
HAL Id: hal-00578761
https://hal.science/hal-00578761v1

Submitted on 24 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spectral distribution of the free unitary Brownian
motion: another approach

Nizar Demni, Taoufik Hmidi

To cite this version:
Nizar Demni, Taoufik Hmidi. Spectral distribution of the free unitary Brownian motion: another
approach. Catherine Donati-Martin, Antoine Lejay, Alain Rouault. Séminaire de Probabilités XLIV,
Springer, pp.191-206, 2012, Lecture Notes in Mathematics 2046, 978-3-642-27460-2. �10.1007/978-3-
642-27461-9_9�. �hal-00578761�

https://hal.science/hal-00578761v1
https://hal.archives-ouvertes.fr


SPECTRAL DISTRIBUTION OF THE FREE UNITARY BROWNIAN

MOTION: ANOTHER APPROACH

NIZAR DEMNI AND TAOUFIK HMIDI

Abstract. We revisit the description provided by Ph. Biane of the spectral measure of
the free unitary Brownian motion. We actually construct for any t ∈ (0, 4) a Jordan curve
γt around the origin, not intersecting the semi-axis [1,∞[ and whose image under some
meromorphic function ht lies in the circle. Our construction is naturally suggested by a
residue-type integral representation of the moments and ht is up to a Möbius transformation
the main ingredient used in the original proof. Once we did, the spectral measure is described
as the push-forward of a complex measure under a local diffeomorphism yielding its absolute-
continuity and its support. Our approach has the merit to be an easy yet technical exercise
from real analysis.

1. Reminder and Motivation

In his pioneering paper [1], Ph. Biane defined and studied the so-called free unitary
or multiplicative Brownian motion. It is a unitary operator-valued Lévy process with re-
spect to the free multiplicative convolution of probability measures on the unit circle T (or
equivalently the multiplication of unitary operators that are free in some non commutative
probability space). Besides, the spectral distribution µt at any time t ≥ 0 is characterized
by its moments

mn(t) :=

∫

T

zndµt(z) = e−nt/2

n−1
∑

k=0

(−t)k

k!
nk−1

(

n

k + 1

)

, n ≥ 1,

and m−n(t) = mn(t), n ≥ 1 since Y −1 defines a free unitary Brownian motion too. This
alternate sum is not easy to handle analytically since for instance if we try to work out the
moments generating function of (mn(t))n≥1

Mt(w) :=
∑

n≥1

mn(t)w
n, |w| < 1,

then we are led to

Mt(w) = u
∑

k≥0

(−ut)k

k!
Sk(u)

where

Sk(u) :=
∑

n≥0

(n+ k + 1)k−1

(

n + k + 1

k + 1

)

un, k ≥ 0,
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and u = we−t/2. Nonetheless, the explicit inverse function of

τt(w) :=

∫

T

z + w

z − w
µt(dz) = 1 + 2Mt(w)

in the open unit disc played a key role in the description of µt ([2]). More precisely, it was
proved there that µt is an absolutely continuous probability measure with respect to the
normalized Haar measure on T and that its density is a real analytic function inside its
support. The latter coincides with T when t > 4 while it is given by the angle

|θ| ≤ β(t) := (1/2)
√

t(4− t) + arccos(1− (t/2))

when t ≤ 4. When proving these important results, the author relied on free stochastic inte-
gration (Lemma 11 p.266), Caratheodory’s extension Theorem for Riemann maps (Lemma
12 p.270) and a Poisson-type integral representation for this kind of maps (see the proof
of Proposition 10 p.270). In the present paper, we shall recover Biane’s results from more
simpler considerations than the ones used in the original proof. Indeed, for t ∈ (0, 4), there
exists a unique piecewise smooth Jordan curve γt around the origin, not intersecting the
semi-axis [1,∞[ and whose image under some function ht lies in T. Our construction is
naturally suggested by a residue-type integral representation of mn(t) and fails when t ≥ 4.
Note that the same phenomenon happens here and in Biane’s proof: γt is constructed upon
two curves that have a non empty intersection if and only if t < 4, while the inverse function
of τt is defined on the interiors of two Jordan domains whose boundaries have the same
phase transition ([2] p. 267). Moreover, the function ht appears in the integrand of our
residue-type representation and coincides up to the Möbius transformation

z 7→ 2

z
− 1

with the inverse function of τt used in the original proof. Once the curve γt is constructed,
we consider a piecewise smooth parametrization zt of γt and prove that the derivative of θ 7→
arg[ht(zt(θ))] vanishes if and only if θ = ± arccos(

√
t/2) (note that similarly the derivative

of τ−1
t vanishes if and only if z = ±i

√

(4/t)− 1, [2] p. 269). As a matter of fact, θ 7→
arg[ht(zt(θ))] defines far from the critical points a local diffeomorphism so that performing
local changes of variables in our integral representation yields both the absolute-continuity
of µt with respect to the Haar measure on T and the description of its support.

2. A Residue-type representation of mn(t)

A residue-type integral representation of mn(t), n ≥ 1 is not new in its own. Indeed, the
one we derive below is an elaborated version of the one used in order to determine the decay
order of mn(t) (see [4] p. 566):

mn(t) =
e−nt/2

2iπn

∫

γ

e−ntz

(

1 +
1

z

)n

dz

where γ is a circle around the origin. More precisely, we need to integrate by parts since
then the meromorphic integrand we obtain determines in a unique way the required curve γt
we mentioned above. To proceed, we first apply Cauchy’s Residues Theorem to z 7→ zken/z
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in order to get
nk+1

(k + 1)!
=

1

2iπ

∫

γ

zken/zdz,

then use the combinatorial identity for binomial numbers:
(

n

k + 1

)

=
n

k + 1

(

n− 1

k

)

, n ≥ 1.

As a result, for any n ≥ 1

mn(t) = e−nt/2

n−1
∑

k=0

(−t)k

k!
nk−1

(

n

k + 1

)

=
e−nt/2

2iπn

∫

γ

n−1
∑

k=0

(

n− 1

k

)

(−tz)ken/zdz

=
1

2iπn

∫

γ

(1− tz)nen(1/z−t/2) dz

1− tz

=
1

2iπn

∫

tγ

[

(1− z)et(1/z−1/2)
]n dz

t(1− z)

=
1

2iπn

∫

γ

[

(1− z)et(1/z−1/2)
]n dz

t(1− z)

:=
1

2iπn

∫

γ

[ht(z)]
n dz

t(1− z)
.

Now, choose further γ such that it does not meet the semi-axis [1,∞[ then z 7→ log(1 − z)
is well defined for z ∈ γ and is holomorphic there. Hence, setting z = reiθ, 0 < r < 1 and
integrating by parts yield

mn(t) =
1

2iπ t

∫

γ

[ht(z)]
nh

′
t(z)

ht(z)
log(1− z)dz.

As a matter of fact, mn(t) is the residue of

z 7→ 1

t
[ht(z)]

nh
′
t(z)

ht(z)
log(1− z)

at z = 0 so that one may integrate along any piecewise smooth Jordan curve γt (possibly
depending on t) around zero provided that the integrand is well defined. Assume further
that we can choose γt such that |ht(γt)| ∈ T and let θ ∈ [−π, π] 7→ zt(θ) be a piecewise
smooth parametrization of γt, then

mn(t) =
1

2iπ t

∫ π

−π

ein arg ht(zt(θ))
h′
t(zt(θ))

ht(zt(θ))
log(1− zt(θ))z

′
t(θ)dθ

=

∫ π

−π

einθνt(dθ)

where νt is the push-forward of

h′
t(zt(θ))

ht(zt(θ))
z′t(θ) log(1− zt(θ))1[−π,π](θ)

dθ

2iπ
3



under the map θ 7→ arg ht(zt(θ)). Heuristically, we are attempted to conclude that νt = µt

however it is not clear at all that νt is a real measure and there is no guarantee even for
γt to exist. Below, we shall prove that γt exists if and only if t ∈ (0, 4) and is unique.
Then γt splits into two curves γ1

t ∪ γ2
t where θ 7→ arg[ht(zt(θ))] is a diffeomorphism from γi

t

to its image, for i = 1, 2. As a result, a change of variables shows that νt and µt coincide
since their trigonometric moments do, therefore µt is absolutely continuous and its support
is easily recovered as ht(γt).

3. Construction of the curve γt

Our main result is stated as

Proposition 1. Let t ∈ (0, 4), then there exists a unique (piecewise smooth) Jordan curve
γt such that

• ht(γt) ∈ T.
• γt encircles z = 0 and γt ∩ [1,∞[ = ∅.

Proof. Before coming into computations, let us point to the fact that γt has to be invariant
under complex conjugation: this fact follows from |ht(z)| = |ht(z)| = |ht(z)|. It is also
coherent with the fact that ρt shares the same invariance property since Y −1 = Y ⋆ is also
a free unitary Brownian motion, therefore we only consider θ ∈ [0, π]. We also inform the
patient reader that both polar and cartesian coordinates are used in the sequel depending
on how behaves the curve defined by |ht(z)| = 1 when t runs over ]0, 4[.

3.1. Polar coordinates. Let z = reiθ, θ ∈ [0, π] then |ht(z)| = 1 is equivalent to

gt,θ(r) := (1 + r2 − 2r cos θ)e(2t cos θ)/r = et.

We distinguish two regions:
• {θ, cos θ < 0}: In this region the function gt,θ is increasing and satisfies

lim
r→0+

gt,θ(r) = 0, lim
r→∞

gt,θ(r) = ∞.

The monotonicity of gt,θ follows obviously from

(1) g′t,θ(r) = 2e2t cos θ/r
(

r − cos θ − (1 + r2 − 2r cos θ)
t cos θ

r2

)

.

Then gt,θ(r) = et has a unique solution r = rt(θ) > 0. Note that the implicit function
Theorem together with the fact that g′t,θ(r) > 0 show that θ 7→ rt(θ) is at least C1 on
]π/2, π[. Now, it is obvious that rt does not vanish on {cos θ < 0} and we shall check that
it remains so on {cos θ = 0}. More precisely, we claim that rt(θ) >

√
t which may be proved

as follows: use

1 + t < et and 1− 2
√
t cos θ < e−2

√
t cos θ

to get

1 + t− 2
√
t cos θ ≤ (1 + t)(1− 2

√
t cos θ) < et−2

√
t cos θ.

This in turn yields

gt,θ(
√
t) < et
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and the monotonicity of gt,θ proves the claim. As a matter of fact rt extends continuously
to π/2 and one obviously has

rt(π/2) =
√
et − 1.

• {θ, cos θ > 0}: For these values of θ, observe that gt,θ(2 cos θ) = et for all t. However,

rt(θ) = 2 cos θ does not fulfill our requirements since on the one hand it vanishes at θ = ±π/2
and on the other hand it meets [1,∞[ at θ = 0. Fortunately, there exists another radius rt
satisfying gt,θ(rt) = et, rt(π/2) 6= 0 and rt(0) ∈]0, 1[. Indeed, letting θt := arccos(

√
t/2) ∈

]0, π/2, then

g′t,θ(2 cos θ) =
4 cos2 θ − t

2 cos θ
et

is negative on ]θt, π/2[, positive on [0, θt[ and

lim
r→∞

gt,θ(r) = +∞

for any θ such that cos θ ≥ 0. Besides, this radius is unique except possibly for 2+
√
3 < t < 4

and for θ close to zero, and we keep using polar coordinates. For exceptional values of (t, θ),
cartesian coordinates are more adequate and doing so we recover γt as the graph of some
function.

N {0 < t ≤ 2 +
√
3}: When t ∈]0, 1], we shall prove that gt,θ is a convex function. To this

end, we compute the second derivative of gt,θ

g′′t,θ(r) = e2t cos θ/r
[(

4t cos θ

r3
+

4t2 cos2 θ

r4

)

(1 + r2 − 2r cos θ) + 2− 8t cos θ

r2
(r − cos θ)

]

=
e2t cos θ/r

r4
[

2r4 − 4tr3 cos θ + 4t2r2 cos2 θ + 4rt cos θ(1− 2t cos2 θ) + 4t2 cos2 θ
]

.

The first equality shows that if r ≤ cos θ then g′′t,θ(r) > 0. For r ≥ cos θ, define kt by

g′′t,θ(r) =
e2t cos θ/r

r4
kt,θ(r).

Then

k′
t,θ(r) = 8r3 − 12tr2 cos θ + 8t2r cos2 θ + 4t cos θ(1− 2t cos2 θ)

k′′
t,θ(r) = 8(3r2 − 3tr cos θ + t2 cos2 θ) ≥ 0

even for all r ≥ 0. Hence

k′
t,θ(r) ≥ k′

t,θ(t cos θ) = 4t cos θ(t2 cos2 θ − 2t cos2 θ + 1)

= (t cos θ − 1)2 + 2t cos θ(1− cos θ) ≥ 0.

Since t cos θ ≤ cos θ when t ≤ 1, then k′
t,θ(r) ≥ 0 for all r ≥ 0 therefore

kt,θ(r) ≥ kt,θ(0) = 4t2 cos2 θ > 0

which yields the strict convexity of gt,θ for t ∈ [0, 1]. Now since

lim
r→0

gt,θ(r) = lim
r→+∞

gt,θ(r) = +∞,

then the equation gt,θ(r) = et admits exactly two solutions among them the trivial one
r = r(θ) = 2 cos θ which has to be discarded. The required curve γt is then constructed upon
the non trivial solution and defines even a C1-piecewise curve. The last claim is obvious
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for the regular points of gt,θ by the virtue of the implicit function Theorem again. So we
need to focus on the critical points of the curve: g′t,θ(r(θ)) = 0. But, the strict convexity of
gt,θ forces then rt(θ) = 2 cos θ which gives after substituting in g′t,θ the unique critical point

θ = θt for which rt(θt) =
√
t. Before considering the range t ∈ [1, 2 +

√
3], we point out that

γt, t ∈]0, 4[ crosses the positive real semi-axis at some point 0 < xt < 1 that is described in
Lemma 1 below. Now, let t ∈ [1, 2 +

√
3] and define

vt,θ(r) := r3 − (t + 1) cos θr2 + 2t cos2 θr − t cos θ

so that

g′t,θ(r) =
e2t cos θ/r

r2
vt,θ(r).

Then the first derivative of vt,θ reads

v′t,θ(r) = 3r2 − 2(t+ 1) cos θr + 2t cos2 θ.

The discriminant of this second degree polynomial is easily computed as 4(t2− 4t+1) cos2 θ
and is easily seen to be negative on t ∈ [1, 2 +

√
3]. Consequently v′t,θ ≥ 0 thereby

vt,θ(r) ≥ vt,θ(0) = −t cos θ for any r ≥ 0. Finally, there exists r0 = r0(t, θ) such that
g′t,θ(r0) = 0 so that the variations of gt,θ are described by

r 0 r0 +∞
vt,θ(r) − 0 +

gt,θ(r) +∞ ց ր +∞

The conclusion follows in similar way to the previous range of times t ∈]0, 1].
N 2 +

√
3 < t < 4: This part of the proof needs more care since for small amplitudes of θ,

θ 7→ rt(θ) may be a multi-valued function (this is seen from computer-assisted pictures). This
multivalence happens precisely in the interior of the region bounded by the curve θ 7→ 2 cos θ
or 0 ≤ θ < θt, and cartesian coordinates are more adequate for our purposes. Nonetheless, we
shall keep use of polar coordinates outside the latter curve where the existence of a required
radius is ensured by the same arguments evoked above. It then remains to prove uniqueness
on ]2 cos θ,+∞[, θ ∈]θt, π/2]. To this end, one easily sees that the largest root of v′t,θ(r) is
given by

R+
t (θ) :=

t+ 1 +
√
t2 − 4t+ 1

3
cos θ

and that t 7→ R+
t (θ) is increasing. Thus, R+

t (θ) ≤ R4(θ) = 2 cos θ yielding v′t,θ(r) > 0 for
r > 2 cos θ. This entails

vt,θ(r) ≥ vt,θ(2 cos θ) = 4 cos θ(cos2 θ − t/4)

which is negative on ]θt, π/2]. Therefore the variations of gt,θ are summarized below

r 2 cos θ r0 +∞
vt,θ(r) − 0 +

gt,θ(r) et ց ր +∞

6



for some r0 = r0(t, θ) > 2 cos θ, whence the uniqueness follows. Hence, the obtained branch

of γt is smooth and its endpoints are i
√
et − 1 and

√
t ei arccos(

√
t/2) .

Remark 1. The equation gt,θ(r) = et has no solution in the region
{

r > 2 cos θ, 0 ≤ θ < θt
}

.
Indeed, vt,θ(r) ≥ vt,θ(2 cos θ) > 0 so that gt,θ is increasing.

3.2. cartesian coordinates. The curve θ 7→ 2 cos θ, θ ∈ [0, π/2] is the graph of the function

x 7→ y =
√

x(2 − x), x ∈ [0, 2]. Hence, we shall restrict ourselves to the region
{

0 ≤ y <
√

x(2− x), 0 < x < 2
}

.

Besides, the branch of γt, if it exists, would meet the axis {y = 0} at a solution of

kt(x) := (x− 1)2et[(2/x)−1] = 1, 0 < x < 2,

whose needed properties are collected in the following Lemma.

Lemma 1. For every t ∈]0, 4[, the above equation admits a unique solution xt ∈]0, 1[ and
the map t 7→ xt is increasing. In particular xt > 3−

√
5.

Proof. Let t ∈]0, 4[ then

k′
t(x) =

2(x− 1)(x2 − tx+ t)

x2
et[(2/x)−1]

and the polynomial x2 − tx+ t is obviously positive since its discriminant is negative. As a
result, we get the variations of kt

x 0 1 2
k′
t(x) − +

kt(x) +∞ ց 0 ր 1

This asserts the existence of a unique value xt ∈]0, 1[ solving the equation kt(x) = 1. For
the variations of t 7→ xt, we write

x′
t = − ∂tkt(xt)

∂xkt(xt)
=

xt(1− xt)(2− xt)

2(x2
t − txt + t)

> 0

so that xt > x3 and the Lemma is proved by noting that k3(3−
√
5) = (

√
5−1)2e3(1+

√
5)/2 ≥

1. �

Now, we rewrite gt,θ(r) = et using cartesian coordinates as

(1 + x2 + y2 − 2x)e2tx/(x
2+y2) = et

and denote gt,x(y) the LHS. In this way, gt,x(0) = kt(x)e
t ≤ et for x ∈ [xt, 2] since kt(x) < 1 for

x ∈ [xt, 2], while gt,x(0) > et for x /∈ [0, xt[. We shall prove that for each x ∈ [xt, t/2] ⊂ [xt, 2[,

the equation gt,x(y) = et admits a unique solution
{

0 ≤ y <
√

x(2− x)
}

while it has none
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when x /∈]xt, t/2[. This in turn finishes the proof of our main result. To proceed, we first
compute

g′t,x(y) =
2y

(x2 + y2)2

(

y4 + (2x2 − 2xt)y2 + x4 − 2x3t + 4x2t− 2xt
)

e2tx/(x
2+y2)

:=
2y

(x2 + y2)2
e2tx/(x

2+y2)wt,x(y
2).

The discriminant of wt,x(y) is given by 4tx(2+(t−4)x) and is positive since t ≥ 3 and x ≤ 2.
Thus wt,x(y) has two roots

y±t := x(t− x)±
√

tx(2 + (t− 4)x)

satisfying the following properties:

Lemma 2. Let 2 +
√
3 < t < 4, then:

(1) For x ∈ [xt, 2], then 0 < y−t (t) ≤ y+t .
(2) For x ∈ [0, t/2] then y−t (t) ≤ x(2− x) ≤ y+t .
(3) For x ∈ [t/2, 2], then x(2 − x) ≤ y−t ≤ y+t

Proof. Since x ∈]0, 2[, then y+t ≥ 0 and the first property (1) is equivalent to

y+t y
−
t = x4 − 2x(x− 1)2t > 0.

But for any x > 0, the function t 7→ x4 − 2x(x− 1)2t is decreasing for positive t therefore

x4 − 2x(x− 1)2t > x4 − 8x(x− 1)2 = x(x− 2)
(

x− (3−
√
5)
)(

x− (3 +
√
5)
)

for any t < 4. Consequently x4 − 2x(x − 1)2t > 0 for x ∈ [3 −
√
5, 2] in particular for

x ∈ [xt, 2] since xt > 3−
√
5 by the virtue of Lemma 1.

Since y+t > x(2− x), then the second property (2) is equivalent to

x2(t− 2)2 ≤ tx(2 + (t− 4)x)

which is in turn equivalent to t− 2x ≥ 0. We are done. �

It remains to discuss the variations of gt,x according to:
⋆ x ∈ [xt, t/2]: Using properties (1) and (2) stated in Lemma 2 we get

y 0 (y−t )
1

2 (y+t )
1

2 +∞
g′t,x(y) + − +

gt,x(y) gt,x(0) ր ց ր +∞

Since gt,x(0) ≤ et, then the equation gt,x(y) = et has a unique solution yt(x) lying in the

interval [0,
√

x(2 − x)[. This allows to construct a curve x 7→ yt(x) for x ∈ [xt, t/2] which is
continuous since the function gt,x depends continuously on the parameter x. By the virtue
of the implicit function Theorem, it is even at least C1-piecewise curve since the derivative
g′t,x(y) vanishes only in a finite set.
⋆ x ∈ [t/2, 2]: Using properties (1) and (3) of Lemma 2, we conclude that gt,x is increasing

on [0,
√

x(2− x)]. Since gt,x(
√

x(2 − x)) = et then the equation gt,x(y) = et has no solution

in [0,
√

x(2− x)[.
8



⋆ x ∈]0, xt[: Since xt ∈]0, 1[ and t/2 > 1+ (
√
3/2) > xt, then we make use of property (2) of

Lemma 2. But the issue depends on whether or not y−t is positive. Assume y−t is negative
then gt,x is decreasing on [0,

√

x(2 − x)[ and thus the equation gt,x(y) = et has no solution in
this interval. Otherwise y−t > 0 and gt,x keeps the same variations as in the range x ∈ [xt, t/2]:

y 0 (y−t )
1

2

√

x(2− x)
g′t,x(y) + −

gt,x(y) gt,x(0) ր ց et

We remark that gt,x(0) = et k(t, x) and according to the variations of x 7→ k(t, x) we get
k(t, x) > 1 for 0 < x < xt. Consequently the equation gt,x(y) = et has no solution in ]0, xt[.

Finally, the above discussion shows the set
{

(x, y), gt,x(y) = et, x ∈]0, 2[, 0 ≤ y ≤
√

x(2− x)
}

is described by a unique C1-piecewise graph joining the points (xt, 0) and z =
√
tei arccos(

√
t/2).
�

Remark 2. For t = 4, g′t,θ(2 cos θ) = 0 if and only if θ = θt = 0. Thus both curves whose
radii solve gt,θ(r) = et meet at θ = 0 thereby satisfy rt(0) = 2 > 1. When t > 4, they even
become disconnected.

4. Critical points of ht

Let zt be a piecewise smooth parametrization of γt and consider θ 7→ arg[ht(zt(θ))], θ ∈
[−π, π]. Using the invariance of γt under complex conjugation, we restrict our attention to
θ ∈ [0, π]. If θ ∈ {0, π} then arg(1−z) = 0, z ∈ γt since rt(0) ∈]0, 1[ therefore arg[ht(zt(0))] =
0. Thus we discard these two values and consider θ ∈ (0, π). Then arg(1− z) ∈ (−π, 0) and
we need to look for critical points of

arg[ht(z)] = cot−1

[

r cos θ − 1

r sin θ

]

− π − t

r
sin θ

under the constraint z = zt = rt(θ)e
iθ ∈ γt ∩ C+. For ease of notations, we shall omit the

dependence on t of the radius of γt, t ∈]0, 4[ and write simply rθ. Hence

d

dθ
arg[ht(rθe

iθ)] =
r2θ − rθ cos θ − r′θ sin θ

r2θ − 2rθ cos θ + 1
− t

rθ cos θ − r′θ sin θ

r2θ

which vanishes if and only if

rθ

[

r3θ − r2θ cos θ − t cos θ(r2θ − 2rθ cos θ + 1)
]

= r′θ sin θ
[

(r2θ − t(r2θ − 2rθ cos θ + 1)
]

.

By the virtue of (1), the LHS may be written as

1

2
r3θ∂r(gt,θ)(rθ)e

−(2t cos θ)/rθ

while

∂θ(gθ)(rθ) =
2 sin θ

rθ

[

r2θ − t(r2θ − 2rθ cos θ + 1)
]

e(2t cos θ)/rθ .

9



It follows that the following equality holds at any critical point

r2θ∂r(gt,θ)(rθ) = r′(θ)∂θ(gt,θ)(rθ).

Now comes the constraint gt,θ(rθ) = et that we shall differentiate with respect to θ to get

r′(θ)∂r(gt,θ)(rθ) + ∂θ(gt,θ)(rθ) = 0.

Both identities yield

−r2θ [∂r(gt,θ)]
2(rθ) = [∂θ(gt,θ)]

2(rθ).

Since rθ 6= 0 then a critical value θ must satisfy

∂r(gt,θ)(rθ) = ∂θ(gt,θ)(rθ) = 0

which can not occur unless

rθ = 2 cos θ.

As a result θ = θt and one easily derives using 2 cos θt =
√
t

arg[ht(2 cos θte
iθt)] = 2θt − π − 1

2

√

t(4− t)

= 2 arccos

√
t

2
− π − 1

2

√

t(4− t).

Finally

cos

[

2 arccos

√
t

2
− π

]

= − cos

[

2 arccos

√
t

2

]

= 1− t

2

whence we deduce that

arg[ht(2 cos θte
iθt)] = − arccos

(

1− t

2

)

− 1

2

√

t(4− t) = −β(t).

A similar analysis shows that θ 7→ arg[ht(zt(θ))] has a unique critical point when zt ∈ γt∩C−.
It is precisely given by θ = −θt and

arg[ht(2 cos θte
−iθt)] = β(t).

We now proceed to the description of µt, t ∈ (0, 4).

5. Description of µt, t ∈ (0, 4)

We have already seen that there are exactly two critical points of θ 7→ arg[ht(zt(θ))], θ ∈
[−π, π]. This fact leads easily to:

Proposition 2. There exists a partition γt = γ1
t ∪ γ2

t with

γ1
t ⊂ {z, |z − 1| ≤ 1}, γ2

t ⊂ {z, |z − 1| ≥ 1}
and such that the maps ht,1 ≡ ht : γ

1
t → ht(γt) and ht,2 ≡ ht : γ

2
t → ht(γt) are diffeomor-

phisms. Moreover, let eiφ ∈ ht(γt) then the equation ht(z) = eiφ, z ∈ γt has exactly two
solutions given by z ∈ γ1

t and
z

z − 1
∈ γ2

t .

10



Proof. The curves γ1
t and γ2

t are given by

γ1
t =

{

z ∈ γt, |z − 1| ≤ 1
}

γ2
t =

{

z ∈ γt, |z − 1| ≥ 1
}

.

It is clear that the critical points are located in the circle {z, |z − 1| = 1} and therefore
they are the end points of the curves γ1

t and γ2
t . Therefore by the previous analysis of

θ 7→ arg[ht(zt(θ))] we deduce that ht,1, ht,2 are diffeomorphisms. Finally, for any z ∈ γt

ht

[

z

z − 1

]

=
1

ht(z)
= ht(z).

We have used in the last identity the fact that ht(z) ∈ T. We point out that the möbius
transform z 7→ z

z−1
is a bijective map from γt,1 to γt,2. �

Thus we obviously have1

mn(t) =
1

2iπ t

∫

γ1
t

[ht(z)]
nh

′
t(z)

ht(z)
log(1− z)dz +

1

2iπ t

∫

γ2
t

[ht(z)]
nh

′
t(z)

ht(z)
log(1− z)dz.

We perform the change of variables in the first integral: ht,1(z) = ht(z) = eiθ then

i(dθ) =
h′
t(z)

ht(z)
dz.

Since arg[ht(zt(θ))] reaches its minimum at θ = θt, then

1

2iπt

∫

γ1
t

[ht(z)]
nh

′
t(z)

ht(z)
log(1− z)dz = − 1

2πt

∫ β(t)

−β(t)

einθ log(1− h−1
t,1 (e

iθ))dθ.

Similarly we get

1

2iπt

∫

γ2
t

[ht(z)]
nh

′
t(z)

ht(z)
log(1− z)dz =

1

2πt

∫ β(t)

−β(t)

einθ log(1− h−1
t,2 (e

iθ))dθ,

consequently

mn(t) =
1

2πt

∫ β(t)

−β(t)

einθ log
[1− h−1

t,2 (e
iθ)

1− h−1
t,1 (e

iθ)

]

dθ.

The last part of Proposition 2 shows that:

h−1
t,1 (e

iθ) =

(

h−1
t,2 (e

iθ)

h−1
t,2 (e

iθ)− 1

)

implying that
1− h−1

t,2 (e
iθ)

1− h−1
t,1 (e

iθ)
= |h−1

t,2 (e
iθ)− 1|2.

Together with |h−1
t,2 (e

iθ)− 1| ≥ 1 yield

mn(t) =
1

πt

∫ β(t)

−β(t)

einθ log |h−1
t,2 (e

iθ)− 1| dθ.

1γt is parametrized from θt to 2π − θ counter-clockwise.
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Thus

m−n(t) = mn(t) =
1

πt

∫ β(t)

−β(t)

einθ log |h−1
t,2 (e

iθ)− 1| dθ, n ≥ 1

whence we deduce that spectral measure µt is given by

dµt(θ) =
2

t
1[−β(t),β(t)](θ) log |h−1

t,2 (e
iθ)− 1| dθ

2π
:= ρt(θ)dθ.

Moreover, ρt is continuous since ρt(−β(t)) = ρt(β(t)) = 0 which follows from h−1
t,2 (e

±iβt) =

1 + e∓2iθt .

Remark 3. Set

Z =
2

z
− 1

then

ht(z) = ht

(

2

Z + 1

)

=
Z − 1

Z + 1
etZ/2 = τ−1

t (Z)

where the last equality holds for

Γt := {ℜ(Z) > 0, |τ−1
t (Z)| < 1} = {|z − 1| < 1, |ht(z)| < 1}

and extends to Γt (see [2]). It follows that

h−1
t,1 =

2

τt + 1

on the closed unit disc and one derives

2

t
log |h−1

t,2 (e
iθ)− 1| = −2

t
log |1− h−1

t,1 (e
iθ)|

= −2

t
log

∣

∣

∣

∣

τt(e
iθ)− 1

τt(eiθ) + 1

∣

∣

∣

∣

= −2

t
log
∣

∣

∣
e−tτt(eiθ)/2

∣

∣

∣
= ℜ[τ(eiθ)]

as stated in [2] p. 270.

6. Open question; a combinatorial approach

From a combinatorial point of view, the number

nk−1

(

n

k + 1

)

was interpreted as the number of increasing paths having exactly k steps in the Cayley
graph of the symmetric group Sn ([4] p. 564). In this spirit, we also figure out that the series
Sk displayed in the introductory part may be expressed through the so-called Riordan’s
polynomials (rAn)n≥0 for a nonnegative integer parameter r (see last chapter of [5]). These
polynomials generalize the famous Euler’s polynomials and according to p. 21 in [3]:

Sk(u) =
k+1A2k(u)

(k + 1)!(1− u)2k+1

12



so that

Mt(w) = u
∑

k≥0

(−ut)k

k!
Sk(u)

is a generating function of Riordan’s polynomials whose parameter and degree are dependent.
It would be interesting to adapt Foata’s summation method to this setting in order to work
out the series Mt. Note nonetheless that our approach yields the representation

Mt(w) =
1

2iπ t

∫

γt

wh′
t(z)

1− wht(z)
log(1− z)dz

for any |w| < 1.
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