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Semi-classical trace formulas and heat expansions

Introduction

There is a strong similarity between the expansions of the heat kernel as worked out by people in Riemannian geometry in the seventies (starting with the famous "Can one hear the shape of a drum" by Mark Kac [Kac], the Berger paper [Berger] and the Mc-Kean-Singer paper [McK-Si]) and the so-called semi-classical trace formulas developed by people in semi-classical analysis (starting with Helffer-Robert [He-Ro]). In fact, this is not only a similarity, but, as we will prove, each of these expansions, even if they differ when expressed numerically for some example, can be deduced from the other one as formal expressions of the fields.

Let us look first at the heat expansion on a smooth closed Riemannian manifold of dimension d, (X, g), with the (negative) Laplacian ∆ g 1 . The heat kernel e(t, x, y), with t > 0 and x, y ∈ X, is the Schwartz kernel of exp(t∆ g ): the solution of the heat equation u t -∆ g u = 0 with initial datum u 0 is given by u(t, x) = X e(t, x, y)u 0 (y)|dy| g .

The function e(t, x, x) admits, as t → 0 + , the following asymptotic expansion:

e(t, x, x) ∼ (4πt) -d/2 1 + a 1 (x)t + • • • + a l (x)t l + • • • .
The a l 's are given explicitly in [START_REF] Gilkey | Asymptotic formulas in spectral geometry[END_REF], page 201, for l ≤ 3 and are known for l ≤ 5 [Avramidi, vdV]. See also the related works by Hitrik and Polterovich [START_REF] Hitrik | Existence of resonances in magnetic scattering. On the occasion of the 65th birthday of Professor Michael Eastham[END_REF][START_REF] Polterovich | Heat invariants of Riemannian manifolds[END_REF]. They are universal polynomials in the components of the curvature tensor and its co-variant derivatives. For example a 0 = 1, a 1 = τ g /6 where τ g is the scalar curvature.
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The previous asymptotic expansion gives the expansion of the trace by integration over X and has been used as an important tool in spectral geometry:

trace(e t∆g ) = X e (t, x, x)

|dx| g = ∞ k=1 e λ k t , where -λ 1 = 0 ≤ -λ 2 ≤ • • • ≤ -λ k ≤ • • • is the sequence of eigenvalues of -∆ g with the usual convention about multiplicities. If d = 2, this gives trace(e t∆g ) = 1 4πt Area(X) + 2πχ(X) 6 t + 0(t 2 ) ,
where χ(X) is the Euler characteristic of X.

There is an extension of the previous expansion in the case of Laplace type operators on fiber bundles: the coefficients of the expansion are then polynomials in the co-variant derivatives of the curvature of the metric and of the connection on the fiber bundle. The heat expansion can be re-interpreted as an expansion of the Schwartz kernel of f (-2 ∆ g ) on the diagonal x = y in powers of with f (u) = exp(-u) and t = 2 . This is a particular case of the semi-classical trace.

Let us describe the semi-classical setting in the flat case: H is a self-adjoint -pseudo-differential operator with Weyl symbol H(x, ξ) in some open domain X in R d , or more generally on a Riemannian manifold. Let f ∈ S(R) and look at f ( H ). Under some suitable assumptions (ellipticity at infinity in ξ) on H, f ( H ) is a pseudo-differential operator whose Weyl symbol f ⋆ (H) is a formal power series in , given, using the Moyal product denoted by ⋆, by the following formula (see [Gracia] for explicit formulas and Section 4.2 for a proof, see also [Charles]) at the point z 0 ∈ T ⋆ X:

f ⋆ (H)(z 0 ) = (2π ) -d ∞ l=0 1 l! f (l) (H(z 0 )) (H -H(z 0 )) ⋆ l (z 0 ) . (1) 
From the previous formula, we see that the symbol of f ( H ) at the point z depends only of the Taylor expansions of H at the point z and of f at the point H(z). In the paper [H-P], the authors study the case of the magnetic Schrödinger operator whose Weyl symbol is

H a,V (x, ξ) = d j=1 (ξ j -a j (x)) 2 + V (x)
and show that the Schwartz kernel of f ( H ,a,V ) at the point (x, x) admits an asymptotic expansion of the form

[f ( H ,a,V )](x, x) = (2π ) -d   ∞ j=0 2j   k j l=0 R d f (l) ( ξ 2 + V (x))Q a,V j,l (x, ξ)|dξ|    
where the Q a,V j,l (x, ξ)'s are polynomials in ξ calculated from the Taylor expansions of the magnetic field B = da and V at the point x. The proof in [H-P] uses a pseudo-differential calculus adapted to the magnetic field.

We will give a simplified version of the expansion replacing the (non unique) Q a,V j,l (x, ξ)'s by functions P B,V j,l (x)'s which are uniquely defined and are given by universal O(d)-invariant polynomials of the Taylor expansions of B and V at the point x. We present then two ways to compute the P B,V j,l 's: • we can first use Weyl's invariant theory (see Gilkey's book [Gilkey2]) in order to reduce the problem to the determination of a finite number of numerical coefficients; then simple examples, like harmonic oscillator and constant magnetic field, allow to determine (part of) these coefficients.

• The P B,V j,l 's are related in a very simple way to the coefficients of the heat expansion; it is possible to compute the P B,V j,l 's from the knowledge of the a l 's for j + 1 ≤ l ≤ 3j. This is enough to re-compute the coefficient of2 and also, in principle, the coefficients of 4 in the expansion, because the a l 's are known up to l = 6 in the case of a flat metric (see [vdV]).

In this note, we will first describe precisely the semi-classical expansion for Schrödinger operators (in the case of an Euclidian metric) and the properties of the functions P B,V j,l (x)'s. Then, we will show how to compute the P B,V j,l (x)'s using an adaptation of the method used for the heat kernel (Weyl's Theorem on invariants and explicit examples). Finally, we will explain how the a l 's are related to the P B,V j,l (x)'s. This gives us two proofs of the main formula given by Helffer and Purice in [H-P]; this paper was the initial motivation to this work.

Semi-classical trace for Schrödinger operators

In what follows, X is an open domain in R d , equipped with the canonical Euclidian metric, and Ω k (X) will denote the space of smooth exterior differential forms in X. Let us give a Schrödinger operator, with a smooth magnetic field B = 1≤i<j≤d b ij dx i ∧ dx j (a closed real 2-form) and a smooth electric potential V (a real valued smooth function) in X. We assume that V is bounded from below. We will assume also that the 2-form B is exact and can be written B = da and we introduce the Schrödinger operator defined by

H ,a,V = d j=1 i ∂ ∂x j -a j (x) The Weyl symbol of H ,a,V is H a,V (x, ξ) = ξ -a(x) 2 + V (x). We denote by H ,a,V a self-adjoint extension of H ,a,V in L 2 (X, |dx|). Let us give f ∈ S(R) and φ ∈ C ∞ o (X)
and consider the trace of φf ( H ,a,V ) as a distribution on X × R (the density of states):

Trace(φf ( H ,a,V )) = X Z ,a,V (g)(x)φ(x)|dx| , where Z ,a,V (g)(x) is the value at the point (x, x) of the Schwartz kernel of f ( H ,a,V ).
Theorem 1 We have the following asymptotic expansion in power of :

Z ,a,V (g)(x) ∼ (2π ) -d R d f ( ξ 2 + V (x))|dξ| + ∞ j=1 2j l=3j l=j+1 P B,V j,l (x) R d f (l) ( ξ 2 + V (x))|dξ|
We have the explicit formulas

P B,V 1,2 = - 1 6 ∆V + B 2 , P B,V 1,3 = - 1 12 ∇V 2 , P B,V 2,3 = - 1 180 8 ∇B 2 + d ⋆ B 2 + 12 ∆B|B + 3∆ 2 V .
Here

B 2 = 1≤i<j≤d b 2 ij , d ⋆ : Ω 2 (X) → Ω 1 (X)
is the formal adjoint of d used in the definition of the Hodge Laplacian on exterior forms. If d = 3, B is the Euclidean norm of the vector field associated to B.

The P B,V j,l (x) are polynomials of the derivatives of B and V at the point x. Moreover, if λ, µ, c are constants and we define λ ⋆ (f )(x) = f (λx), we have the following scaling properties:

1. P λ.λ ⋆ (B),λ ⋆ (V ) j,l (x) = λ 2j P B,V j,l (λx) 
. This will be used with x = 0.

2. P µB,µ 2 V j,l (x) = µ 2(l-j) P B,V j,l (x) 3. P B,V +c j,l (x) = P B,V j,l (x) 4. P -B,V j,l (x) = P B,V j,l (x).
5. The P B,V j,l 's are invariant by the natural action of the orthogonal group O(d) on the Taylor expansions of B and V at the point x.

Remark 1 From the statement of the previous Theorem, we see that the expansion of the density of states is independent of the chosen self-adjoint extension.

As a consequence, we can get the following full trace expansion under some more assumptions:

Corollary 1 Let us assume that E 0 = inf V < E ∞ = lim inf x→∂X V (x) and that we have chosen the Dirichlet boundary conditions. Let f ∈ C ∞ o (] -∞, E ∞ [),
then the trace of f ( H ,a,V ) admits the following asymptotic expansion

Trace(f ( H ,a,V )) ∼ (2π ) -d X R d f ( ξ 2 + V (x))|dξ| + • • • • • • ∞ j=1 2j l=3j l=j+1 P B,V j,l (x) R d f (l) ( ξ 2 + V (x))|dξ| |dx| ,
The coefficient of 2 can be written as

- 1 12 X×R d f (2) ( ξ 2 + V (x)) ∆V (x) + 2 B(x) 2 |dxdξ| .
The expansion follows from [He-Ro]. An integration by part in x gives

X f (3) ( ξ 2 + V (x)) ∇V (x) 2 |dx| = - X f (2) ( ξ 2 + V (x))∆V (x)|dx| .
2 Existence of the -expansion of Z ,a,V Using Theorem 2 in the Appendix, we can work in R d with a and V compactly supported. The existence of the expansion is known in general from [He-Ro] and the calculus of the symbol of f ( H ,a,V ). We get

X Z ,a,V (f )(x)φ(x)|dx| = (2π ) -d   ∞ j=0 2j k j l=0 φ(x)f (l) (H a,V (x, ξ))Q j,l (x, ξ)|dxdξ|  
where the Q j,l (x, ξ)'s are polynomials in the Taylor expansion of H a,V at the point (x, ξ). The previous expansion is valid for any (admissible) pseudo-differential operator. In the case of Schrödinger operators we can make integrations by part in the integrals f (l) (H a,V (x, ξ))Q j,l (x, ξ)|dξ| which reduces to a similar formula where we can replace the Q j,l (x, ξ)'s by P j,l (x)'s. This is based on the expansion of Q j,l as a polynomial in ξ in powers of (ξ -a): odd powers give 0 and even powers can be reduced using

d ξ (ξ j -a j )f (l) (H a,V )ι(∂ ξ j )dξ = 2 ξ j -a j 2 f (l+1) (H a,V )dξ + f (l) (H a,V )dξ .
We have only to check that the powers of ξ in Q j,l (x, ξ) are less than l: this is based on Equation (1). The coefficients of the l-th Moyal power of H a,V (z) -H a,V (z 0 ) are homogeneous polynomials of degree l in the derivatives of H a,V (z). At the point z = z 0 only derivatives of order ≥ 1 are involved. They are all of degree ≤ 1 in ξ. Using Gauge invariance at the point x (Section 3), we can assume that a(x) = 0.

Gauge invariance

If S : X → R is a smooth function, we have Trace(φe -iS(x)/ f ( H ,a,V )e iS(x)/ ) = Trace(φf ( H ,a,V )) and e -iS(x)/ f ( H ,a,V )e iS(x)/ = f ( H a+dS,V ) .

Hence, we can chose any local gauge a in order to compute the expansion: using the synchronous gauge (see Section 4), we get the individual terms

f (l) (H 0,V )P B,V j,l (x)|dξ|
for the expansion, where the P B,V j,l (x) depend only of the Taylor expansions of B and V at the point x.
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The synchronous gauge

The main idea is to find an appropriate gauge a adapted to the point x 0 where we want to make the symbolic computation. In a geometric language, we use the trivialization of the bundle by parallel transportation along the rays: the potential a vanishes on the radial vector field2 . Here, this is simply the fact that, for any closed 2-form B on R 2 , there exists an unique 1-form a = d j=1 a j dx j so that da = B and d j=1 x j a j = 0. We will do that for the Taylor expansions degree by degree. In what follows we will use a decomposition for 1-forms, but it works also for k-forms.

Let us denote by Ω k N the finite dimensional vector space of k-differential forms on R d whose coefficients are homogeneous polynomials of degree N and by W = d j=1 x j ∂ ∂x j the radial vector field. The exterior differential induces a linear map from Ω k N into Ω k+1 N -1 and the inner product ι(W ) a map from Ω k N into Ω k-1 N +1 . They define complexes which are exact except at k = N = 0. Moreover, we have a situation similar to Hodge theory:

Ω k N = dΩ k-1 N +1 ⊕ ι(W )Ω k+1 N -1
. This is due to Cartan's formula: the Lie derivative of a form ω ∈ Ω k N satisfies, from the direct calculation, L W ω = (k + N)ω, and, by Cartan's formula,

L W ω = d(ι(W )ω) + ι(W )dω. So ω = 1 k + N (d(ι(W )ω) + ι(W )dω) .
It remains to show that this is a direct sum: if ω = dα = ι(W )γ, we have ι(W )ω = 0 and dω = 0; from the previous decomposition, we see that ω = 0. Let us denote by J N ω, where ω is a differential form of degree k, the form in Ω k N which appears in the Taylor expansion of ω.

We get

Proposition 1 If P (J 0 a, J 1 a, • • • , J N a) is a polynomial in the Taylor expansion of the 1-form a at some order N which is invariant by a → a + dS, P is independent of J 0 a and

P J 1 a, • • • , J N a = P 1 2 J 1 ι(W )B, • • • , 1 N + 1 J N ι(W )B
is a polynomial of the Taylor expansion of B to the order N -1.

5 Properties of the P j,l 's 5.1 Range of l for j fixed

From the scaling properties, we deduce that, in a monomial

D α 1 B i 1 ,j 1 • • • D α k B i k ,j k D β 1 V • • • D βm V ,
belonging to P j,l , we have k + 2m = 2(l -j) and k

+ |α 1 | + • • • + |α k | + |β 1 | + • • • + |β m | = 2j. Moreover, for j ≥ 1, k + m ≥ 1 and |β p | ≥ 1. Hence j + 1 ≤ l ≤ 3j.
The previous bounds are sharp: take the monomials ∆ j V and ∇V 2j which give l = j + 1 and l = 3j.

Invariance properties

1. Let us assume that we look at the point x = 0 and consider the operator D µ (f )(x) = f (µx). We have

D µ • Ĥ ,A,V • D 1/µ = Ĥ /µ,A•Dµ,V •Dµ .
The same relation is true for any function f ( Ĥ ,A,V ) and then we have, looking at the Schwartz kernels and using the Jacobian µ d of D µ :

P B,V j,l (0) R d f (l) ( ξ 2 +V (0))|dξ| = µ -2j P µ.µ ⋆ B,µ ⋆ V j,l (0) R d f (l) ( ξ 2 +V (0))|dξ| .
2. We have

H ,µa,µ 2 V = µ 2 H µ ,a,V .
3. Changing V into V + c gives a translation by c in the function f but does not change the P B,V j,l 's.

4. Changing B into -B gives a complex conjugation in the computations. The final result is real valued.

5. Orthogonal invariance is clear: an orthogonal change of coordinates around the point x preserves the density of states.

The case d = 2

We deduce from the scaling properties and invariance by the orthogonal group, that there exists constants

a d , b d , c d so that P B,V 1,2 (x) = a d ∆V +b d B 2 , P 1,3 (x) = c d ∇V 2 .

Explicit examples

The calculation for the harmonic oscillators and the constant magnetic fields allows to determine the constants a d , b d , c d .

Harmonic oscillators

Let us consider Ω = -2 d 2 dx 2 + x 2 with d = 1. The kernel of P (t, x, y) of exp(-tΩ) is given by the Mehler formula:

P (t, x, y) = (2π sinh(2t )) -1 2 exp - 1 2 sinh(2t ) cosh(2t )(x 2 + y 2 ) -2xy . Hence P (t, x, x) ∼ (2π ) -1 e -tx 2 R e -tξ 2 dξ 1 -2 (t 2 -t 3 x 2 )/3 + 0( 4 ) . Hence P 1,2 (x) = -V ′′ (x)/6, P 1,3 (x) = -V ′ (x) 2 /12,.
Similarly, in dimension d > 1, we get P 1,2 (x) = -∆V (x)/6, P 1,3 (x) = -∇V 2 /12,.

Constant magnetic field

Let us consider the case of a constant magnetic field B in the plane and denote by Q(t, x, y) the kernel of exp(-tH B,0 ). We have (see [A-H-S])

Q(t, x, x) = B 4π sinh Bt .
Hence the asymptotic expansion

Q(t, x, x) = (2π ) -2 exp(-t ξ 2 )|dξ| 1 -t 2 2 B 2 /6 + 0( 4 ) , hence P 1,2 (x) = -B 2 /6, P 1,3 (x) = 0. Using the normal form B = b 12 dx 1 ∧ dx 2 + b 34 dx 3 ∧ dx 4 + • • • , we get in dimension d > 2, P 1,2 (x) = -B 2 /6, P 1,3 (x) = 0.
7 Heat expansion from the semi-classical expansions

We have t H 1,a,V = H √ t, √
ta,tV . Using the expansion of Theorem 1 with f (E) = e -E , we get easily the point-wise expansion of the heat kernel on the diagonal as

t → 0 + : [exp(-t H 1,a,V )](x, x) ∼ 1 (4πt) d/2 e -tV (x)   ∞ l=0   l/3≤j≤l-1 P B,V j,l (x)   (-t) l   .
In particular, a 1 (x) = -V (x) and the coefficient a 2 (x) is given by

a 2 (x) = 1 2 V (x) 2 - 1 6 ∆V (x) - 1 6 B(x) 2 .
This formula agrees with Equation (3) of Theorem 3.3.1 in [START_REF] Gilkey | Asymptotic formulas in spectral geometry[END_REF]. This gives another way to compute the P j,l 's: if, as power series in t,

∞ l=0 (-1) l b l (x)t l = e tV (x) ∞ l=0 a l (x)t l ,
we have l/3≤j≤l-1

P B,V j,l (x) = b l (x) . P B,V j,l
is the sum of monomials homogeneous of degree 2(l -j) in b l where B and its derivatives have weights 1 while V and its derivatives have weights 2.

The heat coefficients a l on flat spaces are known for l ≤ 6 from [vdV]. This is enough to check the term in 2 (uses a 2 and a 3 ) in [H-P] and to compute the term in 4 in the semi-classical expansion (uses the a l 's for 3 ≤ l ≤ 6).

We have also a mixed expansion writing t H ,a,V = H √ t , √ ta,tV , we get a power series expansion in powers of and t valid in the domain 2 t → 0 and 0 < t ≤ t 0 for the point-wise trace of exp(-t H ,a,V ):

Z t, (x) ∼ 1 (4πt) d/2 e -tV (x) 1 + j≥1, j+1≤l≤3j 2j (-t) l P B,V j,l (x) .
This shows that the integrals X V (x) k |dx| and X P B,V j,l (x)|dx| are recoverable from the semi-classical spectrum.

Appendix: functional calculus in domains and self-adjoint extensions (after Johannes Sjöstrand)

The content of this Appendix is due to Johannes Sjöstrand. I thank him very much for this contribution.

Let X ⊂ R d be an open set, we say that a linear operator A is a ΨDO in X, with Weyl symbol a, if, for any compact K ⊂ X, A acts on functions supported in K as a ΨDO of Weyl symbol a.

Theorem 2 Let H ,a,V be a Schrödinger operator with magnetic field given by

H ,a,V = d j=1 i ∂ ∂x j -a j (x) 2 + V (x) ,
defined in some open domain X ⊂ R d . We assume that a and V are smooth in X and that V is bounded from below, so that H ,a,V admits some self-adjoint extensions on the Hilbert space L 2 (X, |dx|). One of them will be denoted by H ,a,V . Then, for any f ∈ S(R), f ( H ,a,V ), given by the functional calculus, is a semiclassical ΨDO in X whose symbol is given by Equation (1) and is independent of the chosen extension.

The proof uses a multi-commutator method already used by Helffer and Sjöstrand. Proof.-We introduce, for s ∈ R, the semi-classical ( -dependent) Sobolev spaces

H s := {u ∈ S ′ (R d ) | Op (1 + ξ 2 ) s/2 u L 2 < ∞ } with the norm u s := Op (1 + ξ 2 ) s/2 u L 2 .
The ( -dependent) norm A s 1 ,s 2 is the norm of A as linear operator from H s 1 to H s 2 . A linear operator K is smoothing if, for all s 1 , s 2 , K s 1 ,s 2 = O( ∞ ) . This implies that the Schwartz kernel of K is smooth with all derivatives locally O( ∞ ). We have the Lemma 1 Let Y be an open set in R d . Let P j = P j ( ), j = 0, 1 be two self-adjoint operators on Hilbert spaces

H j = L 2 (X j , |dx|) with Y ⊂⊂ X 0 ⊆ X 1 ⊆ R d and with domains D j so that C ∞ o (Y ) ⊂ D j ⊂ H j . Let us assume that, on C ∞ o (Y ), P 0 = P 1 = H ,a,V (= P ). Then, for any f ∈ C ∞ o (R), f (P 0 ) -f (P 1
) is smoothing on Y . In particular, the densities of states [f (P j )](x, x), j = 0, 1, coïncide in Y modulo O( ∞ ).

Assuming Lemma 1, Theorem 2 follows by extending a and V smoothly outside Y so that they have compact support in R d . We take Y ⊂⊂ X = X 0 ⊂ R d = X 1 . It follows that P 1 is essentially self-adjoint and the functional calculus for P 1 follows then easily from [He-Ro]. The result is valid even for f ∈ S(R) because C ∞ o is dense in S and the result of [He-Ro] is valid for f ∈ S and the resulting formulas for the symbols are continuous w.r. to the topology of S.

Proof of Lemma 1.-If χ ∈ C ∞ o (Y ), then, for z / ∈ R and j, k ∈ {0, 1}, we have on L 2 (Y ): (P j -z) -1 • χ = χ • (P k -z) -1 -(P j -z) -1 [P, χ](P k -z) -1
(2)

Let χ 0 ≤ χ 1 ≤ • • • ≤ χ N with, for l = 0, • • • , N, χ l ∈ C ∞ o (Y )
and, for l = 0, • • • , N -1, χ l (1 -χ l+1 ) ≡ 0. By iterating Equation (2) and using χ l+1 [P, χ l ] = [P, χ l ], we find:

(P 1 -z) -1 • χ 0 = χ 1 • (P 0 -z) -1 χ 0 -χ 2 • (P 0 -z) -1 [P, χ 1 ](P 0 -z) -1 χ 0 + • • • ±χ N (P 0 -z) -1 [P, χ N -1 ](P 0 -z) -1 [P, χ N -2 ] • • • (P 0 -z) -1 χ 0 ∓(P 1 -z) -1 [P, χ N ](P 0 -z) -1 • • • (P 0 -z) -1 χ 0 Let us give now χ 0 , ψ ∈ C ∞ o (Y ) with disjoints supports. By choosing the χ ′ l s for l > 0 with supports disjoint from the support of ψ, we see, using Equation (2), that, for any N, ψ(P 1 -z) -1 χ 0 0,2 = O N |ℑz| -(N +1) .

The standard a priori elliptic estimates u s+2,Ω 1 ≤ C ( (P -z)u s,Ω 2 + u s,Ω 1 ) for z ∈ K ⊂⊂ C and Ω 1 ⊂⊂ Ω 2 ⊂⊂ R d , allow to prove that, for any N, s, there exists M(N, s) so that ψ(P 1 -z) -1 χ 0 s,s+N +2 = O( N |ℑz| -M (N,s) )

(3)

Let χ ∈ C ∞ o (Y ) so that χ ≡ 1 on the support of χ 0 . Let us apply a multiplication by χ 0 to the right and to the left to Equation (2) and choose ψ with support disjoint of χ 0 so that [P, χ]ψ = [P, χ]. Inserting ψ this way in Equation (2), we get, using Equation (3): χ 0 (P 1 -z) -1 χ 0 -χ 0 (P 0 -z) -1 χ 0 = K and, for any N, there exists M(N) so that K -N,N = O( N ℑz -M (N ) ). We now apply the formula (known to some people as the "Helffer-Sjöstrand formula", proved for example in the book [Di-Sj], p. 94-95), valid for f ∈ C ∞ o (R) and f an almost holomorphic extension of f :

f (P j ) = 1 π C ∂ z f (z)(P j -z) -1 dL(z) ,
where dL(z) is the canonical Lebesgue measure in the complex plane. From this, we see that f (P 0 ) -f (P 1 ) is smoothing in Y .

+ V (x) .

This gauge is sometimes called the Fock-Schwinger gauge; in [A-B-P], it is called the synchronous framing
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