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Abstract14

For groups of animals to keep together, the group members have to perform switches between 15

staying in one place and moving to another place in synchrony. However, synchronization 16

imposes a cost on individual animals, because they have to switch from one to the other 17

behaviour at a communal time rather than at their ideal times. Here we model this situation 18

analytically for groups in which the ideal times vary quasi-normally and grouping benefit 19

increases linearly with group size. Across the parameter space consisting of variation in the 20

grouping benefit/cost ratio and variation in how costly it is to act too early and too late, the 21

most common optimal solutions are full synchronization with the group staying together and 22

zero synchronization with immediate dissolution of the group, if the group is too small for the 23

given benefit/cost ratio. Partial synchronization, with animals at the tails of the distribution 24

switching individually and the central core of the group in synchrony, occurs only at a narrow 25

stripe of the space. Synchronization cost never causes splitting of the group into two as either 26

zero, partial or full synchronization is always more advantageous. Stable solutions dictate 27

lower degree of synchrony and lower net benefits than optimal solutions for a large range of 28

the parameter values. If groups undergo repeated synchronization challenges, they stay 29

together or quickly dissolve, unless the animals assort themselves into a smaller group with 30

less variation in the ideal times. We conclude with arguing that synchronization cost is 31

different from other types of grouping costs since it does not increase much with increasing 32



Acc
ep

te
d m

an
usc

rip
t 

 2 

group size. As a result, larger groups may be more stable than smaller groups. This results in 33 

the paradoxical prediction that when the grouping benefit/grouping cost ratio increases, the 34 

average group sizes might decrease, since smaller groups will be able to withstand 35 

synchronization challenges. 36 

 37 

Keywords: group behaviour; modelling of behaviour; synchronization; group cohesion; group 38 

size 39 

 40 

INTRODUCTION 41 

Many animals live in stable or semi-permanent groups or at least spend shorter or 42 

longer periods of time in loose aggregations. In order to stay in proximity, group members 43 

need to coordinate when to stay in one place and when to travel. In other words, each animal 44 

has to strike a compromise between switching behavioural activities in close synchrony with 45 

others and switching the activities as close as possible to its individual ideal time (e.g, 46 

Ruckstuhl, 1999; Meldrum and Ruckstuhl, 2009). 47 

One example of such situation is fleeing from a predator. In many instances, the 48 

predator is noted well ahead of possible attack (either directly by the animal itself or through 49 

the alert behaviour of other flock/herd members, Sirot and Touzalin, 2009) and then an 50 

“economics of fleeing” comes into effect (Ydenberg and Dill, 1986). Initially, the costs of 51 

staying are minute (because the risk of a successful attack from large distance is negligible) 52 

and therefore lower than the costs of fleeing (including energy for the flight and lost 53 

opportunity to continue with foraging or resting). As the predator approaches, costs of staying 54 

increase at an accelerating rate (because of the climbing probability of actual attack and risk 55 

of being caught) while the costs of fleeing remain stable or increase only slightly (e.g. the 56 

animal has to run faster or for longer). At the moment when the costs of staying overcome the 57 

costs of fleeing, the animal should depart. Because many factors affecting both types of costs 58 

(such as individual ability to evade attack, current position in the group, satiation/energy 59 

reserves) vary between individuals, the ideal departure time is different for each animal. If 60 

everybody sticks to its ideal timing, animals will depart individually, the group will 61 

disintegrate and the benefits of staying and behaving together will be lost. On the other hand, 62 

should the group stay fully together and enjoy the associated benefits, everybody has to make 63 

a smaller or larger concession from its ideal timing. This dilemma is present in every situation 64 

where grouped animals can draw a benefit from switching synchronously from one behaviour 65 
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to another such as departure from a resting place, stopping migration to rest, switching from 66 

monitoring a predator to fleeing. However, departure from a place is perhaps the most typical 67 

example and therefore the model will be described in terms of who leaves when. 68 

Synchronization can be viewed as a consensus decision making (Conradt and Roper 69 

2005; Conradt and List, 2009). Several theoretical and empirical studies have documented 70 

that animals can “agree” on the common solution using simple behavioural rules (Couzin et al 71 

2005; Amé et al 2006; Martín et al 2006). If there are just two or a few disjunct possible 72 

solutions (e.g., a choice between distinct spatial goals or shelters) then simple local rules can 73 

be found that guide the group either to one of the goals, or lead to splitting of the group (Amé 74 

et al 2006, Couzin et al, 2005). Also, for groups of two animals and a continuous range of 75 

possible preferences (e.g., times of a behavioural switch), models have been developed that 76 

combine the mechanisms of coordination (e.g., communicating about inner state, simple 77 

reaction to the behaviour of the other animal) with their fitness outcomes (Rands et al., 2003; 78 

Dostálková and Špinka, 2007). Situations where there is a continuum of preferences in larger 79 

groups have been much less investigated. The only two previous studies to address these 80 

questions in terms of costs and benefits are those by Conradt and Roper. In the first paper, 81 

Conradt and Roper (2003) show that agreeing democratically on the time of the switch is 82 

usually more beneficial for the group than yielding to the time enforced by one leader animal, 83 

even if that animal has  more experience or better judgement than the others. In their next 84 

study, Conradt and Roper (2007) document that for groups of three animals, agreeing on any 85 

of the three times preferred by the three group members is evolutionary stable. They then 86 

expand this analysis to larger groups and argue that also for those, any shared decision (e.g., 87 

even departing when the first animal wants to depart) is evolutionary stable. This is due to the 88 

fact that if a small subset of the group chooses to depart at another time, it will acquire some 89 

benefit from more appropriate timing (i.e. it will decrease its consensus costs), but it loses the 90 

whole benefit of acting together with the original large group. This argument holds only if the 91 

costs are small relative to grouping benefits. Conradt and Roper (2007) state this verbally but 92 

stop short of analysing the balance between consensus costs and grouping benefits 93 

quantitatively and that is where our study carries on. 94 

The trade-off can result in four types of situations: either all animals “agree” on a 95 

common departure time (full synchronization); or each animal leaves individually (no 96 

synchronization); or something in between occurs with some individuals departing on their 97 

own while the rest leaves at a common time (partial synchronization); and lastly, animals may 98 
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be also leaving in smaller subgroups (group splitting). Our model aims at answering three 99

questions. First, how probable are the cases of full, partial and zero synchronization, and of 100

group splitting? How do these probabilities depend on the benefit of being synchronized, and 101

the costs departing too early or too late? Second, are the animals in a group able to cooperate 102

on an optimal synchronization or are the evolutionary stable strategies for this 103

synchronization problem suboptimal in terms of resulting net benefits? Third, the 104

sychronisation of group departures may have an important influence on group stability and 105

therefore stable group size. Therefore we also asked: Will repeated synchronization 106

challenges lead to group stabilization or disintegration? 107

 108

MODEL I DESCRIPTION: ONE COMMON DEPARTURE VERSUS INDIVIDUAL 109

DEPARTURES 110

 111

The detailed elaboration of the model and derivation of its results is given in Appendix 112

A. We suppose that a group of N animals is about to switch from one behaviour to another 113

(e.g., to leave a resting place or to switch from monitoring a predator to fleeing). The animals 114

in the group have different ideal times for the switch. These individual ideal times 
*

it  are 115

symmetrically distributed around zero and constrained to the interval (-tmax, tmax). For 116

simplicity we assume (-tmax, tmax) = (-1, 1) (Fig. 1). For most of the animals, the individual 117

ideal times are not far from t*
 = 0 while only a negligible proportion of animals prefer times 118

immediately after t*
  = -1  or just before t * = 1. In other words, the probability of the position 119

of ideal time t* 
for a randomly chosen animal is the highest for t*

  0 and it is close to zero 120

for t * near -1, 1.. We assume that concrete ideal times t*
  are realizations of continous random 121

variable "ideal time" defined by its density function f. 122

The model is setup in terms of grouping benefits and synchronization costs.   123

An animal that departs at a moment ti when a fraction  p(ti) (0 ≤ p(ti) ≤ 1) of the N-sized group 124

depart gets a grouping benefit proportional to the number of animals in the departing group,  125

p(t i) NQ, where Q is a constant. If an animal departs too early, i.e. at a time ti before its ideal 126

time 
*

it , it is penalised by - (1-ω)L (
*

it  - ti); if it leaves too late at ti > 
*

it , it receives the penalty 127

of – ωL (ti - 
*

it ). The parameter ω (0 ≤ ω ≤1) describes whether it is more costly to leave 128

prematurely (ω < 0.5) or rather with a delay (ω > 0.5).  The product NR (where R = Q/L and 129
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NR ≥ 0) is the second parameter of the model. The ratio R = Q/L quantifies how important it 130

is to be in synchrony with others, relative to the importance of departing close to the 131

individual ideal time. The ratio R is multiplied by the group size N because the model 132

assumes that the larger the group, the higher the grouping benefit. Thus the product NR 133

quantifies how much an animal can get from synchronization: the higher the parameter NR, 134

the higher net potential benefit can the animals cash from being staying with the group. 135

The model examines how an animal should behave (i.e., when to leave) in order to 136

accrue the highest possible net benefit, given its specific ideal time 
*

it  and the parameters NR 137

and ω. Parameters NR and ω are equal for all animals in the group. Group size N is considered 138

fixed for this model. We consider two strategies: either to depart individually at its own ideal 139

time, or to leave together with other animals in one mass departure (Fig. 1). The solitary 140

departure avoids any penalization for improper timing but gets no benefit from 141

synchronization, hence its net benefit is zero. The animals participating in the mass departure 142

benefit from synchronization (in direct proportion to the percentage of animals that leave with 143

them), but pay for deviating from their ideal times. The cost of participating in the mass 144

departure are higher for animals at the tails of the distribution and therefore, animals at the 145

tails should be more inclined to use the solitary strategy while animals with their t*i closer to 146

the centre of the distribution should rather join the mass departure (Fig. 1). We suspect that 147

when ω < > 0.5, the time of mass departure tD will be different from zero and also the times t1 148

and t2 (breaking points where the solitary changes into the mass departure strategy and back) 149

will be asymmetrically positioned. In the solution of the model, we are searching for such 150

combination of times t1 , tD and t2 that brings the highest net benefit, depending on the 151

parameters NR and ω. If t1 = t2, then each animal departs on its own and there is no 152

synchronization. If -1 < t1 < t2 < 1, then some animals depart solitary and some in the mass 153

departure, and we label this partial synchronization. And finally full synchronization occurs 154

when t1 = -1 and t2 = 1. 155

The net benefit function B(t1, tD, t2) is the sum of the grouping benefit function BG(t1, tD, t2) 156

and timing cost function BC(t1, tD, t2).  157

B(t1, tD, t2) = BG(t1, tD, t2) + BC(t1, tD, t2), where 158

BG(t1, tD, t2) = NR  (
2

1

)(

t

t

dxxf )
2 
 159
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BC (t1, tD, t2)  = -
Dt

t
D dxxfxt

1

)()(  - (1- )
2

)()(

t

t
D

D

dxxftx   160

Thus, the individually departing animals do not get any grouping benefits and do not pay any 161

timing (synchronization) costs, whereas for animals leaving in the mass departure, the net 162

benefit equals the grouping benefit minus the synchronization costs due to un-ideal timing of 163

the departure. 164

We look for two types of solutions: an optimal and a stable one. The optimal solution 165

is such that an animal acquires, on average, the highest summary net benefit, whereas the 166

stable solution is a solution whose net benefit cannot be improved by unilateral adoption of 167

another solution by a small subset of the animals.  168

Therefore optimization procedure means to find triplets [t1, tD, t2] depending on NR  and  so 169

that the value of net benefit function B is maximal. Using the classical metod for maxima 170

finding we obtain the set of maxima (
1t

B

1t
B

 = 
2t

B

2t
B

 = 
Dt
B

Dt
B

 = 0) inside and on the borders of the 171

simplex {-1  1t Dt 2t  1}that correspond to zero, partial and full behavioural 172

synchronization.. After comparison of all possible maximal points for given parameters NR 173

and  we obtain the point of global maximum – the optimal strategy I=[t1, tD, t2]. 174

The strategy I = [t1, tD, t2] is then stable, if the mixed net benefit is locally maximal. We 175

consider an alternative strategy J "sufficiently" close to the strategy I, defined as J = [u1, uD, 176

u2]. The mixed net benefit can be defined as B(I, J) = BG (I,J) + BC (J) = NR 177

(
2

1

)(

t

t

dxxf )(
2

1

)(

u

u

dxxf )+ BC (J), where BC (J) = BC ( u1, uD, u2) as defined earlier. Then I is 178

stable if B(I, J) < B(I,I) for each I  J. 179

 180

MODEL II DESCRIPTION: SPLITTING INTO SUBGROUPS 181

The model assumes the same situation with the same costs and benefits as Model I. 182

However, for each level of relative grouping benefit (i.e., for each NR), it compares the net 183

benefit of two strategies: one mass departure versus departure in two subgroups. For 184

simplicity, time costs are kept symmetric (corresponding to ω = 0.5) and only the optimal 185

solution is sought. The full description and solution of Model II is given in Appendix B. 186

 187
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RESULTS 188 

Model I: optimal solution 189 

Fig. 2 shows which of the three basic scenarios (full, partial and no synchronization) 190 

brings the highest net benefit for specific combinations of NR and ω. Most of the parameter 191 

space is occupied by either no synchronization (the area below the lower full line) or full 192 

synchronization (the area above the upper full line) while partial synchronization is superior 193 

only within the narrow croissant-shaped area. As ω deviates more and more from 0.5, full 194 

synchronization becomes the most prominent strategy. This is because for ω near zero or one, 195 

departing after or before the individual ideal time, respectively, gets almost no penalty and 196 

thus animals can cheaply achieve a common departure by waiting very late or by acting very 197 

prematurely.  198 

Fig. 2 also maps (in grades of gray shading) the net benefits achieved by the optimal 199 

strategies. Higher net benefits can be harvested (for the same value of parameter NR) for 200 

extreme values of ω, where either premature action or delay are cheap and full 201 

synchronization is therefore easily achieved by agreeing to a very early or very late common 202 

departure  203 

 204 

Model I: stable solution 205 

Fig. 3 illustrates the distribution of stable solutions across the parameter space. 206 

Similarly to the optimal solutions, there is a croissant-shaped area (delimited by dashed lines 207 

in Fig 3) within which partial synchronization is a stable strategy. Above the croissant, full 208 

synchronization is stable. The lower boundary for partial synchronization and the boundary 209 

between partial and full synchronization are both shifted upwards (specifically, to twice as 210 

high NR) in comparison with the optimal solution. That is, the stable solution dictates a lower 211 

degree of synchronization than the optimal solution in a large area of the parameter space, 212 

including a place where the optimal solution prescribes full synchrony while the stable 213 

solution is no synchrony at all (Fig. 4). In this area, the stable strategy brings substantially 214 

lower net benefit than the optimal one (Fig. 4). Why this is so? An animal should participate 215 

in the mass departure only if the benefit outweighs the cost. The cost of improper timing is 216 

always paid solely by the specific individual, but there are two kinds of benefits: one goes to 217 

the animal itself (as it is part of the synchronized subgroup) and another goes to every 218 

synchronized animal because through the contribution of the focal animal, the synchronized 219 



Acc
ep

te
d m

an
usc

rip
t 

 8 

subgroup increases in size. In the optimal solution, where the costs and benefits are averaged 220 

over the group, both types of benefits enter the equation and they are able to pay for higher 221 

timing cost, thus drawing more of the animals from the tails into the synchronization. In the 222 

stable solution, only the first type of benefit counts and thus more animals will opt out the 223 

synchrony. 224 

The second difference between the stable and the optimal solutions is that zero 225 

synchronization is a stable strategy across all the parameter space, and not only below the 226 

croissant. In the areas of higher and high NR, i.e. within and above the croissant, two stable 227 

strategies coexist: the partial/full synchronization and the zero synchronization, of which the 228 

former brings higher net benefit. Zero synchronization is stable because once it becomes 229 

established, each animal departs at a different time and therefore it is difficult for a small 230 

fraction of animals to set foot with an alternative strategy, as their attempts to synchronize get 231 

no support from the majority. 232 

 233 

Splitting into subgroups 234 

Splitting into two subgroups is never an optimal strategy because for any given NR, the 235 

optimal strategy with one central departure always brings higher net benefit than the best two-236 

departure option (Fig. 5).  237 

 238 

Repeated synchronizations 239 

What happens when the synchronization challenge is repeated? If the grouping 240 

benefit/consensus cost ratio (NR) is high, then no animals are shed and the group remains of 241 

the same size across a single or repeated challenges. Low NR leads to zero synchronization 242 

and therefore to immediate dispersal of the group on the first challenge. The interesting case 243 

occurs with partial synchronization during which the group size is trimmed (Fig. 6). What 244 

happens on the next encounter depends on what is the distribution of ideal times in the 245 

downsized group. To simplify the solution, we restrict the analysis of this problem to 246 

symmetric costs of time (corresponding to ω = 0.5 in the previous model) and to the optimal 247 

solution.   248 

If each animal keeps its ideal time from one challenge to the next then during partial 249 

synchronization both the group size and the variability of the density distribution of ideal 250 



Acc
ep

te
d m

an
usc

rip
t 

 9 

times is also trimmed (Fig. 6b), but the latter more so because the costly tails of the 251 

distribution are shed. Therefore, the grouping benefit/consensus cost ratio increases and the 252 

group size stabilizes at a reduced size. The derivation of this result is given in Appendix C. 253 

We call this option the Assortment scenario as it results in a subgroup where members are 254 

more alike in terms of their time preferences than in the original group.  255 

If partial synchronization leads to a smaller group in which the variation of ideal times 256 

remains as large as before the reduction (i.e. individuals do not keep their individual times 257 

from one challenge to another, Non-Assortment scenario), then the consensus costs remain 258 

unaltered while grouping benefits fall (Fig. 6c). Consequently, the group is reduced further 259 

during next challenge or challenges until it disintegrates (see Appendix C). 260 

 261 

Minimal group size 262 

It follows from the analysis of repeated synchronizations that in Fig. 2, that the upper 263 

border of the partial synchronization area delineates the minimal R value for which the group 264 

of size N remains cohesive in the Non-Assortment scenario, and the lower border demarcates 265 

group cohesion boundary for the Assortment scenario. In the analysis of Models I and II, we 266 

have assumed that  the group size was fixed, and the relative “per animal” grouping benefit R 267 

was varied. Conversely, the chart can be understood as illustrating how the stability of a 268 

group depends on its size N, for a given “per animal” grouping net benefit R (Fig. 7). 269 

 270 

DISCUSSION 271 

Our models yield three main insights into the links between the grouping-benefit-272 

versus-consensus-costs trade-off, behavioural synchronization and group size and stability. 273 

First, the results indicate that synchronization of departures will often be an all-or-274 

nothing phenomenon. Model predicts that if the benefit of staying in a group of animals 275 

depends linearly on the size of the group (which is the assumption of the model) and the cost 276 

of staying in the group varies quasinormally among the group members, then the group will 277 

most of the time either switch behaviour synchronously and thus stay together, or all 278 

individuals will behave independently and the group will disintegrate. The cases when 279 

animals at the tails of the distribution will act solitarily and the rest of the group in synchrony 280 

are predicted to be rare. In other words, the overall grouping-benefit-to-consensus-costs ratio 281 
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is predicted to decide, in most cases, for all animals to either depart synchronously or 282 

individually, with individual differences such as boldness/fearfulness (Reale et al., 2007) or 283 

satiation (Rands et al., 2004) playing only a marginal role in this situation. Moreover, Model 284 

II shows that splitting into two subgroups brings lower net benefit than the central 285 

synchronization in one group, indicating that synchronization challenges will not lead to 286 

separation into smaller units. Finally, the analysis of repeated synchronization events with no 287 

assortment shows that even when partial synchronization occurs, the group will quickly 288 

diminish and disintegrate. 289 

Second, Model I shows that when individuals in groups behave selfishly, a much 290 

weaker synchronization, higher probability of group disintegration and lower net benefits are 291 

predicted than in groups that behave optimally from the overall fitness point of view. This is 292 

due to the fact that the cost of staying with the group is carried individually by each animal, 293 

whereas benefits from the presence of the individual in the group are cashed both by the 294 

animal in question (it enjoys the company of others) and by all other group members (because 295 

the groups stays larger). Therefore, if the animal counts in only its own benefits (the stable 296 

solution), it is prepared to expend less costs to stay in the group than if everybody’s benefits 297 

are taken into account. Moreover, Model I documents that zero synchronization is a stable 298 

solution all across the parameter space. Why zero synchronization is stable everywhere and 299 

full synchronization is not? Full synchronization is unstable with low NR since any individual 300 

can, independently of what others do, default from the synchrony, leave at its individual ideal 301 

time and cash in the benefit of not paying any penalty for improper timing. In the contrary, 302 

skipping individually from zero synchronization to a partial or full synchronization just by 303 

individual action is impossible, since in order to achieve synchrony, you need pals to go with 304 

you. The existence of zero synchronization as a solution for the entire parameter space in the 305 

stable, but not in the optimal solution further underscores the general implication of our 306 

models that evolutionary stable regime of synchronized departures will often bring 307 

substantially lower net benefit than the optimal one. 308 

The optimal-stable solution dichotomy shows that there is a Prisoners Dilemma type 309 

of game underlying our models (Fletcher and Zwick, 2007). If an animal plays Stable against 310 

a group that plays Optimal, it gets a better pay-off than if it would play Optimal. However, as 311 

animals shift from the Optimal to the Stable strategy, the whole group gradually starts playing 312 

Stable, and everybody ends with a worse pay-off than it would get if the whole group kept 313 

playing Optimal. The combination of our two models thus predicts that sub-optimally low 314 
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degree of synchronization will be frequently observed in departures and other major cohesion 315 

influencing behavioural switches unless the optimal strategy could be maintained by altruism-316 

supporting mechanisms such as relatedness, reciprocity or assortment (Fletcher and Zwick, 317 

2006, 2007; Frommen et al., 2007; Fischhoff et al., 2009). 318 

Third, and perhaps most interestingly, the current study brings to light the 319 

phenomenon of minimal stable group size. To our knowledge, this is the first study pointing 320 

to this phenomenon and identifying synchronization of behaviour as its driving force. Our 321 

results indicate that the need to synchronize the starts and stops of movements will in many 322 

cases set a minimal threshold group size below which group cohesion will no longer be 323 

beneficial. The situation is especially clear in the non-assortment scenario, where groups 324 

above a size that makes full synchronization stable are predicted to stay together while 325 

smaller groups should disintegrate. Thus the model predicts that when per capita grouping 326 

benefits are high, the average group size should decrease because small groups will be able to 327 

withstand synchronization challenges.  328 

How does this seemingly paradoxical prediction arise? The synchronization cost 329 

differs substantially from other types of grouping costs considered so far. In most of the 330 

models and reviews published to date, the costs to an individual of being in a group were 331 

thought in terms of foraging interference (Stillmann et al., 2000; Sansom et al., 2007), 332 

reproductive interference (Westneat and Sherman, 1997), proximity-transmitted pathogens 333 

(Côté and Pohlin, 1995) or similar factors. For instance, in their influential book, Krause and 334 

Ruxton (2002, page 41) list twelve different types of grouping costs, but do not mention 335 

synchronization cost. The costs listed by Krause and Ruxton were assumed to increase with 336 

increasing group size, often at an accelerating rate (Fig. 8a). In contrast, the synchronization 337 

cost in our model remains constant, irrespective of group size (Fig. 8b). This is because the 338 

synchronization cost to an individual is given by the time distance between its ideal time and 339 

the time of common departure and this distance neither shrinks nor expands if more or fewer 340 

other animals also pay their costs. Previous models assumed that even very small grouping is 341 

better than solitary life and sought to find the optimal and the maximal stable group size (Fig. 342 

8a). Our model shows that when the need to synchronize is the major cost of grouping, then 343 

net benefit may be lower in small groups than in solitary animals and a certain group size is 344 

needed for the grouping benefits to offset the synchronization costs (Fig. 8b). It remains to be 345 

investigated how important role the movement synchronization costs play in determining 346 

animal group sizes in nature. In some cases, it is possible that the synchronization and other 347 
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types of grouping costs will combine so that the resulting cost function, together with 348 

depreciating grouping benefits, will set both minimum and maximum profitable group size 349 

(Fig. 8c). Our results also show that smaller groups are stable if animals assort according to a 350 

feature that determines their preferred departure times such as boldness/shyness (Croft et al., 351 

2009) or body size (Ruckstuhl, 1999; Hoare et al., 2000). 352 

The predictions of our models are linked to two crucial assumptions, namely that the 353 

grouping benefit increases linearly with the group size, rather than according to a depreciating 354 

function, and that the heterogeneity in ideal departure times is unimodally distributed. If the 355 

first assumption is relaxed, regular group splitting might occur in the form of a fission-fusion 356 

dynamics (Conradt and Roper, 2000; Pays et al., 2007). If ideal times are not unimodally 357 

distributed, more permanent splitting will probably happen, such as in the case of sexual 358 

segregation (Ruckstuhl and Kokko, 2002). Also, the total constancy of synchronization cost 359 

over all group sizes is an idealization since in very small groups with quorum decision-360 

making, individual animals will have some influence on the time of common departure and 361 

cost will be consequently somewhat lower. Further, our model only addresses possible 362 

decrease in size, splitting or dissolution of already existing groups, but not their formation or 363 

increase through individuals joining. Finally, the models only address major behavioural 364 

transitions in a world where being member of a group is an all-or-nothing state that has to be 365 

defended or abandoned during a challenge, rather than a state defined by a continuous 366 

proximity in space (Ruckstuhl and Kokko, 2002; Rands et al., 2004) or continuous degree of 367 

synchronization in time (Šárová et al., 2007; Michelena et al., 2008). Nevertheless, Models I 368 

and II apply not only to timing, but also to any situation where a group, in order to stay 369 

together, must reach a consensus along a continuous variable such as gradient in space, 370 

escalation of conflict with other group etc. 371 

In conclusion, this study documents that synchronization of activity switches such as 372 

departures brings a specific type of grouping costs that has specific consequences. First, it 373 

may most often cause groups to either stay together or completely dissolve during 374 

synchronization challenges. Second, it implies that groups will often react to synchronization 375 

challenges with lower-than-optimal synchronization because of the Prisoners-Dilemma type 376 

of payoff inherent to the situation. And third, synchronization cost will often set a limit of a 377 

smallest group size below which grouping is no longer advantageous over the solitary 378 

condition. 379 

 380 
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FIGURE CAPTIONS 461 

Fig. 1  An example of the density and distribution functions f(t) and F(t) in Model I. This 462 

specific function was used for calculating results displayed in Figs. 2 to 6. The dotted line and 463 

the left scaling on the y-axis displays the density function f(t) of the ideal individual times t 464 

within the group. The thin solid line and the right scaling on the y-axis displays the 465 

distribution function F(t) , representing the number of animals that are beyond their ideal time 466 

t  . The bold solid line illustrates an example of the two behavioural options available in the 467 

model. Animals that have their ideal switch points before time t1 and after time t2 leave 468 

individually at their respective ideal times, while all animals with t1 ≤ t ≤ t2 depart together at 469 

tD. The letters b, c, d denote intervals used for description of the model in Appendix A. 470 

 471 

Fig. 2 Optimal strategies and their net benefits as dependent on the parameters ω and NR. The 472 

thick lines demarcate boundaries between the areas of zero synchronization, partial 473 

synchronization and full synchronization The net benefit increases with the darkness of the 474 

shading. The curved lines are isolines of equal levels of net benefit. The net benefit level is 475 

described by the number on the isolines. 476 

 477 

Fig. 3 Stable strategies, and their net benefits, as dependent on the parameters ω and NR. The 478 

two dotted lines demarcate boundaries between the areas of zero synchronization, partial 479 

synchronization and full synchronization. The shading and the isolines have the same 480 

meaning as in Fig. 2. 481 

 482 

Fig. 4 Differences between benefits of stable and optimal strategies in the parameter space ω, 483 

NR. The thick and dotted lines are those given in Figs. 2 and 3. The darker the shading, the 484 
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higher is the difference in benefit between the optimal and the stable strategy. The curved 485 

lines are isolines of equal levels of this difference. 486 

 487 

Fig. 5 Net benefits of the one-departure (solid curve) and two-departure (dashed curve) 488 

strategies in Model II, as dependent on NR. 489 

 490 

Fig. 6. Effect of repeated synchronizations in the case of a 50% partial synchronization. a) 491 

Original density function f(t) (dashed line, left scaling on the y-axis) and cumulative 492 

distribution function F(t) (full line, right scaling on the y-axis) before the partial 493 

synchronization. After the partial synchronization, only half of the animals are left in the 494 

group and therefore the functions change shape to b) in the case of Assortment scenario and to 495 

c) in the case of Non-Assortment scenario. N = number of animals in the group, σ = 496 

variability of the density distribution. See text for more explanation.  497 

 498 

Fig. 7. Group stability as dependent on the group size. For this example, the R parameter was 499 

fixed at R = 0.02. 500 

 501 

Fig. 8. Grouping benefits and costs as dependent on group size according to a) previous 502 

models published before this study, b) this study and c) possible combined scenario. Solid 503 

lines = grouping benefit, dashed lines = grouping cost. Nmin, Nmax = minimal and maximal 504 

group size in which net benefit is higher than in solitary animals. Nopt = group size bringing 505 

the highest benefit. 506 

507 
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APPENDIX A: DETAILS AND SOLUTION OF MODEL I 508

 509

1. ASSUMPTIONS ABOUT IDEAL SWITCH TIMES 510

We suppose that: 511

1. We have the set of N animals. 512

2. There exist the ideal switch points denominated as 
*

it  for the animal i, 1  i  N that 513

are the realizations of the random variable T*, which is defined by its continuous 514

density function f. 515

3. The function f  has the following properties: 516

a. f is symmetric in  0. 517

b. f(t) > 0 in the interval ( , ), f(t) = 0 for t (-1, ).  518

c. f’(t) ≥ 0 in the interval ( , ), f’(t) < 0 in the interval ( , ) 519

d.  

1

1

)( dttf = 1. 520

 521

2. ASSUMPTIONS ABOUT STRATEGIES 522

A strategy I = [b, c, d] is defined by costants b, c, d  523

 b = t1 - (-1) = t1 + 1 524

  c = tD - t1 525

 d = t2 – tD (see Fig. 1),  526

Where b + c + d   2, b 0, c 0, d 0. The behaviour of an individual i with the ideal switch 527

time 
*

it is determined by the position of 
*

it on the interval (-1, 1), according to Table A.1 528

 529

3. ASSUMPTIONS ABOUT THE NET BENEFIT FUNCTION 530

 531
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Let U(x, b, c, d) be the utility function for ideal switch point placed in position x on time axis. 532

Let it be continuous function to the exclusion of points -1+b, -1+b+c, -1+b+c+d. Let it be 533

defined by the following Table A1. 534

 535

Table A1. Definitions of behaviours and of the utility function. For synchronized departures, 536

the first part of the utility function quantifies the grouping benefit, the second quantifies the 537

synchronization costs. R, are parameters, R  0, 1   0 538

 539

Intervals defining position of 

ideal switch time point 
Behaviour Utility function 

U(x, b, c, d)   
*

it   (-1, -1 + b) non-synchronized departures, 

each at individual *

it   

0 

*

it   (-1 + b, -1 + b + c) synchronized departure 

 at -1 + b + c  NR (

dcb

b

dxxf
1

1

)( ) -  ((-1 + b + c) - x) 

*

it   (-1 + b + c, -1 + b + c + 

d) 

synchronized departure 

 at -1 + b + c NR (

dcb

b

dxxf
1

1

)( ) - (1- )(x -(-1+b + c)) 

*

it   (-1 + b + c + d, 1) non-synchronized departures, 

each at individual 
*

it   

0 

 540

 541

 The net benefit B for given b, c, d and for given position of ideal switch point (e.g. for 542

given x on time axis) is defined B(x, b, c, d) = f(x)U(x, b, c, d) where f(x) is the density 543

function defined above. 544

 The net benefit B for the whole group is defined as  545

B(b, c, d) = 

cb

b

dxdcbxB
1

1

),,,(  + 

dcb

cb

dxdcbxB
1

1

),,,( = 

cb

b

dxdcbxUxf
1

1

),,,()(  + 546

dcb

cb

dxdcbxUxf
1

1

),,,()(  547

 548

Formatted Table
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4. CALCULATION OF OPTIMAL STRATEGIES 549

4.1. Derivation of the net benefit function 550

B(b, c, d) = -  (-1 + b + c)

cb

b

dxxf
1

1

)(  + 

cb

b

dxxxf
1

1

)(  + (1- )(-1 + b + c) 

dcb

cb

dxxf
1

1

)(  - 551

(1- )

dcb

cb

dxxxf
1

1

)(  +  NR (

dcb

b

dxxf
1

1

)( )
2 
 552

 553

 554

 555

4.2. Conditions for the local maxima of net benefit. 556

To obtain internal maxima we have the following conditions inside of the simplex b + c + d   557

2,  b  0, c  0, d  0 : dB/db = dB/dc = dB/dd = 0. 558

Therefore the following relations must be valid: 559

dB/dd =  f(-1 + b + c + d)( 2 NR 

dcb

b

dxxf
1

1

)(  - (1- )d) = 0 (A.1)560

  561

dB/dc = dB/dd  -  

dcb

b

dxxf
1

1

)(  + 

dcb

cb

dxxf
1

1

)(  = 0 (A.2)562

   563

dB/db = dB/dc + f(-1 + b)( c - 2 NR 

dcb

b

dxxf
1

1

)( )  = 0 (A.3)564

   565

As f(-1 + b + c + d) > 0 inside the simplex, we can derive the following relations 566

cb

b

dxxf
1

1

)(  = 
NR2

)1( )1( c. (A.4) 567

 568
dcb

cb

dxxf
1

1

)(  = 
NR2

)1( )1( d,  (A.5) 569

dcb

b

dxxf
1

1

)(  = 
NR2

)1( )1(
 (c + d), (A.6) 570

 571

 572

 c = 
d)1(

           (A.7) 573
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According to the conditions for the function f and according to the mean value theorem we 574

can see that 1/2 
NR2

)1( )1(
  f(0).      575

As slopes of the lines in the right sides of relations (A.4) - (A.6) are the same, the solution of 576

this system is unique. That means there exists unique triplet [b, c, d] inside of the simplex  577

b + c + d   2,  b  0, c  0, d  0  that can be maximum of B.  This fact is valid for each 578

[ ,NR],  (1 - )  NR  
)0(2

)1(

f
)1(

. 579

 580

4.3. Other maxima. 581

Other maxima are placed on the border of the simplex.  The possible points of maxima are  582

b 0,  c = d = 0,  and b = 0, c + d = 2. The first case describes the set of non-synchronized 583

switches, the second case describes the set of totally synchronized switches. 584

 585

4.4. Conclusion – the points of maxima of optimal strategies 586

  ZERO SYNCHRONIZATION. If NR ≤
)0(2

)1(

f
)1(

, then zero synchronization strategy  587

[b, 0, 0] , is the optimal strategy and brings the net benefit.  588

           B(b, 0, 0) = 0. 589

 590

 PARTIAL SYNCHRONIZATION. If 
)0(2

)1(

f
)1(

< NR <  (1 -  ) , then partial 591

synchronization strategy [b, c, d] , b + c + d <  2,  b > 0, c > 0, d > 0, c  = 
d)1(

, 592

such that  relations (A.4) - (A.7) are valid, is the optimal strategy and brings the net 593

benefit  594
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           B(b, c, d) =  

cb

b

dxxxf
1

1

)(  - (1- )

dcb

cb

dxxxf
1

1

)(   + NR (

dcb

b

dxxf
1

1

)( )
2 
  595

            596

 FULL SYNCHRONIZATION. If NR ≥  (1 -  ), then the full synchronization 597

strategy 598

  [0, c, d] , c + d = 2, such that c  = 
d)1(

 , is the optimal strategy and brings 599

the net benefit  600

 601

           B(0, c, 2 - c) = NR -

1

1

)(
c

dxxxf , 602

 603

5. CALCULATION OF STABLE STRATEGIES 604

5.1. Derivation of the benefit functions. 605

Let I = [b, c, d] and J = [p, q, r] are two strategies. Benefit of the strategy I, in the group, 606

where strategy J is present can be expressed by 607

B(I, J) = -  (-1 + p + q)

qp

p

dxxf
1

1

)(  + 

qp

p

dxxxf
1

1

)(  + (1- )(-1 + p + q) 

rqp

qp

dxxf
1

1

)(  - (1- 608

)

rqp

qp

dxxxf
1

1

)(  + NR (

dcb

b

dxxf
1

1

)( )(

rqp

p

dxxf
1

1

)( )
 
 609

If I is replaced by J, then 610

B(I, I) = -  (-1 + b + c)

cb

b

dxxf
1

1

)(  + 

cb

b

dxxxf
1

1

)(  + (1- )(-1 + b + c) 

dcb

cb

dxxf
1

1

)(  - (1- 611

)

dcb

cb

dxxxf
1

1

)(   + NR (

dcb

b

dxxf
1

1

)( )
2 

 612

 613

We define a function 614
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G (p, q, r) = B(I, J) - B(I, I) = -  (-1 + p + q)

qp

p

dxxf
1

1

)(  + 

qp

p

dxxxf
1

1

)(  + (1- )(-1 + p + 615

q) 

rqp

qp

dxxf
1

1

)(  - (1- )

rqp

qp

dxxxf
1

1

)(  +  (-1 + b + c)

cb

b

dxxf
1

1

)(  - 

cb

b

dxxxf
1

1

)(  - (1- )(-1 616

+ b + c) 

dcb

cb

dxxf
1

1

)(  + (1- )

dcb

cb

dxxxf
1

1

)( + NR (

dcb

b

dxxf
1

1

)( )(

rqp

p

dxxf
1

1

)( ) - NR 617

(

dcb

b

dxxf
1

1

)( )
2
 618

G(b, c, d) = 0. 619

 620

Strategy I is stable if and only if G (p, q, r) < 0 for p b, q c, r d and J = I is local 621

maximum of G, G(b, c, d) = 0. 622

 623

 624

5.2. Conditions for the local stability 625

By the same procedure as in point 2 we will try to find maxima of G inside of simplex p + q + 626

r   2,  p  0, q  0, r  0, where in addition b + c + d   2,  b  0, c  0, d  0.627

Conditions similar to (A.1) - (A.3) are 628

dG/dr =  f(-1 + p + q + r)( NR 

dcb

b

dxxf
1

1

)(  - (1- )r)    (A.8) 629

dG/dq = dG/dr  -  

rqp

p

dxxf
1

1

)(  + 

rqp

qp

dxxf
1

1

)(      (A.9) 630

dG/dp = dG/dq + f(-1 + p)( q - NR 

dcb

b

dxxf
1

1

)( )     (A.10) 631

At the point of maxima the function G must be concave, that means in our case 
2

2

dp
G2G

(b, c, d) 632

= (1- ) f(-1 + b + c + d) - f(-1 + b + c ) +  f(-1 + b) < 0. That means 0 < b < 1, 2 > b + c + d 633

> 1. 634

Here strategy I is stable, if, in agreement with procedure in point 2,  635

2  (1 -  )  NR  
)0(

)1(

f
)1(

,  c  = 
d)1(

, 

dcb

b

dxxf
1

1

)(  = 

dcb

cb

dxxf
1

1

)( ,  636



Acc
ep

te
d m

an
usc

rip
t 

 24 

NR 

dcb

b

dxxf
1

1

)(  = (1- )d, b < 1  and  b + c + d > 1 637

 638

5.3. Other stable strategies 639

On the border of the simplex p + q + r   2, p  0, q  0, r  0 other stable strategies are 640

placed. Here in addition b + c + d   2, b  0, c  0, d  0. 641

If the point [b, c, d] is point of local maximum of the function G and if we have normal vector 642

n = (n1, n2, n3) to the border of the simplex p + q + r   2, p  0, q  0, r  0 at that point [b, 643

c, d], then there exist positive numbers 11 , 22 , 33  so that  644

dG/dr -  11  n1 =  0 645

dG/dq  - 22  n2 =  0 646

dG/dp  - 33  n3 =  0 647

 648

Therefore we can conclude results about all maxima of G. 649

 650

 651

5.4. Conclusion – stable strategies 652

The following three strategies (and no other strategy) are locally stable: 653

 654

  ZERO SYNCHRONIZATION. The zero synchronization strategy  [b, 0, 0] , is stable 655

for any combination of values R,  and brings the net benefit 656

           B(b, 0, 0) = 0. 657

 658
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 PARTIAL SYNCHRONIZATION. If 
)0(

)1(

f
)1( ≤ NR ≤ 2  (1 -  ), then partial 659

synchronization strategy [b, c, d] , b + c + d <  2,  b > 0, c > 0, d > 0, c  = 
d)1(

, is 660

stable and brings the net benefit  661

           B(b, c, d) =  

cb

b

dxxxf
1

1

)(  - (1- )

dcb

cb

dxxxf
1

1

)(   + NR (

dcb

b

dxxf
1

1

)( )
2 
  662

 663

            664

 FULL SYNCHRONIZATION. If NR  2  (1- ), then the full synchronization 665

strategy[0, c, d] , c + d = 2, such that c = 
d)1(

 , is stable and brings the net benefit  666

           B(0, c, 2 - c) = NR -

1

1

)(
c

dxxxf , 667

668
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APPENDIX B: DETAILS AND SOLUTION OF THE MODEL II 669

 670

 671

1. ASSUMPTIONS ABOUT IDEAL SWITCH TIMES 672

The assumptions are the same as in Model I in Appendix A. 673

 674

 675

2. ASSUMPTIONS ABOUT STRATEGIES 676

A strategy I = [r,s] is defined by costants r,s where r 0, s 0, r+s   1. The behaviour of an 677

individual i with the ideal switch time *

it is determined by the position of *

it on the interval (-1, 678

1), according to Table B.1 679

 680

 681

3. ASSUMPTIONS ABOUT THE NET BENEFIT FUNCTION 682

Let U(x, r, s) be the utility function for ideal switch point placed in position x on time axis. 683

Let it be continuous function to the exclusion of points –r-s,  -s, 0, s, r+s. Let it be defined by 684

the following Table B.1. 685

 686

Table B.1. Definitions of behaviours and of the utility function. For synchronized departures, 687

the first part of the utility function quantifies the grouping benefit, the second quantifies the 688

synchronization costs. R is a parameter, R  0. 689

 690

intervals defining position of 

ideal switch time point 
Behaviour benefit - cost function 

U(x, b, c, d) 
*

it   (-1, - r - s) non-synchronized departures, 

each at individual 
*

it   

0 

*

it   (-r-s, -s) synchronized departure 

 at -s 2 NR 

dcb

b

dxxf
1

1

)( + (x + s) 

*

it   (-s, 0) synchronized departure 

 at -s 2 NR 

dcb

b

dxxf
1

1

)( - (x+ s) 
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*

it   (0, s)  synchronized departure 

 at s 2 NR 

dcb

b

dxxf
1

1

)( - (s - x) 

*

it   (s, r + s) synchronized departure 

 at s 2 NR 

dcb

b

dxxf
1

1

)( - (x - s) 

*

it    (r + s, 1) non-synchronized departures, 

each at individual *

it
0 

 691

4. CALCULATION OF OPTIMAL STRATEGIES 692

4.1. Derivation of the benefit function 693

B (r, s) = - 2

sr

s

dxxxf )(  + 2s 

sr

s

dxxf )(  + 2

s

dxxxf
0

)(  - 2s 
s

dxxf
0

)(   + 2 NR (

sr

dxxf
0

)( )
2 

694

 695

4.2. Conditions for the local maxima of benefit. 696

To obtain internal maxima we have the following conditions inside of the simplex  697

r + s  1, r  0, s  0: dB/dr = dB/ds = 0. 698

Therefore the following relations must be valid: 699

r
B
r

B2
= f(r + s) 4 NR (

sr

dxxf
NR

r

0

)(
2

) = 0      (B.1) 700

s
B
s

B2
= f(r + s) 4 NR (

sr

dxxf
R
r

0

)(
2

) +2

sr

s

dxxf )( -2

s

dxxf
0

)(  = 0   (B.2) 701

Conditions (C.1), (C.2) are true if and only if 702

 703
sr

dxxf
R
r

0

)(
2

= 2

sr

s

dxxf )( = 2

s

dxxf
0

)( .  704

From that  1
)0(4

1
1NR

f
 705

 706

4.3. Other maxima. 707

Other maxima are placed on the border of the simplex.  The possible points of maxima are  708

r = s = 0, and r + s = 1. The first case describes the set of non-synchronized switches, the 709

second case describes the set of totally synchronized switches. 710

2.4. Conclusion – the points of maxima of optimal strategies 711
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There exists interval ( , )  (
)0(4

1

f
, 1) so that the following points are valid: 712

  ZERO SYNCHRONIZATION. For each NR ,  NR ≤  B (0, 0) is maximum of B.                  713

B( 0, 0) = 0. 714

 PARTIAL SYNCHRONIZATION. For each NR , < NR <  , there exists [r, s], r + 715

s <  1,   r > 0, s > 0 so that  relations (1) - (2) are valid and B(r, s) is maximum of B.  716

           B (r, s) = - 2

sr

s

dxxxf )(  + 2

s

dxxxf
0

)(  + 2 NR (

sr

dxxf
0

)( )
2 

717

            718

 FULL SYNCHRONIZATION. For each NR, NR ≥ , there exists  719

 [r, s,] ,   r + s = 1, 

1

)(
s

dxxf  = 

s

dxxf
0

)(  so that B (1 - s, s) is maximum of B.  720

          B (1 - s, s) = - 2

1

)(
s

dxxxf  + 2s 

1

)(
s

dxxf  + 2

s

dxxxf
0

)(  - 2s 
s

dxxf
0

)(  + NR/2 721

 722

 723

5. MODELS I AND II COMPARISON. 724

5.1. Reduced model I. 725

The model described in Appendix A can be reduced to symmetric case, if  = 1/2. 726

We defined the following transformations of variables in the model I: 727

-1 + b = -e, -1 + b + c = 0, -1 + b + c + d = e. Then benefit function is function of one variable 728

e: 729

B(e) = - 2

e

dxxxf
0

)(  + 4 NR (

e

dxxf
0

)( )
2 

730

 731

The conditions for maxima of B are similar to general model I: 732

 733

 ZERO SYNCHRONIZATION. For each NR ,  NR ≤ 
)0(4

1

f
,  B(0) is maximal.  734

           B(0) = 0. 735
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 PARTIAL SYNCHRONIZATION. For each NR , 
)0(4

1

f
< NR < 0.5, there exists 0 < 736

e <  1,   so that  

e

dxxf
NQ
eL

0

)(
4

 and  function B is maximal.  737

           B(e) =  - 2

e

dxxxf
0

)(  + 4 NR (

e

dxxf
0

)( )
2 

738

           739

 FULL SYNCHRONIZATION. For each NR , NR ≥ 1/2, B(1)  is maximal.  740

           B(1) = - 2

1

0

)( dxxxf  + NR 741

 
742

5.2. Models I and II comparison 743

We denoted  744

B1(e)  - 2

e

dxxxf
0

)(  + 4 NR (

e

dxxf
0

)( )
2
 and  745

B2(r, s)  - 2

sr

s

dxxxf )(  + 2s 

sr

s

dxxf )(  + 2

s

dxxxf
0

)(  - 2s 
s

dxxf
0

)(   + 2 NR (

sr

dxxf
0

)( )
2 

746

Let 1)NR(  is that value of parameter that 

1

0

1 )()
1

(
4

1 dxxf
NR

 = 1/2. That means 1)(R  is limit 747

point common for full and partial synchronization in reduced model I. 748

Let 2)(R  is that value of parameter that 2)(NR  =  in model II. Therefore the definition of 749

2)(NR  in Model II is the same as definition 1)(NR  in reduced model I. 750

Then B1(1) - B2(s, 1-s) = -2

1

0

)( dxxxf  +1/2 + 2- 2

s

dxxxf
0

)( -
2

1 ss
 =  751

-4

s

dxxxf
0

)(  + s/2  0. This fact follows from 

sr

s

dxxf )( = 

s

dxxf
0

)(  and 
2

1
)

1
(

2
2

2

1

NR
r

752

But that means B1(e)  B2(r, s), where e is maximal point for B1 and [r, s] is maximal point 753

for B2. 754

 755

5.3. Conclusion - models I and II comparison. 756

757
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APPENDIX C: GROUP STABILIZATION OR DISSOLUTION AFTER REPEATED 758

SYNCHRONIZATION CHALLENGES 759

1. Assortment scenario 760

During the first challenge, the benefit function is, according to Appendix B, part 5.1 761

B(e) = - 2

e

dxxxf
0

)(  + 4 NR (

e

dxxf
0

)( )
2      

(C.1) 762

and the optimal degree of partial synchronization is defined by 763

 764

*

0

)(
4

*
e

dxxf
NR
e

         (C.2) 765

where e* is the value of e bringing the optimal benefit during the first challenge. 766

 767

After the first challenge and partial synchronization group size is thus reduced from N to pN 768

where p is the proportion of animals that have departed together on the first challenge and 769

therefore remain in the group 770

p= 

*

*

)(

e

e

dxxf  = 2

*

0

)(

e

dxxf  < 1. 771

All animals with their optimal times t*i within the interval (-1, -e*) or the interval (e*, 1) 772

disappear from the group. The the new density function fassort(x) is defined as  773

 774

fassort(x) = 0 for x  (-1, -e*)  (e*, 1) ,  775

fassort(x)  = )(
1 xf
p

for x  (-e*, e*).   776

The new optimal degree of partial synchronization is defined by 777

 778



Acc
ep

te
d m

an
usc

rip
t 

 31 

pNR
eassort

4

*

p
1

*

0

)(
assorte

dxxf  779

This equation is identical to (D.2) and therefore  780

eassort* = e*, which means that all animals will depart together during the second challenge 781

and the group size will be stabilized. 782

 783

2. Non-Assortment scenario 784

The density distribution of ideal times after the first challenge and partial synchronization 785

under the non-assortment scenario fnonassort remains the same as before the challenge as 786

follows  787

 788

fnonassort(x)  = f(x) for x  (-1, 1). 789

 790

From Appendix B we have for the partial synchronization during the first challenge 791

 792

*

0

)(
4

*
e

dxxf
NR
e

 (C.3) 793

 794

and similarly for second challenge  795

pNR
enonassort

4

*

 
*

0

)(
nonassorte

nonassort dxxf
*

0

)(
nonassorte

dxxf   (C.4)
 

796

 797

The function (e) = 
NR
edxxf

e

4
/)(

0

f
e

is decreasing and from (D.3) and (D.4) we have 798

 (e*) = 1 >  ( enonassort* ) = 1/p .  799

 800
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 801 

Therefore
*

nonassorte  < e* 802 

 803 

and consequently a lower proportion of pnonassort < p will depart together on the second 804 

challenge, until eventually enonassort* = pnonassort  = 0 and the group will dissolve. 805 

 806 

For any given value of parameter R, the optimal strategy of the reduced one-departure model 807 

brings higher net benefit than the optimal strategy for the two-departure model II. 808 
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