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Determination of electron density and temperature in capacitively coupled RF discharge in neon by OES complemented with CR model
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In this work a method of determination of electron temperature and electron density in plasma based on optical emission spectroscopy complemented with collisional-radiative modelling (OES/CRM) was studied. The radiofrequency (13.56 MHz) capacitively-coupled discharge in neon at 10 Pa was investigated by intensity calibrated optical emission spectroscopy. The absolute intensities of neon transitions between 3s -3p states were fitted with a collisional-radiative model in order to determine the electron temperature and electron density. Measuring techniques as imaging with ICCD camera were adopted for supplementary diagnostics. The obtained results were compared with the results of compensated Langmuir probe measurement and one dimensional Particle In Cell / Monte Carlo (PIC/MC) simulation.

The results of OES/CRM and PIC/MC method were in close agreement in the case of electron temperature in vicinity of a driven electrode. The determined value of electron temperature was about 8 eV. In bulk plasma, the measured spectra were not satisfactorily fitted. In the case of electron density only relative agreement was obtained between OES/CRM and Langmuir probe measurement, the absolute values differed by a factor of 5. The axial dependence of electron density calculated by PIC/MC was distinct from them, reaching the maximum values between the results of the other two methods. The investigation of power dependence of plasma parameters close to driven electrode showed a decrease in electron temperature and an increase in electron density together with increasing incoming RF power. The calculated spectra fitted very well the measured spectra in this discharge region.

Introduction

Radiofrequency (RF) capacitively coupled discharges are widely used in industrial applications for thin film deposition, etching, cleaning, surface modification, in high power lasers, as analytical sources, light sources etc [START_REF] Raizer | Radio-Frequency Capacitive Discharges[END_REF]. However, precise measurement of the basic plasma parameters such as electron density and electron temperature or electron distribution function is still demanding. Although the use of Langmuir probe in RF discharges is well established, it is still limited to low pressure plasmas, risking the plasma disturbance and suffering with low signal to noise ratio for highly energetic electrons, which have a low concentration but high impact on plasma processes.

On the other hand, optical emission spectroscopy (OES) seems to overcome all these drawbacks. However, in order to derive the plasma parameters from the measured optical emission spectra, a relatively complicated collisional-radiative modelling (CR modelling) is generally needed.

In case of rare gases, the capacitively coupled RF discharge has been extensively studied in helium and argon, but less often in neon. Electron distribution function (EDF) has previously been measured with Langmuir probe in argon and helium [START_REF] Godyak | Measurement of electron energy distribution in low-pressure RF discharges Plasma Sources[END_REF].

Anisotropy of electron energy distribution function was measured by electrostatic energy analyser in asymmetric helium RF discharge [START_REF] Okuno | Measurements of electron energy distribution function in an asymmetric radio-frequency discharge plasma[END_REF]. Thomson light scattering was adopted for low electron temperature and density measurement in helium RF discharge [START_REF] Wesseling | Thomson light scattering measurements of electron temperature and density in the α-γ transition of a capacitive rf discharge in helium[END_REF].

Transition between α and γ mode of RF discharge in argon was investigated in [START_REF] Deegan | Measurement of the electron energy distribution function in an argon radio-frequency discharge in the gamma mode[END_REF]. Timeaveraged axial potential profile was measured with the electrostatic probe in symmetric RF discharge in neon [START_REF] Kaneda | Time-averaged electric potential profiles in a capacitive-coupling parallel-plate electrode neon gas RF discharge plasma[END_REF]. Paper [START_REF] Kimura | Pressure dependences of electron energy distribution and power dissipation in symmetrical RF discharges of inert gases[END_REF] compared EDFs measured in a discharge centre at different pressures (0.1 -0.8 torr) in neon, argon and xenon. EDF in capacitive RF discharge in molecular gases was also investigated (see e.g. [START_REF] Turner | Anomalous sheath heating in a low-pressure RF discharge in nitrogen[END_REF][START_REF] Tatarova | Effects of nonlocal electron kinetics and transition from alpha to gamma regime in an RF capacitive discharge in nitrogen[END_REF] for nitrogen).

The cited papers show the necessity of knowledge of electron distribution function for understanding capacitive discharges, including understanding of heating mechanisms and prediction of reactions induced by electron collisions. Further important information concerning the physics of capacitively coupled discharges can be obtained by methods, that enable measurements with high temporal resolution. Uncompensated electric probes enable measurement of plasma potential changes occurring during one RF period [START_REF] Sobolewski | Electrical characteristics of argon radio frequency glow discharges in an asymmetric cell[END_REF][START_REF] Dvořák | Measurement of plasma potential waveforms by an uncompensated probe Plasma Sources[END_REF]. Optical emission spectroscopy with high temporal resolution brings an illustrative look into the processes occurring in each RF period, including discharge heating in α and γ modes [START_REF] Schulze | Different modes of electron heating in dual-frequency capacitively coupled radio frequency discharges Plasma Sources[END_REF], generation of electron beams by sheath expansion [START_REF] Schulze | Electron beams in asymmetric capacitively coupled radio frequency discharges at low pressures[END_REF] and field reversal during sheath collapse [START_REF] Schulze | Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures[END_REF]. Despite the fact that these measurements brought numerous facts on time-development of capacitive discharges, they did not provide information concerning EDFs, electron concentration or temperature.

Therefore, measurement of EDFs based on OES, which is noninvasive and potentially enables high temporal resolution is still desired.

Computer simulation, especially collisional-radiative modelling, has become widely used for diagnostics of various types of discharges [START_REF] Vlček | A collisional-radiative model applicable to argon discharges over a wide range of conditions. I: Formulation and basic data[END_REF][START_REF] Golubovskii | Nonlocal electron kinetics and radiation of a stratified positive column of discharge in neon[END_REF][START_REF] Zhu | Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy[END_REF]. The method of electron temperature measurement based on a collisional-radiative model for argon was reported e.g. in [START_REF] Kano | Spectroscopic measurements of electron temperature and density in argon plasmas based on collisional-radiative model Plasma Sources[END_REF]. Trace rare gases optical emission spectroscopy (TRG-OES), based on the addition of a small admixture of rare gas into the studied plasma and evaluation of plasma parameters from the best fit between the measured and with CR model calculated relative emission intensities, was reviewed in [START_REF] Donnelly | Plasma electron temperatures and electron energy distributions measured by trace rare gases optical emission spectroscopy[END_REF]. Comparative diagnostics of helium and argon microwave plasmas at a pressure of 1 -5 Torr utilizing CR model, OES and probe measurement was published in [START_REF] Mizuochi | Evaluation of electron energy distribution function in microwave discharge plasmas by spectroscopic diagnostics with collisional radiative model[END_REF]. Statistical analysis of reconstruction of electron distribution function in the positive column of neon dc discharge from the emission spectra was presented in [START_REF] Dodt | Reconstruction of an electron energy distribution function using integrated data analysis[END_REF]. Application of Particle In Cell/Monte Carlo method (PIC/MC) for investigation of plasma was published in [START_REF] Birdsall | Plasma Physics Via Computer Simulation[END_REF][START_REF] Hockney | Computer simulation using particles[END_REF][START_REF] Nanbu | Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and gases[END_REF].

In this work a method of the determination of electron temperature and density from temporally averaged optical emission spectra is developed for neon plasma and compared with the results from Langmuir probe measurement and PIC/MC simulation.

The paper is organized as follows: details of experimental apparatus, optical emission spectroscopy and Langmuir probe diagnostics are given in section 2. Collisional-radiative model and Particle in Cell / Monte-Carlo approach are described in sections 3 and 4, respectively. The results obtained with the above mentioned methods are presented, compared and discussed in section 5. The conclusions are given in section 6.

Experimental set-up

The schematic of the experimental set-up is displayed in figure 1. The RF discharge was generated in a grounded stainless-steel vacuum chamber with an inner diameter of 33 cm. Two parallel plate circular electrodes with a diameter of 80 mm were placed 40 mm apart. The upper electrode (located at position 0 mm), embedded in a grounded ring, was capacitively coupled to a RF sinusoidal voltage generator (13.56 MHz, max. power 50 W, max. applied voltage 470 V pp ). The lower electrode (located at position 40 mm) was grounded. The DC self-bias on the powered electrode varied within -130 V to -300 V showing an asymmetry of the discharge.

The vacuum chamber was pumped down using a turbomolecular pump to an ultimate pressure 5 × 10 -5 Pa and then filled with neon gas of research purity 5.0 up to pressure of 5 -15 Pa. The discharge was sustained in flowing regime with gas flow rate approx. 5 sccm. The butterfly valve between the chamber and the pump controlled the pumping speed, allowing the pressure to be set independently of the flow rate.

The pressure in the chamber was measured by MKS Baratron. A large window, with diameter 7 cm, enabled the observation of the discharge.

Langmuir probe measurement

Electron energy distribution function, electron concentration, mean electron energy and mean (DC) plasma potential, were measured using a compensated Langmuir probe (ESPion, Hiden Analytical). The probe consisted of a 1 cm long platinum wire, radius harmonic frequencies was passively compensated [START_REF] Hopkins | Langmuir probe measurements in the Gaseous Electronic Conference RF reference cell[END_REF]. Eventual disturbance of plasma potential due to high sheath resistivity was compensated by means of a reference probe [START_REF] Kleber | Sheath resistance measurements in the GEC reference reactor Plasma Sources[END_REF]. Electron energy distribution functions were calculated from second derivative of the probe characteristics by the well-known Druywestein formula. If EDFs had Maxwellian shape, the electron concentration and mean energy were calculated from a linear fit to a logarithm of measured probe characteristics in order to exclude the impact of noise produced by numerical calculation of the second derivative. Analogically, when it was possible to describe EDF by so-called general distribution, appropriate function was fitted to the logarithm of the measured data. The general distribution f g is described by relation

f g = C g n e E 1/2 exp - E κ 2κE κ p
where n e , E and E p are electron concentration, energy and the most probable energy, respectively. C g is a constant depending only on E p and κ. κ describes the shape of the EDF. For κ = 1 or κ = 2 the general distribution is identical to Maxwellian or Druywestein distribution, respectively. When EDFs had another shape, electron concentration and mean energy were calculated by integration of EDFs obtained by the Druywestein formula. At the pressure 10 Pa the measured EDFs were similar to Maxwellian EDF. The statistical error of electron temperature and density determined from repeated probe measurement was below 5 % and 4 %, respectively.

Optical emission spectroscopy

The emission of radiation from the discharge was studied by optical spectroscopy in UV/VIS spectral range (300 -750 nm). The spatial resolution of the measurement was achieved by two iris diaphragms, mounted with optical fibre on a movable table in front of the chamber window. The light coming from a narrow cone going through the whole discharge diameter, but with a distinct axial position between the electrodes, was taken out with the diaphragms and optical fibre and analysed with Jobin Yvon FHR 1000 spectrometer with CCD detector (focal length 1 m, grating 2400 gr mm -1 ). The spectra were integrated over many periods of RF signal. An Oriel Tungsten halogen lamp was used to calibrate the fibre irradiance. Original uncertainty of the lamp intensity was 2 %. A new recalibration with 5 % uncertainty revealed as much as 10 % difference in the calibrations.

The emission coefficient ǫ ij of specific transition i → j, integrated over the lineshape, was derived from the fibre irradiance. If the cylindrical symmetry of plasma with uniform radial profile for region between the electrodes can be assumed

ǫ ij (r) = ǫ ij , r ≤ R 0, r > R,
where ǫ ij is the emission coefficient of unit discharge volume defined as

ǫ ij = 1 4π n i A ij Λ ij hω ij ,
where n i is the population of excited state i, A ij and Λ ij Einstein coefficient and socalled escape factor of spontaneous emission, respectively, and hω ij is the corresponding photon energy, then the irradiance of the optical fibre ("detector") is

I ij = 1 S det V pl S det ǫ ij (r) ρ 2 Acc(θ)dV pl dS det ,
where ρ is the distance of the plasma element dV pl from the detector part dS det , θ is the angle of incidence and Acc(θ) represents the fibre acceptance function, determined experimentally. The escape factor Λ ij aproximates the reduction of emitted photons due to reabsorption [START_REF] Holstein | Imprisonment of resonance radiation in gases[END_REF][START_REF] Molisch | Radiation-trapping in cylindrical and spherical geometries[END_REF]. Under the above mentioned considerations the emission coefficient can be taken out from the integral. In our case, plasma region contributing through the iris diaphragms to the irradiation of fibre aperture was assumed to have cylindrical shape with length 110 mm and diameter 5 mm. Constant value of emission coefficient along this length and diameter was assumed and taken into calculations.

Supplementary temporally and spatially resolved, but spectrally unresolved measurement of discharge emission of radiation was carried out with an intensified CCD camera PI-MAX 1024RB-25-FG-43, controlled by a ST-133 controller and working in image mode. The temporal resolution was 5 ns and the spatial resolution 0.3 mm.

Collisional-radiative model

The collisional-radiative model (CR model) used in this work was described in detail in [START_REF] Navrátil | Collisional-radiative model of neon discharge: determination of E/N in the positive column of low pressure discharge[END_REF], where a method of determination of reduced electric field strength in the positive column of neon DC glow discharge was developed. Basically, comparing the measured spectra of the discharge with the spectra calculated with the CR model by least-squares method, the plasma parameters as reduced electric field strength, electron temperature or electron density may be determined from the best fit.

In this work, Maxwellian electron distribution function (Maxwellian EDF) was assumed for calculation of rates of collisional processes. Other distribution functions, such as, so-called, bi-Maxwellian EDF, general EDF f g , or product of PIC/MC simulation could be included in the calculations. The comparison between the measured and calculated spectra was performed on the basis of 1/I-weighted sum of squares, where I stands for intensity. Since the measured spectra were determined in absolute values of emission coefficient (in W m -3 sr -1 ), no scaling factor between the measured and calculated intensities was needed. On the contrary, a strong dependence of absolute intensity on the electron density increased the sensitivity of the fit to the electron density.

26 transitions of neon were taken for fitting.

In the CR model thirty excited states of neon, arising from 2p 5 3s, 2p 5 3p, 2p 5 4s and 2p 5 3d configurations, were considered. Various collisional, radiative and also diffusion processes were taken into account: electron impact excitation out of the ground state and 2p 5 3s states and deexcitation to these states, electron impact excitation transfer between 3s levels, spontaneous emission of radiation, radiation trapping, electron impact ionization of the ground-state and metastable atoms, chemoionization, associative ionization, 2-body and 3-body collision with ground-state neon atoms or diffusion of metastable-state atoms to the wall. The radiation trapping was incorporated by means of so-called trapping factors (or escape factors, respectively). In their calculations, Voigt profile with Doppler, Stark, natural and resonance broadening components was assumed for lineshapes.

The Einstein coefficients, cross sections, rate coefficients and other data were taken primarily from [START_REF] Navrátil | Collisional-radiative model of neon discharge: determination of E/N in the positive column of low pressure discharge[END_REF]. The rate constants for electron impact induced excitation transfer between 3s states were adopted from [START_REF] Ivanov | Electron-impact-induced excitation transfer between 3s levels of the neon atom[END_REF]. The original sources of Einstein coefficients and oscillator strengths were [START_REF] Sugar | NIST Atomic Spectra Database[END_REF] and [START_REF] Seaton | Oscillator strength in Ne I[END_REF], respectively. For 3s-3p transitions, the accuracy of Einstein coefficients was below 10 % (class B), the calculated oscillator strengths differed from experimental data no more than 10 %, mostly they were 3 % higher [START_REF] Seaton | Oscillator strength in Ne I[END_REF]. This is in agreement with our comparison of both data sources. However, for 3p-3d transitions, with only indirect influence on fitted 3s-3p lines, the differences between the data sources reach 30 -40 %. Accuracy up to 50 % (class D) is reported in [START_REF] Sugar | NIST Atomic Spectra Database[END_REF].

Particle in Cell / Monte Carlo model

One-dimensional (1D) electrostatic PDP1 code [START_REF] Vahedi | Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I: analysis of numerical techniques Plasma Sources[END_REF][START_REF] Verboncoeur | Simultaneous potential and circuit solution for 1D bounded plasma particle simulation codes[END_REF] was modified and employed for the study of various plasma parameters of the RF discharge in neon, e.g. of spatial distribution of plasma density and electron distribution function. The PDP1 code applied the approach of Particle in Cell and Monte Carlo (PIC/MC) methods. A motion of the charged particles in the electric field was solved using the PIC method [START_REF] Birdsall | Plasma Physics Via Computer Simulation[END_REF][START_REF] Hockney | Computer simulation using particles[END_REF] incorporating a self-consistent solution of the Newton motion equations

m i a i = q i E, i = 1, . . . , N,
where m i , a i , q i , E and N denote the particle mass, the acceleration, the charge, the electric field strength and the number of charged particles in the system, respectively, together with the Poisson equation

∇ 2 ϕ = -ρ/ε 0 ,
in which ϕ and ρ stand for the electric field potential and the charge density, respectively.

The equations of motion were solved numerically employing the well-known leap-frog (explicit) method. To reduce a huge number of charged particles in the studied plasma the so-called computer particles were brought into play [START_REF] Birdsall | Plasma Physics Via Computer Simulation[END_REF]. The number of such computer super-particles was then ≈ 10 4 .

Collisions of charged particles with the neutral atoms were considered in our model using a MC method [START_REF] Nanbu | Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and gases[END_REF][START_REF] Vahedi | Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I: analysis of numerical techniques Plasma Sources[END_REF]. Free flight time of charged particles was calculated using the null-collision method. The initial velocities of particles, e.g. after ionization collisions, were also generated using the MC method. Elastic, excitation and ionization collisions were considered for the electrons and the elastic and charge transfer collisions for the ions. The methods briefly described above are nowadays well utilized in computer simulations of plasma [START_REF] Vahedi | Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. II: comparisons with laboratory measurements of electron energy distribution functions Plasma Sources[END_REF][START_REF] Longo | Monte Carlo models of electron and ion transport in non-equilibrium plasmas Plasma Sources[END_REF][START_REF] Hagelaar | A Monte Carlo modelling study of the electrons in the microdischarges in plasma addressed liquid crystal displays Plasma Sources[END_REF]].

The model system was set in accordance with the experimental set-up. It consisted of two parallel electrodes having the same diameter of 8 cm. The distance between the electrodes was set at 40 mm. One electrode was powered by RF voltage, the second electrode was grounded. The frequency f of the power source was 13.56 MHz, the voltage amplitude V 0 was 300 V. The pressure p of the neutral gas was 10 Pa or 15 Pa, respectively. Since with the 1D model a negative self-bias could not be modelled, it was introduced into the model as a boundary condition [START_REF] Nagayama | Particle simulation of radio-frequency plasma discharges of methane for carbon film deposition[END_REF].

The boundaries of our computer model were given with the electrodes, where secondary electron emission and recombination occurred. Generally, secondary electron yields for incident electrons and ions, γ e and γ + , respectively, differ. A secondary electron yield γ e depends on electron energy and incident angle. On the other hand a secondary electron yield γ + for low energetic ions, i.e. in case of Auger emission, is dependent only on the type of ion [START_REF] Lieberman | Principles of Plasma Discharges and Material Processing[END_REF][START_REF] Lide | CRC Handbook of Chemistry and Physics[END_REF]. Assuming the a constant values γ for ions and electrons (independent on projectile energy and incident angle) the problem was simplified in our model. The distribution of initial velocities of the secondary electrons was chosen arbitrarily as half-Maxwellian with the temperature kT = 1 eV. The performed tests proved that this choice of initial secondary electron temperature (kT ∈ (0.5 -3) eV) did not influence the results significantly (not presented in this paper).

Results and discussion

Axial dependence

The axial electron temperature dependencies determined in discharge at pressure 10 Pa simulation predicted generally non-Maxwellian EDF, both effective temperature T eff calculated as 2/3 of mean electron kinetic energy, and T high from a slope of EDF at electron energies above 16 eV are displayed. There is obviously a good agreement between OES/CRM method and PIC/MC simulation close to the driven electrode (axial position 0 -7 mm in the plots). Both dependencies of OES/CRM method gave similar values of electron temperature within the error, since calculated and fixed metastable densities were of the same order. There was also a perfect agreement between the spectra measured with OES and spectra calculated with the CR model (see subsection 5.2 for more information). Langmuir probe could not be used in RF sheath. However, going into the bulk plasma, considerable discrepancy between the measurement and simulations was observed. According to PIC/MC simulations, T eff decreases to about 2 eV at positions 20 -25 mm, while T high stays constant at approx. 7 eV. Neither result of OES/CRM nor of Langmuir probe were in agreement with this prediction. Although Langmuir probe registers particularly the development of T eff , the temperature determined from the probe was changing only slowly around 5 eV. The optical spectra depend mostly on T high , but the electron temperature values determined from OES/CRM method were considerably higher. Also the calculated spectra did not satisfactorily fit the measured spectra in the bulk plasma. Although PIC/MC simulation predicts electrons with a temperature about 10 -20 eV at similar discharge conditions due to stochastic heating (see figure 3 and also next), they are expected just conversely close to the driven electrode.

The differences between Langmuir probe measurement and the PIC/MC model can be understood comparing directly the EDFs (see figure 4). PIC/MC simulation generally predicts bi-Maxwellian, or a more complicated EDF. Closely to the electrode, PIC/MC expects only electrons with higher temperature, T high ≈ 7 eV, and the EDF is Maxwellian. Going into the bulk plasma a group of low energetic electrons with temperature ≈ 0.7 eV appears, but T high remains the same, though the density of electrons with this temperature decreases. This behaviour of EDF is responsible for the development of T eff observed in figure 2: T eff approaches T high at the electrodes, but decreases in the middle. The EDF measured by Langmuir probe was almost Maxwellian in all measured positions (see figure 4b). An only weakly steeper low-energy part of EDF was observed in the discharge centre (positions 20 -28 mm). Consequently, the probe measurements did not confirm the bi-Maxwellian character of the EDF. However, the determination of the low-energy part of EDF by Langmuir probe is known to suffer from several problems [START_REF] Godyak | Measurement of electron energy distribution in low-pressure RF discharges Plasma Sources[END_REF]. A high amount of low-energy electrons, present in bulk plasma, may be unregistered by the probe. For these reasons, the temperature determined from the probe measurement (see figure 2) does not follow the axial dependence of T eff from PIC/MC simulation with pronounced temperature minimum in the bulk plasma.

The bi-Maxwellian EDF was observed firstly by Godyak et al [START_REF] Godyak | Abnormally low electron-energy and heating-mode transition in a low-pressure argon RF discharge at 13.56[END_REF] in argon, employing the Langmuir probe. The origin of bi-Maxwellian EDF is relatively simple.

The high-temperature group of electrons gain their energy in so-called stochastic heating process, in which interactions of electrons with the oscillating plasma sheaths are crucial. This group of electrons has enough energy to enter into inelastic collisions with neutral atoms, furthermore these electrons can easily overcome the ambipolar potential barrier interacting therefore more frequently with the oscillating sheath edges [START_REF] Godyak | Abnormally low electron-energy and heating-mode transition in a low-pressure argon RF discharge at 13.56[END_REF].

On the other hand, electrons created in the ionization collisions inside the bulk of the plasma belong to the group of low-temperature electrons. These electrons oscillate in very weak electric field presented in the bulk of the plasma and hence cannot gain energy to overcome the ambipolar potential barrier on the boundary of plasma sheath and plasma bulk, where there exists a maximal electric field and where stochastic heating takes place [START_REF] Lieberman | Principles of Plasma Discharges and Material Processing[END_REF][START_REF] Godyak | Abnormally low electron-energy and heating-mode transition in a low-pressure argon RF discharge at 13.56[END_REF][START_REF] Brzobohatý | Influence of the Ramsauer minimum on the plasma characteristics studied via computer simulation Czech[END_REF][START_REF] Brzobohatý | Influence of substrate material on plasma in deposition/sputtering reactor: experiment and computer simulation[END_REF]. Thermalization of these electrons occurs only due to the elastic collisions with neutral atoms, which become important at higher pressures. However, no substantial improvement was obtained. Bi-Maxwellian EDF gave a similar value of electron temperature in high energy region to Maxwellian EDF. Moreover, it was not possible to let the fitting algorithm change low energy temperature independently, since optical spectra are less sensitive to this parameter through stepwise excitation and deexcitation processes. General distribution function was found to describe the electrons better (evaluated by sum of squared differences in measured and fitted spectra), but only in electrode vicinity, where the deviation from Maxwellian distribution was small. As expected, the use of EDF from PIC/MC simulation did not produce optical spectra similar to the spectra observed by OES.

Influence of metastables

In agreement with our previous work [START_REF] Navrátil | Collisional-radiative model of neon discharge: determination of E/N in the positive column of low pressure discharge[END_REF], the calculated intensities of 3p -3s transitions depended considerably on the populations of metastables. The influence of metastables (and of all states of 3s configuration) on the populations of 3p states is through a stepwise electron impact excitation and it is crucial at low electron energies. At higher electron energies the direct excitation from the ground state becomes the most important. This provides a sensitivity of the spectra to the electron temperature, although excitation energies of 3p states differ by 0. at most. On the other hand, this requires a reliable cross-sectional data for electron impact excitation out of the ground state to 3s states and out of 3s states. In this work a cross section for 1s 5 -2p 9 transition from [START_REF] Boffard | Measurement of electronimpact excitation cross sections out of the neon 3 P 2 metastable level[END_REF] was scaled with oscillator strength to obtain a consistent cross-section set for all optically allowed excitations out of 3s states [START_REF] Navrátil | Collisional-radiative model of neon discharge: determination of E/N in the positive column of low pressure discharge[END_REF]. The uncertainty of the collision cross sections is about ± 30 % as determined in [START_REF] Boffard | Measurement of electronimpact excitation cross sections out of the neon 3 P 2 metastable level[END_REF], but the results of various authors somewhen differ by as much as a factor of 3 (compare [START_REF] Boffard | Measurement of electronimpact excitation cross sections out of the neon 3 P 2 metastable level[END_REF][START_REF] Behnke | Investigation about stepwise excitation cross sections in rare gases Contrib[END_REF][START_REF] Leveau | Destruction par chocs électroniques des atomes métastables et pseudo-métastables de néon dans une colonne positive[END_REF]). Moreover, reliable calculation of self-absorption of resonant lines and also of lines originating from transitions between 3p -3s states, is needed.

The dependence of optical spectra on axial position is shown in figure 5. Going into the bulk plasma the intensities of individual lines increase at different growth rates.

Whilst at axial position 4 mm line at 640 nm is the most intensive, the line at 585 nm dominates in spectrum at larger axial distances. Since upper state of line at 585 nm (2p 1 in Paschen notation) is populated mainly by direct electron impact excitation from the ground state and upper state of line at 640 mm (2p 9 ) is populated substantially also by stepwise excitation, the increase of intensity ratio 585 nm/640 nm is interpreted by the CR model as enhancement of electron energies in the discharge middle. However, this is in strong contrast with the decrease of electron temperature predicted by PIC/MC simulation.

The high values of electron temperature determined by OES/CRM method in the discharge middle suggest, that the relative intensities in spectra are influenced by other processes. E.g., the spectra may be influenced by the absorption of light in the outer regions of the discharge and in the vacuum chamber. Metastable atoms diffuse to the chamber wall and can selectively absorb intensities of transitions ending in metastable states. Since these transitions in opposite direction are also stimulated by electron impact, their absorption may be misinterpreted as enhancement of direct excitation against the stepwise excitation. A simulation of spatial distribution of metastables in the discharge chamber is needed to analyse the effect of absorption. However, this distribution cannot be determined using the local CR model. For measured metastable densities the escape factor of line 640 nm is ≈ 0.7. The local CR model predicts even higher metastable densities and the escape factor can reach values ≈ 0.1. Such small values of escape factors show a large influence of the metastables on the line intensities.

Limitations of PIC/MC code The 1D PIC/MC model is generally valid in cases

where the separation between the electrodes is much smaller than electrode diameters.

In our case the separation was 40 mm and the diameters of electrodes were only 80 mm. Furthermore, the 1D model is symmetric (both electrodes have the same area) and therefore no self-bias can be observed. This drawback of our PIC/MC simulation code was overcome by introducing the bias voltage artificially. The value of the bias was set to -100 V for pressure 10 Pa in simulations, which was below the experimental value. At -220 V the simulation was unstable. However, as can be seen from figure 3, the bias mostly affects the maximal electron temperature ‡ of beam electrons, but the temperature in the bulk remains approximately the same, the minimum only shifts in axial direction.

The discrepancy between measured and simulated EDFs in bulk plasma (the measured EDF was Maxwellian, but the simulated EDF was bi-Maxwellian) may be due to simple incorporation of inelastic collisions. Only total excitation into 3s state was considered in the model from excitations. E.g., superelastic collisions can reasonably modify the shape of EDF. However, the influence of higher excited states on EDF is usually negligible. For better agreement with the experimental data the more complex 2D or 3D model should be employed.

The comparison of determined electron density in discharge at pressure 10 Pa is shown as a function of axial position in figure 6. The density dependence is different from the intensity development due to spatially varying electron temperature. The relative axial dependencies of electron density determined by OES/CRM and Langmuir probe are rather similar. However, they differ approx. 5× in their absolute values. This can be due to complicated estimation of spatial dependence of emission coefficient. According to optical and probe measurement of radial dependencies of involved parameters (electron temperature and density, discharge intensity) a constant radial profile was assumed for the emission coefficient of plasma region with 110 mm in diameter (electrode diameter was 80 mm). However, this assumption is only approximate and at 10 Pa there is still some radiation produced outside this region, which increases the measured intensity ‡ We keep using effective temperature (k b T = 2/3E mean ), although E mean would be more appropriate in this discussion. The electron density simulated by PIC/MC method reaches values between OES/CRM and Langmuir probe results in the bulk plasma. The spatial profile of electron density simulated by PIC/MC method is sensitive to the self-bias, which is given due to the asymmetry of the electrodes. Better agreement would be achieved by employing a more complex 2D code.

Influence of temporal development

The axially and temporally resolved, but spectrally unresolved, light emission of the discharge measured with the ICCD camera is displayed in figure 7. The light emission is axially and temporally inhomogeneous, although the variation of light intensity through the period is substantially smaller in neon at 10 Pa than at lower pressure [START_REF] Schulze | Electron beams in asymmetric capacitively coupled radio frequency discharges at low pressures[END_REF][START_REF] Schulze | Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures[END_REF] or in other gases [START_REF] Schulze | Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures[END_REF]. In our case the light emission lasted nearly the whole period. Since the light emitted from the discharge was accumulated on the CCD detector over many periods of RF signal, the obtained results of OES/CRM were averaged over the whole period. E.g. the values of electron temperature and density measured at positions close to electrode do not reflect the conditions in sheath only, but rather the plasma flooding the region when the sheath collapses. However, the electron temperature and density calculated from temporally integrated intensities need not be simply equal to their temporal mean values, determined e.g. in PIC/MC simulations.

Power dependence

The agreement of measured and calculated spectra and OES/CRM and PIC/MC method at positions close to the driven electrode was further analysed by decreasing the incoming RF power. The optical emission spectra were measured at position 4 mm from the driven electrode, the RF power was changed in the range 5 -50 W. The metastable density was calculated from the CR model.

The intensities of spectral lines increased monotonously with increasing power. However, they increased in a different way. The dependencies of two lines at 585 nm and 640 nm on RF power are displayed for pressure 10 and 15 Pa in figure 8. It can be seen, that whilst the 640 nm line increases nearly linearly with power, the increase of 585 nm line slightly decelerates. This behaviour can be understood considering figure 9 and figure 10, in which dependencies of electron density and electron temperature determined from the spectra are shown (taken at the same axial position 4 mm). It can be seen that with increasing power the electron density increases. This is why intensities of spectral lines increase. Due to the increasing conductivity of the plasma, electrons gain less energy, which probably causes the decrease in electron temperature. Then, decreasing electron temperature more affects the excitation of those higher excited states, which are not populated by stepwise excitation through the metastable levels but mostly by direct excitation. This is the case of e.g. 2p 1 state, from which 585 nm line originates. The examples of fitted spectra for pressure 10 Pa and input RF power 10 W and 50 W, are shown in figure 11 and figure 12, respectively. Obviously, the agreement between the calculated and measured spectra is appreciably good. This is evidence of a valid assumption of Maxwellian electron distribution function and correct description of kinetics in this region.

Conclusion

In 

Figure 1 .

 1 Figure 1. The scheme of experimental set-up. DE & GE -driven and grounded movable electrode, G -13.56 MHz generator, O -oscilloscope, OF -optical fibre, ID -iris diaphragms, OES -Jobin Yvon FHR 1000 spectrometer, LP -Langmuir probe.

Figure 2 .

 2 Figure 2. The electron temperature vs. axial position for pressure 10 Pa as determined by various methods: PIC/MC T eff , T high -effective temperature determined from mean electron kinetic energy and slope of EDF at electron energies above 16 eV, respectively, Langmuir probe measurement, CR model with metastable density determined from the model, CR model with metastable density set according to absorption measurement. Axial profile of intensity of 585 nm line (dotted line) is shown to clarify the axial position: 0 mm -driven electrode, 40 mm -grounded electrode.

Figure 3 .

 3 Figure 3. The electron temperature determined from PIC/MC model for pressure 10 and 15 Pa and bias -100 and -150 V, respectively. The temperature is only effective and it is calculated from the mean electron kinetic energy.

Figure 4 .

 4 Figure 4. Electron distribution function at different axial positions, as determined from (a) 1D PIC/MC simulation for pressure 10 Pa and bias -100 V and (b) Langmuir probe measurement. The EDF determined in PIC/MC simulation was Maxwellian at the electrodes and departured from this distribution going into the bulk plasma. The measured EDF was Maxwellian in all measured positions.
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 11 Influence of EDF type It is interesting that OES/CRM and PIC/MC methods gave similar temperature values only in electrode region, where EDF was Maxwellian according to PIC/MC simulations. Considerable attention was therefore paid to describe the electrons of the bulk plasma in CR model by more sophisticated EDFs. Bi-Maxwellian, general distribution function and also directly the EDF produced by PIC/MC were tested in the CR model to explain the discrepancy between the measured optical spectra and the spectra calculated for temperature expected by other methods.

Figure 5 .

 5 Figure 5. The dependence of measured optical spectra of neon RF discharge at pressure 10 Pa and incoming power 50 W on axial position. The line intensities were integrated over their lineshapes. Note the different scales of vertical axes.

Figure 6 .

 6 Figure 6. The electron density vs. axial position as determined by various methods: PIC/MC simulation, OES/CRM method with metastable density set according to the absorption measurement and Langmuir probe measurement. Axial profile of intensity of 585 nm line (dotted line) is shown to clarify the axial position: 0 mm -driven electrode, 40 mm -grounded electrode.

Figure 7 .

 7 Figure 7. The axially and temporally resolved light emission of RF discharge in neon at 10 Pa, measured with ICCD camera during RF voltage period. The intensity was measured in the discharge centre. The driven electrode is at position 0 mm, grounded electrode at position 40 mm.

Figure 8 .

 8 Figure 8. The intensity dependences of two lines at 585 nm and 640 nm on RF power at position 4 mm from the driven electrode.

Figure 9 .

 9 Figure 9. The electron density determined from the spectra taken at position 4 mm from the driven electrode as a function of power.

Figure 10 .

 10 Figure 10. The electron temperature determined from the spectra taken at position 4 mm from the driven electrode as a function of power.

Figure 11 .

 11 Figure 11. The example of spectra fit at position 4 mm and input RF power 10 W. The electron temperature and density determined from the fit were 12.2 eV and 1.2 × 10 8 cm -3 , respectively.

Figure 12 .

 12 Figure 12. The example of spectra fit at position 4 mm and input RF power 50 W. The electron temperature and density determined from the fit were 8.4 eV and 6.2 × 10 8 cm -3 , respectively.
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with increasing incoming RF power. The measured and calculated spectra agreed very well in this region.

The obtained results suggest that the determination of electron density based on OES with absolute intensity measurement and CR modelling suffers from serious problems. Complicated geometry, unknown radial intensity profile, reflection of light in the chamber, etc. -all of these attributes make the estimation of absolute emission coefficient and thus also of electron density difficult. On the other hand, the electron temperature is determined mainly from the relative shape of optical spectra, which is sensitive mostly to high energetic region of the EDF. Although this sensitivity in low energetic region of EDF is increased by the stepwise excitation, fitting problems appear when more free parameters are used to describe the shape of EDF.

A very important topic is the correct determination of absolute value and spatial profile of neon metastables (or all 3s states). They are not only the initial states, out of which the low energetic electrons populate the studied 3p levels, but they can also alter the spectrum measured by spectrometer due to the radiation trapping. This is in contrast e.g. with the TRG-OES method, in which the studied emissions may be assumed to be under optically thin conditions [START_REF] Donnelly | Plasma electron temperatures and electron energy distributions measured by trace rare gases optical emission spectroscopy[END_REF].