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Abstract  1 

We present a simple model of investment across a suite of different anti-predatory 2 

defences. Defences can incur an initial construction cost and and/or may be costly 3 

each time they are utilised. Our aim is to use a simple, but general, mathematical 4 

model to explore when prey that face a single predatory threat where each attack is of 5 

the same nature should invest only in a single defence, and when they should spread 6 

their investment across more than one defence. This should help to explain the 7 

observed variety of defences that a single prey individual may employ during repeated 8 

attacks of a similar nature or even at different stages during one attack. Previous 9 

verbal reasoning suggested that prey should specialise in investment in defences that 10 

can be utilised early in the predation sequence. Our quantitative model predicts that 11 

(depending of the relatively properties of different defences), there may be 12 

concentrated investment in early-acting, or in late-acting defences, or a spread of 13 

investment across both defence types. This variety of predictions is in agreement with 14 

the variation in defences shown by natural organisms subjected to repeated predatory 15 

attack.  16 

 17 

Keyword: predation, predator-prey, investment in defences, optimal strategy, costs of 18 

defences 19 

20 
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 20 

 21 

Introduction  22 

Predation is an almost ubiquitous process in the natural world, and very few animals 23 

are immune to the risk of predation for at least part of their life history. Since 24 

predation is responsible for a large proportion of mortality in many species, it is no 25 

surprise that anti-predatory defences are also widespread and intensively studied by 26 

behavioural ecologists (see Ruxton et al. 2004 and Caro 2005 for reviews). Caro 27 

identified one of the ten most pressing questions in the study of anti-predatory 28 

defences as “how can we explain patterns of morphological and physiological 29 

defences across taxa?” There is indeed tremendous variety between species in the 30 

forms of anti-predatory defences employed. However, there is even substantial 31 

variability within an individual in the defences they employ against different attacks 32 

(Buskirk 2001 and references therein). The conventional explanation of this variation 33 

is that many individuals face risk of predation from a suite of different predatory types 34 

for which different defences might be required. For example, a single caterpillar 35 

might face attack by avian predators, predatory social wasps, parasitic wasps and flies, 36 

ants, spiders, and even insectivorous rodents. Whilst visual crypsis may be an 37 

effective defence against detection by birds, it is unlikely to be as effective against 38 

ants that rely more on tactile, vibrational and olfactory cues to locate their prey. 39 

However, variation in predatory threat (while certainly part of the answer) cannot be 40 

the sole driver of within-individual variation in defences, since a single individual can 41 

use different defences against the same type of predator in different attacks (reviewed 42 

in section 13.6 of Caro 2005).   43 

 44 
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That a single individual can utilise a suite of different defences is noteworthy for at 45 

least two reasons. Firstly, defences are likely to be costly and each defence added to 46 

the prey’s portfolio potentially adds an associated cost. Secondly, there can be 47 

interference between different defences such that implementation of one may impair 48 

the performance of another. The different costs of different defences are considered in 49 

depth in Chapter 5 of Ruxton et al. 2004. For our purposes, we differentiate between 50 

two general types of cost, those that are paid “up-front” such that the cost is paid 51 

whether or not attacks occur and regardless of the number of attacks (often called 52 

constitutive defences), and costs that are incurred each time the defence is used. For 53 

example, a caterpillar that defends itself against birds by being difficult to detect 54 

visually pays up-front costs. There may be physiological costs to the production of 55 

pigments required to produce the desired appearance. Alternatively or additionally, 56 

there may be opportunity costs associated with restricted use of microhabitats and 57 

restricted movement required to maximise crypsis. These costs are paid regardless of 58 

the number of attacks that an individual caterpillar experiences. In contrast some costs 59 

occur whenever the defence is employed in a specific attack (Higginson & Ruxton 60 

(2009) call these ‘responsive’ defences) . For example, some insects (notably many 61 

ladybirds) exhibit reflex bleeding where toxin-laced blood is exuded from joints in the 62 

exoskeleton in response to handling by a potential predator. This blood may deter the 63 

predator from pursuing its attack, but the exuded blood and its toxins have been lost, 64 

and have to be replaced. Replacement of these is likely to be physiologically costly, 65 

and the total cost of using this defence will increase with the number of times it is 66 

deployed (Grill and Moore 1998). Notice that this reflex bleeding defence may also 67 

incur up-front costs as well, since there may be physiological costs associated with the 68 

storage of toxins in a way that avoids autotoxicity, and gaps in the exoskeleton that 69 
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allow reflex blood to leave may impose costs in terms of, for example, water loss or 70 

risk of fungal disease. Other examples of responsive defences are regurgitation 71 

(Bowers 1993), gland secretions (Eisner et al. 2004), urticating hairs (Bowers 1993), 72 

ink release by cephalopods (Derby 2007), and the explosive defence of the 73 

bombardier beetle (Eisner 1958). 74 

 75 

Investment in, or deployment of, one defence can reduce the effectiveness of another 76 

defence. For example investment in a tough spiny exterior may provide mechanical 77 

protection against handling by predators, but it may make the prey individual more 78 

conspicuous (decreasing the effectiveness of camouflage as a defence) and may make 79 

it more difficult for the prey to choose to flee from predators that may be able to 80 

circumvent the anti-handling defence. Flight and crypsis are two classically 81 

interfering defences. If a predator has not yet detected a predator, the prey may 82 

increase the chances of remaining undetected by remaining still and trusting to their 83 

cryptic appearance. However, if the predator inadvertently comes close to the prey 84 

before detecting it, the close spatial proximity of the two individuals will reduce the 85 

effectiveness of fleeing by the prey to escape the predator. Conversely, if the prey 86 

flees early in the predatory sequence before detection has occurred, then the 87 

effectiveness of crypsis is likely to be greatly reduced as the fleeing animal is more 88 

vulnerable to detection than when sitting still (Broom & Ruxton 2005).  89 

 90 

Implicit in our description above is that an interaction between a prey individual and a 91 

predatory individual is generally a sequence of different phases. The most commonly 92 

used articulation of this is the sequence laid out by Endler (1991), who suggested that 93 

a predation event involves a sequence of six stages: encounter, detection, 94 
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identification, approach, subjugation and consumption. Defences differ in which of 95 

these stages they can be utilised in. Clearly crypsis only works in the initial 96 

“encounter” stage prior to detection of the prey by the predator. In contrast, anti-97 

predatory vigilance to allow detection of the predator by the prey may be of use to the 98 

prey throughout all of the first four of Endler’s six stages. Here we will simplify 99 

Endler’s six stages: subsuming the first four into a “pre-capture” stage and the last 100 

two into “post-capture. Our aim is to use a simple, but general, mathematical model to 101 

explore when prey that face a simple predatory threat, where each attack is of the 102 

same nature, should invest only in a single defence; and when they should spread their 103 

investment across more than one defence.  104 

 105 

Methods  106 

Model description  107 

The key to our model is the idea that to successfully exploit an encountered prey item, 108 

the predator must capture it and then subdue and consume it. Thus, successful 109 

predation requires success at each of a sequence of stages. Different defences act at 110 

different stages of the predation process, and we will simply characterise these as pre-111 

capture and post-capture defences, simplifying predation to a two stage process.  112 

 113 

Pre-capture defences minimise the probability that a predator that comes spatially 114 

close to (hereafter, “encounters”) the prey is able to capture it. These might be 115 

defences that minimise the chance that the prey is detected and recognised (such as 116 

camouflage or disguise) or defences that reduce the chance that an attack will lead to 117 

capture (swiftness of movement, vigilance, manoeuvrability). We characterise all 118 

these pre-capture defences in a single parameter D1. D1 is a non-negative number 119 
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indicating the investment in pre-capture defences, with increasing values indicating 120 

increasing investment. The probability that an encounter with a predator leads to 121 

capture (P1) is a decreasing function of D1. That is, increasing investment in pre-122 

encounter defences reduces the probability that the prey individual will be 123 

successfully captured by any predator that encounters it.  124 

 125 

Post-capture defences involve such things as fighting ability, venomous stings, 126 

armoured integument and production of mucus. All these defences have in common 127 

the fact that they reduce the probability (P2) that capture leads to the death (and thus 128 

consumption) of the prey (i.e. capture leads to successful predation). We describe 129 

increasing investment in post-capture defences by increasing values of D2, with P2 130 

declining with increasing values of D2. That is, increasing investment in post-capture 131 

defences reduces the probability that a predator that physically captures the prey is 132 

able to subdue, kill and consume it.  133 

 134 

We are interested in finding the optimal strategy in terms of investment in these two 135 

defences. There are costs, as well as benefits, to investment in defence. We first of all 136 

assume that there are fixed costs to the creation of the defences. Thus, even if the prey 137 

individual never encounters a predator, it pays a cost for its investment in defences. 138 

This occurs because these defences are constitutive (at least in part). The fecundity of 139 

an individual that never encounters any predators is given by F(D1,D2) where F 140 

declines with increasing values of both D1 and D2.  This represents the fixed costs of 141 

investment in the two types of defence. As investment in a defence increases so the 142 

fitness cost increases.  143 

 144 
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However, as well as fixed costs, we assume that there can be additional costs every 145 

time a defence is used. For example, for pre-capture defences, we can imagine that 146 

there is a fixed cost to building and maintaining the muscle structure required for fast 147 

escape, but there is an additional cost (say in energy expended and/or feeding time 148 

lost) every time that defence is used and the prey has to flee. Specifically we assume 149 

that if the prey encounters a predator on a number of occasions Na, then it has to use 150 

its pre-capture defence on Na occasions. The cost of these encounters  is represented 151 

by multiplying the fecundity of the prey individual by [C1(D1)]Na, where C1(0) = 1 152 

(that is unaffected if there is no investment in defence) and C1 declines with 153 

increasing values of D1 (and thus fecundity declines both the investment in defence 154 

and with how often the defences are used). This formulation captures the assumptions 155 

that the costs of using pre-capture defences increase both with the number of times 156 

these defences are used and with the extent of these defences. That is, greater 157 

investment in pre-capture defence reduces the risk of capture, but also incurs higher 158 

fixed costs and costs that increase with the number of time these defences are used.  159 

 160 

Let us assume that of these Na encounters, a number Nc lead to capture of the prey and 161 

a number Nn lead to no capture and the prey escaping. Thus, we assume that to 162 

successfully survive these attacks the prey will have to successfully use its post-163 

capture defences on Nc occasions (Nc ≤ Na). The cost of these is represented by 164 

multiplying the fecundity of the prey individual by [C2(D2)]Nc.  165 

 166 

Where C2(0) = 1 and C2 declines with increasing values of D2. This formulation 167 

captures the assumptions that the costs of using post-capture defences increases both 168 

with the number of times these defences are used and with the extent of these 169 
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defences. That is greater investment in post-capture defence reduces the risk that 170 

capture leads to death, but also incurs both higher fixed costs and higher costs each 171 

time these defences are used. 172 

 173 

If a number of encounters with predators occur, then the fecundity of the prey 174 

individual is zero if it is killed in any one of these. The probability of it not being 175 

killed in any of the encounters is (1-P2)Nc.  176 

 177 

Thus, the total payoff to an individual playing a certain strategy (in terms of 178 

investment across its two possible defences) is given by the fecundity multiplied by 179 

the probability of surviving: 180 

 181 

( )
( )[ ] cn

cca

NN

NNN

PCCFC

PCFCR

2211

221

1

1

−=

−=
 182 

where for notational convenience, we have omitted writing out functional 183 

dependences on D1 and D2. 184 

  185 

However, Nc (and so Nn) depends upon the value of D1. Let us assume that encounters 186 

with a predator occur as a Poisson process at rate ε, and that reproduction requires that 187 

an individual first avoid being consumed by a predator for a time period T. From the 188 

general properties of the Poisson process, this can be broken down into two 189 

independent Poisson processes. Namely, encounters that lead to capture (which are 190 

Poisson with rate εP1) and encounters that do not lead to capture (which are Poisson 191 

with rate ε(1-P1)). Thus Nc takes values drawn from a Poisson distribution with mean 192 

εP1T, and Nn from a Poisson distribution with mean ε(1-P1)T. 193 
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 194 

Since Nc and Nn are generated by independent processes, we can write the payoff as  195 

 196 

( ){ } ]1[][ 2211
cNNn PCCECFER −= , 197 

 198 

where E[] denotes the expectation of a stochastic process. 199 

 200 

From the properties of the Poisson process, if x is Poisson with mean λ, then  201 

 202 

[ ] ( )( ).1exp −= ttE x λ  203 

 204 

and using this, we can eliminate Nn and Nc from our expression for the payoff, giving  205 

 206 

R = F exp ε 1− P1( )T C1 −1( )( )exp εP1T C1C2 1− P2( )−1( )( ).  207 

 208 

If we take logs and divide by εT, we can simplify this to  209 

 210 

Rl =
ln R( )
εT

=
ln F( )
εT

−1+C1 1− P1( )+ P1C1C2 1− P2( )    (1) 211 

 212 

Maximising the above function, maximises the payoff. In order to make further 213 

progress, we must now specify the following functional forms.  214 

 215 

( ) ( )2211max21 exp, DfDfFDDF −−= . Thus, we assume that maximum fecundity 216 

(before any predator encounters) is a decreasing decelerating function of both D1 and 217 
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D2. The higher the values of f1 and f2, the higher the fixed costs of pre-capture and 218 

post-capture defences respectively.  219 

)1,0max( 111 DpP −=  220 

( )222 1,0max DpP −=  221 

That is, we assume that the probability of an attack succeeding decreases linearly with 222 

investment in defences. The higher the values of p1 and p2 the higher the anti-223 

predatory efficacy of pre-capture and post-capture defences respectively. 224 

( )111 1,0max DcC −=  225 

( )222 1,0max DcC −=  226 

We assume that the cost of defences increases linearly with the investment in 227 

defences. The higher the values of c1 and c2 the higher the per-use costs of pre-capture 228 

and post-capture defences respectively.  229 

 230 

 231 

These are perhaps the simplest functions that have the required properties outlined in 232 

the description above, Clearly, this restricts investment in defences such that p1D1, 233 

p2D2, c1D1 and c2D2 must all be less than one for the model to give sensible 234 

predictions. Thus as D1 approaches 1/c1 for example, any use of the first defence 235 

would cost an individual almost all of its fitness. Provided that p1 is not much smaller 236 

than c1, and p2 not much smaller than c2, these upper boundaries will not be 237 

approached for any reasonable strategy. 238 

 239 

Model predictions  240 
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We begin by identifying the types of different solutions (in terms of investment across 241 

the two defences) that are optimal in different circumstances. We define the following 242 

two terms that are central to the work that follows. 243 

 244 

1
1

1
1 −=

Tp
f
ε

β  245 

 246 

1
2

2
2 −=

Tp
f
ε

β  247 

 248 

β can be thought of as the ratio of the constutive cost to the benefit of defences. Note 249 

that it immediately follows that β1 ≥ −1  and β2 ≥ −1. First, let us ask if it is ever 250 

optimal for the prey never to make any investment in these costly defences. In all 251 

analyses we explore the effect of f1 and f2, which control the constitutive impact of 252 

defences on maximum fecundity.  253 

 254 

No investment: (D1, D2) = (0,0). 255 

This occurs when both the derivatives of equation (1) with respect to D1 and D2 are 256 

negative at (0,0). It is easy to show that this occurs whenever we satisfy two 257 

conditions: 258 

 259 

β1 > 0                                                                                                      (2) 260 

 261 

and  262 

 263 

β2 > 0                                                                                                      (3) 264 
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 265 

For this solution, the stability condition is the same as the existence condition, so 266 

whenever this solution is valid it is also stable. The above conditions are equivalent to  267 

 268 

Tpf ε11 >  and Tpf ε22 > . 269 

 270 

This is shown graphically in Figure 1 with example values for parameters. These 271 

conditions make intuitive sense. Increasing the f values increases the constitutive cost 272 

of defence. If the p value is small then the effectiveness of the associated defence is 273 

low, if ε is small then attacks rarely occur, and if T is small then individuals only have 274 

a short pre-reproductive period to survive: all of which should make investment in 275 

defences less attractive. That is, if the constitutive cost of defence has a larger impact 276 

on fitness than the increase in the probability of survival, prey should never invest in 277 

defences. Notice, that the occurrence of this no-defence equilibrium is influenced only 278 

by the constitutive costs of defence (f1 and f2) not by the costs of utilising the defences 279 

(c1 and c2).   280 

 281 

Investment only in pre-attack defences: (D1, D2) = (D1,0). 282 

This occurs when both the derivative of equation (1) with respect to D1 is zero and the 283 

derivative with respect to D2 is negative at (D1,0). Evaluation of these derivatives 284 

leads to two conditions again: 285 

 286 

Firstly, the derivative with respect to D2 gives  287 

 288 
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( )( ) 011 21111
2 <−−+

−
pDcDp

T
f

ε
 289 

 290 

Expressed in terms of β1 and β2 this becomes  291 

 292 

β2 > p1β1

4c1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ β1 + 2+ 2c1

p1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

β1

4a1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ β1 + 2+ 2a1( )                                                   (4) 293 

 294 

where a1 =
c

1

p1

 295 

 296 

The derivative with respect to D1 gives 297 

 298 

02 1111
1 =−+

−
Dcpp

T
f

ε
. 299 

 300 

Expressed in terms of β1 and β2 this becomes 301 

 302 

1

1
1 2c

D β−
= , 303 

 304 

which is positive providing β1 < 0.                                                                                                  305 

 306 

For (D1,0) to be stable we need the second derivative of R with respect to D1 to be 307 

negative at (D1,0). It is easy to demonstrate that this is always true. Thus, again this 308 



Acc
ep

te
d m

an
usc

rip
t 

 16

solution is stable any time that it is valid. So, biologically we can conclude that it is 309 

also possible for all investment to be concentrated in pre-attack defences. 310 

 311 

However there are further conditions on β1, since the optimal level of investment in 312 

defence in this case is given by  313 

 314 

1

1
1 2c

D β−
=   315 

 316 

The condition c1D1 < 1, together with β1 ≥ −1, leads to the restriction –1 < β1 < 0 ; 317 

and the condition p1D1 < 1 leads to the restriction –2a1 < β1 < 0.  318 

This gives  319 

 320 

–2min(0.5,a1) < β1 < 0                                                                     (5) 321 

 322 

which in addition to (4) gives the conditions for the  (D1,0) solution. 323 

 324 

These conditions are summarised graphically in Figure 1. Again, the results make 325 

intuitive sense. From our arguments in the previous section, this solution is more 326 

likely to occur under conditions where β1 is negative and β2 is positive (or only just 327 

negative). The other parameter group that affects the likelihood of obtaining this 328 

solution is a1. a1 takes a high value if the costs of using pre-attack defences is high 329 

and/or if the effectiveness of such defences is low. Hence, it is logical that increasing 330 

a1 restricts the area of (β1,β2) space where such solutions occur. From the arguments 331 

laid out already it is no surprise that the level of investment in pre-attack defences 332 
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only increases as β1 becomes more negative (because constitutive costs decrease or 333 

benefits increase) and/or as c1 is reduced (because responsive costs decrease). 334 

 335 

 336 

Investment only in post-capture defences: (D1, D2) = (0,D2) 337 

This occurs when the derivative of equation (1) with respect to D1 is negative and the 338 

derivative with respect to D2 is zero at (0,D2). Evaluation of these derivatives leads to 339 

two conditions again: 340 

 341 

Firstly, the derivative with respect to D1 gives  342 

 343 

( )( ) 01 2222111
1 <−+−+

− DpDccpp
T
f

ε
 344 

 345 

Expressed in terms of β1 and β2 this becomes  346 

 347 

β1 > p2

4c2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1+ c1

p1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ β2 β2 + 2( ) = 1+ a1

4a2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ β2 β2 + 2( )                                                    (6) 348 

 349 

where a2 = c2

p2

. 350 

 351 

The derivative with respect to D2 gives 352 

 353 

02 2222
2 =−+

−
Dcpp

T
f

ε
. 354 
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 355 

Expressed in terms of β1 and β2 this becomes 356 

 357 

2

2
2 2c

D β−
= , 358 

 359 

which is positive providing β2 < 0.  360 

 361 

For this solution to be stable we need the second derivative of R with respect to D2 to 362 

be negative at (0,D2). It is easy to demonstrate that this is always true, and thus again 363 

this solution is always stable when it exists. This means that it is possible to find 364 

combinations of parameter values where investment in post-attack defences occurs 365 

without any investment in pre-capture defence.  366 

 367 

Since this is the mirror image of the case above, it will not be surprising to find very 368 

analogous conditions for this case. The conditions for the existence of this solution are 369 

 370 

−1 < β2 < 0
−2a2 < β2 < 0

 371 

 372 

giving –2min(0.5,a2) < β1 < 0                                                                     (7) 373 

 374 

which together with (6) gives the conditions for the (0,D2) solution. 375 

 376 

These limits can again be interpreted intuitively as above, and are shown graphically 377 

in Figure 1.  378 
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 379 

Note, however, a significant difference between conditions (4) & (6); whilst a2 had no 380 

effect on the boundaries of the pre-attack only case, a1 (as well as a2) does affect the 381 

boundaries of the post-attack only case. This asymmetry arises from the fundamental 382 

asymmetry between the two types of defences, pre-attack defences occur before post-383 

attack defences, and thus influence the frequency with which post-attack defences are 384 

used.  However, post-attack defences do not affect the frequency with which pre-385 

attack defences are used. Increasing a1 (increasing the costs of utilising a pre-attack 386 

defence or decreasing its efficacy) increases the extent of (β1,β2) space where this 387 

post-attack only investment strategy occurs – again this is just as we would expect.   388 

 389 

Non-zero investment in both forms of defence  390 

At such a solution, the derivatives of equation (1) with respect to both D1 and D2 will 391 

be zero. Substituting the specific functional forms and differentiating gives: 392 

 393 

− f1
εT

+ p1 − 2p1c1D1 + 2p1c1D1 − p1 − c1( ) 1− c2D2( )p2D2 = 0                            (8) 394 

 395 

− f2

εT
+ 1− p1D1( ) 1− c1D1( ) p2 − 2p2c2D2( ) = 0      (9) 396 

 397 

These can be solved simultaneously for the non-zero combination of D1 and D2 that 398 

maximises the payoff. 399 

 400 

Using (9) we can get an expression for D2 in terms of D1: 401 

 402 
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1
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ε
                                                    (10) 403 

 404 

Using this substitution, and rearranging equation (8) gives 405 

 406 

( )( )
( )
( )1111
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2

2

2

21

21
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1
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⎡
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−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε
ε

                      (11) 407 

 408 

It is relatively easy to show that as D1 increases the RHS of this always increases, 409 

because the nominator gets larger and the denominator gets smaller, and the LHS 410 

always decreases (providing c1D1 < 1 and p1D1 < 1: which we have assumed to hold 411 

earlier). Thus there can be at most one solution where the two sides balance and so at 412 

most one solution with D1 > 0 and D2 > 0.  413 

 414 

Thus, for any parameter value combination, if a solution (D1,D2) exists, then this 415 

solution is unique.  416 

 417 

Using the standard methodology of considering the determinant of the Hessian matrix, 418 

the solution will be stable when this determinant is negative, so that  419 

 420 

∂ 2Rl

∂D1
2

∂ 2Rl

∂D2
2 > ∂ 2Rl

∂D1D2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

,∂
2Rl

∂D1
2 < 0,∂

2Rl

∂D2
2 < 0 421 

 422 

at the solution values (D1,D2). We obtain 423 

 424 
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∂ 2Rl

∂D1
2 = 2p1c1( p2D2(1− c2D2 )−1) 425 

∂ 2Rl

∂D2
2 = −2p2c2(1− p1D1)(1− c1D1) 426 

∂ 2Rl

∂D1D2

= (2p1c1D1 − p1 − c1)( p2 − 2p2c2D2 ) 427 

 428 

It is clear that both second derivatives are negative and so we only need the first 429 

condition to be solved. Substituting for D2 in (8) and tidying yields  430 

4 p1c1p2c2v1 − p2
2 p1c1v1 + f2

εTv1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

( p1c1v1 − ( p1 + c1 − 2p1c1D1)
2 ) > 0                       (12) 431 

 432 

where D1 is given by the solution of (11) and v1 = 1− p1D1( ) 1− c1D1( ). 433 

 434 

Thus a stable non-zero investment occurs if the solutions of (10) and (11) yield values 435 

of D1 and D2 such that  436 

0 < D1 < min 1
p1

,1
c1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 0 < D2 < min 1

p2

, 1
c2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  437 

 438 

and (12) holds. An unstable solution occurs if (10) and (11) yield such values and (12) 439 

does not hold. Unlike the other strategies discussed so far, this mixed-defences 440 

strategy is not guaranteed to be stable whenever it exists.  441 

 442 

Co-existence of solutions  443 

We consider the five possible solutions Stable (D1, D2); Unstable (D1, D2); (D*1,0); 444 

Stable (0, D*2); (0,0) where we use D*1 and D2* to indicate that if one of these single 445 
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defence solutions were to coexist for the same parameters as (D1, D2), the levels 446 

would in general be different to that of the same defence in the two-defence solution.  447 

 448 

It is clear from equations (2), (3),  (5) and (7) that (0,0) cannot co-exist with either of 449 

the single defence strategies, and by noticing that the left hand side of equation (9) 450 

decreases with increasing levels of either defence, it is also clear that it cannot co-451 

exist with either of the two-defence solutions (either the two-defence solution is stable 452 

when it exists or it is unstable).  453 

 454 

We shall now consider the two single-defence solutions. The lower boundary to the 455 

pre-attack only solution (D1,0) is given when the inequality in (4) is replaced by an 456 

equality i.e.  457 

( )11
1

1
2 22

4
a

a
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= βββ .                                                                          (13) 458 

 459 

The left-most boundary of the post-attack-only solution in Figure 1 is attained using 460 

(6) in a similar way to give:  461 

 462 

β1 = 1+ a1

4a2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ β2 β2 + 2( ).                                                                            (14) 463 

 464 

The gradient dβ2/dβ1 of the boundary of the (D1,0) solution, evaluated at the origin is 465 

simply 1/(2a1). For the left-most boundary to the (0,D2) solution, the gradient dβ1/dβ2 466 

evaluated at the origin is simply (1+a1)/(2a2). Thus, the gradient dβ2/dβ1 at this point 467 

is 2a2/(1+a1).  468 
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 469 

From Figure 1, we can see that there will be an area of overlap of the two regions if 470 

the gradient of the (0,D2) boundary is less steep than at the of the (D1,0) boundary at 471 

the origin, i.e. if  472 

 473 

11

2

2
1

1
2

aa
a

<
+

.         (15) 474 

 475 

However if (15) is not satisfied for a particular set of parameter values then the two 476 

single-defence-only solutions cannot co-exist.  477 

 478 

From before, the conditions for a solution (0,D2) are given by (6) and (7) and the 479 

conditions for a solution (D1,0) are given by (4) and (5). If we look at the simplifying 480 

case where 5.012 == aa , then (4) becomes 481 

 482 

( )3
2 1

1
2 +> βββ  483 

 484 

(5) becomes –1 < β1 < 0,  485 

 486 

(6) becomes 487 

 488 

( )2
4

3
2

2
1 +> βββ , 489 

 490 

and (7) becomes –1 < β1 < 0. 491 
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 492 

In general, β1 > -1 and β2 > -1 is the allowable region if c1 ≥0.5 p1, c2 ≥ 0.5 p2 and 493 

p1β1 > -2c1 (or p2β2 > -2c2 ) if c1 <0.5 p1 (c2 <0.5 p2). So if p1 ≤ 2c1 and p2 ≤ 2c2 then 494 

the full range of possible βs are valid (and so any parameter sets of this type give 495 

solutions as above), but if p1 > 2c1 and/or p2 > 2c2 then there will be parameter 496 

combinations that we cannot solve in this way; these cases correspond to defences 497 

which are so effective that a reasonable investment can reduce the probability of 498 

capture to zero, and we ignore this possibility here.  499 

 500 

We now show that (D1,D2) cannot occur with (D*1,0). For both of these to be 501 

solutions, each must satisfy equation (8), and we can see from this that D*1>D1.  .   502 

For (D1,D2) to be a solution we need these values to solve (10) and (11). For (D*1,0) 503 

we need equation (11) to be solved with the left-hand side replaced by 0. However 504 

this means that in this second solution the left-hand term is less than in the first, but 505 

the right-hand term is greater than the first (D*1>D1 and the right-hand term increases 506 

with D1); which yields a contradiction. Thus the two solutions cannot occur for the 507 

same parameters. 508 

 509 

Hence (D1,D2) can only occur together with (0,D2) (see Figure 1), or as a unique 510 

solution.   511 

 512 

In all of our numerical calculations (see the following section) a stable solution of this 513 

type (with investment in both defences) exists whenever none of the other three types 514 

do, although we have been unable to prove that this must always be the case.  515 

 516 
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We have shown there are five possible equilibrium solutions, four of which are ESSs 517 

((0,0), (D1,0), (0,D2), stable (D1,D2), together with the unstable (D1,D2) which is not 518 

an ESS). Thus without restrictions, there would be 32 possible combinations of 519 

solutions. However, we have shown that (0,0) can only exist as the sole solution, and 520 

that there can never be more than one solution from (D1,0), stable (D1,D2) and 521 

unstable (D1,D2). This leaves nine possible combinations, which we consider below. 522 

The following five combinations are all observed in Figure 1:(0,0); (D1,0); (0,D2); 523 

stable (D1,D2); (0,D2), stable (D1,D2).In addition to some of these, both (D1,0) , (0,D2) 524 

and (0,D2), unstable (D1,D2) are observed in Figure 3.This leaves the two possibilities 525 

of only unstable (D1,D2) and no solution, which are the two possibilities leading to no 526 

ESS. We have been unable to prove that these cannot occur, but have not observed 527 

them in any of our numerical investigations. 528 

 529 

Numerical Investigation of the Model   530 

 531 

Recall our definitions: 532 

1
1

1
1 −=

Tp
f
ε

β  533 

and 534 

1
2

2
2 −=

Tp
f
ε

β . 535 

We know that (0,0) occurs when β1 and β2 are both positive, and under these 536 

circumstances (0,0) can be the only solution. This translates to conditions Tpf ε11 >  537 

and Tpf ε22 > . 538 

 539 
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For all of the examples that follow we assume the values p1= 0.1, p2 = 0.1, εT = 10 540 

and c2=0.2. Then (0,0) is the unique solution when  f1 > 1 and f2 > 1. The boundaries 541 

of these conditions are shown by the dotted lines in Figure 1, and the region of no 542 

investment in defences lies above both these boundary values of f1 and f2 in the top 543 

right corner of Figure 1 (note the dotted lines will be partially covered by other lines).  544 

 545 

 546 

For the situation where the prey should invest only in pre-capture defences, there are 547 

two restrictions on f1:  –2 < β1 < 0 and –2a1 < β1 < 0. As before, the prey should not 548 

invest in post-capture defences where Tpf ε22 > . Under our default parameters 549 

values,  c1 = 0.2, and thus a1 = 2, since a1 = c1/p1. and therefore the most restrictive 550 

condition is that not involving a1. The region of (f1,f2) parameter space where only 551 

pre-capture defences are predicted therefore occurs when β1 is negative and (by re-552 

arrangement) f1>-pεT. Since 1111 += βεTpf , for our default values these fall at f1 553 

values of 1 and -1. However, we are only interested in non-negative values of f1 and 554 

f2, so the critical f2 values become 0 and 1.  555 

 556 

There is also a restriction on f2 given by  557 

 558 

( )11
1

1
2 22

4
a

a
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
> βββ  559 

 560 

In order to find this line, we simply take a range of f1 values, between the two extreme 561 

values (0 and 1), convert these to β1 values, and hence to β2 values, before converting 562 

these to f2 values. Since  563 
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 564 

1222 += βεTpf , 565 

 566 

we need to specify the value of p2. We assume this takes the value 0.1. Thus, the 567 

curved broken line and the vertical lines at f1 equals 0 and 1 in Figure 1 enclose the 568 

region where investment in pre-capture defences makes post-capture unnecessary. 569 

This is the top, left region of Figure 1.  570 

 571 

A very similar situation occurs for the (0,D2) solution. Here, there are two restrictions 572 

on f2: –2 < β2 < 0 and –2a2 < β2 < 0. Let us assume that c2 = 0.3, and thus a1 = 3, since 573 

a2 = c2/p2. Thus, the most restrictive condition does not involve a2. 574 

Since 1222 += βεTpf , for our default values these fall at f2 values of 1 and -1. 575 

However, we are only interested in non-negative values of f1 and f2, so the critical f2 576 

values become 0 and 1.  577 

 578 

There is then a restriction on f1 given by  579 

 580 

( )2
4

1
22

1

1
1 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
> βββ

a
a  581 

 582 

In order to find this line, we simply take a range of f2 values, between the two extreme 583 

values, convert these to β2 values, and hence to β1 values, before converting these to f1 584 

values. Thus, the solid curved line and the horizontal lines at f2 = 0 and f2 = 1 to the 585 

right of the curved line enclose the parameter values that yield this solution (in the 586 

bottom, right part of Figure 1).  587 
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 588 

Lastly, we show the solution where investment is spread across both defences, these 589 

must be solved numerically, and are only valid if both D values are positive, and that 590 

all four P and C values are positive. All these solutions are shown in Figure 1; the 591 

situation where non-zero investment in both defences is shown as a hatched region. 592 

Notice that to the right of the solid curved lines there are parameter combinations 593 

where the both-defences solution co-exists with another solution involving investment 594 

only in post-attack defences.   595 

 596 

In order to explore the nature of the mixed solution, in Figure 2 we plot the D1 and D2 597 

values for the mixed solution along a transect of f1 values where we hold f2 at the 598 

value 0.6. We observe that for f1 values close to zero there is no valid mixed solution, 599 

since simultaneous solution for non-zero D1 and D2 values predicts a negative D2 600 

value. In this region the only solution is for zero investment in D2 and all investment 601 

to be channelled into D1. At around f1 values of 0.4 we do begin to get a mixed 602 

solution with initially very low investment in D2. The D1 value at this point shown on 603 

Figure 2 is close to the value 1.5 predicted for the solution with zero investment in D2 604 

at f1 = 0.4. Generally as f1 increases, so D2 increases and D1 decreases. Eventually, at 605 

an f1 value around 1.05 the D1 value falls to zero, when this occurs, then Figure 2 606 

predicts the D2 value to be close to the 0.667 value predicted for the solution with no 607 

investment in D1 at this point.  608 

 609 

In Figure 3 we present the result of the same evaluation as in Figure 1 but where c2 is 610 

reduced six-fold to 0.05. Although the predictions are superficially similar, there are 611 

several interesting differences. Firstly, there is now a region of f1-f2 space where both 612 
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the (0,D2) and (D1,0) solutions are valid and stable. We must also consider the 613 

stability of the solution of investment across both defences. In figure 3, we only plot 614 

such solutions where they are stable. In Figure 1, the interior solution is stable 615 

whenever it exists. This is not true for the parameters chosen for Figure 3. As in 616 

Figure 1, when f1 < 1, the interior solution exists for all f2 values below the broken 617 

line marking the region of ((D1,0) solutions. However, it is only stable for a subset of 618 

lower f2 values. Thus, there can be a region where both (0,D2) and (D1,D2) are 619 

potential solutions but only the first of these is stable. As we have seen in Figure 1, it 620 

is possible also to find regions of parameter space where both solutions are stable 621 

simultaneously.  622 

 623 

Discussion  624 

In his influential work, Endler (1991) suggested that it may be more attractive for prey 625 

to interrupt the predation sequence as early as possible (see also Planque et al (2002) 626 

who argue the same relating to successive defences against brood parasitism). He 627 

argues this for a number of reasons. Firstly, failure of a later defence may be more 628 

likely to be catastrophic for the prey. Secondly, later in the sequence the performance 629 

of the prey may be weakened or exhausted by implementation of defences earlier in 630 

the sequence. Thirdly, the lost time and energy spent in repelling the attack will be 631 

reduced if the attack is resolved early in the sequence. Finally, investment in defences 632 

later in the sequence may be inefficient, if these defences are seldom used because 633 

defences used earlier in the sequence are generally successful in repelling attacks 634 

before the later-acting defences are implemented. The last point especially argues that 635 

we should expect investment in early (pre-capture) defences, but not in later defences.   636 

 637 
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Furthermore, early defences are more often constitutive, in that the prey does not have 638 

to detect the predator to be undetected, and so predator encounters might not affect the 639 

cost of early defences . In contrast, post-encounter defences are more often 640 

responsive, involving defensive behaviours or other physiological costs, such as 641 

regurgitation or reflex bleeding that are triggered by a specific attack.  642 

 643 

Our model predicts that there can be circumstances where it is optimal for the prey to 644 

invest in neither defence. This occurs if the constitutive costs of the defences are high, 645 

if the defences have low efficacy (per unit of investment), if attacks are rare and if the 646 

period during which the prey is exposed to predation is short. There are also 647 

circumstances where we predict investment in pre-capture defences but not post 648 

capture defences. This solution is more likely to occur under conditions where β1 is 649 

negative and β2 is positive (or only just negative). The parameter β for a given 650 

defence can be seen as a description of the cost-benefit ratio of the defences: β 651 

becomes larger (more positive) if the constitutive costs of the defence are high.  β also 652 

becomes larger if the attack rate, the period that must be survived by the prey and/or 653 

the efficacy of the defence are low. Whether or not we predict investment in pre-654 

capture defences only is also affected by the value of a1. This parameter takes a high 655 

value if the costs of using pre-capture defences are high and/or if the effectiveness of 656 

pre-attack defences is low. Increasing a1 restricts the area of (β1,β2) space where 657 

investment only in pre-capture defences is optimal. The level of investment in pre-658 

capture defences increases as β1 becomes more negative and/or as c1 is reduced.  659 

 660 

In circumstances where the asymmetry of the cost/benefit ratios are opposite (that is 661 

βs is negative and β1 is positive (or only just negative), then we get investment in 662 
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post-attack defences only. Where the two β values are generally similar and not too 663 

large and positive, we predict investment across both defences. Indeed, such solutions 664 

are likely where f1 and f2 are small, which might be reasonable for defences such as 665 

colouration and sequestering of defences. Many defences serve other, perhaps primary 666 

functions, such as catching or subduing prey, and so their marginal canonical costs in 667 

terms of defence might be small. We find that the costs of one defence affects the 668 

likelihood of investment in the other (cf Figure 3 and 1).  669 

 670 

Further, there are combinations of parameter values for which different strategies are 671 

both stable. In such circumstances the strategy to which the population settles will 672 

depend on the history of the population. Thus, the model predicts that it is difficult to 673 

make generalisations about how many and which defences a certain prey type will 674 

invest in  without quantitative evaluation of the different properties of each of the 675 

alternative defences, as we discuss above. Our model might therefore provide insight 676 

in to, for example, the evolution of aposematism in the lepidoptera. Many closely 677 

related species have differing defensive strategies, with some investing heavily in pre-678 

capture defences (excellent crypsis paying opportunity costs) and others having both 679 

pre-capture (warning coloration) and post-capture (aversive chemistry) defences. Our 680 

model shows how easily these might be equally fit, and so divergent selection might 681 

occur based initially on very minor differences, or even genetic drift.  682 

 683 

There is a significant difference between the two types of defence, in that pre-attack 684 

defences occur before post-attack defences, and thus influence the extent to which 685 

post-attack defences are used. However, post-attack defences do not affect the 686 

frequency with which pre-attack defences are used. This results in the co-existence of 687 
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solutions in both defences and in only post-attack defences, but not in both defences 688 

and only pre-attack defences. 689 

  690 

An interesting extension of our model would be to include a range of predator types 691 

(or equivalently a range of different predatory situations), with different defences 692 

differing in their rank order of efficacy against these different predators. In particular,  693 

this would allow exploration of generalism and specialism in defences and in 694 

particular the general trend (noted by both Endler 1991 & Caro 2005) that defences 695 

used later in the predation sequence are more likely to be specialised for a particular 696 

type of predator than more general defences used earlier in the sequence. Again, the 697 

role of multi-functional defences was identified by Caro (2005) as another of his ten 698 

most pressing questions in predator-prey interactions.  699 

 700 

Endler’s (1991) categorisation of different anti-predatory defences in animals has 701 

been highly influential, but development of theoretical underpinning for his 702 

predictions and empirical testing of these predictions has been lacking. We hope our 703 

work will be a useful early step in developing a more solid theoretical base for 704 

understanding diversity of anti-predatory traits. There have been developments on the 705 

empirical side. Low (1998) carefully demonstrated investment across a range of 706 

defences by the leaf-mining larvae of a moth (Antispila nysaefoiella) against a 707 

specialist parasitoid. Langridge et al (in prep) demonstrated that the anti-predatory 708 

behaviours of cuttlefish (Sepai officinalis) accords with three of Endler’s specific 709 

predictions: that later in the sequences of an attack, defences become more predator-710 

specific, more risky if unsuccessful in deterring attack and more costly to mount. 711 

More empirical and theoretical work to explore and develop these predictions would 712 



Acc
ep

te
d m

an
usc

rip
t 

 33

be valuable. In this, an important resource may be the comparatively much more 713 

extensive literature seeking to understand the diversity of anti-herbivore traits shown 714 

by plants (e.g. Biere et al, 2004, Ode 2006). We suggest that a useful next 715 

development for our understanding of anti-predator behaviours would be to explore 716 

how applicable current understanding of anti-herbivore defences is to the different 717 

system.  718 

 719 

The diversity of possible solutions to investment across only two defences in our 720 

simple model where prey face only one type of attack demonstrates that a general 721 

understanding of the diversity of anti-predatory suites used by different prey will be a 722 

challenge. However, to meet that challenge, we feel that we have demonstrated that 723 

simple verbal reasoning will be insufficient and models that allow quantitative 724 

evaluation of a complex of different costs and benefits (as well as interaction between 725 

the effectiveness of defences, not considered here) will be required.  726 

 727 

728 
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 766 

Figure captions 767 

 768 

Figure 1: Different optimal solutions in terms of investment in pre-capture and post-769 

capture defences for different combinations of values of the parameters f1 and f2. The 770 

higher the values of f1 and f2, the higher the fixed costs of pre-capture and post-771 

capture defences respectively. Other parameter values: εT= 10, p1 = 0.1, p2 = 0.1, c1 = 772 

0.2, c2 = 0.3. When both f1 and f2 are greater than 1 (top right quarter of this figure), 773 

then zero investment in both defenses is predicted. There is a region where f1 is less 774 

than 1 and f2 is sufficiently high where investment only in pre-capture defences is 775 

predicted. This region is bounded by the vertical dotted line at f1 = 1 and the curved 776 

broken line that separates this region from a hatched region below. The hatched 777 

region indicates parameter combinations for which investment across both defences is 778 

predicted. Note this solution can co-exist for some parameter combinations with 779 

investment only in the later-acting (post-capture) defence. The both-defences solution 780 

is plotted only when it is stable (although it is stable in all cases where it exists for this 781 

figure, this is not true in general). The region where only investment in post-capture 782 

defences is optimal occurs in the bottom right of the figure and is bounded by the 783 

horizontal broken line at f2 = 1 and the curved solid line that cuts through the middle 784 

of the hatched region.  785 

 786 

Figure 2: D1 (broken line) and D2 (solid line) values for the mixed solution shown in 787 

Figure 1 along a transect of f1 values where we hold f2 at the value 0.6. All other 788 
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values are as in Figure 1. Clearly, only combinations where both D1 and D2 are non-789 

negative are valid.  790 

 791 

Figure 3: Different optimal solutions in terms of investment in pre-capture and post-792 

capture defences for different combinations of values of the parameters f1 and f2. The 793 

higher the values of f1 and f2, the higher the fixed costs of pre-capture and post-794 

capture defences respectively. The values of the other parameters are the same as 795 

those used for Figure 1, except c2 = 0.05. When both f1 and f2 are greater than 1 (top 796 

right quarter of this figure), then zero investment in both defenses is predicted. There 797 

is a region where f1 is less than 1 and f2 is sufficiently high when investment only in 798 

pre-capture defences is predicted. This region is bounded by the vertical dotted line at 799 

f1 = 1 and the curved dotted line. The hatched region indicates parameter 800 

combinations for which investment across both defences is predicted and this solution 801 

is stable. However, this solution is not stable everywhere where it is valid, and so this 802 

solution is substantially less commonly predicted than in Figure 1.  Note that this 803 

solution can co-exist for some parameter combinations with investment only in the 804 

later-acting (post-capture) defence. The region where only investment in post-capture 805 

defences is optimal occurs in the bottom right of the figure and is bounded by the 806 

horizontal broken line at f2 = 1 and the curved solid line. Between the two curved 807 

lines there is a region labelled “both”, where both the solution with investment only in 808 

post-capture defences and the solution with investment only in pre-capture defences 809 

are possible.  810 
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Fig. 1 813 

 814 
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Fig. 2 815 
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Fig. 3 818 
 819 
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