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Abstract

In this study, we derive the hyperbolic force-velocity relation of concentric

muscular contraction, first formulated empirically by A.V.Hill in 1938, from

three essential model assumptions: (1) the structural assembly of three well-

known elements – i.e. active, parallel damping, and serial – fulfilling a force

equilibrium, (2) the parallel damping coefficient explicitly depending on mus-

cle force output and three parameters, and (3) the kinematic gearing ratio

between active and serial element being assigned to a parameter. The en-

ergy source within the muscle represented by the force of the active element

is an additional fifth parameter. As a result we find the Hill “constants”

A and B as functions of our five model parameters. Using A and B val-

ues from literature on experimental data, we predict heat power release of

our model. By calculating enthalpy rate and mechanical efficiency, we com-

pare the model heat power to predictions from another Hill-type model, to
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Hill’s original findings, and to findings from modern muscle heat measure-

ments. We reconsider why the biggest share of heat rate during isometric

contractions (maintenance heat) and the velocity-dependent heat rate dur-

ing concentric contractions in addition to maintenance heat rate (shortening

heat rate) may be traced back to the same mechanism represented by the

kinematic gearing ratio. Namely, we suggest that the serial element transfers

attachment-detachment fluctuations of actin-myosin crossbridges within one

sarcomere to others in the same sarcomere and to those in parallel and in

series. Numerically, in case of negligible passive muscular damping, we find

the ratio between A and isometric force (relative A) to depend exclusively on

the kinematic gearing ratio, whereas the maintenance heat rate scales with

the square of relative A. Moreover, this mechanical coupling internal to the

muscle fibres may also be behind the macroscopic force dependency of the

overall parallel damping coefficient.

Keywords: Hill equation, Muscle model, Contraction dynamics,

Biomechanics
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LIST OF SYMBOLS, TERMS, AND DEFINITIONS

SE serial element

AE active element

PDE parallel damping element

lM length of the muscle

l̇M contraction velocity of the muscle

lSE length of the SE (internal degree of freedom)

l̇SE contraction velocity of the SE

κv = l̇SE/l̇M ; gearing ratio of internal to external contraction velocity

lAE = lM − lSE = lPDE; length of the AE (and PDE)

l̇AE = l̇M − l̇SE = l̇PDE; contraction velocity of the AE (and PDE)

q normalised muscle activation

FM force generated by the muscle

FM,0 isometric (l̇M = 0) force of the muscle

FSE = FM ; force of the SE

FAE force of the AE

FPDE force of the PDE

FAE,max maximum force of the AE

A Hill parameter: asymptote FM (l̇M ) = −A, i.e. parallel to velocity-axis

B Hill parameter: asymptote l̇M (FM ) = B, i.e. parallel to force-axis

l̇M,max = B
A
· FM,0; absolute value of concentric contraction velocity at FM = 0

Arel = A/FM,0 normalised Hill parameter

lCE,opt optimal length of assembly of active muscle fibres

(not a parameter in our model; literature data)

Brel = B/lCE,opt normalised Hill parameter

dPDE(FM ) damping coefficient of the PDE linearly depending on FM

DPDE,max maximum value of dPDE(FM )

RPDE minimum value of dPDE(FM ) normalised to DPDE,max

ḣ shortening heat rate

ḣ0 maintenance heat rate

c
ḣ0

(T − T0, params) temperature (and other parameters) dependent factor of ḣ0

T temperature (reference value T0)

Ḣ = −FM · l̇M + ḣ + ḣ0 enthalpy rate of the muscle

εM = −FM ·l̇M
Ḣ

mechanical efficiency of the muscle
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1. Introduction

In 1938 Archibald Vivian Hill published his famous paper (Hill, 1938)

in which he fixed the hyperbolic relation between muscular force and ve-

locity during concentric contractions from heat measurements empirically.

The isometric force is one parameter of this relation, whereas he named the

two remaining parameters the “dynamic constants of muscle”. Later, he

acknowledged that the force-velocity relation had to be modified for a bet-

ter reproduction of the decrease in enthalpy rate found at high shortening

velocities (Hill, 1964). Still, a hyperbolic relation remained with now five

parameters necessary to align with experimental findings.

In 1957 Andrew Fielding Huxley presented the first comprehensive theo-

retical model (Huxley, 1957), based on the “sliding filament theory”. He de-

rived the known force-velocity relation of a muscle (Hill, 1938) from mapping

the state of the art knowledge about the structure of the crucial molecules

involved in the crossbridge cycling mechanism of muscular force production.

He needed to set nine microscopic parameters in order to fit the Hill rela-

tion (Hill, 1938). Assuming a two-stage cycle, a later refinement of Huxley’s

sliding filament model (Huxley, 1973) again succeeded in reproducing the

enthalpy rate factored in by Hill’s modification (Hill, 1964). The number of

sliding filament model parameters remained the same.

When talking about models, we will label them in the following as either

“Hill-type” or “Huxley-type”. The latter denomination gains somehow dou-

ble weight as Hugh Esmor Huxley and Jean Hanson (Hanson and Huxley,

1953; Huxley and Hanson, 1954) were on their way to put forward the slid-

ing filament model simultaneously (Huxley, 2004, 2008) to Andrew Fielding
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Huxley and Ralph Niedergerke (Huxley and Niedergerke, 1953).

The empirically derived Hill relation is not self-explanatory. For example,

it might constitute a thermodynamical state equation or a fairly complex

visco-elastic force law. In numerical neuro-musculo-skeletal model simula-

tions Hill-type models are usually used in the force law sense (Günther and

Ruder, 2003; Günther et al., 2007; Houdijk et al., 2006; Kistemaker et al.,

2006; van Soest and Bobbert, 1993) interpreting it uni-directionally, with

the force given and the respective velocity constituting the model response.

As real muscle can respond to different protocols demanding a variety of

disturbances, including force and length steps, bi-directionality seems to be

one important criterion, among others, for a predictive muscle model. Hill

himself meant to read his relation bi-directionally (Hill, 1970). In contrast,

to the best of our knowledge none of the Huxley-type models developed

so far (Barclay, 1999; Chin et al., 2006; Cooke et al., 1994; Huxley, 1957,

1973; Lan and Sun, 2005; Piazzesi and Lombardi, 1995, 1996) can be ap-

plied bi-directionally. We have found one study (Baker and Thomas, 2000)

yet, deriving contraction velocity as a hyperbolic function of force with the

muscle fulfilling thermodynamic equilibrium.

Our aim is to build a bi-directional Hill-type muscle model as simple

as possible, i.e. based on less parameters than Huxley-type models, and of

predictive character. Thereto, the Hill relation must be derived from basic

principles, either at least one independent equation or microscopic mecha-

nisms. Concretely, we derive the Hill relation from a force equilibrium of

mechanical structures rather than exclusively from an explicit model of the

source of mechanical power as Huxley did (Huxley, 1957, 1973, 2000) follow-
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ing Hill’s empirical path (Hill, 1938). Our model is meant to provide some

insight into the mechanical behaviour of a muscle as a whole. In particular,

we suggest a causal explanation for the origin of the Hill relation in terms of

only three macroscopic mechanical parameters and one well-established in-

ternal degree of freedom which is resolved by a gearing ratio between internal

and external contraction. Consequently, the model can be used to predict

the force-velocity relationship for muscle with given architectural parameters,

rather than having to measure the force-velocity relationship directly.

2. Methods

Our model coarsely maps the macroscopic features of an assembly of ac-

tive muscle fibres incorporating three basic, physiologically motivated, struc-

tural elements (Fig. 1). In the following we will derive the Hill relation from

one basic equation and two additional features. First, the serial arrangement

of model elements implies the introduction of one degree of freedom, repre-

senting an internal length measure that occurs in addition to the length of

the active muscle fibres. This is dealt with by applying a kinematic gearing

ratio between the elements in series. Second, a simple force law for the par-

allel damper is assumed. The characteristics of the other two elements do

not have to be specified.

The first element is the source, and possibly drain, of mechanical energy.

It is called the active element (AE) producing the force FAE. In macroscopic

muscle models the chemical state, i.e. the relative number of actively force-

producing crossbridges, can be quantified by normalised muscle activation

0 ≤ q ≤ 1. The naming of any further model element is chosen due to its



Acc
ep

te
d m

an
usc

rip
t 

submitted to the Journal of Theoretical Biology 7

functional role with respect to the AE.

The second element is the serial element (SE) loaded with the force FSE .

It maps compliant structures within the muscle fibres (Hill, 1938, 1950; Katz,

1939; Krueger and Pollack, 1975; Kishino and Yanagida, 1988; Levin and

Wyman, 1927; Lindstedt et al., 2002; Maruyama et al., 1977; Neumann et al.,

1998; Pandy et al., 1990; Wakabayashi et al., 1994; Zajac, 1989). A recent ap-

proach (Denoth et al., 2002; Telley and Denoth, 2007), modelling the muscle

as an inhomogeneous chain of many force generators coupled visco-elastically

to each other both in parallel and in series, incorporates series elasticity as

a key feature.

The third element is the parallel damping element (PDE) producing a

frictional force FPDE. Energy dissipation within the muscle can be a passive

(Günther et al., 2007; Minajeva et al., 2001; Wang et al., 1993) or an active

(Gasser and Hill, 1924; Hartree and Hill, 1920; Hill, 1922; Levin and Wyman,

1927; Lupton, 1922, 1923) phenomenon. Two studies point to a dependency

of the PDE on muscle force (Baker and Thomas, 2000; Pate and Cooke,

1991).

The kinematic relation for the lengths of the elements AE,PDE on the

one hand and the SE on the other hand, arranged in series, writes

lAE = lPDE = lM − lSE (1)

with lM representing the muscle length (Fig. 1). The basic equation de-

scribing the mechanics of our muscle model is the equilibrium of the forces

generated by the elements AE, PDE, and SE

FM = FSE = FAE + FPDE (2)
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with

FPDE = dPDE · l̇PDE = dPDE · (l̇M − l̇SE) (3)

whereat we took the first time derivative (dot symbol “ ˙ ”) of Eq. (1) into

account. The PDE is the only element within this study to which we attribute

a specific functional dependency. We assume that its force depends linearly

on the contraction velocity l̇AE of the AE (see Eq. (3)) and a respective

damping coefficient

dPDE(FM) = DPDE,max ·

(
(1−RPDE) ·

FM

FAE,max

+ RPDE

)
(4)

depending linearly on the current force FM of the muscle which equates the

force in the SE (Eq. (2)), whereat DPDE,max is the maximum dPDE(FM)

value (at FM = FAE,max with conceiving of FAE,max as maximum isometric

force) and RPDE is the minimum dPDE(FM) value (passive damping in an

inactive muscle) normalised to DPDE,max. Note that this force-dependency

of dPDE is the only non-linearity that we introduce explicitly into our model.

Furthermore, by defining the isometric (l̇M = 0) muscle force as

FM,0 = FM (l̇M = 0) , (5)

by working out the force equilibrium (Eq. (2)) in the isometric condition,

with FPDE substituted by Eq. (3), next solving the equilibrium in isometry

for

FAE = FM,0 + dPDE(FM,0) · l̇SE , (6)

and finally re-substituting Eq. (6) into the general force equilibrium (Eq.

(2)) we find

FM = FM,0 + dPDE(FM,0) · l̇SE + dPDE(FM) · (l̇M − l̇SE) . (7)
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In a nutshell, we reduced the manifold of all possible solutions of Eq. (2)

for the relation between l̇M and FM to those with one specific value of the

isometric force FM,0 as defined by Eq. (5). Thus, FM,0 is used as a parameter

here. For a chosen isometric muscle force value FM,0 the related force FAE

acting in the AE, and vice versa according to (Eq. (6)), is potentially a

function of internal length re-distribution l̇SE.

We aim at relating the muscle force FM explicitly to muscle contraction

velocity l̇M . With this in mind, Eq. (7) is a preliminary result, because

FM still depends explicitly on both the external muscle contraction velocity

l̇M and the contraction velocity of the internal degree of freedom l̇SE. By

assuming that a gearing ratio

κv =
l̇SE

l̇M
(8)

between internal and external velocity can be specified, the force equilibrium

as manifested by Eq. (7) transforms to

(FM − FM,0)− l̇M · (dPDE(FM) · (1− κv) + dPDE(FM,0) · κv) = 0 (9)

which is an equation relating l̇M to FM . In appendix Appendix A we suggest

what κv might depend on. Equation (9) is the force equilibrium expressed

in Eq. (2) with the current distribution between l̇SE and l̇AE specifically

expressed by one parameter κv, while FM,0 represents another one.

There is no physical reason to favour either l̇M or FM as the independent

variable within Eq. (9). The idea that muscle force and velocity are inter-

changeable as dependent and independent variables is a generally understood

principle and in accordance with Hill’s view (Hill, 1970). So far, this idea is

not often applied in muscle modelling. At least in our approach, we may solve
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Eq. (9) either for FM = FM(l̇M) or for l̇M = l̇M(FM), whenever appropriate.

Equation (9) is a bi-directional relation. Transformation between both views

is uniquely determined if dPDE is a linear function of FM as assumed here

(Eq. (4) with FM = FSE). In this case, Eq. (9) constitutes a hyperbola

(FM + A) · l̇M = −B · (FM,0 − FM) (10)

with the parameters A, B, FM,0 being positive and l̇M consistently being

negative in the shortening (concentric) case.

The numbers A, B, FM,0 are functions of our five model parameters. This

becomes clear by comparing the terms in the Hill relation Eq. (10) solved

for the contraction velocity l̇M = B · (FM −FM,0)/(FM +A) to Eq. (9) solved

for

l̇M =
FM − FM,0

(1− κv) · dPDE(FM) + κv · dPDE(FM,0)
(11)

which becomes

l̇M =
1

DPDE,max

FAE,max
· (1− RPDE)

·
FM − FM,0

(1− κv) · FM + RPDE

(1−RPDE)
· FAE,max + κv · FM,0

(12)

expressed explicitly in terms of our model parameters. Thereto, the linear

transforming operations

dPDE(x1 − x2) = dPDE(x1)− dPDE(x2) + DPDE,max ·RPDE

dPDE(x1 − x0)− dPDE(x2 − x0) = dPDE(x1)− dPDE(x2) .

must be used for dPDE(FM) after Eq. (4).

Finally, the Hill parameters emerge as explicit functions of our model

parameters

A =
RPDE

(1− RPDE) · (1− κv)
· FAE,max +

κv

1− κv

· FM,0 (13)
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B =
1

DPDE,max

FAE,max
· (1−RPDE) · (1− κv)

. (14)

Accordingly, the maximum shortening velocity writes

l̇M,max =
B

A
· FM,0

=
FAE,max

DPDE,max

·
FM,0

κv · (1−RPDE) · FM,0 + RPDE · FAE,max

. (15)

The unloaded muscle (FM = 0) would contract concentrically with l̇M =

−l̇M,max.

In the limit case of neglected minimum (passive) internal parallel damping

(RPDE = 0) the Hill parameters arise from Eqs. (13),(14) as

A =
κv

1− κv

· FM,0 (16)

B =
FAE,max

(1− κv) ·DPDE,max

=
κv

1− κv

· l̇M,max , (17)

with the maximum shortening velocity (compare Eq. (15))

l̇M,max =
FAE,max

κv ·DPDE,max

. (18)

Note that a concurrent parameter variation fulfilling B/A = const meets the

constraint l̇M,max = const, whereat solely the curvature is changed. In our

model this is equivalent to κv ·DPDE,max = const.

From hereon, we will think of the hyperbolic Eq. (10) as l̇M = l̇M (FM),

naming it the “Hill relation”. The emergence of the Hill relation l̇M (FM),

according to the two velocity-dependent terms in Eqs. (7,9) and the spe-

cific function Eq. (4), might become more transparent by being explained
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graphically (see appendix Appendix B). In total, we have introduced five

parameters, four of which (FM,0, κv, DPDE,max, FAE,max) essentially forming

the hyperbola and one (RPDE) being an optional modifier.

The concentric contraction velocity v was a positive number in the original

formulation of the Hill relation (Hill, 1938)

(P + a) · v = b · (P0 − P ) . (19)

Thus, a comparison to Eq. (10) gives v = −l̇M , P = FM , P0 = FM,0, a = A,

b = B.

3. Results

Empirically, both mechanics and heat release during concentric muscle

contractions are represented by all three parameters of the Hill relation.

Therefore, we choose appropriate parameters in accordance with literature

data first. Second, in order to validate our model generally, its predicted

mechanical and heat power are compared to force-velocity and enthalpy rate

measurements. Third, the model allows for an estimation of the mechanical

power distribution between AE, PDE, and SE.

3.1. An estimate of model parameters

A median piglet muscle (Günther et al., 2007) would be represented by

FM,0 = FAE,max = 30 N , κv = 0.2, DPDE,max = 1000 Ns/m (i.e. l̇M,max|RPDE=0 =

0.15 m/s, Arel|RPDE=0 = 1/4), and RPDE = 0.01 (i.e. l̇M,max|RPDE=0.01 =

0.144 m/s). On the one hand, this muscle can be compared to more recent

experimental findings (Barclay et al., 1993; Curtin and Woledge, 1993; Bar-

clay, 1994, 1996). On the other hand, the κv,Arel choice (see Eqs. (13,16))
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accords with Hill’s original (Hill, 1938) and later (Hill, 1964) work. In or-

der to validate our model, we follow the same path as a recent computer

simulation study (Houdijk et al., 2006) in which the muscular enthalpy rate

along with the mechanical efficiency was predicted by modelling muscular

heat rates as functions of the AE state variables q, lAE during isovelocity

contractions, while assuming a fully activated muscle (q = 1).

3.2. Maintenance heat rate, enthalpy rate, mechanical efficiency: a model

validation

The PDE is the only explicitly formulated element within our model (Eq.

(4)). Thus, we can calculate the minimum dissipative loss ḣ = dPDE(FM) ·

l̇2AE = dPDE(FM) · ((1−κv) · l̇M)2 during a concentric contraction. With that,

we can predict the enthalpy rate

Ḣ = −FM · l̇M + ḣ + ḣ0 , (20)

knowing the contraction velocity l̇M from Eq. (11) or (12), respectively.

The first term is the net mechanical power output of the muscle, the second

term ḣ is its shortening heat rate, and the third term ḣ0 is its maintenance

heat rate. The latter is an unavoidable energy loss owing to the fact that

an active muscle, loaded isometrically, produces heat at the rate ḣ0 due to

crossbridge cycling, even though it does not do any mechanical work at all.

Taking these three terms into account, the assumed enthalpy rate Ḣ (Eq.

20) is the theoretical minimum power the muscle has to generate to gain its

net mechanical power output.

This is equivalent to assuming that all other hypothetical internal ele-

ments work without loss and no other heat generating process does exist.



Acc
ep

te
d m

an
usc

rip
t 

submitted to the Journal of Theoretical Biology 14

For example, in order to keep the model as simple as possible, we neglected

the activation heat, released due to any Ca2+-flux into and out of the sar-

coplasmatic reticulum as a response to stimulation – also called excitation

– from action potentials. Whereas maintenance heat primarily depends on

filament overlap and free Ca2+-concentration (state of activation q), acti-

vation heat depends on stimulation frequency. Maximum activation heat

rate is roughly half as high as maintenance heat rate (Barclay et al., 2007;

Houdijk et al., 2006). Therefore, the heat contributions to enthalpy rate Ḣ

are systematically under-estimated within this study, while the mechanical

efficiency as defined by the ratio

εM =
−FM · l̇M

Ḣ
(21)

is over-estimated.

As part of the enthalpy rate the maintenance heat rate ḣ0 must be known.

According to literature, which indicates diverse findings about maintenance

heat rate in various muscle preparations, the maintenance heat rate ḣ0 may

generally be rather proportional to than equal to A ·B (= 1/16 ·FM,0 · l̇M,max

if A = 1/4 ·FM,0). Thus, in the first instance, we assume phenomenologically

ḣ0 = cḣ0
(T − T0, params) · FM,0(T = T0, params) · l̇M,max(T = T0, params)

(22)

to adopt the view that ḣ0 runs approximately in proportion to the number

of currently active crossbridges (Houdijk et al., 2006). This implies, as a

first guess, that ḣ0 scales with [ overlap · activated volume / time = over-

lap · activation · cross sectional area · length / time ], therefore with the

product FM,0 · l̇M,max. Additionally, ḣ0 should increase with temperature
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T , while T0 means a reference temperature. This and other dependencies –

not explicitly modelled here (params) – are represented by the coefficient

cḣ0
(T − T0, params).

In Hill’s original experiments on frog sartorius muscle at T = 0o C (Hill,

1938) approximate numerical equality ḣ0 = A ·B was found, which was also

exactly implied by Huxley in order to fit his muscle model to the Hill rela-

tion (Huxley, 1957, 1973). There is another, pure mathematical, argument

(McMahon, 1984) in favour of ḣ0 = A ·B. For the addition of A ·B to both

sides of Eq. (10) or Eq. (19) provides an immediate transformation of the Hill

relation to the force-velocity relation derived earlier from mere mechanical

measurements (Fenn and Marsh, 1935). Later modifications of the hyper-

bolic l̇M(FM ) relation introduced by Hill himself (Hill, 1964) demonstrate

that the Hill parameter A may incorporate two different heat portions, one

depending on load and one on velocity. Thus, the product A ·B is somehow

unlikely to be exactly equal to the heat rate at zero velocity.

Yet, by accepting ḣ0 = A · B for a start, utilising the approximation

RPDE = 0, and comparing Eqs. (16,17,18) to Eq. (22), we predict

cḣ0
= (κv/(1− κv))

2 . (23)

The lowest and highest cḣ0
values (0.01, 0.3) extracted from literature (Bar-

clay, 1994, 1996; Barclay et al., 1993; Elzinga et al., 1987; Günther et al.,

2007; Hill, 1938; Houdijk et al., 2006; Wank et al., 2006) correspond to κv =

0.09, 0.35. A median value κv = 0.2 corresponds to A = Arel·FM,0 = 1/4·FM,0

(for RPDE = 0: Eq. (16)) with the belonging factor

Arel = κv/(1− κv) . (24)
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The value Arel = 1/4 was both originally found by Hill (Hill, 1938) for

a frog sartorius muscle at T = 0o C and represents the average value of

further studies (Barclay, 1994, 1996; Barclay et al., 1993; Günther et al.,

2007; Houdijk et al., 2006). The Eqs. (23,24) result in

cḣ0
= A2

rel , (25)

i.e. Arel = 1/4, κv = 0.2, and cḣ0
= 0.0625 correspond to each other.

Therefore, in Fig. 2 the enthalpy rate in excess of maintenance heat rate

and the mechanical efficiency predicted by this median muscle (κv = 0.2) can

be easily compared to (i) Hill’s original direct measurements of mechanical

power and heat rates (Hill, 1938) and to (ii) his more accurate data published

later (Hill, 1964). Additionally, we compare enthalpy rate and efficiency to

(iii) the prediction of ḣ calculated from another simple mechanical model

which assumes FM,0 to represent the energy source and in which a non-linear

parallel damper is chosen to reproduce the Hill relation exactly (Winters,

1990). Consistently, for these three comparative model cases the parameter

values A,B of our median muscle are adopted (for details see legend of Fig.

2). Enthalpy rate and mechanical efficiency are both plotted versus muscle

force and contraction velocity, because in some cases force-plots (compare

Fig. 3) and in other cases velocity-plots (see the subtle l̇M,max differences

between both Hill-cases in Fig. 2(D)) are more case-sensitive. Moreover,

either data presentations are used in literature.

Our model reasonably approximates Hill’s measured enthalpy rates for

FM > FM,0/10 (Fig. 2(A)) or |l̇M | < 2/3 · l̇M,max, respectively (Fig. 2(B)).

Furthermore, our model predicts a maximum in enthalpy rate which is lo-

cated nearby force and velocity values also reported by Hill (Hill, 1964), Hux-
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ley (Huxley, 1973), and another, more recent, Hill-type muscle model (Licht-

wark and Wilson, 2005). However, beyond the just mentioned boundaries, an

unrealistically steep decrease to almost (note: RPDE �= 0) maintenance heat

rate is predicted for very low forces and high velocities, respectively. When

taking more recent measurements into account (Fig. 4(A)), unincisive max-

ima in enthalpy rate may be distinguishable for some muscle preparations

(Barclay et al., 1993; Barclay, 1994, 1996) or unobservable in others (Barclay

et al., 1993; Curtin and Woledge, 1993; Barclay, 1996). Note, if we included

activation heat into enthalpy rate (Eq. (20)) and normalised the latter to

the sum of maintenance and activation heat rate, the relative enthalpy rate

values as predicted in Fig. 4(A) would be about one third lower.

Generally, our model predicts enthalpy rates considerably better than the

non-linear damper model (Winters, 1990) not incorporating a SE. Hereby,

the discrepancies become more apparent by looking at enthalpy rate (Fig.

2(A,B)) than by looking at mechanical efficiency (Fig. 2(C,D)). The maxi-

mum deviation of measured efficiencies calculated in our model from those

determined by Hill’s experiments is about 10% (Fig. 2(C,D)). Almost 100%

deviations, occurring for a wider range of muscle preparations (Fig. 4(B)),

can be explained by variations in properties of the examined muscles, e.g. the

curvature of the force-velocity relation l̇M(FM) or the course of the mainte-

nance heat rate (Fig. 3). Note again that we slightly over-estimate efficiency

due to neglecting activation heat rate.

3.3. The mechanical power output

The net mechanical power released by the muscle during a concentric

contraction is −FM · l̇M , here defined as a positive number with a pulling
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force FM > 0 and l̇M < 0 in case of shortening. Remembering Fig. 1

with lM = lAE + lSE (Eq. (1)) and the force equilibrium (Eq. (2); FPDE

corresponding to Eq. (3)) the net muscle power output rewrites −FM · l̇M =

−FM · (l̇AE + l̇SE) = −(FAE +FPDE) · l̇AE−FSE · l̇SE. Now we can infer from

Eq. (8) that the relative power contribution of the SE unloading is κv · 100%

and the net contribution of AE plus PDE is (1 − κv) · 100%. Therefore,

our model predicts the SE to contribute 9 . . . 29% (compare Sect. 3.1: κv =

0.09, 0.29) of the net muscle power output during concentric contractions.

The required mechanical energy must have been stored within the SE during

the contraction history preceding the experimentally analysed contraction.

In appendix Appendix C we illustrate how our model can cover such storing

situations that load the SE.

Note that the force contributions of AE and PDE always fight each other

as the signs of FAE and FPDE are counter-directed. For themselves, they

are usually distinctly higher than their net contribution −FM · (1− κv) · l̇M .

For instance, in case of κv = 0.09 the SE power is 9% of net muscle power

output. Here, exemplarily choosing a muscle velocity of l̇M ≈ −0.25 · l̇M,max

with a belonging force FM ≈ 0.2·FM,0, the power produced by the AE itself is

FAE

FM
≈ 0.75

0.2
= 3.75 times higher than net muscle power output. FAE is always

higher than FM as a result of comparing Eq. (6) to Eq. (7). Here, the SE

contributes only about 9%
3.75

= 2.4% of current AE power to net muscle power

output. With l̇M,max kept constant, in a less curved case of κv = 0.2 (Hill,

1938) the SE would contribute approximately 10% of AE power to net muscle

power output when contracting at a moderate velocity of about −l̇M,max/3.
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4. Discussion

We demonstrated that the empirically formulated concentric force-velocity

relation l̇M(FM) (Hill, 1938) of an activated muscle can generally be derived

from a simple structural arrangement fulfilling an independent equation: the

respective internal force equilibrium of three force bearing elements (AE,

PDE, SE). Isolated function and connective arrangement of these elements

(Fig. 1) have been confirmed both on macroscopic and microscopic levels

for many decades, again and again. Eventually, just two other specific as-

sumptions had to be superimposed: (i) the damping coefficient of the PDE

must depend linearly on the force produced by the muscle, which is the only

non-linearity of the model, and (ii) the gearing ratio κv between contrac-

tion velocity of the solely modelled internal degree of freedom and the whole

muscle has to be introduced as a parameter. With this reduced approach

Hill’s empirical hyperbolic muscular force-velocity relation (Hill, 1938, 1964)

can be transformed to a macroscopic mechanical model of the muscle. The

Hill parameters A and B immediately arise as functions of minimum four

model parameters. Our approach provides us with a platform to discuss how

both the force-velocity relation and the maintenance heat rate may originate

from the same transparent, physiologically based parameters, yet, without

explicitly modelling detailed microscopic processes for a start.

Our model is based on five parameters. Three of them, representing the

energy drain PDE (DPDE,max, FAE,max, RPDE), are of straight mechanical,

thus transparent, character, with RPDE being ancillary. The fourth, the ac-

tive force FAE, is more entangled, first of all, because it is formally connected

to the isometric force FM,0 by an equation (Eq. (6)). Second, it conjoins all
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physiological processes of the muscular energy source, e.g. the dependency of

the contractile machinery on sarcomere overlap and activation. The gearing

ratio κv as a fifth parameter is, on the one hand, the most crucial for the

force-velocity relation and, on the other hand, as pooling as FAE and FM,0,

respectively. As proposed in appendix Appendix A, we would interpret it as

the clumped effect of stiffnesses and damping of AE, PDE, and SE. These

transparent material properties determine the relative contribution κv of SE

shortening to the current concentric contraction velocity of the muscle, and

to the corresponding power output.

4.1. The gearing ratio κv: concentric contractions and maintenance heat rate

Originating in this conjoining character of κv, our model suggests a mech-

anism behind an observation as empirical and as old (Hill, 1938) as the Hill

relation itself: the product A ·B of the Hill parameters is assumed to equate,

or at least to be in proportion to, the maintenance heat rate ḣ0 (compare

Sect. 3.2). Now, our model provides one possible causal explanation for

that. For the parameter κv does not only shape all parameters of the Hill

relation (Eqs. (16,17,18)) but also scales the maintenance heat rate ḣ0 in

proportion to the square of the ratio κv/(1− κv) (Eqs. (22,23)), i.e. of the

ratio between SE velocity and AE,PDE velocity. Remember that we also

find κv/(1 − κv) = Arel = A/FM,0 (Eq. (16)). Therefore, we suggest that

both maintenance heat rate and all parameters of the Hill relation (Eqs.

(16,17,18)) may be traced back directly to the same set of four parameters,

with κv constituting a crucial one.

Former studies (Baker and Thomas, 2000; Pate et al., 1993; Woledge,

1968) have already suggested that interactions among crossbridges compro-
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mise overall work output. Treating the muscle as a thermodynamic instead of

a mechanical system, Baker and Thomas (2000) found additionally that one

specific characteristic of muscular damping leads exactly to the Hill relation:

dissipation should be force-dependent. Crossbridge interaction, i.e. some

myosin heads stroking concentrically against other attached crossbridges

loaded eccentrically, is also present in the isometric condition, which can

be concluded from two studies (Daniel et al., 1998; Pate and Cooke, 1991).

In the Pate and Cooke (1991) study the interaction between a half-

sarcomere and a microscopic force sensor made of an elastic needle in series

was simulated. The authors aimed at the sensor compliance to be optimised

within an experimental setup in order to measure sensitively rather than to

suppress (“elastic damping”) the fluctuation amplitudes of the microscopic

processes that occur within a real sarcomere. They described the interac-

tion between a half-sarcomere and serial elasticity, the latter connected to

a fixed point, as follows: any sudden stochastic change in the number of

attached crossbridges, i.e. the pulling force of the half-sarcomere, requires a

belonging adjustment in the length of the serial elastic needle. In turn, all

remaining attached crossbridges will respond on their part by a displacement

being partly concentric and partly eccentric. These permanent, stochastic,

small-amplitude fluctuations are always present causing heat losses, even in

the isometric condition in which source and drain balance to zero mechanical

power output.

In the Pate and Cooke (1991) paper the effect of serial elasticity was

examined as a parameter external to the sarcomere. Physiologically based

compliance internal to the sarcomere adds up from actin (Huxley et al.,
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1994; Kishino and Yanagida, 1988; Wakabayashi et al., 1994), myosin (Hux-

ley et al., 1994; Neumann et al., 1998; Wakabayashi et al., 1994), crossbridge

(Ford et al., 1981; Goldman and Huxley, 1994; Huxley and Tideswell, 1996),

and titin (Maruyama et al., 1977) connecting Z-disc and M-line. Using actin

somehow as a representative for all these structures, the Daniel et al. (1998)

study modelled the effect of internal serial compliance, distributed along the

actin, on interactions among crossbridges. Amongst others, they could quan-

titatively reproduce two findings from experiments: force responses to rapid

short range changes in length (Piazzesi et al., 1997; Seow et al., 1997) and

inflections in the force-velocity relation at low shortening velocities (Edman

et al., 1976). Serial compliance is the crucial factor for both findings.

In our model, the coupling of muscle force production to internal serial

compliance is mapped in the simplest possible way: one internal degree of

freedom resolved by one macroscopic parameter κv. Comparing our model

to the situation within the Pate and Cooke (1991) study, the AE replaces

the half-sarcomere and the SE replaces the needle. And in comparison to the

Daniel et al. (1998) study, the AE maps the net work generation of cross-

bridges, whereas the SE maps net muscle internal serial compliance, whether

it comes from actin, crossbridges, or other elasticities within a sarcomere.

According to our estimate, net serial compliance would contribute about

10 . . . 30% to sarcomere length changes per time and, as compared to AE

power, a 2.5 . . . 10% share in net mechanical power output during quasi-

stationary concentric contractions. Thereby, the SE transmits any change in

force to a change in length, and vice versa, of all crossbridges within a sar-

comere and of other sarcomeres in series. From this point of view, therefore,
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the SE is not just a force transmitter but also an integral catalytic converter

generating the macroscopic energy drain PDE by mechanically feeding back

any crossbridge work stroke to other crossbridges. As a consequence, our

model backs the view that the mechanics of concentric contractions and the

origin of maintenance heat rate are indeed due to the same process (Huxley,

1957). Note, that this feedback character of the SE reappears in items (i:

dPDE(FM )) and (ii: κv) crucial for the Hill relation. Up to now we have sug-

gested a qualitative explanation for item (ii). According to item (i), the spe-

cific damping coefficient dPDE depends on muscle force output FM . However,

as FM always equates the force FSE in the SE (Eq. (2)), the damping coeffi-

cient may also be symbolised by dPDE(FSE) (compare Eq. (4)). Furthermore,

damping in proportion to muscle force may not only be qualitatively repre-

sentative of stochastic feedback but also quantitatively representative of heat

power release assumed to run approximately in proportion to the number of

attached crossbridges doing work and, thus, releasing heat. Therefore, our

model analysis based on the gearing ratio κv may help to connect Hill’s heat

measurements (Hill, 1938), Huxley’s sliding filament theory (Huxley, 1957)

with a “stiffness” parameter k transforming crossbridge distribution to force

output, modern compliant Huxley-type models (Daniel et al., 1998), and a

more recent micro-mechanical muscle model (Denoth et al., 2002; Telley and

Denoth, 2007).

In Sects. 3.1,3.2 we had indirectly inferred realistic κv values from liter-

ature data on Hill parameters. Two recent studies (Barclay and Lichtwark,

2007; Loram et al., 2007) allow for more direct estimates from measuring fi-

nite shortening steps. At first, Barclay and Lichtwark (2007) determined the
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serial elasticity of a mouse muscle. Afterwards, they measured the forces dur-

ing isovelocity contractions. Knowing the serial stiffness value from the first

step, they calculated the relative velocity contribution of their hypothesised

serial element. During initial 50 ms of an isovelocity contraction (compare

figure 5 in Barclay and Lichtwark (2007)), a ratio l̇AE : l̇SE ≈ 2 : 5, and there-

fore κv ≈ 0.7, can be estimated (see appendix Appendix A). This would be

in striking contradiction to our prediction κv ≈ 0.2 (l̇AE : l̇SE ≈ 4 : 1).

However, two aspects should be taken into account.

First, the most compliant serial elastic contribution dominates the net

outcome. In the aforementioned muscle preparations (Barclay and Licht-

wark, 2007) the tendons were at least partially included. According to the

κv estimation mentioned above, we conclude that their “serial elastic compo-

nent” (SEC) was dominated by tendinous (external) material, thus, hiding

an about (4/1)/(2/5) = 10 times stiffer fibre (internal) SE. Interestingly,

Barclay and Lichtwark (2007) calculated almost exactly the same numbers.

They compared their data to the stiffness of crossbridges and contractile

filaments (Piazzesi and Lombardi, 1995). Barclay and Lichtwark (2007) esti-

mated that this internal SE should be about 13 times stiffer than their SEC

stiffness. Thus, our prediction of a realistic mean value κv ≈ 0.2 matches

literature data (Piazzesi and Lombardi, 1995; Barclay and Lichtwark, 2007)

to a high degree. Also consistently, another recent study (Loram et al., 2007)

concluded from directly visualising macroscopic elongations of fibres and ten-

dons that the ratio of internal (fibre) to external (tendon) stiffness may range

from about 30 to 1, depending on the load and elongation amplitudes, with

an average ratio of 12 in case of short elongations typical for quiet human
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stance.

Second, we would like to annotate that dissipative coefficients might sig-

nificantly contribute to or even dominate the gearing ratio κv in particular

contraction modes. That is, κv might even be more representative of a dis-

tribution between parallel and serial damping than of a stiffness distribution.

Whether this might both be compatible with a hyperbolic force-velocity rela-

tion and allow for an improved prediction of the enthalpy rate could be ver-

ified by introducing a serial damping element (SDE) into the current model,

which would also imply history effects.

4.2. Perspective

Our model might be seen as the most reduced mechanical muscle model

to derive the hyperbolic Hill relation from a basic principle. To that, it starts

from one equation (force equilibrium) and requires minimally four mechan-

ical parameters FM,0(q, lM), FAE,max, DPDE,max, κv. Mathematically, the

ratio DPDE,max/FAE,max is actually relevant, i.e. just those three indepen-

dent parameters that are necessary to uniquely determine a hyperbola would

appear within our model.

It is not surprising that there are deviations between this extremely re-

duced model and real muscle. First, there is a discrepancy between our

enthalpy-velocity relation and those from experiments, particularly at higher

velocities. Second, there are deviations of the real muscle from a force-

velocity hyperbola at high contraction velocities nearby l̇M,max (Claflin and

Faulkner, 1985; Julian et al., 1986; Reggiani, 2007) which are, however, dif-

ficult to discern experimentally. Third, there are indications that the force-

velocity relation may generally be described by functions other than the



Acc
ep

te
d m

an
usc

rip
t 

submitted to the Journal of Theoretical Biology 26

hyperbolic Hill relation (see for example Abbott and Wilkie (1953); Edman

et al. (1976, 1978); Edman (1988); Edman et al. (1997); Fenn and Marsh

(1935); Guschlbauer et al. (2007)). In particular, Edman and co-workers

highlighted repeatedly that the concentric force-velocity relation of real skele-

tal muscle deviates from one overall hyperbola at forces nearby the isometric

condition FM > 0.8FM,0 (Edman et al., 1997). There and later (Daniel et al.,

1998), a microscopic Huxley-type model, rather than a Hill-type model, was

used. This might be the better choice for trying to calculate model responses

that are meant to reproduce the fine structure of the force-velocity relation.

The deficient prediction of enthalpy rate at high velocities is a crucial

challenge. For this purpose, PDE dependency on whole muscle force should

be scrutinised: should we not rather conceive a dependency on FAE, i.e. on

the number of active crossbridges rather than on net muscle output force

FM? For a clear discrepancy between our prediction and measurements of

enthalpy rate occurs when approaching maximum shortening velocity l̇M,max

at which FM vanishes, but FAE does not vanish at all. Next, we neglected the

significant contribution (Barclay et al., 2007; Houdijk et al., 2006) of activa-

tion heat from Ca2+-flux through the sarcoplasmatic reticulum to enthalpy

rate. Though, as it depends on the rate of action potentials rather than on

the number of active crossbridges, it might be treated in the simplest way

by adding another heat rate parameter to the enthalpy rate (Eq. 20). This

would generally result in an about one third reduction of predicted relative

enthalpy and in a slight decrease in efficiency (compare second paragraph of

Sect. 3.2).

We developed our model for two reasons. First, we aimed at more insight
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into the basic mechanics behind macroscopic muscle contraction represented

by the Hill relation. Second, the model was supposed to be bi-directional

and to be as reduced as possible in order to be maximally transparent and

feasible. Due to its bi-directional character caused by its derivation from

force equilibrium, any structure of the muscle-tendon complex (e.g. serial and

parallel elasticity, serial damping, tendon, aponeurosis) can be incorporated

or coupled to the model transparently and explicitly as a force law. Therefore,

as a predictive model it forms an extensible basis for modelling the active

muscle in more detail. Furthermore, bi-directionality allows for coupling the

muscle model to external dynamics, thus, using it in direct dynamic computer

simulations.

Acknowledgements

Preparation of the manuscript accompanied us all through the year 2007

during which MG initially was supported by the “Deutsche Forschungsge-

meinschaft” (DFG) grant MU1766/1-2, in 2008 and 2009 by grant MU1766/1-3.

MG almost completely contributed at various places in Jena, Germany. There,
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FIGURE LEGENDS

Figure 1:

The macroscopic model of the muscle consisting of the active (AE), parallel damping

(PDE), and serial (SE) element. Not being part of the model, parallel elastic element

(PEE), tendon, and aponeurosis are depicted additionally (greyed element symbols). The

term “muscle” denotes the arrangement of all activatable muscle fibres. The damping

coefficient of the PDE depends linearly on muscle force FM (Eq. (4)) which in turn both

equates (force equilibrium) the force in the SE and the sum of the forces of AE plus

PDE (Eq. (2)). The muscle length is lM and the internal length degree of freedom is

represented by lSE .
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Figure 2:

(A,B): Enthalpy rate Ḣ = −FM · l̇M +ḣ, i.e. the denominator of the mechanical efficiency

εM minus maintenance heat rate ḣ0 = 0 (compare Eqs. (20,21)), as a function of (A)

muscle force FM or of (B) contraction velocity l̇M , for four different approaches to

calculate the extra (to maintenance heat rate) energy loss per time ḣ during contraction

(shortening heat rate) either as mechanical dissipation (damping) or as “extra” heat

(Hill (1938) used “extra heat” which is termed “shortening heat” here):

1. our model (solid line): ḣ = (1− κv)
2 · dPDE(FM ) · l̇2M ,

2. “extra” heat according to Hill (1938) (dashed line): ḣ = −A · l̇M with A due to

Eq. (13),

3. “extra” heat according to Hill (1964); Huxley (1973); McMahon (1984) (dotted

line) with B after Eq. (14), αFM,0
= 0.16, αFM

= 0.18, γ = 0.135, i.e. A
′

=

(αFM,0
+ γ)/(1 + αFM

) · FM,0 and B
′

= B/(1 + αFM
),

4. non-linear damper according to Winters (1990) (dash-dotted line): ḣ = −(FM,0 +

A)/(l̇M −B) · l̇2M .

Muscle parameters according to Sect. 3.1 are: FM,0 = FAE,max = 30 N , κv = 0.20,

DPDE,max = 1000 Ns/m (i.e. l̇M,max|RP DE=0 = 0.15 m/s, Arel|RP DE=0 = 1/4),

RPDE = 0.01 (i.e. l̇M,max|RPDE=0.01 = 0.144 m/s). The case RPDE = 0 is plotted

for comparison.

Our model for the case RPDE = 0.01 (thick solid line) and, alternatively, for RPDE = 0.0

(thin solid line: l̇M,max = 0.15 m/s). The other models: Hill (1938) with identical A

and B, Hill (1964) with A(FM ) = αFM,0
· FM,0 + αFM

· FM . The above values of

αFM,0
, αFM

, γ approximate A = 1

4
(see Hill (1964). Note that the effective B and

therefore l̇M,max are reduced. An alternative Hill-type model (pure FAE , i.e. without

SE which always implies FAE = FM,0) after Winters (1990) with a non-linear damper

dM (l̇M ) = (FM,0 + A)/(B − l̇M ) in parallel to the force generator FAE providing the

same hyperbolic Hill relation as our model: FM (l̇M ) = FM,0 + dM (l̇M ) · l̇M . Its enthalpy

rate in excess of the maintenance heat rate is FM,0 · l̇M (FM ).

(C,D): Comparison of the respective mechanical efficiencies εM = (−FM · l̇M )/(−FM ·

l̇M + ḣ + ḣ0) for the four different models including maintenance heat rate ḣ0 = cḣ0
·

FM,0 · l̇M,max (Eq. (22)) with cḣ0
= (κv/(1 − κv))

2 = A2

rel = 1

16
= 0.0625 (according to

Eqs. (16,17)), i.e. assuming exact equality ḣ0 = A ·B.
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Figure 3:

Enthalpy rate Ḣ = −FM · l̇M + ḣ + ḣ0 (top graphs A,C; note the different ordinate

offset values) and mechanical efficiency εM = −FM · l̇M/Ḣ (bottom graphs B,D) as

functions of muscle force FM for FM,0 = FAE,max with varied curvature of l̇M (FM ), i.e.

κv ·DPDE,max = const = 198 Ns/m (labels κv = 0.09, 0.20, 0.29), and two coefficients

cḣ0
of maintenance heat rate ḣ0, respectively (left graphs A,C: cḣ0

= 0.03 and right

graphs B,D: cḣ0
= 0.3). Generally, RPDE = 0.01 was chosen, therefore ḣ0 (Eq. (22))

depends slightly on κv, along with l̇M,max (Eq. (15)).

Figure 4:

Comparison of enthalpy rates (A, including maintenance heat rate, normalised to the

latter) and mechanical efficiencies (B) from experiments (Barclay et al., 1993; Barclay,

1996) to those predicted by our model. The parameters of our model (identical to Fig.

2) represent a median piglet muscle (Günther et al., 2007): FM,0 = FAE,max = 30 N ,

κv = 0.20, DPDE,max = 1000 Ns/m (Arel|RP DE=0 = 1/4), RPDE = 0.01 (l̇M,max =

l̇M,max|RP DE=0.01 = 0.144 m/s).

Figure 5:

Graphical representation of the force-velocity (Hill) relation Eq. (7) or Eq. (9), respec-

tively, for an assumed gearing ratio κv = 0.09 between internal length lSE and muscle

length lM contraction velocities l̇SE, l̇M (Eq. (8). A detailed explanation is given in

appendix Appendix B.
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FIGURES

Figure 1:
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:
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APPENDIX

Appendix A. The gearing ratio κv as a function of material prop-

erties

The gearing ratio κv (Eq. (8) can be calculated by modelling specific con-

traction situations. If, e.g., we arranged two non-linear elastic elements in

series the contraction velocity of the serial arrangement would be distributed

according to the stiffnesses of the elements. Thus, if all damping forces

were neglected in the force equilibrium of Eq. (2) it would write FSE ≈ FAE .

Applying the first time derivative to this approximative force equilibrium, as-

suming the forces borne by all elements to depend on their respective lengths

(FAE on filament overlap and additionally on the muscle activation q), and

using the chain rule we get

∂FSE(lSE)

∂lSE

· l̇SE =
∂FAE(lAE, q)

∂lAE

· l̇AE +
∂FAE(lAE, q)

∂q
· q̇ . (A.1)

After substituting l̇AE from the time derivative of the kinematic equation

lAE = lM − lSE into Eq. (A.1), further simplifying that the muscle activation

q does not change (e.g. fully activated), and remembering the definition of

κv (Eq. (8)) we find a specific gearing ratio

κv =
∂FAE/∂lAE

∂FAE/∂lAE + ∂FSE/∂lSE

, (A.2)

solely determined by elasticities, i.e. local stiffnesses of AE and SE.

However, this will only apply if the damping force in the PDE is clearly

lower than the force in the AE due to its isometric force-length characteristic

and elastic force also dominates in the SE. If, in contrast, the PDE term and
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damping in the SE became dominant and we further assumed that SE damp-

ing could be linearly approximated in proportion to its current contraction

velocity the simplified force equilibrium FSE = dSE · l̇SE ≈ dPDE · (l̇M − l̇SE)

would lead to

κv =
dPDE

dPDE + dSE

, (A.3)

the gearing ratio now solely determined by damping coefficients.

Finally and in general, we would expect κv to arise from the entirety

of all elastic and dissipative muscle properties, i.e. to depend on the cur-

rent lengths lAE ,lSE plus the elastic and dissipative material parameters al-

together determining the distribution of velocities l̇AE ,l̇SE. Analogously, a

very recent micro-mechanical muscle model (Denoth et al., 2002; Telley and

Denoth, 2007) essentially derives the contraction dynamics of macroscopic

muscle from coupling an in-series assembly of elementary force generating

units mechanically, including inherent parallel and serial visco-elasticity.

Appendix B. Equations (7,9) as a sketch (Fig. 5)

The current muscle force FM is the sum of three terms in Eq. (7). The

first two terms equal the current AE force FAE which is, in turn, FM,0 plus

a linear function in l̇SE (Eq. (6)). The current force in the SE is always

FSE = FM (see Eq. (2)) and its current velocity always l̇SE = κv · l̇M (Eq.

(8)), with the l̇M scale plotted on the left ordinate and the l̇SE scale plotted

on the right ordinate. In Fig. 5 we used the parameter values κv = 0.09,

FAE,max = FM,0 = 30 N , DPDE,max = 2200 Ns/m, RPDE = 0, thus, l̇M,max =

0.152 m/s, Arel = 0.1.
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In Fig. 5 the hyperbola l̇M(FM) is equivalently labelled by its inverse

function FM(l̇M). In case of RPDE �= 0 the intersections of the straight line

FAE and the hyperbola l̇M(FM) with the force-axis separate due to l̇M,FAE=0 =

FAE,max

DPDE,max·κv
·

FM,0

(1−RPDE)·FM,0+RPDE ·FAE,max
�= l̇M,max (compare Eq. (15)). The

maximum contraction velocity of the muscle l̇M,max is much more sensitive

to RPDE > 0 than l̇M,FAE=0 is, with l̇M,max < l̇M,FAE=0.

Following the path of the depicted arrows in Fig. 5 may help to gain an

idea of the concentric contractile output of the muscle model elements SE,

AE, PDE in an exemplary situation in which the muscle produces a force

FM = FSE = 6 N (top label (1)). On the l̇M scale to the left of label (2) we

find its contraction velocity l̇M = −0.04 m/s. In the reverse case, currently

requiring this velocity the muscle would provide the respective force due

to the force-velocity relation being bi-directional. In the exemplary loading

situation the SE contracts with the associated internal velocity l̇SE = κv·l̇M =

−0.0036 m/s (l̇SE scale to the right of label (3)). Equation (6) constitutes the

force FAE(l̇SE) as a straight line in this diagramm. It provides the current

force output (see top label (4): FAE = 22 N) of the AE.

The resulting asymptotes A,B (Hill parameters, see Eqs. (13,14)) and

maximum contraction velocity −l̇M,max (Eq. (15)) are also depicted. Length

and activation dependency of FAE reflect the chosen isometric force FM,0

and vice versa (Eq. (6)). The difference between FAE and FM,0 (Eq. (6))

is depicted by the two-headed arrow to the right of label (3). The force in

the PDE is the difference between current values of FAE and FM(l̇M) (arrow

between labels (2) and (3); see also Eqs. (2,6,7)).
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Appendix C. Internal redistributions in general: loading and un-

loading the SE by variation of FAE

Equation (6) generally describes the relation between active and isometric

force. Equation (6) also says that in the isometric case l̇SE simply depends on

the difference between active force FAE(q, lM , lSE) and the current load of the

muscle FM = FM,0 = FSE(lSE). For FAE > FM the SE is loaded (l̇SE > 0),

for FAE < FM the SE is unloaded (l̇SE < 0). Finally, if we abandon the

isometric condition we find

l̇SE = l̇M +
FAE(q, lM , lSE)− FSE(lSE)

dPDE(FSE(lSE))
(C.1)

according to (Eq. (2)). Therefore, in case of calculating the internal length

change for given muscle kinematics (e.g. isokinetic), l̇M �= 0 would be just an

additional term (compared to the isometric condition characterised by Eq.

(6)) due to the assumption that the load is always applied to the active part

of the muscle (AE and PDE) via a serial (visco-elastic) element with known

characteristics.




