotomic approach to Fermat′s last theorem for p > 3
and to a stronger version called SFLT, by introducing governing fields of the
form Q(µq−1) for prime numbers q. We prove for instance that if there exist
infinitely many primes q, q 6≡ 1 mod (p), qp−1 6≡ 1 mod (p2), such that for
q | q in Q(µq−1), we have the relation q1−c = ap (α) with α ≡ 1 mod (p2)
(where c is the complex conjugation), then the Fermat theorem holds for p.

More generally, the main purpose of the paper is to show that the existence
of solutions for SFLT implies some strong constraints on the arithmetic of
the fields Q(µq−1). From there, we give sufficient conditions of nonexistence
that would require further investigations to lead to a proof of SFLT, and we
formulate various conjectures. This text must be considered as a basic tool
for further researchs (probably of analytic or geometric nature).

Résumé. Reprenant des travaux de P. Furtwängler et H.S. Vandiver, nous
posons les bases d’une nouvelle approche cyclotomique du dernier théorème de
Fermat pour p > 3 et d’une version plus forte appelée SFLT, en introduisant
des corps gouvernants de la forme Q(µq−1) pour q premier. Nous prouvons
par exemple que s’il existe une infinité de nombres premiers q, q 6≡ 1 mod
(p), qp−1 6≡ 1 mod (p2), tels que pour q | q dans Q(µq−1), on ait la relation
q1−c = ap (α) avec α ≡ 1 mod (p2) (où c est la conjugaison complexe), alors
le théorème de Fermat est vrai pour p.

Plus généralement, le but principal de l’article est de montrer que l’existence
de solutions pour SFLT implique de fortes contraintes sur l’arithmétique des
corps Q(µq−1). A partir de là, nous donnons des conditions suffisantes de non
existence qui nécessiteraient des investigations supplémentaires pour conduire
à une preuve de SFLT, et nous formulons diverses conjectures. Ce texte doit
être considéré comme un outil de base pour de futures recherches (probable-
ment analytiques ou géométriques).

Introduction

This paper is devoted to the study of the following phenomenon. Con-
sider the maximal abelian extension Q of Q, unramified at a given prime
p > 2; from class field theory over Q, we get Q =

⋃
n, p∤nQ(µn). Then

denote by HQ the maximal p-ramified (i.e., unramified outside p) abelian

p-extension of Q; this extension is given by
⋃
n, p∤nHQ(µn) where HQ(µn) is

the maximal p-ramified abelian p-extension of Q(µn).
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Then consider HQ [p] :=
⋃
n, p∤nHQ(µn)[p], the maximal p-elementary p-

ramified extension of Q, union of the corresponding maximal p-elementary
p-ramified extensions HQ(µn)[p] of Q(µn).

We have found that any solution of a diophantine equation, associated
to the Fermat one and called the SFLT equation 1, implies some constraints
on the law of decomposition of every prime q 6= p in HQ [p]/Q; these con-

straints may be characterized at a finite step HQ(µn)[p]/Q(µn), via the law
of decomposition of q in a canonical family Fn of p-cyclic subextensions of
Q(µn), where n depends on q (see Theorem 4).

Some aspects needed to prove this relation can be found in some former
technics of Furtwängler and Vandiver, in a different viewpoint from ours,
to try to give a classical cyclotomic proof of Fermat′s last theorem.

Of course the problem is now empty for the Fermat equation, except if
we wish to prove the Fermat last theorem by this way; but we will see that
for the SFLT equation the result is unknown for p > 3 (but conjecturally
similar) and, moreover, nonempty for p = 3. But as we will show, the case
p = 3 is exceptional and we will explain in Section 8 for what reasons.

Unfortunately, we have no deep results to propose, but only some mate-
rial which may be helpful for those interested in going further. For a quick
overview of the spirit of the content, the reader may refer to Section 6, after
having read the main prerequisites.

1. Generalities on the method – The ω-SFLT equation

1.1. Prerequisites on Fermat′s last theorem (FLT). Let p be a prime
number, p > 2. Let a, b, c in Z\{0} be pairwise relatively prime integers,
such that:

ap + bp + cp = 0.

We can find for instance in [Gr1, Ri, Wa] the following evident properties
concerning such a speculative counterexample to Fermat ′s last theorem,
where ζ is a primitive pth root of unity, K := Q(ζ), p := (ζ − 1)Z[ζ],
and NK/Q is the norm map in K/Q (for a detailed proof, a more complete
bibliography, and an analysis of the classical cyclotomic approach to FLT,
we refer to [Gr1]):

(i) We have:

a+ b = cp0 or pνp−1cp0 with ν ≥ 2, 2 and NK/Q(a+ b ζ) = cp1 or p cp1,

1Equation (u + v ζ)Z[ζ] = w
p
1 or pw

p
1 , in nonzero integers u, v, g.c.d. (u, v) = 1, equivalent

to NK/Q(u+ v ζ) = wp
1 or pwp

1 , where ζ := e2iπ/p, K = Q(ζ), p = (ζ − 1) (see Conjecture 1).
2 If c ≡ 0 mod (p), then α := a+c ζ

a+c ζ−1
is a pseudo-unit (i.e., the pth power of an ideal),

congruent to 1 modulo p; so, from [Gr1, Theorem 2.2, Remark 2.3, (ii)], α is locally a pth power

in K giving easily α ≡ 1 mod pp+1, then
c (ζ−ζ−1)

a+c ζ−1
≡ 0 mod pp+1, hence c ≡ 0 mod (p2).
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with −c = c0 c1 or pνc0 c1, and p ∤ c0 c1. By permutation, since p ∤ ab, we
have the following analogous relations:

b+ c = ap0, NK/Q(b+ c ζ) = ap1, with − a = a0 a1,

c+ a = bp0, NK/Q(c+ a ζ) = bp1, with − b = b0 b1.

(ii) We have:

(a+ b ζ)Z[ζ] = c
p
1 or p cp1, with NK/Q(c1) = c1Z,

where c1 is an integer ideal of K prime to p, and the analogous relations:

(b+ c ζ)Z[ζ] = a
p
1, with NK/Q(a1) = a1Z,

(c+ a ζ)Z[ζ] = b
p
1, with NK/Q(b1) = b1Z.

(iii) The positive numbers a1, b1, c1 have prime divisors all congruent to
1 modulo p.

Lemma 1. We can choose x, y, z ∈ {a, b, c} in the following manner:

(i) First case of FLT, p > 3:

y − x 6≡ 0 mod (p), y + x 6≡ 0 mod (p),

y − z 6≡ 0 mod (p), y + z 6≡ 0 mod (p),

x+ z 6≡ 0 mod (p).

(ii) First case of FLT, p = 3:

y − x ≡ 0 mod (3), y + x 6≡ 0 mod (3),

y − z ≡ 0 mod (3), y + z 6≡ 0 mod (3),

x− z ≡ 0 mod (3), x+ z 6≡ 0 mod (3).

(iii) Second case of FLT, p ≥ 3:

y ≡ 0 mod (p),

y − x 6≡ 0 mod (p), y + x 6≡ 0 mod (p),

y − z 6≡ 0 mod (p), y + z 6≡ 0 mod (p),

x− z 6≡ 0 mod (p), x+ z ≡ 0 mod (p).

Proof. Consider the differences a− b, b− c, c − a in the first case of FLT.
If two of them are divisible by p, we obtain a ≡ b ≡ c 6≡ 0 mod (p), then
since a + b + c ≡ 0 mod (p), we get 3 a ≡ 0 mod (p) which implies p = 3.
So, if p > 3, there exist two differences having the first required property,
and called y − x, y − z.

The second condition is satisfied for any sum and any p ≥ 3.

The case p = 3 in the first case of FLT is clear since a ≡ b ≡ c ≡ ±1
mod (3).

In the second case of FLT, we take y = c ≡ 0 mod (p) so that all the
conditions in (iii) are satisfied (we put y = c instead of z = c, to get, for
x+ y ζ, a p-primary pseudo-unit instead of a number x+ y ζ ∈ p). �
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Note that for p > 3 in the first case, x− z may be divisible by p under
some circumstances (e.g. under the necessary condition 2p−1 ≡ 1 mod (p2)
since, from xp + yp + zp = 0, we get 2 zp + yp ≡ 0 mod (p2)).

1.2. Statement of a stronger conjecture than FLT. We have given
in [Gr1] a conjecture which implies FLT and which is not covered by the
Wiles proof; we recall here the statement, which will be called the strong
Fermat last theorem (SFLT).

Conjecture 1. Let p be a prime number, p > 2. Then for u, v ∈ Z\{0},
with g.c.d. (u, v) = 1, the equation:

(u+ v ζ)Z[ζ] = w
p
1 or pw

p
1

(depending on whether u+ v 6≡ 0 mod (p) or not), equivalent to:

NK/Q(u+ v ζ) = wp1 or pwp1, w1 = NK/Q(w1) ∈ 1 + pZ,

where w1 is an ideal of K prime to p, has no solution for p > 3 except the
trivial ones: u+ v ζ = ±(1 + ζ) and ±(1− ζ).

The difference between FLT and SFLT is the following. A solution of the
Fermat equation up+ vp+wp = 0 comes from a solution of (u+ v ζ)Z[ζ] =
w
p
1 or pwp

1 (with the same u, v as above), if and only if there exists w0 ∈ Z
such that u+ v = wp0 or pνp−1wp0 since NK/Q(u+ v ζ) = wp1 or pwp1, giving
w := −w0w1 or −pνw0w1 for a solution of the Fermat equation.

As for FLT we can speak of the first case of the conjecture (or of the
equation) when u v (u+v) 6≡ 0 mod (p) and of the second case when u v ≡ 0
mod p (which implies u or v ≡ 0 mod (p2) as for the Fermat case); then
the case u+ v ≡ 0 mod (p) will be called the special case for SFLT.

For the first case of SFLT, we have not necessarily u− v 6≡ 0 mod (p), 3

except for p = 3 since u v (u+ v) 6≡ 0 mod (3) implies u ≡ v ≡ ±1 mod (3),
hence u− v ≡ 0 mod (3). See the forthcoming Remark 1 for p = 3.

In the sequel, we shall assume that (x, y, z) is a solution of the Fermat
equation such that the conditions of Lemma 1 are satisfied (i.e., y − x and
y − z are prime to p when p > 3, and if p |xyz, we suppose that p | y).

In that case we will have two similar counterexamples to the above con-
jecture: (x+ y ζ)Z[ζ] = z

p
1, (z + y ζ)Z[ζ] = x

p
1, with z1, x1 prime to p (this

concerns the first or second case of SFLT). Then it will exist the third
counterexample (x+ z ζ)Z[ζ] = y

p
1 (if p ∤ y) or p yp1 (if p | y), y1 prime to p.

More precisely, for the Fermat problem the first case of SFLT implies the
first case of FLT, the second or the special case of SFLT implies the second

3 If u − v ≡ 0 mod (p), then α := uζ+v
u+vζ

is a pseudo-unit congruent to 1 modulo p; so,

from [Gr1, Theorem 2.2, Remark 2.3, (ii)], α is locally a pth power giving α ≡ 1 mod pp+1,

then
(u−v)(ζ−1)

u+vζ
≡ 0 mod pp+1, hence u − v ≡ 0 mod (p2). This is valid in the Fermat case if

x− z ≡ 0 mod (p), and gives x− z ≡ 0 mod (p2).
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case of FLT, and FLT holds as soon as first and second cases, or first and
special cases of SFLT, hold.

Remark 1. Conjecture 1 is false for p = 3 (but not FLT) since for ζ = j
of order 3 we have the six kind of parametric formulas giving all solutions:

u+ v j = jh (s+ t j)3, or jh (1− j) (s + t j)3, s, t ∈ Z, s+ t 6≡ 0 mod (3),

g.c.d. (s, t) = 1, and 0 ≤ h < 3. These solutions concern all the cases:

– first case (for which u− v ≡ 0 mod (9)):

• (u, v) = (−s3 − t3 + 3s2t,−s3 − t3 + 3st2), from u+ v j = j2 (s+ t j)3;

– second case (for which u or v ≡ 0 mod (9)):

• (u, v) = (s3 + t3 − 3st2, 3s2t− 3st2), from u+ v j = (s+ t j)3;

• (u, v) = (3st2 − 3s2t, s3 + t3 − 3s2t), from u+ v j = j (s+ t j)3;

– special cases (for which u+ v ≡ 0 mod (3)):

• (u, v) = (s3 + t3 + 3s2t − 6st2,−s3 − t3 + 6s2t − 3st2), from u + v j =
(1− j) (s + t j)3;

• (u, v) = (s3 + t3 − 6s2t+ 3st2, 2s3 + 2t3 − 3s2t− 3st2), from u+ v j =
j (1− j) (s + t j)3;

• (u, v) = (−2s3− 2t3+3s2t+3st2,−s3− t3− 3s2t+6st2), from u+ v j =
j2 (1− j) (s + t j)3.

The special cases are not similar since in the first solution u + v ≡ 0
mod (9) and in the others, u+ v ≡ ±3(s3 + t3) ≡ ±3(s+ t) ≡ ±3 mod (9).

Contrary to the case of the Fermat equation, we will not take into account
the symmetries of the writing of the solutions (u, v), especially for the
second case (this will be important in Section 8) but we will not distinguish
(u, v) from (−u,−v).

Thus a proof of SFLT must eliminate, in a natural way, the case p = 3
which is an obstruction for the method developed here. We will explain
later (Section 8) for what reasons this case is exceptional and finally does
not matter, a priori, for the general theory; we are obliged to differ this
justification because we need many general material. Meanwhile, for a
more comprehensive information, we do not always suppose p > 3 in the
development of the first parts of the study.

1.3. The cyclotomic field Q(ζ) and the character ω. We first recall
the algebraic context concerning the cyclotomic field K = Q(ζ).

Definition 1. (i) Let g := Gal (K/Q) and let ω be the character of Teich-
müller of g (i.e., the character with values in µp−1(Qp) such that for the

sk ∈ g defined by sk(ζ) = ζk, k 6≡ 0 mod (p), ω(sk) is the unique (p− 1)th
root of unity in Qp, congruent to k modulo p).
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We will also write ω(k) := ω(sk).

(ii) The idempotent corresponding to ω is:

eω := 1
p−1

∑
s∈g

ω−1(s) s = 1
p−1

p−1∑
k=1

ω−1(k) sk ∈ Zp[g].

(iii) We represent eω in Z[g] modulo p and still denote it eω (this means
that eω sk ≡ ω(k) eω ≡ k eω mod pZ[g] and that eω (1− eω) ∈ pZ[g]).

Put eω :=
∑p−1

k=1 uk sk, uk ∈ Z, uk ≡ 1
p−1ω

−1(k) ≡ k−1

p−1 mod (p).

We have ω−1(sp−k) = −ω−1(sk) since ω(s−1) = −1; thus we can suppose

that up−k = −uk for 1 ≤ k ≤ p−1
2 . Then we have eω = (1 − s−1) e

′
ω with

e′ω =
∑ p−1

2
k=1 uk sk.

In that case, if an element A of a multiplicative Z[g]-module M is fixed
by the complex conjugation s−1 of K, we then have Aeω = 1M (the unit
element of M).

(iv) We have ζeω = ζ for any representative eω.

Example 1. For p = 3 we have eω = 1
2(1 − s), with s := s−1. Thus a

representative with integer coefficients may be eω = s− 1.

For p = 5, we have for instance eω = −1 + 2 s2 − 2 s3 + s4 = −1 + 2 s+
s2 − 2 s3 = (1− s2) (2 s − 1), with s := s2.

Recall that the unit group E of K is equal to 〈 ζ 〉⊕E+, where E+ is the
group of units of the maximal real subfield K+ of K (see [Wa, Prop. 1.5]).

Thus if ε = ζv ε+, ε+ ∈ E+, we get εeω = ζv.

1.4. The principles of the method – The fundamental relation.
The purpose of this text is to examine some properties of the arithmetic of
the fields Q(µq−1), in relation with a solution of the SFLT equation:

(u+ v ζ)Z[ζ] = w
p
1 or pw

p
1,

with g.c.d. (u, v) = 1, for prime numbers q such that q ∤ u v and the order
n of v

u modulo q is prime to p.

The cases n ≤ 2 (i.e., q |u2 − v2) are particular, especially in the case
where (u, v) is a part of a solution (x, y, z) of the Fermat equation, and
give the Furtwängler theorems [Fur] (see Corollaries 2 and 3 to Lemma 3
for a generalization of Furtwängler′s theorems to the SFLT equation, and
Remark 3 for the classical case of the FLT equation; see also [Mih] in the
context of a Nagell–Ljunggren equation, which is the particular case of the
SFLT equation with v = 1).

The cases where n is divisible by any nontrivial power of p give technical
complications and are of a different nature. Some complements in this
direction are developed in [Que] where similar studies are proposed.
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Lemma 2. Let u, v be relatively prime nonzero integers, let n ≥ 1, and
let q be a prime number. Then the two following properties are equivalent,
where Φn(X) is the nth cyclotomic polynomial and φ(n) its degree:

(i) q ∤ n and q |Φn(u, v) := uφ(n) · Φn
(
v
u

)
=

∏
ξ of order n

(u ξ − v);

(ii) q ∤ u v and v
u is of order n modulo q.

Proof. Suppose that q |Φn(u, v) and q ∤ n. Then q ∤ u v since Φn(u, v) is an

homogenic form uφ(n) + · · · ± vφ(n) in coprime integers u, v.

We have Φn(u, v) =
∏

ξ of ordern
(u ξ − v). For ξ of order n fixed, the ideal

(q, u ξ − v) of the field Q(µn) is a prime ideal dividing q because of the

relation q
∣∣ ∏
ξ of order n

(u ξ − v); moreover, (q, u ξ − v) is of degree 1 and un-

ramified in Q(µn)/Q (since q ∤ n), thus we get q ≡ 1 mod (n) and the fact
that v

u is of order n modulo q.

If q ∤ u v and v
u is of order n modulo q, then un − vn ≡ 0 mod (q). From

the relation un − vn =
∏
d |n

Φd(u, v) we deduce that there exists m |n such

that q |Φm(u, v), which implies q |um − vm, hence necessarily m = n by
definition of the order; since we have ( vu)

q ≡ v
u mod (q), it is clear that the

order n cannot be divisible by q, proving the lemma. �

Corollary 1. Consider the set of numbers of the form Φn(u, v) when n
varies in N\{0}.
Then a prime number q divides one of the numbers Φn(u, v), n 6≡ 0 mod (q),
if and only if q ∤ u v. When these conditions (q ∤ n, q |Φn(u, v)) are satisfied,
then n is unique.

If q is an arbitrary given prime number, to get that q |Φn(u, v) with
n > 2 and q ∤ n, we must first verify that q ∤ u v(u2− v2) and then compute
the order n of v

u modulo q which is then a divisor of q − 1. 4

Definition 2. Let q 6= p be a prime number.

(i) (Fermat quotients). Let f be the residue degree of q in K/Q and let

κ :=
qf − 1

p
. Since f | p − 1, we have κ ≡ 0 mod (p) if and only if qp−1 ≡ 1

mod (p2).

The integer κ :=
qp−1 − 1

p
is called the Fermat quotient of q 6= p. We

have the relation κ ≡ p− 1

f
κ ≡ −1

p log(q) mod (p), where log is the p-adic

logarithm.

4 It is clear that the trivial solutions u + v ζ = ±(1 ± ζ) (for SFLT) are precisely such that
u2 − v2 = 0, in which case such primes q do not exist, which has perhaps a significant meaning.
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(ii) (Power residue symbols). Let us recall the definition and properties
of the pth power residue symbols

( •
•
)
in K and M := Q(µq−1)K with

values in µp. Let q be a prime ideal dividing q in Q(µq−1).

If α ∈ M is prime to Q | q in M , then let α be the image of α in the
residue field ZM/Q ≃ Fqf ; since ζ ∈ ZM , the image ζ of ζ is of order p

(since ζ 6≡ 1 mod Q) and we can put α κ = ζ
µ
, µ ∈ Z/pZ, which defines

the pth power residue symbol
(
α

Q

)
M

:= ζµ; this symbol is equal to 1 if and

only if α is a local pth power at Q (see e.g. [Gr2, I.3.2.1, Ex. 1]).

With this definition, for any automorphism τ ∈ Gal(M/Q) one obtains,
from ακ ≡ ζ µ mod Q, τακ ≡ τζµ mod τQ, thus:

τ
(
α

Q

)
M

=
(
τα

τQ

)
M

=
(
α

Q

)ω(τ)
M

= ζµω(τ).

If α ∈ K, since any qK | q in K splits totally in M/K, we have ZK/qK ≃
ZM/Q and

(
α

qK

)
K

=
(
α

Q

)
M

for any Q | qK .

In particular this implies
(
ζ

qK

)
K

= ζκ (the symbol of ζ does not depend

on the choice of qK | q).

We return to the context of the SFLT equation (u+v ζ)Z[ζ] = w
p
1 or pw

p
1,

with g.c.d. (u, v) = 1 and w1 prime to p (the second case corresponds to
p |u v and the special case to p |u+ v).

Put γω := (u+ v ζ)eω from a solution (u, v) of the above SFLT equation.

In the context of a solution (x, y, z) of the Fermat equation we will
have analogous computations with γω := (x + y ζ)eω and the relation
(x + y ζ)Z[ζ] = z

p
1, and also with γ′ω := (z + y ζ)eω and the relation

(z + y ζ)Z[ζ] = x
p
1. Then in the first case, γ′′ω := (x + z ζ)eω with the

relation (x+ z ζ)Z[ζ] = y
p
1 can be used knowing that z−x may be divisible

by p. In the second case, γ′′ω is of p-valuation 1 since (x + z ζ)Z[ζ] = p y
p
1

and this gives a special case of the equation associated to SFLT.

We know, from Stickelberger, that the ω-component of the p-class group
of K is trivial (also an application of the reflection theorem, see [Gr2,
II.5.4.6.3]); so the ideal class cℓ(w1)

eω is trivial. 5

Write:
weω

1 = δω Z[ζ], δω ∈ K×.

Then we have:

γω := (u+ v ζ)eω = εω δ
p
ω or (ζ − 1)eωεω δ

p
ω,

where εω ∈ E. To simplify, we put π := ζ − 1.

5 Since here the class of w1 is of order 1 or p, the choice of any representative eω does not
affect this property.
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Lemma 3. (The fundamental relation). Let (u, v) be a solution of the
equation (u + v ζ)Z[ζ] = w

p
1 or pw

p
1, with g.c.d. (u, v) = 1 and w1 prime

to p.
(i) In the nonspecial cases (i.e., u + v 6≡ 0 mod (p)), we have for any

p ≥ 3, γω = (uv + ζ)eω = (1 + v
u ζ)

eω =
(
1 + v

u+v π
)eω ∈ ζ

v
u+v ·K×p.

(ii) In the special case for p > 3, we have γω = (1 + v
u ζ)

eω ∈ ζ
1
2 ·K×p. 6

(iii) In the special case for p = 3, then γω = (1+ v
u ζ)

eω ∈ ζ
1
2
−u+v

3 v ·K×3.

Proof. (i) We have γω = εω δ
p
ω with εω = ζhε+, ε+ ∈ E+, for some h;

then applying again eω we get γeωω = εeωω δeωpω ∈ ζh · K×p. Since e2ω ≡
eω mod pZ[g], any factor Ae

2
ω may be written Aeω up to a pth power; thus

γω ∈ ζh · K×p. Since u+ v ζ = (u+ v)
(
1+ v

u+v π
)
, (u+ v ζ)eω ∈ ζh · K×p

is equivalent to (1 + v
u+v π)

eω ∈ ζh · K×p; then using [Gr1, Remark 3.4]:
(
1 + v

u+v π
)eω ≡ 1 + v

u+v π mod (π2),

we get immediately h ≡ v
u+v mod (p).

Similarly we have u+v ζ = v (uv +ζ) = u (1+ v
u ζ) for which (u+v ζ)eω =

(uv + ζ)eω = (1 + v
u ζ)

eω , proving the point (i).

(ii) Suppose that u + v ≡ 0 mod (p); put u
v = −1 + λ p, then u

v + ζ =

π + λ p = π α, where α := 1 + λ p
π ≡ 1 mod (πp−2).

Then we get γω := (u+ v ζ)eω = (1 + v
u ζ)

eω = (uv + ζ)eω = πeω αeω . But

from the relation (u+v ζ)Z[ζ] = (π)wp
1, we obtain (u+vζ)eω ∈ πeω ζhK×p,

for some h, giving αeω ∈ ζhK×p hence h ≡ 0 mod (p) in that case since
p > 3. Then

(
1 + v

u ζ
)eω ∈ πeω K×p.

Put α ∼ β in K× if αβ−1 ∈ K×p. From (ζ − 1) (ζ +1) = ζ2 − 1, we get:

(ζ − 1)eω (ζ + 1)eω = (ζ2 − 1)eω = (ζ − 1)s2eω ∼ (ζ − 1)2eω ,

giving (ζ+1)eω ∼ (ζ−1)eω . But ζ+1 = ζ
1
2 (ζ

1
2 +ζ−

1
2 ) yields (ζ+1)eω ∼ ζ

1
2

since ζ
1
2 +ζ−

1
2 ∈ K+. Then we have the relation (ζ−1)eω ∼ (ζ+1)eω ∼ ζ

1
2 ,

hence the point (ii) of the lemma.

(iii) If p = 3 in the special case, we get from the computations in the
proof of (ii), γω = πeω αeω ∈ πeω ζhK×3, for some h, with α = 1 + 3λ

π and

λ = u+v
3 v . Thus α = 1 + (ζ2 − 1) u+v3 v ≡ 1 − π u+v

3 v mod (π2), giving the

congruence h ≡ −u+v
3 v mod (3) and γω ∈ ζ

1
2
−u+v

3 v .K×3. �

In the second case of SFLT we have γω ∈ K×p (resp. ζ K×p) if p | v
(resp. p |u) since by definition in this case v

u+v ≡ 0 mod (p) (resp. v
u+v ≡ 1

mod (p)). Note that the condition u + v ≡ 0 mod (9), when p = 3 in
the special case, is not necessarily satisfied for the SFLT equation (use

6Where ζ
1

2 is the unique pth root of unity such that (ζ
1

2 )2 = ζ; this convention will be used
in a systematic way in the paper; see also Definition 4.
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Remark 1) but is true when (u, v) is a part of a solution (u, y, v) or (v, y, u)
of the Fermat equation when 3 | y and more generally when p > 3, p | y (see
Subsection 1.1, (i)).

Corollary 2. (Generalization of the first Furtwängler theorem; see e.g.
[Gr1, Appendix] or [Ri, IX, 3]). Let q 6= p be a prime number such that
q |u v for a solution of the equation (u + v ζ)Z[ζ] = w

p
1 or pw

p
1, with

g.c.d. (u, v) = 1 and w1 prime to p.

Then, in the nonspecial cases, κu ≡ 0 mod (p) (resp. κ v ≡ 0 mod (p)) if
q |u (resp. q | v), for any p ≥ 3; in the first case we get κ ≡ 0 mod (p).

For p > 3 in the special case, then κ ≡ 0 mod (p). For p = 3 in the special
case, we get κ u−2v

3v ≡ 0 mod (3) (resp. κ v−2u
3v ≡ 0 mod (3)) if q |u (resp.

q | v); thus if u + v ≡ 0 mod (9), then κ ≡ 0 mod (3). If u + v = 3 e,
e 6≡ 0 mod (3), then κ ≡ 0 mod (3) if q |u (resp. q | v) when u ≡ e mod (3)
(resp. v ≡ e mod (3)).

Proof. We have (u + v ζ)eω ∈ ζh.K×p with h ≡ v
u+v mod (p) in the non-

special cases for any p ≥ 3, h ≡ 1
2 mod (p) in the special case for p > 3,

and h ≡ 1
2 − u+v

3 v mod (3) in the special case for p = 3.

Let qK be any prime ideal of K dividing q. We use the pth power residue
symbol in K (see Definition 2, (ii)).

Since u + v ζ ≡ v ζ mod (q) (resp. u + v ζ ≡ u mod (q)) if q |u (resp.

q | v), we get
(
(u+v ζ)eω

qK

)
K

= ζκ (resp. 1) if q |u (resp. q | v), and we have
(
ζh

qK

)
K

= ζκ
v

u+v in the nonspecial cases (resp. ζ
1
2
κ and ζκ (

1
2
− v+u

3 v
) in the

special case for p > 3 and p = 3, respectively).

This gives in the nonspecial cases for q |u, κ v
u+v ≡ κ mod (p) equivalent

to κ u
u+v ≡ 0 mod (p), hence κu ≡ 0 mod (p).

If q | v, we get κ v
u+v ≡ 0 mod (p) giving κ v ≡ 0 mod (p).

The special case for p > 3 yields 1
2 κ ≡ κ mod (p) (resp. 1

2 κ ≡ 0 mod (p))
if q |u (resp. q | v), giving κ ≡ 0 mod (p) in any case.

For p = 3 in the special case we get κ (12 − u+v
3 v ) ≡ κ mod (3) (resp.

κ (12 − u+v
3 v ) ≡ 0 mod (3)) if q |u (resp. q | v), giving κ u−2v

3 ≡ 0 mod (3)

(resp. κ v−2u
3 ≡ 0 mod (3)). The case u+ v ≡ 0 mod (9) is clear as well as

the case u+ v ≡ ±3 mod (9). �

Corollary 3. (Generalization of the second Furtwängler theorem). Let
q 6= p be a prime number such that q |u2 − v2 for a solution of the equation
(u+ v ζ)Z[ζ] = w

p
1 or pw

p
1, with g.c.d. (u, v) = 1 and w1 prime to p.

Then, in the nonspecial cases, κ (v − u) ≡ 0 mod (p) for any p ≥ 3; in
particular, in the second case, κ ≡ 0 mod (p). In the first case for p = 3,
the information is empty since u ≡ v ≡ ±1 mod (3).
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For p > 3 in the special case, the information is empty. For p = 3 in the
special case we get κ u+v

3 v ≡ 0 mod (3). Thus κ ≡ 0 mod (3) as soon as
v + u 6≡ 0 mod (9).

Proof. We have (u + v ζ)eω ∈ ζh.K×p with h ≡ v
u+v mod (p) in the non-

special cases for any p ≥ 3, h ≡ 1
2 mod (p) in the special case for p > 3,

and h ≡ 1
2 − u+v

3 v in the special case for p = 3.

Then we have (1 + v
u ζ)

eω ζ−
1
2 ∈ ζh.K×p with h ≡ 1

2
v−u
u+v mod (p) in

the nonspecial cases, h ≡ 0 mod (p) in the special case for p > 3, and
h ≡ −u+v

3 v mod (3) in the special case for p = 3.

Let qK be any prime ideal of K dividing q. If q |u2 − v2, then v
u ≡ ±1

mod (q) and we get (1 ± ζ)eω ζ−
1
2 ≡ 1 mod qK since (1 ± ζ)eω = ζ

1
2 (see

proof of Lemma 3). Thus we obtain κh ≡ 0 mod (p) in every case.

The nonspecial cases yield to κ v−u
u+v ≡ 0 mod (p), hence κ ≡ 0 mod (p) if

u−v 6≡ 0 mod (p). Thus the case p = 3 is empty since u ≡ v ≡ ±1 mod (3).

The special case for p > 3 is empty. The special case for p = 3 gives
κ v+u

3 v ≡ 0 mod (3). �

1.5. Consequences of Lemma 3. We make the following comments on
the fundamental Lemma 3 and its corollaries to introduce the ω-SFLT
equation and suitable cyclotomic units.

For arbitrary relatively prime nonzero integers u, v, we still have γω :=
(u + v ζ)eω =

(
u
v + ζ

)eω =
(
1 + v

u ζ
)eω =

(
1 + v

v+u π
)eω and the various

congruences of Lemma 3, γω ≡ ζh mod (π2), with h = v
u+v (nonspecial

cases), h = 1
2 (special case, p > 3), and h = 1

2 − u+v
3 v (special case, p = 3).

Then we obtain γω ζ
−h ≡ 1 mod (π2), which implies easily that γω ζ

−h is
a p-primary number (use [Gr1, Lemma 3.15]); but since this number is not
in general the pth power of an ideal it may not be a global pth power. 7

So, from class field theory, there exist infinitely many prime ideals qK
of K, prime to u v, such that (1 + v

u ζ)
eω ζ−h is not a local pth power

at qK , except if we have a counterexample (u, v) to SFLT in which case
such primes do not exist. The pth power residue symbol of this number is
invariant by conjugation of qK since ((1+ v

u ζ) ζ
−h)κ eω ≡ ζ ′ mod qK implies,

by conjugation by sk ∈ g, ((1 + v
u ζ) ζ

−h)κ k eω ≡ ζ ′k mod sk(qK) equivalent

to ((1 + v
u ζ) ζ

−h)κ eω ≡ ζ ′ mod sk(qK); so the symbol only depends on q,
the prime number under qK which does not divide u v.

We suppose v
u of order n modulo q (which is equivalent to q |Φn(u, v)

and q ∤ n), and we suppose n prime to p.

7 In the case where (u + v ζ)Z[ζ] = w
p
1, Lemma 3 shows that (1 + v

u
ζ)eω ζ−h ∈ K×p; so

in this particular case, where (1 + v
u
ζ)eω ζ−h is a pseudo-unit, local pth power at p, we get a

necessary and sufficient condition to get a global p-power.
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Let q be a prime ideal above q in Q(µn). We have equality of the pth
power residue symbols of (1+ v

u ζ)
eω ζ−h at any qK in K, and of the cyclo-

tomic unit (1+ξ ζ)eω ζ−h at Q in Q(µn)K, where ξ is a suitable nth root of
unity and Q | qK is any prime ideal above q in Q(µn)K (ξ is characterized
by the congruence ξ ≡ v

u mod q in Q(µn), and qK = Q ∩ Z[ζ]).

Of course h is a priori unknown and the local study of (1 + ξ ζ)eω ζ−h

is uneffective in general, but we may use some partial informations, as the
following ones in the context of FLT.

Let (x, y, z) be a solution of the Fermat equation (first or second cases).

a) Take for instance u := x, v := y (so we are in the nonspecial cases of
SFLT) which gives h = y

y+x .

• If ζ is not a local pth power at qK (which is equivalent to κ 6≡ 0
mod(p)), we will consider the pth power residue symbol at Q of the real

cyclotomic unit η1 := (1 + ξ ζ)eω ζ−
1
2 (see Definition 4 in Subsection 2.1)

which must be that of ζ h−
1
2 = ζ

1
2

y−x
y+x . For FLT we have some informations

on the differences like y− x, y− z, which are prime to p for p > 3 or p = 3
in the second case; in that cases a contradiction to the existence of such a

solution of the Fermat equation is that the unit (1 + ξ ζ)eω ζ−
1
2 be a local

pth power at Q or does not give the “good” symbol.

For p = 3 in the first case, we know that x ≡ y ≡ z ≡ ±1 mod (3); so a
contradiction is that this unit be not a local 3th power at Q.

• If ζ is a local pth power at qK (which is equivalent to κ ≡ 0 mod (p)),
a contradiction is that the unit η1 be not a local pth power at Q.

b) In the second case of FLT (p | y) with u = x, v = z (special case of
SFLT) we have different but similar reasonings using the value of h − 1

2
given by Lemma 3 for any p ≥ 3 since x+ z ≡ 0 mod (9) when p = 3.

The hope in this attempt is that, the fields Q(µn) ⊆ Q(µq−1) being a pri-
ori independent of the Fermat problem, they may give valuable indications

on the local properties of η1 = (1 + ξ ζ)eω ζ−
1
2 , especially in an analytic

point of view. In some sense the fields Q(µq−1) will play the role of govern-
ing fields for this problem. Indeed, under a solution to the SFLT equation,
the residue symbol above q of this unit is, independently of the choice of q,
equal to the symbol of a constant power of ζ, which may be absurd.

These cyclotomic fields have been introduced by Vandiver in some papers
as [Van1, Van2, Van3] to generalize classical results of Kummer and some
congruences giving Furtwängler′s theorems and Wieferich′s criteria; these
papers essentially depend on the Stickelberger element S := 1

p

∑p−1
k=1 k s

−1
k ,

related to the generalized Bernoulli numbers and the annihilation of the
p-class group of K.
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Meanwhile some of the relations of Lemma 3 are considered by Vandiver
for other purposes than our′s. In Vandiver′s papers, analytic results (like
Čebotarev′s theorem) or class field theory are not used, and it seems that
no method of contradiction can be deduced from these computations which
are essentially local at p, and it has been explained in [Gr1] the probable
inefficiency of such local studies. Our present work is mainly global and
does not concern the arithmetic of K as in the historical researches.

Lemma 4. The equation (u+ v ζ)Z[ζ] = w
p
1 or pw

p
1, in nonzero integers

u, v, with g.c.d. (u, v) = 1 and w1 prime to p, is equivalent to the equation
(u+v ζ)eω ∈ ζhK×p with h ≡ v

u+v mod (p) in the nonspecial cases for p ≥ 3,

h ≡ 1
2 mod (p) in the special case for p > 3, and h ≡ 1

2 − u+v
3 v mod (3) in

the special case for p = 3.

Proof. A direction being proved (Lemma 3), let l 6= p be a prime ideal
dividing the left member (u + v ζ)Z[ζ]; the congruence u + v ζ ≡ 0 mod l

implies that (u+v ζ)Z[ζ] = pδ
∏
ℓ l
αℓ , δ = 0 or 1, for distinct prime numbers

ℓ with l | ℓ (otherwise we get u ≡ v ≡ 0 mod l). Moreover, it shows that l
is of degree 1 and that g operates transitively on the set of conjugates of l;
hence, since peω = Z[ζ] and since (u+ v ζ)eω Z[ζ] =

∏
ℓ l
αℓ eω is a pth power

by assumption, we get αℓ ≡ 0 mod (p). �

We call the second equation the ω-SFLT equation; the corresponding
form of the SFLT conjecture for p > 3 seems reasonable as soon as p is
sufficiently large since it enunciates that there exists a sum

∑p−1
k=1 λk ζ

k,

λk ∈ Q, whose pth power is of the form (u ζ−
v

u+v + v ζ
u

u+v )eω (resp. of the

form (u ζ−
1
2 + v ζ

1
2 )eω), depending on two coefficients u, v instead of p− 1

in general. It will be interesting to have the response at least for p = 5.

So for p > 3 the truth of SFLT would imply FLT; in this paper we con-
centrate our attention mainly on SFLT, using the simpler ω-SFLT context
which does not concern directly the arithmetic of K, the nerve center of
the unsuccessful classical theory.

For a recent critical history on FLT see [Co]. For some complements on
these cyclotomic technics, see [He1, He2, Ter, Ri].

2. Introduction of the governing fields Q(µq−1)

2.1. Furtwängler and Vandiver revisited. Consider the relation:

(u+ v ζ)Z[ζ] = w
p
1 or pw

p
1,

in nonzero integers u, v with g.c.d. (u, v) = 1, where w1 is an ideal of K
prime to p, as a counterexample to SFLT, independently of FLT.

Let q be a prime number such that q ∤ u v and such that v
u is of order

n modulo q (which is equivalent from Lemma 2 to q ∤ n and q |Φn(u, v)),
with n prime to p.
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In another point of view, for a given n prime to p, the primes q |Φn(u, v)
are solution (i.e., vu is of order n modulo q), if and only if q ∤ n. In practice
the condition q ∤ n is always satisfied because we are only concerned with
large primes q, so that q ≡ 1 mod (n).

Consider the following diagram, where L := Q(µn), M := LK, and
G = Gal(M/L) ≃ g (we have L ∩K = Q):

ML=Q(µn)

Q K=Q(ζ)

G

g

Definition 3. The prime q ≡ 1 mod (n) being totally split in L/Q, if q is
a prime ideal of L over q, there exists a unique primitive nth root of unity
ξ such that ξ ≡ v

u mod q. Reciprocally, if ξ is a primitive nth root of unity,
there exists a unique prime ideal q of L over q such that ξ ≡ v

u mod q.

This ideal is (q, u ξ− v) and will also be denoted qξ (it depends on u, v).

We associate with q (for u, v fixed) a pair (ξ, q) where the prime ideal
q := qξ above q and the primitive nth root of unity ξ are characterized by
the congruence ξ ≡ v

u mod q in L.

This pair is defined up to Q-conjugation since ξ ≡ v
u mod qξ is equivalent

to ξt ≡ v
u mod qtξ = qξt , for all t ∈ Gal(L/Q). We obtain an equivalence

relation. The class only depends on q for u, v given.

Taking a representative pair, we will fix ξ (for instance ξ = exp(2iπ/n))
which defines qξ.

Since v
u modulo q is unknown but well-defined, we must note that, in

what follows, the class is uneffective among φ(n) possible classes, and for
each n prime to p dividing q−1. This explains that, in some circumstances,
we will have to take q 6≡ 1 mod (p) since, if not, it is not possible to assert
that v

u is of order modulo q prime to p.

Definition 4. For the given nth root of unity ξ, n 6≡ 0 mod (p), we consider
the cyclotomic number of M associated to ξ: 8

η := η(ξ) := (1 + ξ ζ) ζ−
1
2 ∈M,

where ζ
1
2 is the unique pth root of unity such that (ζ

1
2 )2 = ζ (so, the

exponent 1
2 is seen as a p-adic integer or as an element of (Z/pZ)×). This

is coherent with the context of p-Kummer theory above M .

8We know that 1 + ξ ζ is a (cyclotomic) unit except if −ξζ is of prime power order, which is
the case if and only if ξ = −1 (i.e., n = 2) in which case 1 + ξ ζ is a p-unit.
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Then we put:

η1 := ηeω = (1 + ξ ζ)eω ζ−
1
2 ∈M ;

we have η1 ∈M+, where M+ is the maximal real subfield of M : indeed, if
c is the complex conjugation, then:

ηc1 = (1 + ξ−1 ζ−1)eω ζ
1
2 =

(
(1 + ξ ζ)ξ−1 ζ−1 ζ

1
2
)eω = (1 + ξ ζ)eω ζ−

1
2 = η1,

since ξeω = 1 and ζ ′eω = ζ ′ for any ζ ′ ∈ µp.

We note that η1 is a cyclotomic unit and that (for n 6= 2) η1 ≡ 1 mod
π ZM .

Starting from ξ ≡ v
u mod q and extending q to M we obtain: 9

η1 ≡
(
1 + v

u ζ
)eω ζ− 1

2 mod
∏
Q | q

Q.

We note that these prime ideals Q of M may be written Qξ since they
are above qξ; for ξ fixed, they are conjugated by the elements of G.

From Lemma 3, we get
(
1+ v

u ζ
)eω = ζ

v
v+u · δpω (nonspecial cases, p ≥ 3)

or ζ
1
2 · δpω (special case, p > 3) or ζ

1
2
− v+u

3 v · δ3ω (special case, p = 3), with

δω ∈ K×, giving η1 ≡ ζ
1
2

v−u
v+u · δpω or δpω or ζ

1
2

v+u
3 v · δ3ω mod

∏
Q | q

Q.

From the congruences on η1, Definition 2, and Corollaries 2 and 3, we
then have obtained in the sole context of SFLT the following result which
includes the case p = 3:

Theorem 1. Let p be a prime number, p ≥ 3. Suppose given the relation
(u + v ζ)Z[ζ] = w

p
1 or pw

p
1, with u, v ∈ Z\{0}, g.c.d. (u, v) = 1, where w1

is an ideal prime to p of K := Q(ζ), ζp = 1, ζ 6= 1, and p := (ζ − 1)Z[ζ].

Let q 6= p, q ∤ u v, be a prime number such that v
u is of order n modulo q,

with n prime to p; put η := (1 + ξ ζ) ζ−
1
2 , η1 := ηeω , where ξ is a primitive

nth root of unity (see Definition 4). Put q := (q, u ξ − v) in L := Q(µn).

We get in M := LK:(
η1

Q

)
M

= ζ
1
2
κ v−u

v+u , ∀Q | q, in the nonspecial cases (p ∤ u+ v), for p ≥ 3, 10

(
η1

Q

)
M

= 1, ∀Q | q, in the special case (p |u+ v), for p > 3,
(
η1

Q

)
M

= ζ
1
2
κ v+u

3 v , ∀Q | q, in the special case for p = 3.

9Warning: if for instance v
u

is of order dp modulo q, with p ∤ d, q is totally split in M/Q

and we have the congruence v
u

≡ ξ =: ψ ζ1 mod Q, for some Q | q in M , where ψ is of order
d and ζ1 of order p; but in the relation 1 + v

u
ζ ≡ 1 + ξ ζ mod Q, the root ξ = ψ ζ1 is not

invariant by G so that the congruence
(
1 + v

u
ζ
)eω ≡ (1 + ξ ζ)eω mod Q does not exist. From

γ := 1+ v
u
ζ we get sk(γ) := 1+ v

u
ζk and if eω =

∑
k uksk we obtain instead γeω =

(
1+ v

u
ζ
)eω ≡∏

k(1 + ψ ζ1 ζk)uk mod Q, in which the term 1 + ψ is not always a cyclotomic unit (see [Que]).
10 In the first case of SFLT for p > 3 we may have u−v ≡ 0 mod (p) (then u−v ≡ 0 mod (p2))

contrary to FLT with v := y and u := x or z. For p = 3, u− v ≡ 0 mod (9) in the first case.
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These relations show that
(
η1

Q

)
M

only depends on the Fermat quotient

of q once u, v are given. Note that the class of the pairs (ηt1,Q
t), t ∈

Gal(M/K), for any choice of Q | q in M , corresponds canonically to the

class of the (ξt, qt), since we have the relation
(
η1

Q

)t
M

=
(
η1

Q

)
M

=
(
ηt1
Qt

)
M
,

where Qt | qt, and ηt1 = (1 + ξt ζ)eω ζ−
1
2 (see Definitions 3 and 4).

The symbol
(
η1

Q

)
M

may be different from
(
η1

Qt

)
M
, t 6= 1, since there is

no local information on
1 + ξt ζ

1 + ξ ζ
. But as we have seen,

(
η1

Q

)
M

=
(
η1

sQ

)
M

for

any s ∈ G.

Remark 2. Since for g.c.d. (u, v) = 1 the equation (u + v ζ)Z[ζ] = w
p
1 or

pw
p
1 is equivalent to NK/Q(u+ v ζ) = wp1 or pwp1, we deduce from u+ v ζ ≡

u (1 + ξ ζ) mod Q for all Q | q, that (for n 6= 2):

NM/L(u+ v ζ) ≡ NM/L(u (1+ ξ ζ)) ≡ up−1 1 + ξp

1 + ξ
= up−1 (1+ ξ)tp−1 mod Q,

for all Q | q, where tp is the Frobenius automorphism of p in L. This gives:
(
(1 + ξ)tp−1

Q

)
M

=
(
u

Q

)
M

=
(
v

Q

)
M

(
resp. =

(
pu

Q

)
M

=
(
pv

Q

)
M

)
,

in the nonspecial cases (resp. the special case), for all Q | q, with q = qξ.

From a solution (x, y, z) of the Fermat equation, we get the three relations
(see Subsection 1.1):

(x+ y ζ)Z[ζ] = z
p
1, (z + y ζ)Z[ζ] = x

p
1, (x+ z ζ)Z[ζ] = y

p
1 or p y

p
1.

For p > 3, the conditions:

p ∤ x2 − y2, p ∤ z2 − y2, p ∤ x+ z (resp. p ∤ x− z),

in the first (resp. second) case, and the conditions:

p ∤ x2 − y2, p ∤ z2 − y2,

in the second case, are satisfied by choice of the notations (see Lemma 1).

If n ≤ 2 about the relation (x + y ζ)Z[ζ] = z
p
1 or (z + y ζ)Z[ζ] = x

p
1

(i.e., q |x2 − y2 or q | z2 − y2), then M = K, Q = qK | q in K. Since

η1 = (1± ζ)eω ζ−
1
2 ∈ K×p, we get:

ζ
1
2
κ y−x

y+x = 1 or ζ
1
2
κ y−z

y+z = 1.

Then these two values of n give again the second theorem of Furtwängler
[Fur] in the context of FLT for p > 3, that is the fact that when q |x2 − y2

or q | z2 − y2, then ζκ = 1, which means κ ≡ 0 mod (p) (see Corollaries 2
and 3 generalizing the FLT situation to SFLT).

We have the same conclusion in the first case of FLT, with the supple-
mentary condition p ∤ x − z, if q |x2 − z2 (in the second case of FLT, this
does not work for (x, z) since p |x+ z).
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Remark 3. (Furtwängler′s theorems and FLT). Let (x, y, z) be a solution
of the Fermat equation for p > 3, under the conditions of Lemma 1.

(i) Recall that the first theorem of Furtwängler giving Wieferich criteria
is that for any prime number q 6= p, if q |x or z (or y in the first case), then
κ ≡ 0 mod (p) (see Corollary 2).

Of course, if q |x + y or z + y (or x + z in the first case), then from
Subsection 1.1, (i) with evident notations, q | z0 or x0 (or y0 in the first
case), giving κ ≡ 0 mod (p) (from the first theorem of Furtwängler) what
we can call the first part of the second theorem of Furtwängler, the second
part being that if q |x − y or z − y (or x − z in the second case), then
κ ≡ 0 mod (p).

(ii) If q |x or z (or y in the first case) when q 6≡ 1 mod (p), then from
Subsection 1.1, (iii), q |x0 or z0 (or y0 in the first case). Then we deduce
that q | y + z = xp0 or x + y = zp0 (or x + z = yp0 in the first case). This
means, since q ∤ y z or x y (or x z in the first case), that y

z or y
x (or x

z in the
first case) is of order 2 modulo q, giving again the first part of the second
theorem of Furtwängler and κ ≡ 0 mod (p) (see Corollary 3).

The two results are not independent in the case q 6≡ 1 mod (p). For some
other remarks on Furtwängler′s theorems, see [Que].

(iii) So, if we choose q 6≡ 1 mod (p) such that κ 6≡ 0 mod (p), this implies
that q ∤ xyz in the first case of FLT, and q ∤ xz in the second case of FLT.
Thus, under these assumptions on q, the hypothesis q ∤ xyz (in the first
case) or q ∤ xz (in the second case) are useless for the development of the
method and give effective tests in practice.

It remains the case q | y in the second case (p | y). When q 6≡ 1 mod (p),
q | y0, then q |x + z; we obtain that q ∤ x z and q |x + z but we cannot
conclude, except that the root ξ′′ associated to x

z is −1. To eliminate the
case q | y in the second case we must suppose q large enough, which is not
effective.

(iv) In any case of FLT we have the following result (see [Ri, IV.3]). If
q 6= p divides y and does not divide x+z then q ≡ 1 mod (p2). Indeed, since
q ∤ x+z = yp0 or pν p−1yp0, we have q | y1 and q = 1+d p. Suppose that p ∤ d;
since y+x = zp0 and y+z = xp0, we see that x and z are pth powers modulo
q and that xd ≡ zd ≡ 1 mod (q) giving xd−zd ≡ 0 mod (q) and xp+zp ≡ 0
mod(q). Since d is even this may be written xd ≡ (−z)d mod (q) and
xp ≡ (−z)p mod (q) with g.c.d. (d, p) = 1 which yields to x ≡ −z mod (q)
(absurd). So q ≡ 1 mod (p2).

This result is valid by circular permutation of x, y, z, only in the first
case of FLT since p (in pν p−1yp0) may not be a pth power modulo q.

If we suppose that (x, y, z) (with the choices of Lemma 1) is a solution
of the Fermat equation, we obtain, from Theorem 1 and the fact that in
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the second case for p = 3, x + z ≡ 0 mod (9) (special case (u, v) = (x, z)
with u+ v ≡ 0 mod (9)):

Corollary 4. Suppose that the prime q 6= p is given such that q ∤ xyz and
such that y

x ,
y
z ,

x
z are of orders n, n′, n′′ (modulo q) prime to p.

Let ξ, ξ′, ξ′′ in Q(µq−1), of orders n, n
′, n′′, and let q, q′, q′′ dividing q in

L = Q(µn), L
′ = Q(µn′), L′′ = Q(µn′′), built from y

x ,
y
z ,

x
z ; then consider

the corresponding cyclotomic units η1, η
′
1, η

′′
1 . We then have:

(i) First case of FLT for p > 3:
(η1
Q

)
M

= ζ
1
2
κ y−x

y+x ,
( η′1
Q′

)
M ′

= ζ
1
2
κ y−z

y+z ,
( η′′1
Q′′

)
M ′′

= ζ
1
2
κ x−z

x+z ,

with y − x 6≡ 0 mod (p) and y − z 6≡ 0 mod (p). 11

(ii) First case of FLT for p = 3:
(η1
Q

)
M

=
( η′1
Q′

)
M ′

=
( η′′1
Q′′

)
M ′′

= 1.

(iii) Second case of FLT for p ≥ 3 (y ≡ x+ z ≡ 0 mod (p)):
(η1
Q

)
M

= ζ−
1
2
κ,

( η′1
Q′

)
M ′

= ζ−
1
2
κ,

( η′′1
Q′′

)
M ′′

= 1.

Remark 4. (i) Suppose that we are in the first case of FLT for p > 3; let
q 6= p be a prime number such that κ 6≡ 0 mod (p), and let n and n′ be the
orders of y

x and y
z modulo q; we suppose that p ∤ nn′ (we have n, n′ > 2

because of the second theorem of Furwängler, and from Remark 3, (i), on
the first theorem of Furwängler, we know that q ∤ xyz).

If we find, with independent reasons, that at least one of the symbols(
η1

Q

)
M

or
(
η′1
Q′

)
M ′

is trivial, then x − y ≡ 0 mod (p) or z − y ≡ 0 mod (p),

which is absurd since the two symbols must be nontrivial under a solution
of the Fermat equation (cf. (i)). The reasoning on the third symbol does
not work since x− z can be divisible by p.

(ii) For p = 3 in the first case, all the right members are trivial under a
solution of the first case of FLT and the above reasoning is different but a
contradiction arises as soon as an independent fact implies the nontriviality
of one of these symbols (cf. (ii)).

(iii) In the second case for any p, when κ 6≡ 0 mod (p), we know that

q ∤ xz. Since p ∤ nn′, we deduce that p ∤ n′′. The symbol
(
η′′1
Q′′

)
M ′′

is trivial

under a solution of the Fermat equation (cf. (iii)) and a contradiction arises
if not.

11Recall that for p > 3 we have no information on x − z modulo p in the first case, so that
we cannot consider the third symbol in some reasonings using the above property.
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To have a similar reasoning as in the first case with the two other nontri-
vial symbols associated to ξ and ξ′, we need the condition q ∤ y, so that we
must suppose q large enough (in practice, to get a contradiction, we need
the existence of infinitely many q such that at least one of the symbols(
η1

Q

)
M
,
(
η′1
Q′

)
M ′

is trivial).

(iv) If κ ≡ 0 mod (p), in any case, all the symbols are trivial under
a solution of the Fermat equation. So a contradiction supposes that for
infinitely many such q, we get, independently, nontrivial symbols.

(v) We can use the above remarks to give the following reciprocal state-
ments, for p > 3 to simplify; we suppose that any solution (x, y, z) of the
Fermat equation satisfies the conventions of Lemma 1. Let ξ be a primitive

nth root of unity, n 6≡ 0 mod (p), let η1 := (1 + ξ ζ)eω ζ−
1
2 (Definition 4),

and let q ≡ 1 mod (n). Consider an arbitrary ideal q | q in L := Q(µn) and
any prime ideal Q | q in M := LK.

We suppose given integers u, v with g.c.d. (u, v) = 1, such that q ∤ u v
and v

u ≡ ξ mod q.

• If κ 6≡ 0 mod (p) and
(
η1

Q

)
M

= 1, we then have:

If u+v 6≡ 0 mod (p), (u, v) cannot be a part of a solution (x, y, z) = (u, v, z),
(v, u, z), (x, v, u), or (x, u, v) of the Fermat equation (first or second cases).

• If κ 6≡ 0 mod (p) and
(
η1

Q

)
M

6= 1, we then have:

If u+v ≡ 0 mod (p), (u, v) cannot be a part of a solution (x, y, z) = (u, y, v)
or (v, y, u) in the second case of the Fermat equation.

• If κ ≡ 0 mod (p) and
(
η1

Q

)
M

6= 1, we then have:

The pair (u, v) cannot be a part of a solution (x, y, z) in any case of the
Fermat equation.

Proposition 1. Let (x, y, z) be a solution of the Fermat equation; then let
q ∤ xyz be such that y

x ,
y
z ,

x
z are of orders n, n′, n′′ (modulo q) prime to p,

and let L̃ := Q(µd) where q =: 1 + d pr, r ≥ 0, p ∤ d.

Let ξ, ξ′, ξ′′, of orders n, n′, n′′, be such that ξ ≡ y
x mod qξ, ξ

′ ≡ y
z mod qξ′,

ξ′′ ≡ x
z mod qξ′′ in L, L

′, L′′, respectively.

Then there exist a prime ideal q̃ | q of L̃ and t′, t′′ ∈ Gal(L̃/Q) such that
the following congruences hold:

(i) ξ′t
′ ≡ −ξ

ξ+1 mod q̃,

(ii) ξ′′t
′′ ≡ −1

ξ+1 mod q̃.
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Proof. Since L, L′, L′′ are subfields of L̃, there exist prime ideals q̃0, q̃
′
0, q̃

′′
0

of L̃ dividing qξ, qξ′ , qξ′′ , respectively, such that:

ξ ≡ y
x mod q̃0, ξ′ ≡ y

z mod q̃′0, ξ′′ ≡ x
z mod q̃′′0.

The ideals q̃′0 and q̃′′0 are some conjugates of q̃0 and there exist t′, t′′ ∈
Gal(L̃/Q) such that ξ′t

′ ≡ y
z mod q̃0, ξ

′′t′′ ≡ x
z mod q̃0.

From xp + yp + zp = 0 we get
(
x
y

)p
+

(
z
y

)p
= −1 giving:

ξ−p + (ξ′t
′

)−p ≡ −1 mod q̃0.

Since p ∤ d, we can use the inverse of the Frobenius automorphism tp of p

in L̃/Q, which gives easily the relation (i) (for q̃ := t−1
p (q̃0)).

From the evident relation ξ′′t
′′

ξ′−t
′

ξ ≡ 1 mod q̃0, which implies the equal-
ity ξ′′t

′′

ξ′−t
′

ξ = 1, we obtain the point (ii) since ξ 6= −1. 12 �

Corollary 5. Let m := l.c.m. (n′, n′′); then we have φ(m) >
log(q)

log(3)
.

Proof. We have ξ′′t
′′

+ ξ′t
′

+ 1 ≡ 0 mod q̃; then ξ′′t
′′

+ ξ′t
′

+ 1 ∈ Q(µm)

by definition of m, and NQ(µm)/Q(ξ
′′t′′ + ξ′t

′

+ 1) = q N , N ≥ 1. Since

NQ(µm)/Q(ξ
′′t′′ +ξ′t

′

+1) < 3φ(m), we get N < 1
q 3

φ(m), giving the result. �

Same results for m′ := l.c.m. (n, n′′) and m′′ := l.c.m. (n, n′).

Corollary 6. We can choose the representative pairs (ξ, q), (ξ′, q′), (ξ′′, q′′)
such that ξ′ ≡ −ξ

ξ+1 mod q̃ and ξ′′ ≡ −1
ξ+1 mod q̃ for a suitable q̃ | q in L̃.

In such a way, we have ξ′′ = ξ−1 ξ′.

2.2. Case of an odd character χ 6= ω. We suppose that χ is an odd
character of g distinct from ω; then χ = ωk, k odd, k 6≡ 1 mod (p − 1),
which excludes the case p = 3.

As for the case k = 1, we can represent modulo p the corresponding
idempotent by an element in Z[g] of the form eχ = (1 − s−1) e

′
χ, e

′
χ ∈ Z[g]

(see Subsection 1.3).

We suppose that the χ-component of the p-class group of K is trivial;
for this, a necessary and sufficient condition is that the Bernoulli number
Bp−k be prime to p (see e.g. [Gr1, Section 2] for more details).

So, for any relation of the form (u + v ζ)Z[ζ] = w
p
1 or pw

p
1 where

g.c.d. (u, v) = 1, we get immediately:

(u+ v ζ)eχ = δpχ, δχ ∈ K×,

since in the special case (1 − ζ)eχ is a unit and any χ-unit of K is a pth
power for χ odd distinct from ω.

12The case ξ = −1 means y + x = zp0 ≡ 0 mod (q), i.e., q | z, which is excluded; in the same

way, ξ′ 6= −1, ξ′′ 6= −1.
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It is clear that Lemma 4 is valid for the character χ and that the two
equations are equivalent. The relation (u+ v ζ)eχ = δpχ may be considered
as the χ-SFLT equation associated to SFLT.

As in the previous subsection, let q 6= p be a prime number such that
q ∤ u v and v

u is of order n modulo q, with n prime to p (see Lemma 2).

Then let ξ of order n and q := qξ | q in L = Q(µn), characterized by the

relation ξ ≡ v
u mod q. From η = (1 + ξ ζ) ζ−

1
2 , put ηk := ηeχ ∈ M , where

M := LK; then ηk = (1 + ξ ζ)eχ , since ζeχ = 1. Thus ηk ∈M+ and ηk = 1
if n ≤ 2.

We deduce the congruence in M :

ηk ≡
(
1 + v

u ζ
)eχ = δpχ mod

∏
Q | q

Q.

We then have the relation
(
ηk

Q

)
M

= 1, for all Q | q, so that, in this

situation, a contradiction to the existence of a solution of the SFLT equation
is that this symbol be nontrivial for some q.

Here the value of κ does not enter.

From the Kummer duality, the extension M( p
√
ηk)/M is splitted, by

means of a p-cyclic extension, over the extension LKχ∗ , where χ∗ = ω1−k

and Kχ∗ is the subfield of K fixed by the kernel of χ∗; this field Kχ∗ is real.
Of course, LKχ∗ = L if and only if Kχ∗ = Q, i.e., χ = ω.

This criterion may be used for any odd character χ 6= ω such that the
χ-component of the p-class group of K is trivial, which may have some
interest. In some sense, it is similar to the case κ ≡ 0 mod (p) of the
preceding case χ = ω, the symbols being trivial independently of q.

But unfortunately, the corresponding extensions M( p
√
ηk)/L are meta-

belian (nonabelian) extensions and do not define intrinsic arithmetic prop-
erties of the field L as with the use of the single character ω to which we
return now to study its properties.

2.3. Computation of the Fp-dimension of a group of units. Since
η1 is considered in (EM/E

p
M )eω , it is necessary to precise the Fp-dimension

of this group. The computation is the same for any odd character χ (this
may be useful for Subsection 2.2).

Proposition 2. Let M = LK, where L = Q(µn), n > 2, p ∤ n. Let EM be
the group of units of M and χ = ωk, an odd character of g.

Then the Fp-dimension of (EM/E
p
M µp)

eχ is equal to 1
2 [L : Q].

Proof. Put Γ := Gal(M/Q) = G ⊕ H where G := Gal(M/L) and where

H := Gal(M/K). Let Γ̂ = Ĝ⊕Ĥ be the group of irreducible characters of Γ;

for any ψ ∈ Γ̂, let εψ be the idempotent εψ := 1
|Γ |

∑
σ∈Γ ψ

−1(σ)σ ∈ Cp[Γ].

If ψ = ωi. θ, ωi ∈ Ĝ, 1 ≤ i ≤ p− 1, θ ∈ Ĥ, then εψ = εωi · εθ.
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From the Dirichlet–Herbrand theorem on units (see e.g. [Gr2, I.3.7]) we
know that the representation Cp⊕(Cp⊗Z

EM ) is given by the representation

of permutation Cp[Γ]
1
2(1 + c) =

⊕
ψ even

Cp[Γ] εψ.

Then, since the character χ is odd, (Cp⊕ (Cp⊗Z
EM ))εχ =

(
Cp⊗Z

EM
)εχ

is the representation
⊕

ψ even
Cp[Γ] εψ · εχ.

Put ψ = ωi. θ; then εψ = εωi . εθ and εψ. εχ = 0 except if i = k. The sum
is over ψ = χ θ with θ odd since ψ must be even. Then:

(
Cp ⊗Z

EM
)εχ ≃

⊕

θ∈Ĥ, odd
Cp[Γ] εχ. θ .

We deduce that the Cp-dimension of
(
Cp ⊗Z

EM
)εχ is 1

2 [L : Q]. Hence
the proposition follows since εχ ≡ eχ mod pZp[g]. �

In particular, the Fp-dimension of (EM/E
p
M · µp)eω is equal to 1

2 [L : Q].
Thus the subgroup of (EM/E

p
M · µp)eω generated by the images of the units

t η1, t ∈ Gal(M/K)/〈 t−1 〉, is of Fp-dimension less or equal to 1
2 [L : Q].

3. Study of the cyclotomic units η1 and the extensions Fξ

In this Section we use some classical elements of Kummer Theory and
of decomposition of a Kummer extension over a subfield.

3.1. The cyclotomic unit η1. We consider, independently of any relation
of the form (u+ v ζ)Z[ζ] = w

p
1 or pwp

1, the cyclotomic number:

η := (1 + ξ ζ) ζ−
1
2 ,

where ξ is a primitive nth root of unity with p ∤ n, and the real cyclotomic
unit, defined in Definition 4, η1 := ηeω . We exclude the cases n = 1 and
n = 2 seen above for which η1 ∈ K×p.

For n > 2, L := Q(ξ) is an imaginary cyclotomic field, hence we can
consider the biquadratic extension M/L+K+, where M := LK; then M+

is the subfield of M of relative degree 2, distinct from LK+ and from KL+.

Let f be the residue degree of q in K/Q. We note that the residue degree
of q in M+/Q is equal to f .

Since η1 is a unit, the extensionM( p
√
η1)/M is p-ramified (i.e., unramified

outside p). Put π = ζ − 1; π is still an uniformizing parameter at p in M
(indeed, p is not ramified in M/K). We have:

η ≡ 1 + ξ +
1

2
(ξ − 1)π mod (π2),

giving by the usual computation modulo π2:

η1 := ηeω ≡ 1 +
1

2

ξ − 1

ξ + 1
π mod (π2);
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since n > 2,
ξ − 1

ξ + 1
is a local unit at p, showing that η1 is not p-primary; thus

in particular, the extension M( p
√
η1)/M is cyclic of degree p.

The Kummer theory shows that the conductor of M( p
√
η1)/M is pp ex-

tended to M (see [Gr2, II.1.6.3]). In some sense, M( p
√
η1)/M is maximally

wildly p-ramified and has the same conductor as M( p
√
ζ)/M .

Moreover, this extension does not depend on the choice of ζ since we

have ((1+ ξ ζk) ζ−
1
2
k)eω = ((1+ ξ ζ) ζ−

1
2 )sk eω , with sk eω ≡ k eω mod pZ[g]

for any k prime to p.

3.2. The abelian extension Fξ/L. By definition of the character ω,
whose reflect is ω∗ = χ0 (the unit character), the extension M( p

√
η1)/M

is splitted over L by means of a cyclic p-ramified extension Fξ, of degree p
over L = Q(µn) (i.e., FξM =M( p

√
η1)).

This extension, as extension of L, only depends on ξ of order n. The
family (Fξ)ξ of order n is canonical.

Since η1 is real, η1 = (1+ξ−1 ζ−1)eω ζ
1
2 which defines the same extension

as (1 + ξ−1ζ)eω ζ−
1
2 as we have seen at the end of Subsection 3.1. Then

we get Fξ = Fξ−1 . In the cases n ≤ 2, we have L = Q, η1 ∈ K×p, and
F±1 = Q.

It is easy to see that for any t ∈ Gal(L/Q) we have the relation Fξt = tFξ,
where by abuse of notation tFξ means t′Fξ for any Q-automorphism t′ of
Fξ such that t′

∣∣
L
= t. Indeed, we have in the same way, t′( p

√
η1) =

p
√
t (η1)

(up to a pth root of unity) where t (η1) = (1 + ξt ζ)eω ζ−
1
2 . 13

Suppose now that we have chosen a prime number q such that q ≡ 1
mod (n), p ∤ n, and let q be a fixed prime ideal above q in L; later, we will
have q = qξ when ξ is associated to the usual integers u, v, but in this
subsection q is arbitrary.

Consider the symbol
(
η1

Q

)
M

(independent of the choice ofQ | q inM); this

symbol is equal to 1 if and only if the image of η1 in the residue field ZM/Q
is a pth power, thus if and only if Q splits inM( p

√
η1)/M (Hensel ′sLemma)

which is equivalent to the splitting of q in Fξ/L.

Let HL be the maximal abelian p-ramified p-extension of L; it contains
all the extensions Fξ , ξ of order n, the cyclotomic Zp-extension L∞ = LQ∞
of L which is abelian over Q, and 1

2 [L : Q] other independent Zp-extensions
of L. This extension HL will be studied in more details in Section 4.

Since q totally splits in L/Q, the decomposition field of q in L∞/Q
is Le = LQe, where Qe ⊂ Q∞ is the stage of degree pe over Q where
qf = 1+ pe+1d, e ≥ 0, p ∤ d; note that e = 0 is equivalent to κ 6≡ 0 mod (p).

13We use the same notations for the elements of the Galois groups Gal(M/K) and Gal(L/Q),
then G = Gal(M/L) and g = Gal(K/Q) and similarly for Gal(M( p

√
η1)/M) and Gal(Fξ/L).
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4. Study of the extensions HL/L and Fn/L

In this section we recall some class field theory results concerning the
abelian p-ramification.

4.1. Class field theory and p-ramification. Let HL be the maximal
abelian p-ramified p-extension of L := Q(µn) in the case n > 2, p ∤ n (so
that L is an imaginary cyclotomic field of even degree) and let HL[p] ⊆ HL

be the maximal p-elementary p-ramified extension of L.

We consider its Galois group as a vector space over Fp.

Its dimension is given by the following Šafarevič formula (see e.g. [Gr2,
II.5.4.1, (ii)]):

dimFp(Gal(HL[p]/L)) = dimFp(VL/L
×p) + 1

2 [L : Q] + 1,

where VL is the group of pseudo-units of L which are local pth powers at
each place dividing p in L.

Lemma 5. The conductor of HL[p]/L divides (p2) as ideal of L.

Proof. From Hensel ′s Lemma we see, since p is not ramified in L/Q (p ∤ n),
that the modulus (p2) is sufficient to have that any α ∈ L×, α ≡ 1 mod (p2),
is locally a pth power at each place dividing p in L. �

Thus HL[p] is contained in the ray class field L(p2) and this yields:

Gal(HL[p]/L) ≃ I/IpR,

where I is the group of fractional ideals of L prime to p and R is the ray
group modulo p2, i.e.,

{
(α) ∈ I, α ≡ 1 mod (p2)

}
.

4.2. The subextension Fn. Let t−1 be the element of order 2 of the group
Gal(M/L+K) and s−1 ∈ G be the element of order 2 of Gal(M/K+L) (the
complex conjugation is c = s−1 t−1 as generator of Gal(M/M+)).

Since we have the relations ηc1 = η1, η
s−1

1 = ηeω · s−1 = η−1
1 , giving the

relation η
t−1

1 = η−1
1 , we deduce that:

Gal(M( p
√
η1)/L

+K) ≃ Gal(Fξ/L
+) ≃ D2p,

the diedral group of order 2p. 14

In other words, Gal(L/L+) acts on Gal(Fξ/L) by σ
t−1 := t′−1 · σ · t′−1 =

σ−1 for all σ ∈ Gal(Fξ/L) and any extension t′−1 of t−1 in Gal(Fξ/L
+).

It will be necessary to consider the compositum of all the extensions
M( p

√
η1) when ξ varies. Indeed, in the situation of a solution (u, v) of the

14Let A := Gal(M/L+) = G⊕ 〈 t−1 〉. Let χ1 be the character of A defined by χ1(s) = 1 for
all s ∈ G and χ1(t−1) = −1. Put χ = ω χ1; is is easy to see that χ is the character of the radical

〈 η1 〉M×p/M×p as A-module, since η1 = ηeω and η
t−1

1 = η−1
1 . From the Kummer duality,

the character of Gal(M( p
√
η1)/M) is χ∗ := ω χ−1 = χ1 proving that Gal(M( p

√
η1)/L+) ≃

G×Gal(Fξ/L
+), with Gal(Fξ/L

+) ≃ D2p. We also have Gal(M( p
√
η1)/M+) ≃ D2p.
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SFLT equation, for any n > 2, p ∤ n, the root ξ such that ξ ≡ v
u mod q, for

q = qξ, is uneffective and the properties of the symbols
(
η1

Q

)
M
, Q | q in M ,

for the pairs (η1,Q), can be studied in this extension.

Let Fn be the compositum of the corresponding extensions Fξ′ , ξ
′ of

order n, so that Fn is also the compositum of the Fξt , t ∈ Gal(M/K);
since η1 is real, we can consider the tη1 modulo the complex conjugation or,
equivalently, tmodulo 〈 t−1 〉 (this is coherent with the relation Fξ′ = Fξ′−1).

We have the equality FnM =M
(

p
√

〈 t η1 〉tmod <t−1>

)
.

Then as above Gal(L/L+) acts on Gal(Fn/L) by σt−1 = σ−1 for all
σ ∈ Gal(Fn/L).

Lemma 6. The Galois closure of Fξ over Q is Fn which is linearly disjoint
from L∞/L.

Proof. Over the field K, the Galois closure of M( p
√
η1) is given by the

radical 〈 t η1 〉t mod <t−1> with t η1 = (1+ξt ζ)eω ζ−
1
2 , t ∈ Gal(M/K), giving

the first part of the lemma. The relation L1 ⊆ Fn is equivalent to:

M( p
√
ζ ) ⊆M

(
p
√

〈 t η1 〉t mod <t−1>

)
,

then to the existence of a relation of the form
∏

t mod <t−1>
(t η1)

λt = ζ δp,

λt ∈ Z, δ ∈ M×; but since the left member is real, the use of complex
conjugation implies ζ2 ∈M×p, which is absurd. �

Remark 5. The Fp-dimension of the above radical depends on the study of

the relation
∏

t mod <t−1>
(t η1)

λt ∈M×p; this yields to (see Subsection 3.1):

∏
t mod <t−1>

(
1 +

1

2

ξt − 1

ξt + 1
π
)λteω ≡ 1 +

( ∑
t mod <t−1>

λt
1

2

ξt − 1

ξt + 1

)
π mod (π2).

Thus if the numbers
ξt − 1

ξt + 1
, t mod 〈 t−1 〉, are linearly independent modulo p,

we get the dimension 1
2 [L : Q] and dimFp(Gal(Fn/L)) =

1
2 [L : Q] = 1

2φ(n).

Since η1 is a cyclotomic unit of M , the classical study of the whole group
of cyclotomic units of M (of finite index in EM ) may give the exact Fp-
dimension of the radical (see Washington′s book, Chap. 8); but this study
depends, in a complicate manner, on the Galois group of M/Q and the law
of decomposition of the prime divisors of n in this extension.

4.3. Canonical decomposition of Gal(HL[p]/L). Consider the Galois
group CL := Gal(HL[p]/L) as a module over Fp[Gal(L/L+)]. Write:

CL = C+
L ⊕ C−

L , with C+
L := C

1
2
(1+t−1)

L , C−
L := C

1
2
(1−t−1)

L .
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We denote by H−
L [p] the subfield of HL[p] fixed by C+

L and by H+
L [p] the

subfield of HL[p] fixed by C−
L . We then have Fn ⊆ H−

L [p] and the diagram:

HL[p]H+
L [p]

L H−
L [p]

C−
L

C+
L

Lemma 7. Put VL := VL/L
×p (see Subsection 4.1) and VL = V

+
L ⊕V −

L as

above. Then V
+
L ≃ VL+/(L+)×p giving:

dimFp(C
+
L ) = dimFp(V

+
L ) + 1; dimFp(C

−
L ) = dimFp(V

−
L ) + 1

2 [L : Q].

Proof. Since p 6= 2, we have C+
L ≃ Gal(HL+ [p]/L+) for which the Šafarevič

formula is dimFp(C
+
L ) = dimFp(V

+
L ) + 1, proving the lemma. �

By this way, the case where dimFp(Gal(Fn/L)) =
1
2 [L : Q] is compatible

with the Fp-dimension of C−
L since when the invariant C−

L is minimal (which

is equivalent to dimFp(V
−
L ) = 0) then Fn = H−

L [p] as soon as the tη1,
tmod < t−1 >, are independent in M×/M×p.

Note that the group of pseudo-units YL :=
{
α ∈ L×, (α) = ap

}
is

elucidated by the following exact sequence:

1 −→ EL/E
p
L −−−→ YL −−−→ pCℓL −→ 1,

where CℓL is the p-class group of L, pCℓL the subgroup of CℓL of classes killed

by p, EL the group of units of L, and YL := YL/L
×p (if (α) = ap, the map

YL −→ pCℓL associates with α the class of a).

For L+ we get the analogous exact sequence:

1 −→ EL+/EpL+ −−−→ YL+ −−−→ pCℓL+ −→ 1.

We have the relations (EL/E
p
L)

+ ≃ EL+/EpL+ and (EL/E
p
L)

− = 1, so

that Y
−
L ≃ pCℓ−L and V

−
L ⊆ Y

−
L only depends on the minus part of the

p-class group of L and is often trivial.

The group V
+
L ≃ VL+ ⊆ YL+ depends on the p-class group of L+ (in

general trivial) and more essentially on the units locally pth power at p in
the group of units EL+ of L+ which is of Z-rank 1

2 [L : Q]−1; but ε ∈ EL+ is

a local pth power at each place dividing p if and only if εp
δ−1 ≡ 1 mod (p2),

where δ | 12φ(n) is the residue degree of p in L+, which is also very rare,

giving often a trivial V
+
L .
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Remark 6. Suppose that the group VL is trivial. 15 Then dimFp(C
+
L ) = 1,

dimFp(C
−
L ) = 1

2 [L : Q]. In this case HL is the compositum of the Zp-

extensions of L which is of the form H+
LH

−
L where H+

L = L∞ is the cyclo-

tomic Zp-extension of L and H−
L the compositum of 1

2 [L : Q] independent
relative Zp-extensions of L (i.e., which are pro-diedral over L+).

Then HL[p] is the compositum of the first stages of these Zp-extensions,
the extension H+

L [p] is L1, and HL[p]M is the Kummer extension defined

by the radical generated by the tη1 as soon as its Fp-dimension is 1
2 [L : Q].

See Subsection 2.3 about these questions of dimensions.

4.4. Conclusion. We have established, from Corollary 4 and Remark 4
(Subsection 2.1), that, under a solution of the Fermat equation for p > 3, for
infinitely many particular prime numbers q, in the case κ 6≡ 0 mod (p), there
exist privilegiate pairs (Fξ , qξ), (Fξ′ , qξ′) for the first case (resp. (Fξ , qξ),
(Fξ′ , qξ′), (Fξ′′ , qξ′′) for the second case), defined up to conjugation, with
p-cyclic p-ramified extensions Fξ/L, Fξ′/L

′, Fξ′′/L′′ and prime ideals qξ,
qξ′ , qξ′′ , for which qξ , qξ′ are inert for the first case (resp. qξ, qξ′ are inert
and qξ′′ splits, for the second case) in the corresponding extensions Fξ/L,
Fξ′/L

′, Fξ′′/L′′.

In the case κ ≡ 0 mod (p), for all the above pairs, the ideals split in the
corresponding extensions.

This intrication may be in contradiction, for mostly primes q, since the
governing fields Q(µq−1) are independent of the Fermat problem; more
precisely, a general philosophy is that the decomposition groups of prime
ideals in Galois extensions do not fulfill any other law than standard ones,
and may be analyzed in a statistical point of view (see Section 6 for a direct
study of these aspects).

About this, we will explain in Section 8 that the case p = 3 is precisely
an exceptional counterexample to the above claim, since some constraints
do exist; but we will show that these constraints are not in contradiction
because of the structure of the set of solutions.

One may object that Fξ comes from the radical:
〈
(1 + ξ ζ)eω ζ−

1
2
〉
M×p

over M , which is directly associated to a problem of SFLT type, and in
a standard algebraic point of view the above circumstances on the laws of
decomposition are equivalent to a contradiction to SFLT. Thus it will be
necessary to obtain some analytic (or geometrical) informations on the split-
ting of q inHL[p]/L (more precisely in the canonical family (Fξ/L)ξ of order n)
so as to prove that the above particularities do not exist.

15This situation is by definition equivalent to the p-rationality of the field L (see [Gr2, IV.3.5]
for some equivalent conditions).
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5. A sufficient condition proving the Fermat theorem

In this section we study a sufficient condition for FLT, which only in-
volves congruential properties of prime ideals over q in Q(µq−1).

5.1. Main result. We suppose that p > 3 and that the primes q consi-

dered are such that f > 1 and κ := qf−1
p 6≡ 0 mod (p); we will then use

Remark 3 using Furtwängler′s theorems. Thus any divisor n of q − 1 is
prime to p.

From a solution (u, v) of the SFLT equation, for which v
u is of order n > 2

modulo q ∤ u v, we consider the pair (ξ, qξ), defined up to Q-conjugation in
L := Q(µn) (see Definition 3).

The integer n and the pair are uneffective since if we fix an ideal q | q in
L, the root ξ such that q = qξ is unknown, or if we fix a primitive nth root
ξ, then the ideal q | q such that q = qξ is unknown.

Let Qξ be any prime ideal ofM := LK above qξ. Then the pair (η1,Qξ),

where η1 = (1 + ξ ζ)eω ζ−
1
2 ∈M+, is also unknown in the same manner.

So if we ensure that, for instance for q0 fixed arbitrarily in L, for any

Q0 | q0 in M ,
(
η1

tQ0

)
M

= 1 for all t ∈ Gal(M/K)/〈 t−1 〉, then in particular

for the “good” value of the pair (η1,Q) (i.e., such that Q | qξ), we get:
(η1
Q

)
M

= ζ
1
2
κ v−u

v+u = 1,

giving u− v ≡ 0 mod (p) which is absurd in the case of a solution (x, y, z)
of the Fermat equation by choice of the difference v − u = ±(y − x) or
±(y − z) (see Corollary 4, (i)).

The problem is to know if there exist such prime numbers q with Fn in
the splitting field of q in HL[p]/L, for all n | q−1, n > 2. If so, this will prove
FLT (in the first case we know that q ∤ xyz and a single q is sufficient; for
the second case where we know that q ∤ xz, it is necessary to have infinitely
many such primes q to be certain that q ∤ y). For the proof of SFLT, we
must suppose u− v 6≡ 0 mod (p) in the first case.

If Fn is in the splitting field of q, then this does not depend on the choice
of q | q in L, which is a convenient simplification. In other words, q totally
splits in Fn/Q.

Since Fn ⊆ H−
L [p], a sufficient condition to have the total splitting of q

in Fn is that the Frobenius ϕ of q in HL[p]/L be an element of C+
L , which

is equivalent to ϕt−1 = ϕ, hence to ϕt−1−1 = 1. Note that ϕ is of order p
since its restriction to L1 is of order p by assumption.

The image of ϕ ∈ CL by the isomorphism Gal(HL[p]/L) ≃ I/IpR of
class field theory, is given by the class of q in I/IpR; thus the condition
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ϕt−1−1 = 1 is equivalent to qt−1−1 ∈ IpR, i.e.,
qt−1−1 = ap (α), α ≡ 1 mod (p2),

for an ideal a of L. We must realize this for any divisor n > 2 of q − 1.

For ñ := q − 1, L̃ := Q(µq−1), we suppose that the above condition

q̃ t̃−1−1 = ãp (α̃), α̃ ≡ 1 mod (p2), is satisfied (for q̃ | q in L̃/Q).

Then let n | q − 1, n > 2; since L = Q(µn) is imaginary, L+ is fixed by
the restriction t−1 of t̃−1 to L, and taking the norm N

L̃/L
we get:

NL̃/L(q̃
t̃−1−1) = NL̃/L(ã)

pNL̃/L(α̃).

Since q is totally split in L̃, we have by definition NL̃/L(q̃) = q for some

q | q in L, and the above relation is of the form qt−1−1 = ap (α), with
α ≡ 1 mod (p2), as expected (this coherent choice of the ideals q is possible
since the required condition of splitting at each stage is independant of the
choice of the ideal). So the whole condition for our purpose is given by the
single condition for n = q − 1, L = Q(µq−1).

We note that if cℓ(q) ∈ C+
L , then for all t ∈ Gal(L/Q) we have cℓ(q t) =

(cℓ(q))t ∈ C+
L since L/Q is abelian.

We have obtained the following criterion, where c is the complex conju-
gation:

Theorem 2. Let p be a prime number, p > 3. If there exists at least a
prime number q, q 6≡ 1 mod (p), qp−1 6≡ 1 mod (p2), such that for a prime
ideal q | q in Q(µq−1), we have q1−c = ap (α) for an ideal a and an element
α of Q(µq−1) with α ≡ 1 mod (p2), 16 then the first case of FLT (or the first
case of SFLT under the supplementary condition u− v 6≡ 0 mod (p)) holds
for p.

The second case of FLT (or of SFLT) holds as soon as there exist infinitely
many such primes q.

From the Čebotarev theorem, there exist infinitely many prime ideals l
of Q(µq−1) such that their Frobenii ϕl lie in C+

Q(µq−1)
(which is at least of

dimension 1); the problem is to be sure that there is no obstruction to the
fact that it is sometimes possible for l = q | q.

16 Since the multiplicative groups of the residue fields of L at p are of order prime to p, in
any writing ap (α) we can suppose α = 1 + p β, β p-integer of L. The condition q1−c = ap (α),
α ≡ 1 mod (p2), is equivalent to q1−c = ap (1 + p β), where β ≡ β+ mod (p), for a p-integer β+

of L+; indeed, this last condition implies q2(1−c) = a(1−c)p (1 + p β)1−c where (1 + p β)1−c ≡
1+ p (1− c)β ≡ 1 mod (p2), which gives the result thanks to a Bézout relation between 2 and p.

The condition q1−c = ap (α), α ≡ 1 mod (p2), is also equivalent to q = b1+ca′p (α′), α′ ≡
1 mod (p2); indeed, a direction being trivial, from q1−c = ap (α) we get q2 = q1+cap (α).

The condition q1−c = ap (α) is satisfied as soon as the class of q1−c is of order prime to p,
which is a weak condition; it remains to get the stronger condition β ≡ β+ mod (p).
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It is clear that such a set of prime numbers q would be of Dirichlet
density 0, as for the the set of prime numbers q, such that the ring Z[µq−1]
contains a principal ideal of norm q, a result proved by Lenstra in [Len,
Cor. 7.6].

The Theorem 2 may be empty because of an excessive condition on the
primes q. So we intend, in the forthcoming subsection, to give a weaker
form of this result (see Conjecture 2).

The Proposition 2 shows that the extension Fq−1 ⊆ H−
L [p], for L =

Q(µq−1), is of degree less or equal to 1
2 [L : Q] = 1

2φ(q − 1). So, if the

torsion group VL is trivial, the equality Fq−1 = H−
L [p] is possible and the

sufficient condition of Theorem 2 is also necessary; thus if there is any hope
of success of the method, this condition cannot be improved in practice.

5.2. Some related viewpoints. We will examine if some effective (or
numerical) aspects allow us to justify the method of proof of FLT based on
Theorem 2 for p > 3.

a) In this first approach, we fix q and q | q in L = Q(µq−1), and we try
to find some suitable values of p for which ϕq ∈ C+

Q(µq−1)
.

Suppose that qk = (α) in L = Q(µq−1) for some k > 0 and suppose that

we find d > 0 such that: αd ≡ α+ mod (p2), for some prime p such that

p ∤ k d, and some α+ ∈ L+; then αd(1−c) ≡ 1 mod (p2) giving a solution
of the problem for the prime p (then a posteriori k may be chosen as the
order of the ideal class of q and d as a suitable divisor of the order of the
multiplicative group of the residue field of L at p).

Of course this relation looks like the general problem of the Fermat quo-
tients of algebraic numbers as studied by Hatada in [Hat]. Considering the
work of Hatada and others, a serious conjecture would be that there exist
infinitely many solutions p for q fixed.

Since the numerical values of p are out of range of any computer, this
conjectural property is not of a practical use, but connect FLT to deep
properties of algebraic numbers.

Meanwhile, we have found the following example which gives a very
partial illustration but shows that there is a priori no systematic obstruction
for this question.

Example 2. Let q = 5 and p = 463. We then have L = Q(µ4) = Q(i),
where i :=

√
−1, and q = (2 + i). We see that q is totally inert in K (i.e.,

f = 462) and that p is also inert in L.

We obtain the following numerical informations:

• (5463−1 − 1)/463 6≡ 0 mod (463) (i.e., κ 6≡ 0 mod (p)),

• (2 + i)463+1 ≡ 43990 mod (4632).
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This implies immediately:

q1−c =
(2 + i

2− i

)
and q(p+1)(1−c) =

(2 + i

2− i

)p+1 ≡ 1 mod (p2),

giving the relation q1−c = ap (α) with a = qc−1 and α ≡ 1 mod (p2).

b) In a slighly different point of view, we must consider that in general,
for a solution (u, v) of the SFLT equation, the order n of v

u modulo q may
be a strict divisor of q−1, even if it is clear directly that n tends to infinity
with q (Corollary 5).

Thus we have the following observations.

Let m be a fixed integer, m > 2, p ∤ m. Put K ′ := Q(µp2) ⊃ K,

L := Q(µm), H := H−
L [p] (see Section 4), and H ′ := HK ′. Then H/Q and

K ′/Q are linearly disjoint (Lemma 6).

Let ϕ ∈ Gal(H ′/H) of order pf , f | p− 1. From the Čebotarev theorem,
there exist infinitely many prime numbers q such that, for a suitable Q′ | q
in H ′, the Frobenius automorphism satisfies the equality

(
H′/Q
Q′

)
= ϕ. This

implies the following properties:

• q ≡ 1 mod (m) (since q splits in L/Q),

• qf 6≡ 1 mod (p2) (since q is inert in K ′/K),

• q is totally split in H/L (since ϕ fixes H).

The condition q1−c = ap(α), α ≡ 1 mod (p2), is satisfied for any prime

ideal q | q in L = Q(µm) but not necessarily for q̃ in L̃ = Q(µq−1) (i.e., the

Frobenius of q in HL[p] fixes H
−
L [p], but this is not necessarily true for the

Frobenius of q̃ in H
L̃
[p] giving possible inertia in H−

L̃
[p]/L̃H−

L [p]).

The order of v
u modulo q is n | q − 1 and not necessarily m, and the

evident analogue of Theorem 2 applies only if n |m. In other words, we try
to replace the order q − 1

(
probably too big under the condition that the

Frobenius of q lies in C+
Q(µq−1)

)
by a strict divisor m (depending of q), for

infinitely many q for which we hope that the Frobenius of q lies in C+
Q(µm).

Then, under a solution (u, v) of the SFLT equation (u− v 6≡ 0 mod (p)),
there is an obstruction to the fact that there exists at least a pair (m, q)
(m and q defined as above with a Frobenius in C+

Q(µm)) such that a divisor

n of m is the order of v
u modulo q.

This remark may constitute a way of access to a proof of SFLT by means
of analytic investigations and we can propose the following independent
conjecture.

Conjecture 2. Let p be a prime number, p > 3, and let ρ = v
u , with

g.c.d. (u, v) = 1, be a fixed rational distinct from 0 and ±1.
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There exists a divisor function m : N\{0} −→ N\{0} (i.e., such that m(e) | e
for all e ∈ N\{0}) such that there exist infinitely many prime numbers q,
with κ 6≡ 0 mod (p), totally split in Fm(q−1) (see Subsection 4.2), for which
the order n of ρ modulo q divides m(q−1).

Since n tends to infinity with q, this means that m(q−1) is unbounded
with q. The existence of infinitely many primes q satisfying the conditions
of Theorem 2 is equivalent to the conjecture with m(q−1) = q − 1.

The existence of such a function depends on two phenomenons:

(i) The order of magnitude of the primes q discussed above from the
Čebotarev theorem.

(ii) The minimal value of the order modulo q of a given rational ρ.

Example 3. For p = 5, m = 4, we have L = Q(i), and an evident family
of ideals q of L such that q1−c = (α), α ≡ 1 mod (25), is given by the
following expression:

q = (e+ 5a+ 25b i)Z[i], e ∈ {1, 2, 3, 4}, a, b ∈ Z,

e, a, b being such that (e+ 5a)2 + (25b)2 is a prime number q.

The prime numbers q < 10000, q 6≡ 1 mod(5) and q4 6≡ 1 mod (25), of
the above form, are the following: 769, 1109, 1409, 2069, 2389, 2789, 3229,
3329, 3989, 5309, 5689, 6469, 6709, 7069, 7829, 8329, 8369, 8429.

It is clear that such a construction does exist for any p and any m > 2,
and the question is the following: p, u and v being given, is it possible
to find in such infinite lists of prime numbers (corresponding to arbitrary
values of m), a prime q for which the order of v

u modulo q is a divisor of
m (which is equivalent to q |um − vm)? Note that for each m, only a finite
number of q in the list can be solution.

The existence of one solution (m, q) gives the proof of the first case of
FLT for p and the existence of infinitely many solutions (m, q) gives a
complete proof of FLT for p.

5.3. Explicit formula for the pth power residue symbol
( η1
Q

)
M

. We

suppose that q 6= p is a given prime, and that n | q − 1 is such that p ∤ n.
Let ξ of order n and let q be a prime ideal of L = Q(µn) dividing q.

We consider the real cyclotomic unit η1 := (1 + ξ ζ)eω ζ−
1
2 (see Defini-

tion 4). Recall that for n ≤ 2, η1 ∈ K×p, so we suppose n > 2.

Let c be the complex conjugation. We suppose in this subsection that
the ideal class of q1−c is in the pth power of the class group of L, which
is equivalent to q1−c = ap (α) for an ideal a of L and an α ∈ L× prime to
p. This condition is also equivalent to q = b1+ca′p (α′) for ideals a′, b of
L and an α′ ∈ L×. We can suppose α ≡ 1 mod (p) (see the footnote in
Theorem 2), so that we get q1−c = ap (1 + p β), β p-integer in L. Taking
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the absolute norm gives NL/Q(1 + p β) = NL/Q(a)
−p which is a rational

congruent to 1 modulo p2. Thus since NL/Q(1+ p β) ≡ 1+ pTrL/Q(β) mod

(p2), where TrL/Q is the absolute trace, we obtain TrL/Q(β) ≡ 0 mod (p).
This remark will be used later.

We note that, as for the context of Theorem 2, if q − 1 =: d pr, p ∤ d,

the condition q̃1−c = ãp (1 + p β̃) is satisfied for ñ = d and q̃ in L̃ = Q(µñ),
then it is satisfied for any divisor n > 2 of ñ and the corresponding ideal

q = N
L̃/L

(q̃); we then have β ≡ Tr
L̃/L

(β̃) mod (p).

In M = LK we have:
( η1
(q)1−c

)
M

=
( η1∏

Q|qQ
1−c

)
M

=
∏
Q|q

( η1
Q1−c

)
M

=
(η1
Q

)2 p−1
f

M
,

where f is the residue degree of q in K/Q; indeed, we have:
( η1
Q1−c

)
M

=
(η1
Q

)
M
.
( η1
Qc

)−1

M
=

(η1
Q

)
M
. c

(η1
Q

)−1

M
=

(η1
Q

)2

M
,

since η1 is real, hence the result since the symbol of η1 does not depend

on the choice of Q above q. But
(

η1

(q)1−c

)
M

=
(

η1

(ap) (α)

)
M

=
(
η1

(α)

)
M
. Then

using the general reciprocity law (see e.g. [Gr2, II.7.4.4]) we obtain, since
η1 is a unit: (η1

α

)
M

=
(η1
α

)
M

( α
η1

)−1

M
=

∏
P | p

(
η1, α

)−1

P
,

product over the prime ideals P ofM above p; sinceM/L is totally ramified
at p, we will write by abuse

(
η1, α

)
p
for these Hilbert symbols, where p | p

in L, knowing that they are defined on M× ×M× with values in µp.
17

Thus we have obtained:(η1
Q

)
M

=
∏
p | p

(
η1, α

) f
2
p
.

We refer now to the Brückner–Vostokov explicit formula given in [Ko,
6.2, Th. 2.99] by giving some details for the convenience of the reader, and
we use similar notations.

We consider the uniformizing parameter π := ζ − 1 of the completions
MP of M at P | p | p. The inertia field is Lp. We need the formal series
t(x) := 1− (1 + x)p since 1− ζ = −π here, for which t(x)−1 is the Laurent
series:

− 1

xp

(
1− p

( c1
x
+ · · · + cp−1

xp−1

)
+ p2

( c1
x
+ · · ·+ cp−1

xp−1

)2 − · · ·
)
,

where the ci are integers.

17Warning: in the literature, two definitions are possible, which give the Hilbert symbol or
its inverse; this is the case with the reference [Ko] used below, by comparison with our′s (see e.g.
[Gr2, II.7.3.1]).
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We associates with η1 ≡ 1 + θ π mod (π2), where θ := 1
2
ξ−1
ξ+1 (see Subsec-

tion 3.1), and with α = 1 + p β, the series:

F (x) ≡ 1 + θ x mod (x2),

G(x) := 1 + p β (a constant series),

such that F (π) ≡ η1 mod (π2) and G(π) = α. Recall that log is the p-adic
logarithm and dlog the logarithmic derivative; so dlog(G) = 0 giving:

(F,G) = − 1

p2
· log

( Gp

σp(G)

)
· dlog(σp(F )),

where σp is the Frobenius automorphism on Lp extended to series by putting
σp(x) := xp.

Thus σp(G) = 1 + p σp(β), σp(F ) ≡ 1 + σp(θ)x
p mod (x2p), giving:

log
( Gp

σp(G)

)
≡ −p σp(β) mod (p2)

dlog(σp(F )) ≡ p σp(θ)x
p−1 mod (x2p, p x2p−1),

and finally:

(F,G) ≡ σp(θ β)x
p−1 mod

(
p xp−1, x2p−1,

x2p

p

)
.

Then the residue of t(x)−1 (F,G) is that of:

− 1

xp
σp(θ β)x

p−1 = − 1

x
σp(θ β) mod

( p
x
, xp−1,

xp

p

)
,

hence it is −σp(θ β) mod (p) since the generator
xp

p
of the above ideal gives

rise to a residue only with a term of the form
c

xp+1
of t(x)−1 (to give

c

p x
)

in which case c is a multiple of p2 (see the expression of t(x)−1).

To finish we have to take the absolute local trace (which eliminates the
action of the Frobenius):

TrMP/Qp
(−θ β) = (p− 1)TrLp/Qp

(−θ β) ≡ TrLp/Qp
(θ β) mod (p).

Then
(
η1, α

)
p
= ζ

−TrLp/Qp

(
1
2

ξ−1
ξ+1

β
)
because of our definition of the Hilbert

symbol, and
∏
p

(
η1, α

)
p

= ζ−
∑

p TrLp/Qp

(
1
2

ξ−1
ξ+1

β
)

= ζ−TrL/Q

(
1
2

ξ−1
ξ+1

β
)
, the

global trace being the sum of the local ones.

We have
1

2

ξ − 1

ξ + 1
β =

(1
2
− 1

ξ + 1

)
β, so the final expression of the trace is

−TrL/Q
( β

ξ + 1

)
since that of β is zero modulo p.

This yields to
(
η1

Q

)
M

=
∏
p

(
η1, α

) f
2
p
= ζ

1
2
f TrL/Q

(
β

ξ+1

)
.

We have obtained the following theorem.
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Theorem 3. Let q 6= p be a prime number, let n | q − 1 be such that p ∤ n
and n > 2. Let ξ of order n and let q be any prime ideal of L = Q(µn)
dividing q. We suppose that the ideal class of q1−c is the pth power of a
class of L, which is equivalent to q1−c = ap (1+p β) for an ideal a of L and

β p-integer in L. 18 Put η1 := (1 + ξ ζ)eω ζ−
1
2 (see Definition 4).

Then for any Q | q in M := LK,
(
η1

Q

)
M

= ζ
1
2
f TrL/Q

(
β

ξ+1

)
, where f is the

residue degree of q in K/Q and TrL/Q the absolute trace in L/Q.

This gives again the situation of Theorem 2 when β ≡ β+ mod (p), where
β+ ∈ L+, since we then have:

TrL/Q
( β

ξ + 1

)
≡ TrL+/Q

( β+

ξ + 1
+

β+

ξc + 1

)
≡ TrL+/Q(β

+) ≡ 0 mod (p),

since TrL/Q(β) ≡ 0 mod (p).

It also suggests the arithmetical independence with the SFLT problem
which implies that, for suitable values of q, n | q − 1 and ξ of order n, the

quantity TrL/Q(
β
ξ+1) is imposed under a solution of the SFLT equation,

which yields to infinitely many conditions. But as usual we need to explain
how the case p = 3 interferes with the arithmetic of the fields Q(µn) (see
Section 8).

Remark 7. Suppose, as in Theorem 3, that q1−c = ap (1+p β) for an ideal
a of L and β p-integer in L = Q(µn), with n | q − 1 such that p ∤ n and
n > 2. To obtain that q is totally split in Fn/L, we study the equivalent

condition
(
ηt1
Q

)
M

= 1 for all t ∈ Gal(M/K)/〈 t−1 〉; from the theorem this

is equivalent to TrL/Q
( β

ξt + 1

)
≡ 0 mod (p) for all t ∈ Gal(L/Q)/〈 t−1 〉.

This can be written in the following two forms:
∑

τ∈Gal(L/Q)

βτ

ξtτ + 1
≡ 0 mod (p), for all t ∈ Gal(L/Q)/〈 t−1 〉.

∑
τ∈Gal(L/Q)

βtτ

ξτ + 1
≡ 0 mod (p), for all t ∈ Gal(L/Q)/〈 t−1 〉.

So we obtain linear systems (with “variables” βτ and 1
ξτ+1 , respectively),

whose matrices have φ(n) columns and 1
2 φ(n) lines, and the rank over Fp of

the first matrix (less than or equal to 1
2 φ(n)) gives a more precise approach

of the required conditions on β; the condition β ≡ β+ mod (p) is sufficient
(use the second system) but not necessary as soon as the rank of the matrix
is less than 1

2 φ(n).

Let Z ′
L be the ring of p-integers of L. Then the knowledge of the image

of β in Z ′
L/pZ

′
L summarizes all the needed local properties of η1 at the

18As we know, this condition is also equivalent to q = b1+ca′p (1 + p β′) for ideals a′, b of L
and β′ ∈ L×.
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prime q. Since Z ′
L/pZ

′
L is the product of the residue fields of L at the

primes P | p in L, any analytic approach is available.

Example 4. Take p = 5, n = 4, and q 6= 5 prime congruent to 1 modulo 4.
Put q = a2 + b2 as usual; then q = (a + i b) and q4 = (A + iB), with
A = a4 + b4 − 6 a2b2, B = 4 ab(a2 − b2). We then have:

q1−c = q5(1−c)
(
A− i B

A+ i B

)
=: q5(1−c)

(
1 + 5β

)
.

Since A + iB ≡ 1 mod (5), we get A ≡ 1 mod (5) and B ≡ 0 mod (5),
and a straightforward computation gives:

β ≡ −8 i ab(a2 − b2)

5
mod (5) and

β

i+ 1
≡ −4 (i + 1) ab(a2 − b2)

5
mod (5),

which yields to 1
2TrL/Q

( β

i+ 1

)
≡ −1

2
8 ab(a2 − b2)

5
mod (5), hence:

(
η1

Q

)
M

= ζf
ab(a2−b2)

5 .

So the symbol is trivial if and only if ab(a2 − b2) ≡ 0 mod (25). We find
the values q = 313 (a = 13, b = 12), q = 317 (a = 14, b = 11), . . . For
q = 457 (a = 21, b = 4), we have κ ≡ 0 mod (5). A case with 25 | ab is
given by q = 641 (a = 25, b = 4).

The symbol is nontrivial for the values q = 13 (a = 3, b = 2) where(
η1

Q

)
M

= ζ4, q = 17 (a = 4, b = 1) where
(
η1

Q

)
M

= ζ3, . . .

6. Decomposition law of q in HQ(µq−1)/Q(µq−1) and conjectures

In this section we study in full generality the situation that we have
encountered in the previous sections.

6.1. Law of ρ-decomposition relative to the family Fn. Let p > 2
be a fixed prime number and let ρ = v

u , with g.c.d. (u, v) = 1, be a fixed
rational distinct from 0 and ±1. We do not suppose any relation of SFLT
type between u and v.

For any prime number q 6= p let f be the residue degree of q in K and

put κ := qf−1
p . Note that we have the relation (see Definition 2, (i)):

κ :=
qp−1 − 1

p
≡ p− 1

f
κ ≡ −1

p
log(q) mod (p).

We consider the infinite set of prime numbers:

Qρ :=
{
q, q ∤ u v (u2 − v2) and the order of ρ modulo q is prime to p

}
.

For each q ∈ Qρ, let n be the order of ρ modulo q (by definition we have
p ∤ n, n > 2); from Lemma 2, q ∈ Qρ is equivalent to q ∤ n, q |Φn(u, v), for
n > 2, p ∤ n).



Some works of Furtwängler and Vandiver revisited and the Fermat last theorem 37

We consider the fields K := Q(µp), L := Q(µn), and M := LK which
only depend on q (for ρ fixed).

We associate with q a pair (ξ, q) where the primitive nth root of unity
ξ ∈ L and the prime ideal q | q of L are characterized by the congruence
ξ ≡ ρ mod q; thus, q = (q, u ξ − v) is also denoted qξ as in the previous
sections (see Definition 3). As we know, this pair is defined up to Q-
conjugation and we obtain an equivalence relation. The class associated
to q is well-defined (for ρ fixed). Of course, the classes of (ξ1, q1) and
(ξ2, q2), corresponding to different primes q1 and q2, are relative to the
fields L1 = Q(µn1), n1 | q1 − 1, and L2 = Q(µn2), n2 | q2 − 1, and one of the
main problem will be to try to connect the two situations.

From the construction of the extensions Fξ and Fn ⊆ H−
L [p] given in

Subsections 3.2 and 4.2 via the real cyclotomic unit:

η1 := (1 + ξ ζ)eω ζ−
1
2 ,

the pair (Fξ , qξ) is defined up to Q-conjugation since (tFξ , q
t
ξ) = (Fξt , qξt)

corresponds to (ξt, qξt)
19; thus the class of the pair (Fξ, qξ) (or similarly

of the pair (η1,Qξ | qξ)) characterizes the class of (ξ, qξ) and reciprocally.
Recall that Fξ = Fξ−1 is diedral over L+.

The following lemma is elementary but precises the action of Gal(L/Q)
on the family of Frobenii:

Lemma 8. Let ϕξ :=
(
Fξ/L

qξ

)
be the Frobenius automorphism of the prime

ideal qξ = (q, u ξ − v) in Fξ/L.

Then ϕξt :=
(
Fξt/L

qξt

)
= ϕtξ := t ϕξ t

−1 for all t ∈ Gal(L/Q).

If t = t−1, then ϕξ−1 = ϕ
t−1

ξ = ϕ−1
ξ in Fξ±1/L.

Proof. From the defining congruence ϕξ (α) ≡ αq mod qξ for all integers α

of Fξ, we get easily t′ ϕξ (α) ≡ t′(α)q mod qξt , for any Q-isomorphism t′

of Fξ such that t′|L = t. Put t′(α) =: β ∈ Fξt ; this yields t′ ϕξ t
′−1(β) ≡

βq mod qξt for all integers β of Fξt , proving the lemma by unicity of the
Frobenius. �

The Frobenius of qξ in Fξ/L is characteristic of the class of (ξ, Fξ) since
we still have (ξt, ϕtξ) = (ξt, ϕξt) by conjugation. This calls to give the
following definition.

Definition 5. Let ρ := v
u be a fixed rational, distinct from 0 and ±1, with

g.c.d. (u, v) = 1. For n > 2 prime to p, let K := Q(µp), L = Q(µn), M =

LK, and for ξ of order n, let Fξ be such that FξM =M
( p

√
(1 + ξ ζ)eω ζ−

1
2

)
.

19Where as usual tFξ means t′Fξ for any extension t′ of t to Fξ.
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(i) For any prime q, q ∤ n, q |Φn(u, v) (i.e., q ∤ u v and ρ is of order n
modulo q), and for qξ = (q, u ξ − v) | q, we consider the class of Frobenii:

(
Fξt/L

qξt

)
=

(
Fξ/L

qξ

)t
, t ∈ Gal (L/Q),

that we normalize in the following way:

– if κ 6≡ 0 mod (p), we put
[
F∗/L

q∗

]
ρ,n

:=
((

Fξt/L

qξt

) p
log(q)

)
t∈Gal (L/Q)

;

– if κ ≡ 0 mod (p), we put
[
F∗/L

q∗

]
ρ,n

:= 1.

(ii) Call Fn the canonical family (Fξt)t = (Fξ′)ξ′ of order n defining Fn/L,

where Fn ⊆ H−
L [p] is the compositum of the Fξt , t ∈ Gal(L/Q)/ < t−1 >.

20

(iii) The symbol
[
F∗/L

q∗

]
ρ,n

is called the law of ρ-decomposition of q for

the family Fn.
This object, depending on the rational ρ and n, is for each q relative to

a family Fn, which is independent of any hypothetic solution of the SFLT
equation.

Let σ be a generator of Gal(Fξ/L); since the Frobenius ϕξ in Fξ/L is
well defined, it is of the form σr, r ∈ Z/pZ, so that (when κ 6≡ 0 mod (p))

the symbol
[
F∗/L

q∗

]
ρ,n

represents the family (or class):

(
σt
)r p

log(q)

t∈Gal(L/Q) =
(
t . σ . t−1

)r p
log(q)

t∈Gal(L/Q) .

Thus the symbol
[
F∗/L

q∗

]
ρ,n

can take p− 1 nontrivial “values” (called the

cases of ρ-inertia of q when r 6≡ 0 mod (p)) and a trivial one (the ρ-splitting
of q for Fn). The case κ ≡ 0 mod (p) gives the ρ-splitting of q for Fn.

Note that the Frobenii ϕ̃ξ :=
(
Fn/L

qξ

)
, when ξ varies, are a priori unknown

and must not be confused with
[
F∗/L

q∗

]
ρ,n

; they are conjugated, of order 1

or p, and the case of order 1 is very rare since it means that q is totally

split in Fn/Q, i.e.,
(
Fn/L

qξt

)
= 1 for all t ∈ Gal(L/Q) since Fn/Q is Galois

(situation of Theorem 2). The restriction of ϕ̃ξ to Fξ gives by definition

ϕξ . Its restrictions to the other Fξt are the
(
Fξt/L

qξ

)
=

(
Fξ/L

q
ξt

−1

)t
.

In the previous sections, in the case κ 6≡ 0 mod (p) for p > 3, we have
used, as a contradiction for the existence of a solution of the Fermat equa-
tion, the splitting of qξ in Fξ for infinitely many values of q (taking for
instance (u, v) = (x, y), (y, x), (z, y), or (y, z)). Same remark for a solution
(u, v) of the SFLT equation under the condition u− v 6≡ 0 mod (p).

20Remark that the sole knowledge of n determines the field L = Q(µn) then the family Fn.
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This property “ qξ = (q, u ξ − v) splits in Fξ ”, independent of the choice
of the representative pair as Lemma 8 shows, will be called by analogy the

“ ρ-splitting of q ∈ Qρ for Fn ”. It is equivalent to
[
F∗/L

q∗

]
ρ,n

= 1.

Remark 8. In a probabilistic point of view, the ρ-splitting of q ∈ Qρ for

Fn has a probability around 1
p , and we can hope a strong incompatibility

for analytic reasons since Qρ is infinite. If we ask that q be totally split in
Fn, this means that each q | q splits in Fξ = F−ξ (for any fixed ξ) and the

probability is around
(
1
p

) 1
2
φ(n)

which tends to 0 rapidly with q → ∞.

We put:

Qspl
ρ :=

{
q ∈ Qρ, q has a ρ-splitting for Fn

}
.

With a counterexample (u, v) to SFLT, we have, from a pair (ξ, qξ), the
following results proved in Theorem 1. If we put ρ := v

u , we may have
u ≡ 0 mod (p) in which case ρ is not defined modulo p, but is always
defined as a rational, so we preserve u and v in the congruences mdulo p.

In the nonspecial cases (i.e., v + u 6≡ 0 mod (p)):
(η1
Q

)
M

= ζ
1
2
κ v−u

v+u , for all Q | qξ , for p ≥ 3;

In the special case (i.e., v + u ≡ 0 mod (p)):
(η1
Q

)
M

= 1, for all Q | qξ , for p > 3,
(η1
Q

)
M

= ζ
1
2
κ v+u

3 v , for all Q | qξ , for p = 3.

Recall that for SFLT we cannot exclude the case u − v ≡ 0 mod (p)
contrary to FLT for (u, v) = (x, y), (y, x), (z, y), or (y, z). This explain
that for SFLT (first case and κ 6≡ 0 mod (p)) we cannot use, as a general
contradiction, the ρ-splitting of q for Fn.

This does not matter since the existence of a solution to SFLT is equiv-
alent to a precise law of ρ-decomposition of q for Fn, i.e., a precise value

of the symbol
[
F∗/L

q∗

]
ρ,n

(which can be trivial even if κ 6≡ 0 mod (p) when

u− v ≡ 0 mod (p)).

More precisely, we have the following lemma giving the action of the
Frobenius which determines explicitly the law of ρ-decomposition (the case
p = 3 being immediate from Theorem 1, to simplify we suppose p > 3):

Lemma 9. We suppose given, for the prime p > 3, a relation of the form
(u+ v ζ)Z[ζ] = w

p
1 or pw

p
1 with g.c.d. (u, v) = 1.

Let q be a prime number such that q ∤ u v, and such that the order n of
ρ := v

u modulo q is prime to p. Let Q | qξ in M , where (ξ, qξ) represents
the class corresponding to q.
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Let
(
M( p

√
η1 )/M

Q

)
be the Frobenius automorphism of Q in M( p

√
η1 )/M ,

where η1 := (1 + ξ ζ)eω ζ−
1
2 . We have:

(i) If v + u 6≡ 0 mod (p), then
(
M( p

√
η1 )/M

Q

)
. p
√
η1 = ζ

1
2
κ v−u

v+u · p
√
η1.

(ii) If v + u ≡ 0 mod (p), then
(
M( p

√
η1 )/M

Q

)
· p
√
η1 = p

√
η1.

Proof. From the defining congruence
(

p
√
η1
)σ ≡

(
p
√
η1
) qf

mod Q, for the

Frobenius automorphism σ :=
(
M( p

√
η1 )/M

Q

)
, we get

(
p
√
η1
)σ−1 ≡

(
p
√
η1
)qf−1

≡ η κ1 ≡
(
η1

Q

)
M

mod Q. Hence the result since
(
η1

Q

)
M

= ζ
1
2
κ v−u

v+u (resp. 1)

in the nonspecial cases (resp. in the special case). �

We intend now to translate this property into a property of the symbol[
F∗/L

q∗

]
ρ,n

, which will give the main phenomenon about the existence of a

solution to the SFLT equation.

Theorem 4. Let p be a prime number, p > 3. We suppose given a solution
of the SFLT equation (u+ v ζ)Z[ζ] = w

p
1 or pw

p
1 with g.c.d. (u, v) = 1.

Let q be a prime number such that q ∤ u v, and such that the order n of
ρ := v

u modulo q is prime to p and > 2.

Then the symbol
[
F∗/Q(µn)

q∗

]
ρ,n

only depends on ρ and n when q varies in Qρ.

In other words, the law of ρ-decomposition of q ∈ Qρ for Fn only depends
on ρ and n.

Proof. Let Q | q := qξ in M , where (ξ, qξ) represents the class correspon-
ding to q. The Frobenius automorphism of q in Fξ/L is given, by restric-

tion, by the relation
(
Fξ/L

q

)f
=

(
M( p

√
η1 )/M

Q

)
|Fξ

. Indeed, in the projection

Gal(M( p
√
η1 )/M) −→ Gal(Fξ/L), the Frobenius of the prime ideal Q gives

the Artin symbol of the norm in M/L of Q, which is qf ; hence the result.

If κ 6≡ 0 mod (p), using the relation f κ−1 ≡ −κ−1 mod (p) (see Defini-

tion 2, (i)) we get from Lemma 9 that
(
Fξ/L

q

)−κ−1

=
(
M( p

√
η1 )/M

Q

)κ−1

|Fξ

only

depends on ρ and n when q varies.

This proves the theorem in this case since −κ ≡ 1
p log(q) 6≡ 0 mod (p)

(see Definition 5).

If κ ≡ 0 mod (p), we get
(
Fξ/L

q

)
= 1 in any case. �

Remark 9. We can justify the expression “only depends on ρ and n when q
varies in Qρ” in the following way. Let Fn := L1Fn, where L1K =M( p

√
ζ ),
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and let ϕξ :=
(
Fn/L

qξ

)
; we know that ϕξ projects on ϕξ in Fξ/L and on

ϕ1 :=
(
L1/L

qξ

)
in L1/L. We treate the case κ 6≡ 0 mod (p), i.e., ϕ1 6= 1.

In the same manner, in the projection Gal(M( p
√
ζ )/M) −→ Gal(L1/L),

we obtain that
(
L1/L

qξ

) p
log(q)

=
(
M( p

√
ζ )/M

Q

)κ−1

|L1

is independent of q because

of the equality
(
M( p

√
ζ )/M

Q

)κ−1

. p
√
ζ = ζ . p

√
ζ. Moreover, this is independent

of the choice of ξ (of order n) since for all t ∈ Gal(L/Q), ϕξt = t ϕξ t
−1

projects, in L1/L, on ϕξt |L1
= t ϕξ |L1

t−1 = ϕξ |L1
= ϕ1 since Gal(L1/Q) is

abelian.

Which justifies the normalization and the fact that, in some sense, under

the existence of a solution to the SFLT equation, the symbol
[
F∗/L

q∗

]
ρ,n

does

not depend on q but only on ρ and n (of course n depends on q).

From Theorem 3, when the condition q1−cξ = ap (1+ p βξ) is satisfied, for

an ideal a of L and βξ p-integer in L, then
(
η1

Q

)
M

= ζ
1
2
f TrL/Q

(
βξ
ξ+1

)
, where

TrL/Q is the absolute trace in L/Q. So for a counterexample to SFLT we

must have TrL/Q
( βξ
ξ+1

)
≡ f−1 κ v−u

v+u ≡ log(q)
p

v−u
v+u mod (p) (nonspecial cases)

or TrL/Q
( βξ
ξ+1

)
≡ 0 mod (p) (special case for p > 3).

This means that, under a counterexample to SFLT, the objects:
(
Fξ/L

qξ

) p
log(q)

and
p

log(q)
TrL/Q

(
βξ

ξ + 1

)
, if κ 6≡ 0 mod (p),

(
Fξ/L

qξ

)
and TrL/Q

(
βξ

ξ + 1

)
, if κ ≡ 0 mod (p),

equivalent to the knowledge of
[
F∗/L

q∗

]
ρ,n

, only depend on ρ and n for primes

numbers q ∈ Qρ.

So we can hope that this fact, summarized in Theorem 4, is incompatible
with the arithmetic of the cyclotomic fields Q(µn) for p > 3.

Remark 10. In the context of the Fermat equation with r = y
x , r

′ = y
z , or

r′′ = x
z (supposed of orders n, n′, n′′ modulo q, prime to p), we have the

same conclusion as in Lemma 9 by using the units η1, η
′
1, and η

′′
1 ; from the

relation x+y+z ≡ 0 mod (p), the values r′, r′′ can be computed (modulo p)
from r, 21 and we get the following relations valid for p ≥ 3 since in the
Fermat equation, the special case corresponds to x+ z ≡ 0 mod (9).

21The notations r, r′, and r′′ correspond to ρ = v
u

in the equation (u + v ζ)Z[ζ] = w
p
1 or

pw
p
1 , for (u, v) = (x, y), (y, x), (z, y), or (y, z), and (u, v) = (x, z) or (z, x) (nonspecial cases

and special case, respectively); this explains the changes of notations in the Fermat context. We

obtain easily r′ ≡ −r
r+1

, r′′ ≡ −1
r+1

modulo p.
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(i) If κ 6≡ 0 mod (p), then:
(
M( p

√
η1 )/M

Q

)κ−1

· p
√
η1 = ζ

1
2

r−1
r+1 · p

√
η1,

(
M( p

√
η′1 )/M

Q′

)κ−1

· p
√
η′1 = ζ−

1
2
−r · p

√
η′1,

(
M( p

√
η′′1 )/M

Q′′

)κ−1

· p
√
η′′1 = ζ−

1
2
− 1

r · p
√
η′′1 , if r 6≡ 0 mod (p),

(
M( p

√
η′′1 )/M

Q′′

)κ−1

· p
√
η′′1 = p

√
η′′1 , if r ≡ 0 mod (p).

(ii) If κ ≡ 0 mod (p), the three symbols
(
M( p

√ • )/M

•

)
are trivial.

6.2. Law of ρ-decomposition relative to the family F̂n, for n > 2.
We still suppose p > 3. We have, under a counterexample (u, v) to SFLT,
the following interpretation of the equality:

(
η1

Qξ

)
M

= ζ
1
2
κ v−u

v+u

(
resp.

(
η1

Qξ

)
M

= 1
)

in the nonspecial cases v + u 6≡ 0 mod (p) (resp. the special case v + u ≡
0 mod (p)), which is also valid in the cases κ ≡ 0 mod (p) and u − v ≡
0 mod (p). This will give also another formulation of Theorem 4.

Consider the unit η̂1 := η1 ζ
− 1

2
v−u
v+u (resp. η̂1 := η1) in the nonspecial

cases (resp. in the special case).

(i) In the nonspecial cases we have:

η̂1 = (1 + ξ ζ)eω ζ−
1
2
− 1

2
v−u
v+u = (1 + ξ ζ)eω ζ−

v
v+u ,

which is by construction such that
(
η̂1

Qξ

)
M

= 1, but the unit η̂1 is not

anymore real; its definition from η1 is independent of q under a solution of
the SFLT equation in the nonspecial cases.

(ii) In the special case we obtain η̂1 := η1 = (1+ ξ ζ)eω ζ−
1
2 , which is real

and by construction such that
(
η̂1

Qξ

)
M

= 1.

The extension M( p
√
η̂1 )/M is splitted over L by a p-cyclic p-ramified

extension F̂ξ similar to Fξ except that it is not diedral over L+ in the
nonspecial cases.

In case (i), we easily have η̂1 ≡ 1+
( ξ
ξ+1 − v

v+u

)
π mod (π2) and for n > 2

we never have ξ
ξ+1 ≡ v

v+u mod (p) since this is equivalent to ξ ≡ v
u mod (p)

which is absurd for ξ /∈ Q. The case (ii) is known.

Thus F̂ξ/L is still of degree p and p-ramified. We still have t F̂ξ = F̂ξt .

We call F̂n the compositum of the F̂ξt , t ∈ Gal(L/Q). Hence Fn L1 = F̂n L1.

We denote, as in Definition 5, by F̂n the family (F̂ξ′)ξ′ of order n.
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We note that the relation η̂1 = η1 ζ
− 1

2
v−u
v+u in the nonspecial cases shows

that F̂ξ is a subfield of the compositum FξL1 obtained in an evident sys-

tematic way. But F̂ξ is effective only if ρ is known, which is not in general
the case in the nonspecial cases of the SFLT problem.

It is clear that F̂ξ = Fξ if and only if u± v ≡ 0 mod (p).

Then under a solution of the equation attached to SFLT, we must have

the splitting of qξ in F̂ξ (i.e., a ρ-splitting for F̂n). In other words if we
would define, as in Definition 5 (for κ 6≡ 0 mod (p)), the symbol:

[
F̂∗/L

q∗

]
ρ,n

:=
((

F̂ξt/L

qξt

) p
log(q)

)
t∈Gal(L/Q)

,

the analog of Theorem 4 would be
[
F̂∗/L

q∗

]
ρ,n

= 1 for all q ∈ Qρ.

A contradiction would be that there exist prime numbers q such that[
F̂∗/L

q∗

]
ρ,n

6= 1 i.e., qξ is inert in F̂ξ, which is independent of the represen-

tative pair (F̂ξt , qξt) and has a probability very near from p−1
p since p − 1

values of the symbols are possible.

About the class of pairs (F̂ξt , qξt), when
[
F̂∗/L

q∗

]
ρ,n

6= 1, we can speak of

“ ρ-inertia of q for F̂n ”.
In a similar way, in the context of the Fermat equation, we deduce from

the units η1, η
′
1, and η′′1 (see Remark 10), the units, where r := y

x 6≡
±1 mod (p):

η̂1 := (1 + ξ ζ)eω ζ
−r
r+1 ,

η̂′1 := (1 + ξ′ ζ)eω ζr,

η̂′′1 := (1 + ξ′′ ζ)eω ζ
1
r , if r 6≡ 0 mod (p),

η̂′′1 := (1 + ξ′′ ζ)eω ζ−
1
2 , if r ≡ 0 mod (p),

giving a trivial pth power residue symbol at Q, Q′, and Q′′, respectively.

We have the same conclusion as above for the extensions F̂ξ/L, F̂ξ′/L
′,

F̂ξ′′/L
′′ defined from M

(
p
√
η̂1

)/
M , M ′( p

√
η̂′1

)/
M ′, M ′′( p

√
η̂′′1

)/
M ′′.

Returning to SFLT with a solution (u, v), we put as above:

Q̂in
ρ :=

{
q ∈ Qρ, q has a ρ-inertia for F̂n

}
.

Lemma 10. Suppose p > 3 and κ 6≡ 0 mod (p). If u± v 6≡ 0 mod (p) then

we have Qspl
ρ ⊆ Q̂in

ρ . If u± v ≡ 0 mod (p) then we have Qspl
ρ ∩ Q̂in

ρ = ∅.

Proof. We know that F̂ξ is contained in the compositum L1Fξ and is distinct
from L1 since ξ 6= ±1.
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Suppose that F̂ξ is distinct from Fξ; if q ∈ Qspl
ρ , qξ splits in Fξ/L and

the Frobenius of qξ in L1Fξ/L fixes Fξ and then projects to a nontrivial

Frobenius in F̂ξ/L since this Frobenius must be nontrivial in L1/L (κ 6≡
0 mod (p)). When F̂ξ = Fξ, the result is clear. The lemma comes from the

characterization of the equality F̂ξ = Fξ (i.e., u± v ≡ 0 mod (p)). �

It will be interesting to examine the problem, for any ρ, independently
of any equation. The natural conjecture in this direction would be the
following, which implies SFLT (we still put K = Q(µp), L = Q(µn), M =
LK, to simplify the notations):

Conjecture 3. Let p be a prime number, p > 3, and let ρ = v
u , with

g.c.d. (u, v) = 1, be a fixed rational distinct from 0 and ±1. Put:

Qρ :=
{
q, q ∤ u v (u2 − v2) and the order of ρ modulo q is prime to p

}
.

For q ∈ Qρ, let n be the order of ρ modulo q and let F̂n be the family of

the φ(n) cyclic extensions F̂ξ of L, ξ of order n, defined by the relation

F̂ξK = M
(

p

√
(1 + ξ ζ)eω ζ−

v
v+u

) (
resp. F̂ξK = M

(
p

√
(1 + ξ ζ)eω ζ−

1
2

)
if

v + u 6≡ 0 mod (p) (resp. v + u ≡ 0 mod (p)
)
. Say that q has a ρ-inertia

for F̂n if
[
F̂∗/L

q∗

]
ρ,n

6= 1, i.e., qξ := (q, u ξ − v) is inert in F̂ξ/L.

Then the set of primes q ∈ Qρ having a ρ-inertia for F̂n, is infinite.

The extension F̂n (depending on ρ contrary to Fn) is a subfield of the
maximal p-ramified p-elementary extension HL[p] of L, and HL[p] is a priori
independent on any diophantine problem as Fermat′s equation.

Recall that to prove the first case of FLT for p, the existence of a single

q ∈ Qρ (ρ = y
x for a solution (x, y, z)) having a ρ-inertia for F̂n is sufficient,

contrary to the second case which needs infinitely many such primes.

In the first case, p ∤ xy (x2−y2) (from Lemma 1) and so, if κ 6≡ 0 mod (p)
then q ∤ xy (x2 − y2) from the two Furtwängler theorems (see Corollaries 2
and 3, Remarks 2 and 3).

Hence q ∈ Qρ as soon as κ 6≡ 0 mod (p) and q 6≡ 1 mod (p). These two
conditions on q are effective and the first case of FLT is easier than the
second one because it is generally possible to check the conjecture for small
values of q. The second case supposes to find q large enough; this shows
that the first case is likely a weaker conjecture.

If we examine, for logical reasons, the case p = 3 for SFLT, we know
that for any of the six families of solutions (u, v) of the SFLT equation
(see Remark 1), we have (supposing κ 6≡ 0 mod (3) and defining η̂1 in an
analogous way):
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(i)
(
η1

Qξ

)
M

= ζ
1
2
κ v−u

v+u = 1, in the first case (i.e., u v (u+ v) 6≡ 0 mod (3)),

which implies u− v ≡ 0 mod (3), hence η̂1 = η1 and F̂ξ = Fξ;

(ii)
(
η1

Qξ

)
M

= ζ±
1
2
κ in the second case (i.e., u v ≡ 0 mod (3)), thus η̂1 =

η1 ζ
∓ 1

2 and F̂ξ 6= Fξ ;

(iii)
(
η1

Qξ

)
M

= ζ
1
2
κ v+u

3 v in the special case (i.e., u + v ≡ 0 mod (3)) for

which η̂1 = η1 ζ
− 1

2
v+u
3 v and F̂ξ = Fξ if and only if v + u ≡ mod(9).

If v + u ≡ 0 mod (3) and v + u 6≡ 0 mod (9) then, for ρ := v
u , we get

Qspl
ρ ⊆ Q̂in

ρ ; if v + u ≡ 0 mod (9) or u− v ≡ 0 mod (3) then Qspl
ρ ∩ Q̂in

ρ = ∅.
We see that u−v ≡ 0 mod (3) in case (i), u v ≡ 0 mod (3) in case (ii); for

(iii), we verify from Remark 1 that v
u ∈ {−1, 2, 5} modulo 9, which gives

1
2
v+u
3 v ∈ {0, 1, 2} modulo 3. So, for q fixed we can find solutions (ui, vi)

giving the same order n of vi
ui

modulo q and any of the above value of v
u

modulo 9.

See Section 8 to go thoroughly into the exceptional case p = 3.

6.3. Construction of universal defining polynomials. The group g
operates canonically on the field K(Y ) of rational fractions, where Y is an
indeterminate. Consider:

F (Y ) := (1 + Y ζ)eω ζ−
1
2 ∈ K(Y ).

Then if s = sr is a generator of g we have:

s.F (Y ) :=
(
(1+Y ζs) ζ−

1
2
s
)eω =

(
(1+Y ζ) ζ−

1
2

)s eω=
(
(1+Y ζ) ζ−

1
2

)reω+pΛ,
since s eω= r eω + pΛ for some Λ ∈ Z[g] (see Definition 1, (iii)). Then we
obtain:

s.F (Y ) = F (Y )r ·
(
(1 + Y ζ) ζ−

1
2
)pΛ

.

Consider the Kummer extension K(Y )( p
√
F (Y ) )/K(Y ); since this ex-

tension is abelian over Q(Y ), the K(Y )-automorphism of K(Y )( p
√
F (Y ) ),

still denoted s, defined by s · p
√
F (Y ) := ( p

√
F (Y ) )r ·

(
(1+Y ζ) ζ−

1
2

)Λ
is of

order p − 1 and it is a classical result that the trace Ψ :=
p−1∑
k=1

sk · p
√
F (Y )

defines a primitive element of the subextension cyclic of degree p contained
in K(Y )( p

√
F (Y ) )/Q(Y ).

An easy way to find Irr(Ψ,Q(Y )) is to use the Newton formulas from
the computations of the traces:

Tr
(
( p
√
F (Y ) )i

)
:=

p−1∑
k=1

sk · ( p
√
F (Y ) )i, i = 1, . . . , p− 1.
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For instance, for p = 3, eω = s − 1, s = s2, s eω = 1 − s = −eω
(thus r = 2, Λ = −eω), F (Y ) = (1 + Y j)eωj = ((1 + Y j) j)s−1; we have

Ψ =
(
(1 + Y j2) j

1 + Y j

) 1
3
+

(
(1 + Y j) j2

1 + Y j2

) 1
3
, for which we get Ψ3 =

(1 + Y j2) j

1 + Y j
+

(1 + Y j) j2

1 + Y j2
+ 3Ψ, giving the irreducible polynomial:

Irr(Ψ,Q(Y )) = X3 − 3X +
Y 2 − 4Y + 1

Y 2 − Y + 1
,

or the unitary polynomial X3−3 (Y 2−Y +1)2X+(Y 2−4Y +1)(Y 2−Y +1)
taking the representative idempotent eω = s+ 2.

Definition 6. The general case of degree p can be written:

Irr(Ψ,Q(Y )) = Ap(Y )Xp + · · ·+A1(Y )X +A0(Y ), Ai(Y ) ∈ Z[Y ],

and will be called an universal polynomial of degree p for the SFLT problem.

For any given nth root of unity ξ, n > 2, the polynomial:

Ap(ξ)X
p + · · ·+A1(ξ)X +A0(ξ) ∈ L[X], L := Q(µn),

is the irreducible polynomial of the primitive element:

ψ := TrM( p
√
η1 )/Fξ

( p
√
η1)

defining the extension Fξ , with the usual notations.

We have the following result where we recall that for g.c.d. (u, v) = 1:

Φn(u, v) := uφ(n) · Φn
(
v
u

)
,

where Φn(X) is the nth cyclotomic polynomial and φ(n) its degree.

Theorem 5. Let p be a prime number, p > 3, and let ρ = v
u , with

g.c.d. (u, v) = 1 and u− v 6≡ 0 mod (p), be a fixed rational distinct from 0
and ±1.

(i) Case u+ v 6≡ 0 mod (p). Let n > 2 be prime to p, and let q ∤ n be a
prime number such that κ 6≡ 0 mod (p) and such that q divides Φn(u, v).

If the polynomial Ap(ρ)X
p+· · ·+A1(ρ)X+A0(ρ) is not irreducible modulo q,

then (u, v) cannot be a solution of the equation (u+ v ζ)Z[ζ] = w
p
1 attached

to the nonspecial cases of SFLT.

(ii) Case v + u ≡ 0 mod (p). Let n > 2 be prime to p, and let q ∤ n be a
prime number such that q divides Φn(u, v).

If the polynomial Ap(ρ)X
p + · · ·+A1(ρ)X +A0(ρ) is irreducible modulo q,

then (u, v) cannot be a solution of the equation (u+v ζ)Z[ζ] = pw
p
1 attached

to the special case of SFLT.



Some works of Furtwängler and Vandiver revisited and the Fermat last theorem 47

Proof. From Lemma 2, q ∤ n and q |Φn(u, v) is equivalent to q ∤ u v and ρ
is of order n modulo q; then ρ ≡ ξ mod qξ , for any choice of the nth root
of unity ξ and in case (i), there exists λ ∈ Z such that:

Ap(ρ)λ
p + · · ·+A1(ρ)λ+A0(ρ) ≡ Ap(ξ)λ

p + · · ·+A1(ξ)λ+A0(ξ)

≡ 0 mod qξ,

since q divides the left member. This means that Irr(ψ,L) has the root λ

modulo qξ and that qξ splits in Fξ/L (i.e.,
[
F∗/L

q∗

]
ρ,n

= 1).

If we suppose that (u, v) is a counterexample to SFLT, Theorem 1 in the

nonspecial cases gives
(
η1

Q

)
M

= ζ
1
2
κ v−u

v+u 6= 1 by assumption, equivalent to

the inertia of qξ in Fξ/L (contradiction).

The proof of case (ii) is similar but inversed (the hypothesis implies[
F∗/L

q∗

]
ρ,n

6= 1 while
(
η1

Q

)
M

= 1 for a solution in the special case). �

In other words, the corresponding conjecture giving a proof of SFLT
(under the assumption u− v 6≡ 0 mod (p)), which implies the two cases of
FLT, is the following.

Conjecture 4. Let p be a prime number, p > 3, and let ρ = v
u , with

g.c.d. (u, v) = 1 and u− v 6≡ 0 mod (p), be a fixed rational distinct from 0
and ±1.

(i) Case u+v 6≡ 0 mod (p). There exist infinitely many prime numbers q
with κ 6≡ 0 mod (p) such that Ap(ρ)X

p + · · · + A1(ρ)X + A0(ρ) is not
irreducible modulo q and q |Φn(u, v) for suitable values of n > 2 prime
to p.

(ii) Case v+ u ≡ 0 mod (p). There exist infinitely many prime numbers
q such that Ap(ρ)X

p + · · · + A1(ρ)X + A0(ρ) is irreducible modulo q and
q |Φn(u, v) for suitable values of n > 2 prime to p.

Of course, without an independent approach (analytic or geometric), the
problem has no longer solution since the polynomial:

Ap(ρ)X
p + · · · +A1(ρ)X +A0(ρ)

can be in case (i) that of a primitive element of L1, in which case all primes
which split in L1/Q are such that κ ≡ 0 mod (p), and in case (ii) the
polynomial may be splitted over Q. Meanwhile this polynomial has the
nontrivial property that for any primitive nth root of unity ξ, n > 2, the
polynomial Ap(ξ)X

p+ · · ·+A1(ξ)X +A0(ξ) is irreducible in Q(µn)[X] and
defines a p-ramified cyclic extension of Q(µn).
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7. Normic relations for cyclotomic units

In this section we give a relation between the units η1 and η′1 associated
to the classes of two prime numbers q and q′ for which the pairs (ξ, qξ),
(ξ′, qξ′) are such that the order n′ of ξ′ divides the order n of ξ, p ∤ n.

Put n = n′d. We introduce the following notations:

L = Q(µn), L
′ = Q(µn′),

M = LK, M ′ = L′K,

η1 = (1 + ξ ζ)eω ζ−
1
2 , η′1 = (1 + ξ′ ζ)eω ζ−

1
2 ;

to fix the notations, we suppose that ξ′ = ξd.

Since η1 is a cyclotomic unit, the action of relative norms on this unit is
well-known and we now recall the result in our particular context.

Proposition 3. Denote by N the relative norm NM/M ′ and by S the set of
distinct prime numbers dividing d and not dividing n′.

Then we have N(η1) = (η′1)
Λ′

, where Λ′ ≡ d .
∏
ℓ∈S

(1 − ℓ−1 t′ℓ
−1) mod (p),

t′ℓ ∈ Gal(M ′/K) being the Artin automorphism defined by t′ℓ(ξ
′) := (ξ′)ℓ.

Proof. By induction we can suppose that d is a prime number ℓ. Let ψ :=
ξn

′

which is a primitive ℓth root of unity.

(i) Case ℓ |n′. In this case S = ∅, [M :M ′] = ℓ, and:

N(1 + ξ ζ) =
ℓ−1∏
λ=0

(1 + ξ1+λn
′

ζ) =
ℓ−1∏
λ=0

(1 + ξ ψλζ)

= 1 + ξℓ ζℓ = 1 + ξ′ ζℓ = (1 + ξ′ ζ)sℓ .

Then N(η1) = (1 + ξ′ ζ)sℓeω N(ζ)−
1
2 = (1 + ξ′ ζ)ℓ eω ζ−

1
2
ℓ = (η′1)

ℓ (up to a
pth power since sℓeω ≡ ℓeω mod (p).

(ii) Case ℓ ∤ n′. In this case S = {ℓ} and:

N(1 + ξ ζ) =
ℓ−1∏

λ=0, λ6=λ0
(1 + ξ1+λn

′

ζ),

where λ0 is the unique value modulo ℓ such that 1 + λ0n
′ ≡ 0 mod (ℓ),

giving from the computation in (i):

N(1 + ξ ζ) =
1 + ξℓ ζℓ

1 + ξ1+λ0n′ ζ
=

(1 + ξ′ ζ)sℓ

1 + (ξ′)µ ζ
,

where 1 + λ0n
′ = µ ℓ, so that µ ≡ ℓ−1 mod (n′). Thus:

N(1 + ξ ζ) =
(1 + ξ′ ζ)sℓ

1 + (ξ′)ℓ−1ζ
=

(1 + ξ′ ζ)sℓ

1 + (ξ′)t
′

ℓ
−1

ζ

=
(

1 + ξ′ ζ

1 + (ξ′)t
′

ℓ
−1

(ζ)s
−1

ℓ

)sℓ
=

(
1 + ξ′ ζ

1 + (ξ′ ζ)σ
′

ℓ
−1

)sℓ
,
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where σ′ℓ ∈ Gal(M ′/Q) is the Artin automorphism defined by σ′ℓ(θ) = θℓ

for any pn′th root of unity θ; thus, since σ′ℓ = sℓ t
′
ℓ, this yields:

N(1 + ξ ζ)eω =
(

1 + ξ′ ζ

1 + (ξ′ ζ)σ
′

ℓ
−1

)ℓ eω
=

(
1 + ξ′ ζ

)ℓ (1−σ′ℓ−1) eω

(up to a pth power); from σ′ℓ
−1 eω = s−1

ℓ t′ℓ
−1 eω ≡ ℓ−1 t′ℓ

−1 eω mod (p), we

get N(1 + ξ ζ)eω =
(
1 + ξ′ ζ

)ℓ (1−ℓ−1t′ℓ
−1) eω (up to a pth power). Finally,

since in this case [M :M ′] = ℓ−1 and N(ζ) = ζℓ−1 = ζℓ (1−ℓ
−1 t′ℓ

−1), we get:

N(η1) = (η′1)
ℓ (1−ℓ−1 t′ℓ

−1)

(up to a pth power) and the proposition follows. �

If for instance Λ′ is invertible modulo p, with inverse Ω′, then η′1 =

N(η1)
Ω′

(up to a pth power) and, over L, we can see the abelian extension
F ′
n′ (compositum of the conjugates of the F ′

ξ′ over L
′) as a subfield of Fn,

in which case, for suitable primes q and q′, the properties of the Frobenii
studied in this paper can be compared to give strengthened conditions.

8. Analysis of the case p = 3 versus p 6= 3, for Theorems 2 and 4

In this section we suppose p = 3 and consider the solutions of the equa-
tion associated to SFLT (see Remark 1) which are an obstruction to the
relevance of statements similar to Theorem 2 and to the property of ρ-law
of decomposition of Theorem 4 for p > 3. We intend to explain why this
obstruction does exist for p = 3 but a priori not for p > 3 when we suppose
that the set of solutions is nonempty.

The main difference between the cases p = 3 and p > 3, is that there is
infinitely many solutions for the case p = 3, contrary to the case p > 3, even
if we have not proved this fact (which was known for the Fermat equation
before Wiles′s proof), and that we will exhibit a group of automorphisms,
acting on the set of solutions for p = 3, which creates some exceptional
relations of compatibility with density theorems. So we conjecture that
this fact does not exist for p > 3.

8.1. Analysis of the case p = 3 for the principle of Theorems 2.
Recall Theorem 1 in that case, for the choice of a prime q 6= p. We have

η1 = (1 + ξ ζ)eω ζ−
1
2 , with ζ = j and eω = s − 1, where ξ ≡ v

u mod qξ is
supposed of order n 6≡ 0 mod (3), for a solution (u, v) of the SFLT equation
defined up to the sign.

Here we only suppose g.c.d. (u, v) = 1 to preserve the symmetries be-
tween u and v. Recall that if we put ρ := v

u , we may have u ≡ 0 mod (3) in
which case ρ is not defined modulo 3, but is always defined as a rational.
Put L = Q(µn) and M = LK:
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(i) First case. Since u v (u+v) 6≡ 0 mod (3), we get u ≡ v ≡ ±1 mod (3),

so that
(
η1

Q

)
M

= j
1
2
κ v−u

v+u = 1 for any Q | qξ in M .

(ii) Second cases. We get
(
η1

Q

)
M

= j±
1
2
κ for any Q | qξ since 3 |u v.

(iii) Special case. Then
(
η1

Q

)
M

= j
1
2
κ v+u

3 v for any Q | qξ with 3 | v + u;

we have seen, at the end of Subsection 6.2, that v+u
3 v can take any value

modulo 3.
From this, we see that the existence of q totally split in H−

L [3]/Q for
L = Q(µq−1), or at least L = Q(µm) for a large m | q − 1, may be in
contradiction with the existence of the solutions of the second and special
cases when κ 6≡ 0 mod (3), i.e., 3 inert in Q1/Q where Q1 = Q(µ9)

+.

Definition 7. Consider the field k(Y ), where k is any field of characteristic
distinct from 2, and the automorphism:

T : k(Y ) −−−→ k(Y ) .

Y 7−→ 2Y−1
Y+1

Let F (Y ) := (1 + Y ζ)eω ζ−
1
2 ∈ K(Y ) be the formal cyclotomic unit, yet

defined in Subsection 6.3.

We intend to prove below various properties of compatibility, of this
automorphism, with the method of cyclotomic units developed here.

Theorem 6. (i) The automorphism T is of order 6 and we have the fol-
lowing consecutive images:

T (Y ) =
2Y − 1

Y + 1
; T 2(Y ) =

Y − 1

Y
; T 3(Y ) =

Y − 2

2Y − 1
;

T 4(Y ) =
−1

Y − 1
; T 5(Y ) =

−Y − 1

Y − 2
; T 6(Y ) = Y.

(ii) We have for ζ = j of order 3 and for F (Y ) = (1 + Y j)eωj, the
following formulas (up to 3th powers in K(Y )):

T (F (Y )) = (1 + Y j)eω ; T 2(F (Y )) = (1 + Y j)eωj2 ; T 3(F (Y )) = F (Y ),

which can be summarized by the identity T i(F (Y )) = F (Y ) j−i, 0 ≤ i < 3.

Proof. We have: T (F (Y )) =
(
1 +

2Y − 1

Y + 1
j
)eωj = (Y + 1 + (2Y − 1)j)eωj =

(1 − j + (2j + 1)Y )eωj; since 2j + 1 = j (1 − j), we get finally T (F (Y )) =
(1 − j)eω (1 + Y j)eωj; but (1 − j)eω = −j2, hence the result in this case.
The other computations are similar. �

We apply now the automorphism T to the solutions (u, v) in the following
way. We put T ( vu) =: VU where (U, V ) is defined up to the sign. We start
for instance from the solution:

(u, v) = (−s3 − t3 + 3s2t,−s3 − t3 + 3st2)

(see Remark 1) to determine its orbit.



Some works of Furtwängler and Vandiver revisited and the Fermat last theorem 51

Theorem 7. We obtain the following identities:

T 0
( v
u

)
=

v

u
=

−s3 − t3 + 3st2

−s3 − t3 + 3s2t
,

T 1
( v
u

)
=

2v − u

v + u
=

−s3 − t3 − 3s2t + 6st2

−2s3 − 2t3 + 3s2t+ 3st2
,

T 2
( v
u

)
=

v − u

v
=

3s2t− 3st2

s3 + t3 − 3st2
,

T 3
( v
u

)
=

v − 2u

2v − u
=

−s3 − t3 + 6s2t− 3st2

s3 + t3 + 3s2t− 6st2
,

T 4
( v
u

)
=

−u
v − u

=
s3 + t3 − 3s2t

3st2 − 3s2t
,

T 5
( v
u

)
=

−v − u

v − 2u
=

2s3 + 2t3 − 3s2t− 3st2

s3 + t3 − 6s2t + 3st2
,

which leads to the six fundamental families of solutions of the SFLT equa-
tion for p = 3.

Remark 11. For q 6≡ 1 mod (3), q 6= 2, all the orbits in Fq ∪ {∞} have six

elements (indeed, all the equations of the form
ay + b

cy + d
= y, deduced from the

rational fractions of Theorem 6, (i), reduce to y2−y+1 which is irreducible
over Fq). We remark the orbit of 0 which is 0 → −1 → ∞ → 2 → 1 → 1

2 in
Fq ∪ {∞}; this is consistent with |Fq ∪ {∞} | = q + 1 ≡ 0 mod (6).

Let q be a prime number. To simplify we suppose q 6≡ 1 mod (3) and
we call ni | q − 1 the orders modulo q of T i

( v
u

)
, 0 ≤ i < 6, for any solution

(u, v). As usual we put
v

u
≡ ξ mod qξ and more generally:

T i
( v
u

)
=:

vi

ui
≡ ξi mod qξi , 0 ≤ i < 6,

where we recall that the pair (ξi, qξi) is defined up to conjugation, so that we
can replace (ξi, qξi) by any conjugate (ξ′i, qξ′i). Thus we have put (u0, v0) :=
(u, v) and ξ0 := ξ.

Consider for instance T
( v
u

)
=

v1

u1
≡ ξ1 mod qξ1 noting that

v

u
≡ ξ mod qξ.

To compare the two congruences we can suppose, by conjugation of ξ1
for instance, that there is a prime ideal q̃ | q in L̃ := Q(µq−1) such that q̃ | qξ
and q̃ | qξ1 , which gives the congruences

v

u
≡ ξ mod q̃ and

v1

u1
≡ ξ1 mod q̃,

hence ξ1 ≡ v1

u1
= T

( v
u

)
≡ T (ξ) mod q̃. More generally we can write:

ξi ≡ T i(ξ) mod q̃, 0 ≤ i < 6,

which yields, for the units η1 and ηi1 associated to ξ and ξi, respectively:

η1 := (1 + ξ j)eωj

ηi1 := (1 + ξi j)
eωj

≡ (1 + T i(ξ) j)eω j

≡ η1 j
−i mod Q̃, 0 ≤ i < 3,
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(from Theorem 6, (ii)), for all Q̃ above q̃ in M̃ := L̃K. Thus we have:
(
ηi1

Q̃

)
M̃

=
(
η1

Q̃

)
M̃

(
j−i

Q̃

)
M̃

=
(
η1

Q̃

)
M̃
j−κ i for all Q̃ | q̃, 0 ≤ i < 3,

proving that the three symbols never coincide when κ 6≡ 0 mod (3).

These symbols are identical to the symbols
(
ηi1
Qi

)
M i

, for all Qi | qi := qξi ,

0 ≤ i < 3, where M i = LiK, Li = Q(µni).
22

This proves that if for instance qξ splits in Fξ/L then qξ1 and qξ2 are
inert in Fξ1/L

1 and Fξ2/L
2, respectively; in other words, the three law

of ρi-decomposition, or the three symbols
[
F∗/Li

q∗

]
ρi,ni

of Definition 5, are

different when κ 6≡ 0 mod (p). So, statements like that of Theorem 2 are
impossible for p = 3. This distribution of the three possible Frobenii, in
the context of ρi-decompositions, must be compatible with the Čebotarev
theorem (see Subsection 8.2 for this aspect and Subsection 8.3 for some
numerical evidence and especially Example 5).

It remains to prove that such a nontrivial automorphism T does not exist
for p > 3. The following result in zero characteristic gives a good overview
on the subject.

Theorem 8. For p > 3, there does not exist any automorphism T of Q(Y ),
distinct from the identity Y 7→ Y and the inversion Y 7→ Y −1, such that
T (1 + Y ζ) := 1 + T (Y ) ζ be such that:

1 + T (Y ) ζ = H(Y ) (1 + Y ζλ) ζµ (1− ζ)δ,

for some λ, µ ∈ Z, λ 6≡ 0 mod (p), δ ∈ {0, 1}, and H(Y ) ∈ Q(Y ).

Proof. Put T (Y ) =
aY + b

cY + d
, a, b, c, d ∈ Z, g.c.d. (a, b, c, d) = 1, ad − bc 6= 0,

and H(Y ) =:
A(Y )

B(Y )
, A,B ∈ Z[Y ] with g.c.d. (A,B) = 1. The relation of the

theorem is equivalent to:

B (cY + d+ (aY + b) ζ) = A (cY + d) (1 + Y ζλ) ζµ (1− ζ)δ.

Put r = g.c.d. (c, d); since g.c.d. (a, b, c, d) = 1, we have g.c.d. (r, aY + b) =
1, then r |B and, since B

(
− d

c

)
= 0 (use the rational root −d

c of the right
member), we can write B = (cY + d)D, D ∈ Z[Y ] with g.c.d. (A,D) = 1.
Hence:

D (cY + d+ (aY + b) ζ) = A (1 + Y ζλ) ζµ (1− ζ)δ, λ 6≡ 0 mod (p).

Then we are reduced to the general problem of solving:

A (1 + Y ζλ) ζµ (1− ζ)δ ∈ Z[Y ]⊕ Z[Y ] ζ,

22The coherent choice of these ideals supposes that if q̃ = (q, ξ̃− ẽ) (ξ̃ of order q− 1, ẽ ∈ Z of

order q − 1 modulo q), vi
ui

≡ ẽdi mod (q) (of order ni modulo q), we must have chosen ξi = ξ̃di

so that qξi = (q, ξi − ẽdi) = (q, ξ̃di − ẽdi ) ≡ 0 mod q̃, 0 ≤ i < 3.



Some works of Furtwängler and Vandiver revisited and the Fermat last theorem 53

since 1 and ζ are independent. This is equivalent to the relations:

Aζµ +AY ζλ+µ ∈ Z[Y ]⊕ Z[Y ] ζ

or

A (ζµ − ζµ+1) +AY (ζλ+µ − ζλ+µ+1) ∈ Z[Y ]⊕ Z[Y ] ζ.

We suppose p > 3 since the case p = 3 is well known (it can be recovered
in the following reasoning).

(i) Case δ = 0. The relation:

Aζµ +AY ζλ+µ ∈ Z[Y ]⊕ Z[Y ] ζ

is trivially impossible as soon as one of the classes modulo p of the exponents
µ or λ+ µ is in {2, . . . , p− 1}. Suppose that the distinct values µ, λ+ µ
are in {0, 1}. We obtain the two systems:

µ = 0 : D (cY + d) = A µ = 1 : D (cY + d) = AY

D(aY + b) = AY D(aY + b) = A.

This implies D = 1 since g.c.d. (A,D) = 1, hence:

µ = 0 : cY + d = A µ = 1 : cY + d = AY

aY + b = AY aY + b = A,

then this yields to the solutions (a, b, c, d) = (1, 0, 0, 1) and (0, 1, 1, 0), re-
spectively, giving T (Y ) = Y −1 and T (Y ) = Y , which are the expected
trivial solutions.

(ii) Case δ = 1. The relation:

A (ζµ − ζµ+1) +AY (ζλ+µ − ζλ+µ+1) ∈ Z[Y ]⊕ Z[Y ] ζ

is trivially impossible as soon as one of the exponents µ or λ+ µ is in
{1, . . . , p− 1}. So there is no solutions in that case since µ 6= λ+ µ. �

8.2. Analysis of the case p = 3 for the principle of Theorem 4.
We have now to explain why the phenomenon of ρ-law of decomposition
(Theorem 4, i.e.,

[

F∗/L
q∗

]

ρ,n
independent of q in the sense of Remark 9) is

necessarily compatible for p = 3 but (conjecturally) not for p > 3.

The following analysis suggests a suitable property of repartition (in the
Čebotarev′s meaning) of the values of the Frobenii, due to the infiniteness
of the set of solutions of the SFLT equation for p = 3 and the fact that
this set is the union of six families (see Remark 1) having complementary
properties for the Frobenii.

Let q be given such that κ 6≡ 0 mod (3). As usual, for the solutions
(u(s, t), v(s, t)) of the SFLT equation, put ρ := v

u and call ξ any primitive
nth root of unity, where n is the order of ρ modulo q, n supposed prime
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to 3. Put η1 := (1+ ξ j)eωj−
1
2 = (1+ ξ j)s−1j−

1
2 , then q := (q, u ξ− v), and

denote by Q any prime ideal of M = LK above q.

Of course, in this study n is not constant when the solution (u, v) varies,
so that the statistical analysis cannot be done for a fixed field L = Q(µn),
but up to this problem (probably not too tricky since the number of divisors
n of q− 1 is finite), we have the following distribution of the possible cases,
in a remarkable accordance with the definition of the solutions of the SFLT
equation, that we summarize with the diagram of the compositum L1Fξ
which is very simple for p = 3 (note that in the general case, L1Fξ/L

contains p2−1
p−1 = p+ 1 subextensions cyclic of degree p).

Indeed, for p = 3 the compositum L1Fξ contains L1, Fξ, and two other
cubic fields, F ′

ξ and its conjugate c F ′
ξ by the complex conjugation c (re-

call that Fξ/L
+ is diedral, L1/L

+ abelian, so that L1Fξ/L
+ is Galois).

Moreover we will get F̂ξ among the three extensions distinct from L1.

We denote by σ a fixed generator of Gal(Fξ/L) and call ϕξ the Frobenius

of qξ in Fξ/L. We refer to Theorem 1 giving the symbol
(
η1

Q

)
M

for p = 3,

where Q | q = qξ.

(i) First case (u v (u + v) 6≡ 0 mod (3)) corresponding to the relation

u+v j = j2 (s+t j)3. We have
(
η1

Q

)
M

= j
1
2
κ v−u

v+u = 1 since u−v ≡ 0 mod (3),

F̂ξ = Fξ, and the diagram:
L1Fξ

F̂ξ = Fξ

F ′
ξ

cF ′
ξ

L1

L ϕξ = 1

in which q is inert in F ′
ξ/L, cF

′
ξ/L, and L1.

(ii) Second case (u v ≡ 0 mod (3)) corresponding to the two relations

u+ v j = (s+ t j)3 and u+ v j = j (s+ t j)3. We have
(
η1

Q

)
M

= j
1
2
κ v−u

v+u =

j±
1
2
κ = j or j2; we get F̂ξ 6= Fξ, and the two equidistributed diagrams:

L1Fξ

Fξ

F̂ξ = F ′
ξ

cF ′
ξ

L1

L ϕξ = σ

L1Fξ

Fξ

F̂ξ = F ′
ξ

cF ′
ξ

L1

L ϕξ = σ2
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in which q is inert in Fξ/L, cF
′
ξ/L, and L1.

(iii) Special case ((u + v) ≡ 0 mod (3)) corresponding to the three rela-

tions u+v j = jh (1−j) (s+t j)3, 0 ≤ h < 3. We have
(
η1

Q

)
M

= j
1
2
κ v+u

3 v = 1,

j, or j2, and the three equidistributed diagrams:

L1Fξ

F̂ξ = Fξ

F ′
ξ

cF ′
ξ

L1

L ϕξ = 1

L1Fξ

Fξ

F̂ξ = F ′
ξ

cF ′
ξ

L1

L ϕξ = σ

L1Fξ

Fξ

F̂ξ = F ′
ξ

cF ′
ξ

L1

L ϕξ = σ2

in which the decomposition of q assembles all the above cases.

This suggests that the infiniteness of the solutions of the SFLT equa-
tion and their particular repartition into six families, is compatible with
Čebotarev′s theorem.

8.3. Numerical data for the case p = 3. We give some numerical ex-
perimentations, using [PARI], in the case p = 3 to highlight the above
properties of this case.

We refer to Remark 1 for the six expressions of the solutions of the SFLT
equation for p = 3; when we speak of “ a solution (u, v) ”, we consider one
of the six families (u(s, t), v(s, t)) parametred by s and t.

Proposition 4. Let n > 2 be an integer not divisible by 3 and for any
nonzero integers u, v with g.c.d. (u, v) = 1 let Φn(u, v) := uφ(n)Φn(

v
u ).

(i) The set of prime numbers q ≡ −1 mod (3), q ∤ n, with κ 6≡ 0 mod (3),
dividing at least one of the integers Φn(u, v), for a solution (u(s, t), v(s, t))
of the SFLT equation, is infinite when s, t vary in Z with g.c.d. (s, t) = 1,
s+ t 6≡ 0 mod (3).

More precisely, the prime number q is solution if and only if for an e ∈ Z,
of order n modulo q, the polynomial X3 − 3 e−1X2 − 3 (1 − e−1)X + 1
splits in Fq[X]; the parameters (s, t) giving the solutions (u, v) such that
v
u ≡ e mod (q), are given via the three roots θk ∈ Fq of the polynomial, by
the relation s− t θk ≡ 0 mod (q), s, t ∈ Z, k = 1, 2, 3.

Then for any fixed n 6≡ 0 mod (3), there exist numbers of the form Φn(u, v)
divisible by primes q as large as we need.

(ii) The condition q |Φn(u, v) (q ∤ n), for a solution (u, v) of the SFLT

equation, is equivalent to the ρ-splitting of q for F̂n
(
i.e., it is equivalent to[

F̂∗/L

q∗

]
ρ,n

= 1
)
for ρ := v

u .
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Proof. Let ξ of order n and let L = Q(µn). Since g.c.d. (s, t) = 1, this
yields immediately g.c.d. (u, v) = 1 for any solution, thus u and v are not
divisible by any prime q dividing Φn(u, v) since it is homogenic of the form

uφ(n) + · · · ± vφ(n) in coprime integers u and v.

From Lemma 2, q ∤ n and q |Φn(u, v) is equivalent to the fact that v
u is of

order nmodulo q, hence it is equivalent to the congruence u ξ−v ≡ 0 mod q,
for a suitable and unique prime ideal q | q in L; in fact q = (q, u ξ−v), which
depends on (u, v) for ξ fixed, is one of the φ(n) prime ideals above q in L;
in the previous sections it was denoted qξ for given u, v.

We will prove that the condition q |Φn(u, v) (q ∤ n), for a solution of the
SFLT equation, can be tested independently of the choice of the solution
among the six possibilities, in the following sense.

If we start from a parametric solution (u, v) such that u ξ− v ≡ 0 mod q̃

for some q̃ | qξ in L̃ = Q(µq−1), consider the solution (u′, v′) defined by
v′

u′ := T
(
v
u

)
= 2v−u

v+u . We have the congruence u′ ξ′ − v′ ≡ 0 mod q̃ where ξ′

is the unique (q − 1)th root of unity congruent to T (ξ) = 2ξ−1
ξ+1 modulo q̃;

then we have:

u′ ξ′ − v′ ≡ (v + u)
2 ξ − 1

ξ + 1
− (2v − u)

≡ 1

ξ + 1

(
(v + u) (2ξ − 1)− (2v − u) (ξ + 1)

)

≡ 3

ξ + 1
(u ξ − v) mod q̃,

proving the equivalence of the two congruences. Hence the result by in-
duction on the powers of T . From Theorem 7, the six families of solu-
tions give the congruences ui ξi − vi ≡ 0 mod q̃ for which vi

ui
:= T i

(
v
u

)
,

ξi ≡ T i(ξ) mod q̃; each congruence reduces to a congruence modulo qi in
Li := Q(µni), where qi = q̃∩ZLi and ni is the order of ξi (prime to 3 since
q ≡ −1 mod (3)).

Warning: the orders ni are divisors of q − 1, not necessarily equal to n
(see Example 5). But the conditions q ∤ ni and q |Φni(u, v), 0 ≤ i < 6, are
equivalent to each other.

For instance, take the general solution of the second case 3 | v; then we
have to study the congruence (s3 + t3 − 3 st2) ξ − 3 st(s− t) ≡ 0 mod q.

Put θ :=
s

t
, which yields to the congruence:

θ3 − 3ξ−1 θ2 − 3(1 − ξ−1) θ + 1 ≡ 0 mod q.

Recall that for n fixed, the φ(n) ideals of L above q are the (q, ξ − e),
where e ∈ Z, defined modulo q, is of order n in F×

q ; so the congruence:

θ3 − 3ξ−1 θ2 − 3(1 − ξ−1) θ + 1 ≡ 0 mod q = (q, ξ − e)
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is equivalent to:

θ3 − 3e−1 θ2 − 3(1− e−1) θ + 1 ≡ 0 mod (q)

for the choice of e ≡ ξ mod q. Since the pair (ξ, q) is defined up to conju-
gation, we can select e of order n, which implies suitable ξ and q.

When q is solution, there exist infinitely many (u, v) such that q |Φn(u, v):
for a root θ ∈ Fq, θ ∈ Z, of the above congruence, the parameters (s, t)
are obtained from the congruence s ≡ θ t mod (q) (see Example 8). At this
step we have proved (i) under the existence of e such that the polynomial
X3 − 3ξ−1X2 − 3(1 − ξ−1)X + 1 splits in Fq[X].

The polynomial X3 − 3ξ−1X2 − 3(1 − ξ−1)X + 1 defines the cyclic ex-

tension F̂ξ: indeed, with X = ξ−1(Y + 1) one obtains the polynomial:

Y 3 − 3(ξ2 − ξ + 1)Y − (2− ξ)(ξ2 − ξ + 1)

coming from the universal polynomial, irreducible of degree 3 over L (see
Subsection 6.3), obtained from the cubic root of (1 + ξ j)s+2 = η̂1 up to a
3th power.

Thus, the condition q |Φn(u, v) (q ∤ n) is equivalent to the ρ-splitting

of q for F̂n, where ρ := v
u (see Subsection 6.2) or to the ρi-splitting of q

in F̂ni/L
i where ρi := vi

ui
= T i( vu), and ni is the order modulo q of ρi,

0 ≤ i < 6. This proves (ii).

From the Dirichlet–Čebotarev theorem, we get a precise result taking

a nontrivial Frobenius in L1F̂ξ/F̂ξ , and we obtain the prime ideal qξ =

(q, u ξ − v) where the (u, v) are obtained from the three roots θ1, θ2, θ3
of the polynomial as explained above. We obtain infinitely many values of
q with clearly a nonzero density. In other words, for κ 6≡ 0 mod (3) these

primes q give again the splitting of qξ in F̂ξ/L, hence its inertia in L1/L,

Fξ/L, and in the fourth cubic subfield F̂ ′
ξ/L of the compositum L1F̂ξ (note

that F̂ ′
ξ = c F̂ξ and that c Fξ = Fξ is diedral over L+). This precises the

point (i) of the proposition. �

In the case where (u, v) is for instance the general solution for the second

case of the SFLT equation we get, with η1 = (1 + ξ j)eω j, η̂1 := η1 j
1
2 =

(1 + ξ j)eω , and c η̂1 := η1j, the following diagram:

FM

M( 3
√
η̂1)

M( 3
√
cη̂1)

M( 3
√
η
1
)

M( 3
√
j)

M

L1F̂ξ

F̂ξ

c F̂ξ

Fξ

L1

L
split

inert
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There are six analogous diagrams over each field Li.

Remark 12. Let q be a prime number such that κ 6≡ 0 mod (3). Then
for a divisor m > 2 of q − 1, there is not necessarily a solution (u, v) =
(s3+ t3−3 st2, 3 st(s− t)), s, t ∈ Z, g.c.d. (s, t) = 1, s+ t 6≡ 0 mod (3), such
that the order n of v

u modulo q is equal to m (see Example 6).

The cases m ≤ 2 correspond, for the above solution, to the congruences:

s3 + t3 − 3 st2 ± 3 st(s − t)) ≡ 0 mod (q),

equivalent to the splitting, modulo q, of X3 + 1− 3X ± 3X(X − 1)). One
verifies that these polynomials of Q[X] define the number field Q1; so, as
by assumption κ 6≡ 0 mod (3), we obtain that the orders 1 and 2 are never
possible. The case m > 2 is less trivial.

Example 5. We illustrate Proposition 4 with the prime q = 41 and the
solution (u, v) = (139193, 76626) obtained with the parameters (s, t) =
(−11, 43); we note that for e = 22 the polynomial:

X3 − 3e−1X2 − 3(1− e−1)X + 1

splits modulo (41) into (X − 38) (X − 31) (X − 15) and we have chosen
θ = 15 for which s − 15 t ≡ 0 mod (41). Using the automorphism T , we
obtain the six steps:

T 0(e) = e = 22 of order 40

T 0(
v

u
) =

v

u
=

76626

139193
, solution of the second case,

T (e) = e1 = 9 of order 4

T (
v

u
) =

v1

u1
=

14059

215819
, solution of the special case,

T 2(e) = e2 = 14 of order 8

T 2(
v

u
) =

v2

u2
=

−62567

76626
, solution of the second case,

T 3(e) = e3 = 10 of order 5

T 3(
v

u
) =

v3

u3
=

−201760

14059
, solution of the special case,

T 4(e) = e4 = 39 of order 20

T 4(
v

u
) =

v4

u4
=

139193

62567
, solution of the first case,

T 5(e) = e5 = 5 of order 20

T 5(
v

u
) =

v5

u5
=

215819

201760
, solution of the special case.
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As a consequence, we have:

Φ40(139193, 76626) ≡ Φ4(215819, 14059) ≡ Φ8(76626,−62567) ≡
Φ5(14059,−201760) ≡ Φ20(62567, 139193) ≡ Φ20(201760, 215819) ≡ 0 mod (41).

We have obtained the set of orders {40, 4, 8, 5, 20}. For instance, this
implies the inertia of qξ40 in Fξ40/Q(µ40) and that of qξ4 in Fξ4/Q(µ4),
which illustrates the incompatibility with statements like Theorem 2 for
p = 3.

Example 6. We have found the following numerical example to illustrate
Remark 12, with m = 5 for which L = Q(µ5) is principal. Consider the
prime q = 48738631 for which q−1 = 2 · 3 · 5 · 163 · 9967 and κ 6≡ 0 mod (3).

Then q = (ξ2 + ξ3 − 3 − 90 (3 ξ2 + 5 ξ + 3))Z[ξ], where ξ is a primitive
5th root of unity, is a prime ideal above q.

Since ξ2 + ξ3 − 3 ∈ L+, this ideal satisfies the relation q1−c = (α)Z[ξ],
α ≡ 1 mod (9), which means that q totally splits in H−

L [3]/Q.

Concerning the solutions (u, v) = (s3 + t3 − 3 st2, 3 st(s − t)), s, t ∈ Z,
g.c.d. (s, t) = 1, s + t 6≡ 0 mod (3), such that Φ5(u, v) ≡ 0 mod (q), we try
to find the smallest values of the order n of v

u modulo q. It is clear that
the value n = 5 is by construction impossible. There is also no solution for
n = 10 since Q(µ10) = Q(µ5) = L with q totally split in H−

L [3]/Q. As we
have seen, the orders n = 1 and 2 are impossible.

We find the values:

n = 6 for (s, t) = (357, 42643),

n = 15 for (s, t) = (1531, 3232),

n = 163 for (s, t) = (143, 947),

n = 326 for (s, t) = (132, 883),

n = 489 for (s, t) = (79, 526),

n = 815 for (s, t) = (9, 971) . . .

Example 7. In another point of view, in the following example we fix the
solution (u, v) = (19, 18) corresponding to (s, t) = (3, 1) and we give the
order n of v

u modulo q for primes q < 3.106 with κ 6≡ 0 mod (3), such that

n < q
1
3 to limit the data.

q n q n q n q n

79 3 137 4 751 5 17341 17
46663 11 49999 13 97373 44 225751 43
352771 55 419693 13 464549 47 536609 41
809359 22 816401 52 1037471 35 1115447 41
1167937 84 1252057 104 1403627 14 1529249 32
1995781 29 2040601 25 2743501 59 2912521 39
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Example 8. Let q = 113 = 1 + 24 . 7. In the following example we fix n
and use a polynomial X3−3e−1X2−3(1− e−1)X+1 which splits modulo
113; for e = 83, of order n = 14 modulo 113, its roots are 5, 28, and 46
modulo 113. Recall that for ξ of order n and e ∈ Z defining the prime
ideal q = (q, ξ − e) above q, the solutions (s, t) giving q |Φn(u, v) for the
corresponding solutions (u, v) = (s3 + t3 − 3st2, 3st(s − t)), are defined for
instance via the congruence s− 5t ≡ 0 mod (113).

s t Φn(u, v)

118 1 113 · 3557 · 3942401 · 744072113 · 16254128953756891
231 1 113 · 211 · 239 · 116929 · 550757191489 · 9432961248517529143
457 1 113 · 8821 · 18484859 · 4489993033 · 9077382763538364383220967
123 2 29 · 43 · 113 · 3011 · 11047 · 1005000683 · 8371388009051383
128 3 113 · 385897 · 8800908691961 · 205376563933889209
241 3 29 · 113 · 3557 · 26209 · 136067 · 2120693 · 2348198329 · 34945284137
467 3 113 · 1451130199 · 6673578443419738169458023356294472959
133 4 113 · 421 · 43270571265013 · 74514155796456659333
138 5 113 · 2577267166287809480749101354040384043
251 5 113 · 547 · 2381 · 75688397 · 318274119451 · 4136563302302243
477 5 29 · 113 · 5503 · 26385694924317373 · 3324436493654921921540503
143 6 113 · 1847609 · 2588587173822250293234785701459

We observe a unique case where 1132 divides Φn(u, v).

Example 9. We consider the prime number q = 401 = 1 + 24 . 52 and
for all possible values of ρ := v

u modulo q, for the general solution of
the second case, we give the order of ρ modulo q. The resolution of

3st(s− t)

s3 + t3 − 3st2
≡ ρ mod (q) is of course equivalent to get the values ρ such

that the polynomial X3 − 3ρ−1X2 − 3(1− ρ−1)X + 1 splits modulo q.

There are 133 = 7 . 13 distinct values of such ρ with the following repar-
tition of the orders n: 53 for order 400; 28 for 200; 13 for 80; 12 for 100;
7 for 50 and 25; 4 for 40; 3 for 20; 2 for 10; 1 for 16, 8, 5, and 4. As we
know, orders 1 and 2 cannot exist. These densities are in accordance with
the expression 1

3φ(n).

The above computations for p = 3 suggests the following conjecture.

Conjecture 5. For all m > 0 and for all prime number q ≡ 1 mod (m),
q ≡ 2 or 5 mod (9), and q totally split in Fm/Q(µm)/Q, there exists a
solution (u, v) of the SFLT equation for p = 3, for which the order of v

u
modulo q is ≥ m.

This conjecture (to be compared with Conjecture 2 for p > 3) is very
reasonable since, in practice, the order of v

u modulo q is often q − 1.

Remark 13. For any fixed value of n > 2, and for a solution
(
u(s, t), v(s, t)

)

of the SFLT equation for p = 3, the number Φn(u, v) tends to infinity
with s and t, and from Proposition 4, there exist infinitely many primes
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q ≡ 2 or 5 mod (9), such that, for a suitable pair (s, t), v
u is of order n

modulo q; then there is inertia of qξ in Fξ/L and splitting of qξ in F̂ξ/L for
L = Q(ξ), ξ of order n.

So, taking independently a prime q′ for which we assume that all the
ideals above q in L = Q(µm) totally split in H−

L [3]/L, supposing m large
enough, we get large values of q′, but the above reasoning with Proposition 4
suggests that one may encounter small values of n for which q′ξ is inert in

Fξ/L, which is impossible by definition, giving a justification of the fact
that Theorem 2 (or any weak form) cannot exist for p = 3.

For p > 3, if the number of solutions (u, v) is finite, for any bound N the
number of primes q, such that the v

u are of order modulo q less than N , is
finite. So for primes q′ for which we assume that all the ideals above q in
L = Q(µm), m large enough, totally split in H−

L [p]/L, we get large values
of q, hence large values of the orders n of the v

u modulo q, say n >> N .
So, contrary to the case p = 3, the effectiveness of the statement of a weak
form of Theorem 2 is more compatible.

Thus it is not excluded that the two main principles of approach of the
SFLT problem may be successful for p > 3.

9. Conclusion

We have justified, in part, why the case p = 3 is specific for the arith-
metic of the fields Q(µn) in relation with the abelian 3-ramification, which
suggests that results like Theorem 2 or Theorem 4 for p > 3 arenontrivial.
In other words, we can hope that for p > 3 any statistical analysis of the
decomposition laws is legitimate.

However, it should be noted that results like Theorem 2 are a sufficient
conditions, probably too strong, and that it will be better to return to
the principle of laws of ρ-decomposition of any q for the canonical families
Fn (see Subsection 6.1, Theorem 4, and Conjecture 3); this aspect can be
approached from an analytic point of view waiting to show that such a
constraint is impossible for p > 3.

In this direction, an interesting fact would be that the case p = 3 would
have, in some sense, a reciprocal statement, namely that the infiniteness of
the solutions of the SFLT equation and their particular repartition into six
families, is in fact necessary for the Čebotarev theorem.

Thus, in the same spirit as for the case p > 3, the set of solutions (if
nonempty) would be necessarily infinite with some structural properties
in order to be compatible with the above principle, which seems clearly
impossible for geometrical reasons.
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