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Ernesto Estrada* 

Department of Mathematics and Statistics, Department of Physics, Institute of Complex Systems, 

University of Strathclyde, Glasgow G1 1XQ, U.K. 

 

ABSTRACT 

A strategy for zooming in and out the topological environment of a node in a complex network is 

developed. This approach is applied here to generalize the subgraph centrality of nodes in 

complex networks. In this case the zooming in strategy is based on the use of some known matrix 

functions which allow focusing locally on the environment of a node. When a zooming out 

strategy is applied new matrix functions are introduced, which give a more global picture of the 

topological surrounds of a node. These indices permit a modulation of the scales at which the 

environment of a node influences its centrality. We apply them to the study of 10 protein-protein 

interaction (PPI) networks. We illustrate the similarities and differences between the generalized 

subgraph centrality indices as well as among them and some classical centrality measures. We 

show here that the use of centrality indices based on the zooming in strategy identifies a larger 

number of essential proteins in the yeast PPI network than any of the other centrality measures 

studied. 

Keywords: centrality indices; subgraph centrality; protein-protein interactions; complex networks; 

matrix functions 

1. Introduction 

                                                 
E-mail addresses: ernesto.estrada@strath.ac.uk. 
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Complex networks are ubiquitous in biological sciences. They can represent molecular 

interactions and transformations, such as in transcription networks, protein-protein interaction 

networks and metabolic networks (Barabási and Oltvai, 2004). Complex networks are also 

valuable in representing ecological systems, such as in the case of food webs (Jordán and 

Scheuring, 2004). In both contexts the use of graph theoretic invariants to characterize the local 

and global topology of these networks is of tremendous importance for extracting useful 

biological information from such networks (Costa et al., 2007; Jordán et al., 2006, 2007).   

Among the graph theoretic invariants characterizing biological networks, centrality indices 

ranking the relevance of nodes in the network have received great attention in recent years (Costa 

et al., 2007; Jordán et al., 2007; Junker et al., 2006). In general the notion of node centrality comes 

from its use in social networks (Chapter 5 in Wasserman and Faust, 1994). Intuitively, it is related 

to the ability of a node to communicate directly with other nodes, or to its closeness to many other 

nodes or to the quantity of pairs of nodes which need a specific node as intermediary in their 

communications. These ideas have materialized in some well-known centrality measures such as 

degree centrality (DC), closeness centrality (CC), eigenvector centrality (EC) and betweenness 

centrality (BC) (Wasserman and Faust, 1994). Some of these measures describe the local 

environment around a node, e.g., degree centrality, and others characterize more globally the 

position of a node in the network, e.g., eigenvector centrality. An intermediate ⎯ neither local nor 

global ⎯ characterization of the node centrality has been claimed as a necessity for the study of 

biological networks (Jordán and Scheuring, 2002; Jordán et al. 2006). In such “meso-scale” view 

node centrality should takes into account that the strength of indirect effects decreases with the 

length of the pathway. In such a way an index accounting for node importance should be between 

the local and the global scales reflecting far reaching effects but only to smaller and smaller extent 

(Jordán and Scheuring, 2002; Jordán et al., 2006). 
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Here we propose a strategy that permits to zooming in and out the topological environment 

of a node in order to characterize its centrality. This strategy is based on the use of matrix 

functions which permit to characterize the centrality of a node by taking into account its 

participation in network’s walks. Our strategy permits to give more or less weight to the walks of 

different lengths producing the desired zooming of the topological environment of the node. 

Despite the theoretical approaches described here can be applied to different network descriptors 

we have selected the subgraph centrality (Estrada and Rodríguez-Velázquez, 2005) of a node for 

illustrating the applications of this local-global focus strategy in complex biological networks. By 

studying 10 protein-protein interaction (PPI) networks we show that the generalized subgraph 

centrality indices capture different topological information of the environment of a node. Such 

information can be useful in making predictions about network-independent functional data of PPI 

networks. As an example we show here that some of the indices obtained by zooming in the 

subgraph centrality are able to identify in silico more essential proteins in the yeast PPI network 

than any other centrality measure. 

2. Preliminary definitions 

Let ( )EVG ,=  be a network with nV =  nodes and mE =  links without loops and multiple 

edges. A walk of length k is a sequence of (not necessarily different) nodes kk vvvv ,,,, 110 −  such 

that for each ki ,2,1=  there is a link from 1−iv  to .iv  Let A G( )= A  be the adjacency matrix of 

the network. Then, the moment ( ) ( )pq
k

k qp A=,μ  gives the number of walks of length k  starting 

at the node p  and ending at the node q . If qp =  the moment ( )pkμ  gives the number of walks 

starting and ending at the same node, which are known as a self-returning or closed walks (CWs). 

The total number of CWs in a network is given by the trace of the corresponding power of the 

adjacency matrix, ( )k
k tr A=μ . It is known that if nλλλ ,,, 21  denote the eigenvalues of the 

adjacency matrix A  of G , then the k th spectral moment of A  can be expressed as follows  
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( ) ∑
=

==
n

j

k
j

k
k tr

1
λμ A .                   (1) 

Every CW is related to a given subgraph in a network. For instance, the number of CWs of 

length two for node i  equals the degree of node i . CWs of length three are related to the number 

of triangles and CWs of length four are related to links, paths of length two and squares in the 

network. Then, the spectral moments of the adjacency matrix are the basis of several structural 

invariants used for networks in different environments. One of these invariants was introduced to 

quantify the degree of folding of protein chains (Estrada, 2000) in which a weighted graph is used 

to represent the adjacency between dihedral angles in the protein backbone. This index was later 

generalized to any complex network as a way to quantify the content of subgraphs in the network. 

It is defined by the Taylor expansion of the spectral moments of the form (Estrada, 2000; Estrada 

and Rodríguez-Velázquez, 2005) 

( ) ++++++=
!!3!2

32
10 k

GEE kμμμμμ ,                (2) 

which has the following closed form in terms of the graph spectrum (Estrada, 2000; Estrada and 

Rodríguez-Velázquez, 2005a) 

( ) ( )AetreGEE
n

j

j ==∑
=1

λ ,                  (3) 

where the exponential adjacency matrix is defined as 

++++++=
!!3!2

32

k
e

kAAAAIA .                           (4) 

The number of CWs of length 2, which are accounted by 2A , are counted twice for every 

link in the network. Similarly, the CWs of length 3, which are accounted by 3A , are counted six 

times for every triangle. This can give the false impression that the penalization scheme used in 

(4) is based on this fact. That is, that CWs of length 2 are penalized by 2! and CWs of length 3 are 

penalized by 3!, because these are the number of repetitions of these CWs for links and triangles, 
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respectively. However, these is not true for other powers of the adjacency matrix beyond 3A . For 

instance, for 4A  every link contributes twice, every path of length 2 contributes four times and 

every square contributes eight times, which is not equal to 4!. In the next section we are going to 

explain what are the conditions that the penalization used need to fulfill in order to produce 

appropriate descriptions of the subgraph centrality. 

The index ( )GEE  was proposed as a subgraph centralization of the network and it is 

nowadays referred to as the Estrada index of a graph (de la Peña et al., 2007; Carbó-Dorca, 2008, 

Deng et al., 2009).  

The subgraph centrality of the node p  is given by ( )ppeA  and it has the following spectral 

formula (Estrada and Rodríguez-Velázquez, 2005), 

( ) ( ) ( ) ( )[ ] jepe
k

p
pEE

n

j
jpp

k

k λφμ ∑∑
=

∞

=

===
1

2

0 !
A ,                (5) 

where ( ) ( )pp
k

k p A=μ  is the number of CWs starting (and ending) at node p , ( )pjφ  is the p th 

entry of the j th orthonormal eigenvector jφ  associated to the eigenvalue jλ .  

Recently Estrada and Higham (2008) proposed a general formulation for the invariants 

based on Taylor series expansion of spectral moments  

( ) ∑
∞

=

=
0

,
k

kkccGEE μ .                   (6) 

This general formulation was applied to complex networks by considering the following invariant 

( )
( )∑

∞

= −
=

0 1
1,

k
kkn

cGEE μ ,                  (7) 

which eventually converges to the trace of the resolvent of the adjacency matrix (Estrada and 

Higham, 2008), 

( )
1

1

1

1
1

1
1,

−

=

−

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−=⎟

⎠

⎞
⎜
⎝

⎛
−

−=
n

j

j

nn
trcGEE

λ
AI .               (8) 
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The coefficients kc  used in this index largely penalize long closed walks in the graph. As a 

consequence, ( )cGEE ,  is very similar to the degree centrality of a node making it a very local 

index in comparison with the subgraph centrality. As we have explained before our aim here is to 

produce a method that permit us to zooming in and out the topological environment of a node in 

such a way that we can obtain indices in between the local-global characterization of node 

centrality, i.e., to obtain a sort of “meso-scale” centrality indices.  

3. On walk-based network measures 

The concept of node centrality in networks was introduced in the beginning of the 50’s 

when Bavelas (1948; 1950) and Leavitt (1951) used this concept in communication networks. 

Freeman introduced the degree centrality in social networks in 1979 (Freeman, 1979), which can 

be written in matrix form as  

( )iik Au= ,                  (9) 

where u  is a unit column vector. 

Instead of using only the adjacency matrix, Katz (1953) proposed to use the different 

powers of it multiplied by certain coefficients, which can be considered the first walk-based 

characterization of nodes in a network 

( )[ ]{ }i

T

iK uIAI −−= −1α ,                (10) 

where I  is the identity matrix and 11 λα < . 

Then, a quantum leap appears when Bonacich (1972; 1987) introduced the definition of 

eigenvector centrality in which nodes’ centrality is a function of the centrality values of adjacent 

nodes, 

( )
i

i ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1

1
1

1 Aφ
λ

φ ,                 (11) 
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where 1λ  and 1φ  are the Perron-Frobenius eigenvalue and eigenvector or A , respectively. The 

reader can find more details about centrality measures in the excellent review of Borgatti and 

Everett (2006) as well as in the Chapter 5 of the book by Wasserman and Faust (1994).  

The walk-based centrality measures can be expressed by the general formula ( )uAf , where 

the matrix function ( )Af  is given by 

 ( ) ∑
∞

=

=
0k

k
kcf AA .                 (12) 

It is straightforward to realize that the degree, eigenvector and subgraph centrality can be 

considered as walk-based characterizations of the nodes in complex networks. For instance, in this 

context the Bonacich eigenvector centrality in vector form can be written as, 

( ) uAAAAφ
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦

⎤
⎢⎣

⎡ ++++= +−−−

∞→

1
1

32
1

21
11

1lim kk

k k
λλλ .            (13) 

The only conditions that the coefficients kc  needs to fulfill can be resumed as follows: (i) 

the coefficients need to make the series (12) convergent; (ii) the coefficients need to give more 

weights to shortest walks than to longer ones; (iii) the indices produced need to be real-positive 

numbers. 

It is worth mentioning that several other successful centrality measures are not based on 

walks, such as the closeness, betweenness, and information centrality (Borgatti and Everett, 

2006). 

Here we propose to generalize these invariants by using a new strategy that allows the 

definition of new centrality measures containing structural information on biological networks 

which is not duplicated by other measures. The duplication of information is analyzed by 

considering the strength of correlation among these measures, which indicates how much overlap 

exists among their information content. 

4. Strategy for generalization 
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The motivation for introducing the subgraph centralization and centrality was to count the 

participation of a node in all the subgraphs existing in the graph. This was accomplished by 

considering the number of closed walks in which a node takes place giving larger weights to 

shorter closed walks. For the sake of simplicity let us consider the graph illustrated in Figure 1. 

The subgraph centrality clearly identifies the node 5 as the most central one in the graph followed 

by the node 7. The main difference between these two nodes is given by their participation in 

paths of length two (2-paths) as they take part in the same number of triangles and squares. Node 

5 appears six times as the centre and six times as an end point of a 2-path. However, node 7 

appears three times as a centre and five times as an end point of a 2-path. Node 1 is ranked fourth 

by the subgraph centrality after the equivalent nodes 2 and 4. This node takes part only in one 

triangle (1-2-4) instead of two (5-8-7, 5-6-7). However, it appears seven times as an end point of a 

2-path and three times as its centre.  

Insert Fig. 1 about here. 

2-paths can be very relevant in clustered networks as the one represented by the graph in 

Fig. 1. For instance, the two nodes taking part in the largest number of 2-paths are nodes 1 and 5, 

which here form a bridge between the two clusters in the network.  On the other hand, because the 

number of 1-paths in which a node takes place is the degree of the node, the number of 2-paths 

can be seen as the next step in extending such centrality. The same reason can be generalized to 

consider m -paths ( 2≥m ). A strategy for giving more weights to these fragments is to decrease 

the penalization imposed to the smaller spectral moments in the original definition of the subgraph 

centrality. For instance, let us use the following expression to calculate a modified subgraph 

centrality: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
+++++++++

!3!2
87

6543210
ii

iiiiiii
μμμμμμμμμ  

Then, the new ranking of the nodes places node 1 as the second most central in the graph 

following node 5 and preceding node 7. The differences in the ranking are more evident if we 
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consider the effect of removing the most central nodes according to the original subgraph 

centrality and the modified one. Removing node 7 does not affect the connectivity of the graph 

while removing node 1 produces the same effect as the removal of node 5, which separates the 

graph into two disjoint components. This example illustrates how by modulating the penalization 

of the spectral moments we can change the ranking of the nodes in a graph according to the 

relevance of different structural elements in which they participate. 

We can generalize this idea by considering positive and negative rescaling of the expression 

(5). By positive (negative) rescaling we mean moving forward (backward) the numerators 

(spectral moments) respect to the denominators (factorials) in the expression (2) as illustrated 

below 

positive rescaling: 

+++⇒+++
!3!2!1!2!1!0
210210 μμμμμμ

 

 negative rescaling: 

+++⇒+++
!1!0!2!1!0
21

0
210 μμμμμμ

 

     If we consider the CWs accounted for by both kinds of rescaling we can see that the 

positive rescaling corresponds to zooming in of the environment of a node. That is, by penalizing 

more the longest walks we concentrate more in the local environment of the corresponding node. 

On the other hand, the negative rescaling corresponds to a zooming out of the surrounds of the 

corresponding node. In this case we allow long walks to contribute to the index in such a way that 

we obtain more global information about the environment of the node under study. 

5. Zooming in by positive rescaling 

By moving forward one step the spectral moments respect to the factorial denominators we 

obtain the following Taylor series 
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( ) ( ) +
+

+++++=
!1!4!3!2

321
0

1

k
GEE kμμμμμ .                        (14) 

Then the index ( )GEE1  has the following spectral formula only in the case when no eigenvalue is 

equal to zero 

( ) ∑
=

−=
n

j j

jeGEE
1

1 1
λ

λ

.                            (15) 

It is straightforward to realize that ( )GEE1  can be obtained as the trace of the ( )A1ψ  matrix 

function (Higham, 2008), 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −==
A

IA
AetrtrGEE 1

1 ψ .                          (16) 

where A  is a non-singular matrix. The function ( )A1ψ  appears in the exact solution of ordinary 

differential equations (Hochbruck et al., 1998). For instance, let 

bAyy +=
dt
d  for ,0>t  

( ) 00 yy = . 

Then, the function ( )A1ψ  appears in the exact solution of this equation when the square matrix A  

and the column vector b  are independent of t ,  

( ) ( )( )010 ybttyty AA ++= ψ . 

The importance of this relation is evident by considering that ( )GEE 0  represents the 

partition function of a network obtained by solving the Schrödinger equation in which the 

Hamiltonian is simply the negative adjacency matrix (Estrada and Hatano, 2007). Then, the first 

order index is related to the solutions of the nonlinear Schrödinger equation using exponential 

integrators (Hochbruck and Lubich, 1999). 

The index ( )GEE1  can be obtained by means of the following recurrence relation: 
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( ) ( ) ( )( )∑
∞

= −+
−=

1

01

!11k

k

kk
GEEGEE

μ
,                         (17) 

where the second member of the RHS of this expression converges as follow when no eigenvalue 

is equal to zero 

( )( ) ∑∑
=

∞

=

+−
=

−+

n

j j

j

k

k
jj ee

kk 11

1
!11 λ

λμ λλ

.                          (18) 

The application of this power sum to the adjacency matrix of the graph gives rise to a new matrix 

function, which when A  is non-singular can be expressed as 

( )( ) A
IAA AA +−=

−+∑
∞

=

ee
kkk

k

1 !11
.  

We can extend the positive rescaling approach to generate a series of indices 

characterizing a graph in terms of the spectral moments of the adjacency matrix weighted by 

inverse factorials. The general formulation for these indices is given below 

( ) ( )∑
∞

= +
=

0 !k

kt

tk
GEE

μ .                            (19) 

The generalized ( )GEE r  index has the following spectral formula when no eigenvalue is 

equal to zero: 

( ) ( )
( )∑
∑

=

=

−

−
−

=
n

j
t

j

t

s

st
j

t st
e

GEE

j

1

1 !
λ

λλ

.                          (20) 

These indices are also related to matrix functions through the trace formula 

( ) ( )At
t trGEE ψ= ,                            (21) 

where the ( )Atψ  matrix functions (Higham, 2008) have the following integral formula 

( ) ( )
( )∫ −−

−
=

1

0

11

!1
1 dxxe

t
tt

t
AAψ .                          (22) 

The following recurrence formula is known for these matrix functions (Higham, 2008) 
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( ) ( )
!

1
1 ttt += + AAA ψψ . 

The ( )GEE t 1+  index can be obtained by means of the following recurrence relation: 

( ) ( ) ( )( )∑
∞

=

+

−+++
−=

1

1

!11k

ktt

tktk
GEEGEE

μ ,                        (23) 

where the Taylor series in second member of the RHS of this expression converges as follow 

when no eigenvalue is equal to zero 

( )( ) ∑
∑

∑
=

+
=

+

∞

= ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+−

=
−+++

n

j
t

j

r

s

s
j

t
j

j

k

k see
tktk

jj

1
1

2
1

1

1
1

!11 λ

λ

λ
λμ λλ

.                       (24) 

It should be mentioned that the functions ( )Atψ  are entire and they can always be calculated 

despite some eigenvalues of the adjacency matrix are equal to zero or the matrices are singular, 

because they can be represented as a power series which converges compactly. There are several 

numerical approaches to address the calculation of these functions which have been reported in 

the literature and the reader is referred to it for details (Higham, 2008). 

6. Zooming out by negative rescaling 

In the negative rescaling approach we are interested in not penalizing the closed walks of 

the smallest length in the graph. In the original ( )GEE 0  the spectral moments of length zero and 

one are not penalized by dividing them with any factor. Suppose we are interested in extending 

this idea to the second spectral moments, such that we have the following power sum 

!3!2
43

210
μμμμμ ++++ , 

or to the third ones in such a way that we have 

!3!2
54

3210
μμμμμμ +++++ . 

In general, we can define the following negatively rescaled indices 
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( ) ( )∑∑
∞

=

−

=

−

−
+=

tk

k
t

s
s

t

tk
GEE

!

1

0

μμ ,                          (25) 

which have the following spectral realization 

( ) ∑ ∑
=

−

=

− ⎟
⎠

⎞
⎜
⎝

⎛ +=
n

j

t

s

t
j

s
j

t jepEE
1

1

0

λλλ .                          (26) 

The ( )GEE t−  index can be obtained by means of the following recurrence relation: 

( ) ( ) ( )( )∑
∞

+=

+−−

−−+−
+=

1

1

!11tk

ktt

tktk
GEEGEE

μ ,                        (27) 

where the Taylor series in the second member of the RHS converges as follow 

( )( ) ( )∑∑
=

−
∞

+=

−+=
−−+−

n

j
j

t
j

tk

k jj ee
tktk 1

1

1
1

!11
λλλλμ

.                        (28) 

By applying this Taylor series to the adjacency matrix of a graph we can obtain a new matrix 

function, which is given by 

( )AAAIA eet −+ .                            (29) 

7. Study of protein-protein interaction networks 

We study here 10 protein-protein interaction (PPI) networks in which nodes represent proteins and 

links represent interactions between pairs of proteins. These PPI networks correspond to 

Archaeglobus fulgidus (Motz et al., 2002), Kaposi sarcoma-associated herpes virus (KSHV) (Uetz 

et al., 2006), varicella-zoster virus (VZV) (Uetz et al., 2006), Bacillus subtilis (Noirot and Noirot-

Gros, 2004; Hoebeke et al., 2001), Escherichia coli (Butland et al., 2005)), malaria parasite 

Plasmodium falciparum (LaCount et al., 2005), the worm Caenohabditis elegans (Li et al., 2004), 

Helicobacter pylori (Rain et al., 2001), Sacchoromyces cereviciae (von Mering et al., 2002; Bu et 

al., 2003), and Homo sapiens (Rual et al., 2005). Here we consider the main connected component 

of these networks in which interactions between proteins are taken to be undirected and no self-

interactions are considered. Consequently, the corresponding networks are undirected and do not 

contain self-loops.  
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We study here the subgraph centrality of the protein i  in a PPI network, which is given by 

( ) ( )iieiEE A=0 . The subgraph centrality has been previously applied to the identification of 

essential proteins in proteomic maps (Estrada, 2006a; 2006b; Zotenko et al., 2008; Lin et al., 

2008; Gursoy et al., 2008) and the characterization of malignant tissues (Platzer et al., 2007). It 

has also been applied to the study of weighted graphs to account for the degree of folding of 

protein chains (see for instance Estrada, 2002; 2004) as well as to describe the molecular structure 

of drug-like and environmentally relevant organic compounds (for a review see Estrada and 

Uriarte, 2001).  

We are interested in comparing this index with the generalized subgraph centrality indices 

defined by using positive and negative rescaling, which are given by the following expressions, 

respectively 

( ) ( )[ ]iit
t iEE Aψ= , 

( )
ii

t
t

s

st eiEE ⎟
⎠

⎞
⎜
⎝

⎛ += ∑
−

=

− AAA
1

0

, 

where the matrix functions ( )Atψ  were previously defined.  

First we analyze the intercorrelation between all subgraph centrality indices obtained here 

for 1010 ≤≤− t . It is easy to realize that ( )iEE t−  diverges as .∞→t  On the other hand, 

( ) 0A =
∞→ tt
ψlim , where 0  is an all-zeros matrix, and consequently ( )iEE t  tends to zero as ∞→t . 

We have observed that for the PPI networks analyzed here this already happens for 8≥t . Then, 

we exclude these values from our analysis. As a non-parametric measure of correlation between 

the indices we use the Kendall τ  statistics (Kendall, 1938), which represents the difference 

between the probability that the observed data are in the same order for the two variables versus 

the probability that the observed data are in different orders for the two variables. Let cp  and dp  
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be the number of concordant and discordant pairs of data points, respectively, such that  

dc ppp += . Then the Kendall τ  index is defined as (Kendall, 1938) 

( )
( )1

2
−

−
=

pp
pp dcτ . 

The values of τ  for every pair of index are represented as a correlation matrix C . Then we use 

the first eigenvalue 1ε  of C  normalized by the number of data points p  as a measure of the 

global intercorrelation between the indices studied. Note that 1/0 1 ≤≤ pε . 

In Table 1 we give the values of the intercorrelation measures between the subgraph 

centrality indices for the PPI networks studied here. As can be seen there are relatively large 

intercorrelations between the indices defined here, which is expected from the fact that they are 

measuring the same topological properties of nodes, i.e., their subgraph centrality. Most of this 

intercorrelation arises from the indices which are obtained using the same strategy, i.e., positive or 

negative rescaling. We have used factor analysis for studying the subgraph centrality indices for 

the nodes of the PPI network of C. elegans. In Fig. 2A it can be seen that the first two factors 

divide the walk-based indices into two clusters corresponding to the positively and negatively 

rescaled indices, respectively. Similar patterns are also observed in the correlation matrices for 

this (see Fig. 2B) and the other PPI networks studied. 

Insert Table 1 and Fig. 2 about here. 

The second part of this global analysis of the generalized subgraph centrality indices is 

devoted to compare them with some of the best known centrality indices. These “classical” 

centrality indices are the degree (DC), closeness (CC), betweenness (BC), and the eigenvector 

centrality (EC). The reader is referred to the Chapter 5 of the book of Wasserman and Faust 

(1994) to obtain details about these indices. While the degree and eigenvector centrality are 

clearly walk-based centrality indices, the closeness and betweenness are based on the concept of 

shortest path distance.  
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In Fig. 3 we show the Kendall indices for the non-parametric correlations between the 

generalized centrality indices and the four classical centrality indices studied. The first interesting 

observation is that the negatively rescaled subgraph centrality indices are highly correlated with 

the eigenvector centrality and these correlations decay when the value of t  increases. Such strong 

correlations can be explained by the fact that the negatively rescaled indices do not penalize so 

heavily long walks. For instance, in the index ( )iEE 10−  there is no penalization for walks of length 

between one and eleven. It is known that for non-bipartite connected graphs as the ones studied 

here, the eigenvector centrality of a node is proportional to the number of walks of length k  

starting at this node as ∞→k , which explains the empirical correlation obtained. The second 

interesting observation is that the correlation between the degree centrality and the generalized 

subgraph centralities increases as the values of t  increases. That is, negatively rescaled indices are 

less correlated with the degree than the positively rescaled ones. This observation is easily 

explained by the fact that in the positively rescaled indices we penalize very much long walks. 

Consequently, walks of length two, which are equal to the degree of the node, have a large 

influence of these indices explaining the observed empirical correlations. Finally, the closeness 

centrality displays a similar behavior to the eigenvector centrality and the betweenness centrality 

is more similar to the degree in their correlations with the generalized subgraph centrality indices. 

Based on these empirical findings we can conclude that the negatively rescaled subgraph 

centrality indices represent a zooming out which describe more globally the environment around a 

node due to their small penalization of the longer walks. On the other hand, the positively rescaled 

subgraph centrality measures are describing more local characteristics of the surrounds of a node 

due to the heavy penalization of long walks. 

Insert Fig. 3 about here. 

In order to have a closer look to the differences between the walk-based indices introduced 

here and the subgraph centrality we are going to study the PPI network of A. fulgidus in more 
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detail (see Fig. 4 for illustration). The subgraph centrality index ( )iEE 0  indentifies proteins 

AF0335 and AF0382 as the most central ones in this proteome. These two proteins are also the 

most connected ones. The first of them is involved in tethering polymerases to DNA and the 

second one in replication. The ranking is followed by AF1195 (replication factor), AF1347 

(unknown function), AF1692 (endonuclease III) and AF0699 (DNA-specific exonuclease).  

Insert Fig. 4 about here. 

The indices ( )iEE t  are in general strongly correlated to ( )iEE 0  with Kendall τ  indices 

higher than 0.90. However, a looking glass analysis reveals certain differences. For instance, we 

can see that the first 6 proteins ranked by the index ( )iEE 3  are exactly the same as the ones 

appearing in the ranking due to ( )iEE 0 . Now, in the ranking produced by ( )iEE 0  the seventh to 

tenth proteins are AF1790, AF1722 and AF0780, while in the one produced by ( )iEE 3  are 

AF1194, AF1559 and AF0472. These differences are quite significant from the topological point 

of view. For instance, the deletion of the protein AF1790 ranked as the seventh by ( )iEE 0  does 

not produce any other topological change in the protein interaction network. However, removing 

protein AF1194, which is ranked seventh by ( )iEE 3  produces the disconnection of four other 

proteins. Among these four proteins are the three histidine kinases present in this proteome 

AF0103 (HisK-1), AF1332 (HisK-2) and AF1452 (HisK-3). Similar results are obtained if we 

compare the removal of the proteins ranked eighth and ninth by the two indices. While the 

removal of those proteins ranked by ( )iEE 0  has no further changes in the topology of the network 

the deletion of those ranked by ( )iEE 3  produce the disconnection of two other proteins, AF0225 

and AF0130, respectively. 

We consider now the indices ( )iEE t−  and compare them with the index ( )iEE 0 . The first 

three entries of the ranking using these indices are the same as the one using ( )iEE 0 . However, 

the order of the other proteins in the top ten list change respect to the original index. The most 
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significant change is that protein AF0780/RPA-36 (replication protein A) jumps from the 10th 

place in the original ranking to the 4th when 4−=t . For this value of t  the protein AF1558/SMC-

1 (chromosome segregation protein) has moved from the 13th position in the original ranking to 

the 10th. These two proteins only have degree two, but they are indeed connected to the hubs of 

the network, i.e., AF0335 and AF0382. Consequently, these two proteins AF0780/RPA-36 and 

AF1558/SMC-1 are present in a large number of fragments, which include the two hubs of the 

network. These fragments are in general large, but the negative rescaling approach does not 

penalize them very much, which implies that their participation in the centrality is significant 

enough.  

In summary, we have seen in this example that the subgraph centrality of a node, e.g. 

protein, can be zoomed in and out in order to extract information which differs in the participation 

of the nodes in the different structures of the network. In this way, the use of positively rescaled 

indices zooming in the environment of a node by maximizing the participation of a node in small 

subgraphs, such as 2-paths, due to the heavy penalization of large spectral moments. These small 

subgraphs can be important for the communication of different parts of the (protein) networks. On 

the other hand, when negatively rescaled indices are used a zooming out of this environment takes 

places because the participation of a node in large subgraphs is not so heavily penalized, which 

means that potentially important large substructures of the network are considered for the 

centrality of a node. 

Despite the new indices clearly identify new topological features of the proteins in the PPI 

networks it is necessary to illustrate whether these indices are useful in explaining or predicting 

network-independent functional data. In order to conduct this experiment we consider the 

essentiality of proteins in the PPI network of S. cereviciae. The essentiality of a protein defines 

the functional significance of a gene at its most basic level. Essential genes are those upon which 

the cell depends for its viability. Using the GENECENSUS database 
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(http://bioinfo.mbb.yale.edu/genome/), we checked for all proteins in the main cluster of the yeast 

PPI network for essentiality. An illustration of this PPI network and the essential proteins in it is 

given in Fig. 4. 

Insert Fig. 4 about here. 

In a previous work we compared the performance of several centrality measures in 

identifying essential proteins in this version of the yeast PPI network (Estrada 2006a). Our 

strategy consisted in selecting the top top 1%, top 5%, etc. of proteins, and determining how 

many of these are essential in the yeast PPI network. We showed that the subgraph centrality 

identifies the largest percentage of essential proteins in comparison with the degree, 

betweenness, closeness, eigenvector and information centrality. For instance for the top 5% of 

proteins selected the subgraph centrality identifies 56.4% of essential proteins while a random 

selection identifies only 25.3% and the degree centrality identifies 41.8%.  

Here we use an identical strategy as in our previous work by ranking the proteins in the 

yeast PPI network according to their values of the walk-based centrality measures introduced 

here. Then, we select the top 5%, 10%, 15% and 20% and count the number of essential proteins 

according to each rank. We take the difference between the number of proteins identified by the 

new indices to the one identified by the subgraph centrality ( )iEE 0  as an indicator of the 

performance of the new indices. The indices ( )iEE t− , which are strongly correlated to ( )iEE 0 , 

does not show any difference in the number of essential proteins identified in comparison with the 

subgraph centrality ( )iEE 0 . However, for the positively rescaled indices the number of essential 

proteins identified is significantly larger than the ones identified by ( )iEE 0 . In Fig. 5 we illustrate 

the number of essential proteins identified by these indices in excess of that identified by the 

subgraph centrality. For instance, for the top 5% of proteins selected the index ( )iEE 7  identifies 5 

essential proteins more than ( )iEE 0 . This index identifies 9, 12 and 17 essential proteins more 
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than ( )iEE 0  for the top 10%, 15% and 20% of proteins, respectively. This means that ( )iEE 7  

systematically identifies about 4% more essential proteins that the subgraph centrality. 

Consequently, ( )iEE 7  outperforms all other centrality indices (degree, betweenness, closeness, 

eigenvector, information, subgraph) in identifying essential proteins in the yeast PPI network 

studied here. 

Insert Fig. 5 about here. 

8. Conclusions 

We have developed a general strategy for zooming in and out the topological environment of a 

node using a walk-based description of complex networks. Using this approach we generalize the 

subgraph centrality of nodes in complex networks, which is then applied to study PPI networks. 

The zooming out strategy gives a more global picture of the topological surrounds of a node while 

the zooming in strategy focuses more on the local topological environment of a node. Subgraph 

centrality indices based on the last strategy have been able to identify more essential proteins in 

the yeast PPI network than any of the other centrality measures studied. An important 

characteristic of these generalized subgraph centrality indices is that we can modulate the zoom 

around a node to account for more local or global scales of its topological environment. These 

indices in some way capture the idea of describing some meso-scale environment around a node 

in which neither very local nor very global environments are accounted for. 
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Figure caption 

 

Fig. 1. Graph used to illustrate the necessity for rescaling the subgraph centrality and related 

indices. 

Fig. 2. Protein interaction network of the archaebacterium A. fulgidus. 

Fig. 3. Statistical analysis of the intercorrelation among the generalized subgraph centrality 

indices tEE  in the PPI network of the worm C. elegans for 77 ≤≤− t . (A) Plot of the first two 

factors obtained by using factor analysis. B) Correlation matrix based on the Kendall τ  indices in 

a grey scale, where white  represents 5.0=τ  and black represents 0.1=τ . 

Fig. 4. Plot of the Kendall τ  indices for the non-parametric correlation between the generalized 

subgraph centrality indices tEE  ( 710 ≤≤− t ) and four other centrality measures (DC: filled 

circles, CC: squares, BC: diamonds, EC: triangles) for 4 PPI networks. 

Fig. 5. The principal connected component of the yeast PPI studied here. Red circles represent 

essential proteins, blue circles represent non-essential ones and yellow circles those whose 

essentiality is unknown. 

Fig. 6. The number of essential proteins identified by the generalized subgraph centrality indices 

obtained by positive rescaling tEE  ( 71 ≤≤ t , ) in excess of those identified by 0EE . The 

essential proteins are identified among the top 5%, 10%, 15% and 20% of all 2224 proteins in the 

yeast PPI network. 
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Table 1. Intercorrelation between the generalized subgraph centrality indices tEE , 710 ≤≤− t , 

for 10 PPI networks. The number of proteins (N), the number of interactions (E) and the first 

eigenvalue of the correlation matrix based on the Kendall τ  indices ( 1ε ) normalized by the 

number of observations ( p ) are given. 

No. PPI network N E p/1ε  

1 A. fulgidus 32 36 0.788 

2 KSHV 50 114 0.902 

3 VZV 53 148 0.933 

4 B. subtilis 79 92 0.775 

5 P. falciparum 229 604 0.875 

6 E. coli 230 695 0.924 

7 C. elegans 314 363 0.778 

8 H. pylori 710 1396 0.871 

9 S. cereviciae 2224 6609 0.924 

10 H. sapiens 2783 6007 0.816 
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Fig. 4 
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