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Abstract

In this work we present a mathematical model describing the dynamics of a
population where sex allocation remains flexible throughout adult life and so can
be adjusted to current environmental conditions. We consider that the fractions of
immature individuals acquiring male and female sexual roles are density dependent
through non-linear functions of a weighted total population size. The main goal of
this work is to understand the role of life-history parameters on the stabilization or

destabilization of the population dynamics.
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The model turns out to be a nonlinear discrete model which is analyzed by study-
ing the existence of fixed points as well as their stability conditions in terms of model
parameters. The existence of more complex asymptotic behaviours of system solu-

tions is shown by means of numerical simulations.

Females have larger fertility rate than males. On the other hand, increasing popu-
lation density favours immature individuals adopting the male role. A positive equi-
librium of the system exists whenever fertility and survival rates of one of the sexual
roles, if shared by all adults, allow population growing while the opposite happens
with the other sexual role. In terms of the female inherent net reproductive number,
1r, it is shown that the positive equilibria is stable when 7y is larger and closed to 1
while for larger values of 7 a certain asymptotic assumption on the investment rate
in the female function implies that the population density is permanent. Depending
on the other parameters values, the asymptotic behaviour of solutions becomes more
complex, even chaotic. In this setting the stabilization/destabilization effects of the
abruptness rate in density dependence, of the survival rates and of the competition

coefficients are analyzed.

Key words: Sex-allocation model, Sex-structured population dynamics, Density

dependence, Stability analysis, Bifurcation and chaos

1 Introduction

In many organisms sex is a flexible affair, as it is for hermaphroditic and some
gonochoristic species with environmental sex determination (ESD), for which
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rafael.bravo@uah.es (R. Bravo de la Parra ).
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environmental factors play. a C-rucial:.rolé.-i.n .t.heir strategieé of sexual resource
allocation. In fact, for these species the traits favored by one sex might be
costly to the other [Hosken and Stockley, 2005], what leads to a divergence
between male and female fitness and provides in the case of simultaneous
hermaphrodites a gender conflict [Angeloni, 2003, Anthes et al., 2006]. To
mediate this conflict, an evaluation of the current environmental conditions is

necessary [Charnov, 1982].

The Sex Allocation Theory [Ghiselin, 1969, Charnov, 1982, 1993] is a pow-
erful evolutionary theory that was developed to analyze the gender conflict
of such ESD species. This theory describes how the reproduction resources
are allocated between male and female components in order to maximize the

reproductive value, the fitness.

For outcrossing simultaneous hermaphrodites, the available literature [Charnov,
1982, Brauer et al., 2007, Schérer, 2009] shows that the mating group size in-
fluences sex allocation. Sex allocation theory for these species predicts a more
female-biased investment of reproductive resources when the mating group
size decreases [Fischer, 1981, Charnov, 1982, West et al., 2005, Anthes et al.,
2006, Shuker et al., 2007]. In relatively small groups individuals need to pro-
duce fewer sperms to be sucecessful, thus leaving more resources for the female
role [Fischer, 1981, Charnov, 1982, Fischer, 1984]. Often the studies on local
mate competition for simultaneous hermaphrodites have focused on the evolu-
tionary adjustment of sex allocation to mating group size. As noted by Brauer
et al. [2007], there are, in fact, three different levels at which sex allocation can
be adjusted. First level, the allocation strategy can be the result of selection
and evolution, and thus be an adaptation to the average mating group size

over many generations. In the second case sex allocation is not or not strictly
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fixed genetically but it is s.et d-urin.g :;)nt;)é(;,n& and theréfofe influenced by en-
vironmental conditions such as population density (developmental plasticity).
Finally, in the third level sex allocation is not fixed neither during evolution
nor ontogeny but remains flexible throughout adult life and can be adjusted to
current environmental conditions. In this work we represent sex allocation as
defined in the third case, therefore considering the density dependence of the
sex allocation as an evolutionary stable strategy. More precisely we suppose
that, at each reproductive cycle, the gender distribution of the population
changes with the fractions of immature individuals acquiring male and female
sexual roles being non-linear functions of a weighted total population size. We
have to notice that this approach has already been used for some (ESD) gono-
choristic species by many authors [Woodward and Murray, 1993] to explain

heavily biased sex-ratios, of order 10:1, in favor of females.

The main insights of this work have to do with how the general aspect of sexual
gender structures and the density dependence of sexual allocation may lead to
complex asymptotic behaviours. Mathematically speaking, we represent the
model by means of a structured discrete system with a density-dependent
form for immature sexual choice. Our aim is to understand the influence of
the intraspecific sexual competition on sex-ratio and population dynamics and

to generate information-about stabilizing and destabilizing effects.

The paper is organized as follows. Firstly, we present the mathematical model
including the relevant biological features described previously. Then we pro-
ceed to the analytical study of the nonlinear discrete system by finding out,
whenever it is tractable, the existence of fixed points as well as their stability
conditions in terms of model parameters. We further discuss the asymptotic

behaviour of system solutions through numerical simulations where we observe
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a variety of complex chaos-like forms. Fiﬁally, we discuss the interpretation of

these results for the population dynamics of the referred species.

2 The Model

Let J(t) denote the density of immature individuals, or juveniles, in the popu-
lation at times ¢ = 0, 1, 2, ..., where the unit of time is taken to be the duration
of a reproductive cycle. At the end of each reproductive cycle a fraction s of
juveniles is assumed to keep being at this stage while a fraction 7 come into
the mature stage, adulthood, and adopt either the male or the female func-
tions; the remaining fraction, 0 < 1 — s — 7 < 1, represents thus the juvenile

mortality rate per unit of time.

Juveniles when maturing to adulthood are faced to mating opportunities and
need to decide about which sexual role to adopt. They have the choice between
two genders: male or female. Let M(t) and F'(t) denote the density of mature
individuals having adopted the male and the female functions respectively.
We assume that juveniles invest'more in the most profitable sex role, thereby
getting a higher fertilization certainty [Anthes et al., 2006]. This investment
should then take into account the gender conflict between females, for which
multiple mating is advantageous, and males, for which avoiding female multi-
ple mating reduces the risk of competing with rival sperm. The sex allocation
is represented in the model through the investment rate in the female func-
tion, called ®, being then the investment rate in the male function 1 — ®. As
pointed out in the introduction we suppose sex allocation to be dependent on

population density through a weighted total population size:
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W(t) = J(t) + BLM(t) + B2 F(1), (1)

see [Cushing and Li, 1992] for a similar expression in a density dependent ju-
venile growth model, where positive parameters 3; are competition coefficients
that measure the pressure effects of a male or female function individual on

the juveniles sexual role choice compare to that of a juvenile individual.

[Fig. 1 about here.]

In hermaphroditic species as well as in gonochoristic ones the fecundity of the
female function is limited to the amount of energy available for egg produe-
tion, while male function fecundity is limited to the available eggs (Bateman’s
principle) [Bateman, 1948, Charnov, 1979]. Moreover, in relatively smaller
mating groups male individuals need to produce fewer sperm to be successful
in sperm competition, leaving more resources for the female function [Fischer,
1981, Charnov, 1982, Fischer, 1984, Brauer et al., 2007]. Applying these two
principles and assuming that the sizes of the population density and the cor-
responding average mating group are positively correlated, we consider the
investment rate in the female function ® to be decreasing in terms of the
weighted total population size W, with all juveniles tending to join the female

(resp. male) class at maturation for very low (resp. high) population densities.

The survival rates of male and female adults are denoted s; and s, respectively.
Let fy denote the fertility rate of female adults. Also, assuming that during
the mating process an alternation of the sex role may be made by a small
number of males into the female role, Gamete Ezchange [Anthes et al., 2006],
we denote f; the fertility rate of male adults, which should be much lower

than the one of females, i.e. f; < fo.
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102 Including all the elements defined so far we get the following nonlinear system

103  of difference equations:

(
J(t+1)=sJ(t) + fLiM(t) + f2F(t)

M(t+1) =m(1—®(W(t))J(t) + 51 M(t) (2)

L F(t+1)=n®(W(t))J(t) + so F(t)

104 whose parameters are all positive and verify s + 7 < 1 and f; < f5. Finally

105 we assume for function &:

d e C'(Ry,(0,1]), ®'(x) <0, ®(0) =1 and lim ®(x) = 0.

T—+00

106  System (2) is an example of nonlinear autonomous matrix equation [Cushing,

107 1998]. Denoting X = (J, M, F'), system (2) can be written as,

X(t41)=P(X(t)X(t) (3)

108  where,

S fi fa

PX(@)=PW@) = | z(1 - (W) 51 0

W) 0 s

109 which is the sum, P(X (t)) = T (W (t))+ F', of the transition matrix, depending
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110  on the weighted total population size W, and the constant fertility matrix

s 00 0 fi fo
TW) =1 21 —aW)) s 0 and  F'=1¢ g
T®(W) 0 s 000

111 3 Model Analysis

112 In this section we study the existence and stability of the equilibrium points

113 of system (2).

114  We use the net reproductive number, 1(W), of the projection matrix P(W).
115  Matrix P(W) is primitive for every positive W and its strictly dominant
116  eigenvalue r(W) verifies (Th 1.1.3 in [Cushing, 1998]): 7(1¥) > 1 if and only
117 np(W) > 1, r(W) < 1if and only n(J¥) < 1 and thus (W) = 1 if and only

118  n(W) = 1. n(W) is the strictly dominant eigenvalue of matrix F (I —T(W))~":

mfi(1 — 2(W)) T[22 (W) S f2
(1-95)(1—=s1) (1—=s)(1—s59) 1—53 1—s59

F(I-T(W))™' = 0 0 0

119 so
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7Tf1 7Tf2
W) = 1—d(W))+ oW
This expression is simplified by denoting
T f1 T f2

and np =

L= 90— ) (1—5)(1—s59)

that can be interpreted as the inherent net reproductive numbers (expected
number of offspring per newborn over the course of its lifetime) when only the

females reproduce and only the males reproduce respectively. We then have

n(W) = nu (1 = (W) +np@(W) (4)

Following the theory and methodology that can befound in [Cushing, 1998|
to perform a qualitative analysis of nonlinear autonomous matrix equation
like system (2), we study the existence and the stability of its extinction and

positive equilibria.

3.1 Trivial equilibrium and extinction of the population.

The trivial, or extinction, equilibrium 0 = (0,0, 0) of system (2) always ex-
ists. The Jacobian of system (2) at 0 is P(0) and thus the facts of O being

asymptotically stable or unstable are directly expressed in terms of parameter

nr = 1(0).

Proposition 3.1 Let 0 = (0,0,0) be the trivial equilibrium of system (2). If

nr < 1, then 0 is asymptotically stable and if np > 1, 0 is unstable.
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Proposition 3.1 yields that O loses its stability as nr increases through the
critical value 1. We complete this bifurcation result in section 3.2 when con-

sidering the positive equilibria.

Under the hypothesis s; < s9, condition np < 1 also implies that the trivial
equilibrium is globally stable, i.e., for any initial condition (J(0), M (0), F/(0)) €
R? the corresponding solution (.J(t), M (t), F(t)) tends to O as ¢ goes to infin-

ity.

Proposition 3.2 Let sy < so. If np < 1 then equilibrium O of system (2) is

globally asymptotically stable.

Proof: see appendiz A.1.

3.2 Positive FEquilibria

In the next proposition we express in terms of 7, and 7r necessary and
sufficient conditions for system (2) to possess a positive equilibrium point

X* = (J*, M*, F*). We-also give conditions that ensures X* stability.

Proposition 3.3 System (2) has a positive equilibrium point X* = (J*, M*, F*)
if and only af either nyy < 1 and ng > 1 or nyr > 1 and np < 1. In the first
case, Ny < 1, X* is asymptotically stable for values of np > 1 close enough to
1 and, in the second case, ny > 1, X* is unstable for values of np < 1 close

enough to 1.

Proof: see appendiz A.2.

10



155  The positive equilibrium, in both Caées, can be explicitly calculated (see ap-

156 pendix A.2) and reads as follows:

(1 — R) Je TR 7). (5)

1—81 ’1—82

157 where J* = & 1(k)/(1 —1—51”1(1_—;':) + Bo1™%) and £ = (1 —nu)/(ne — nar)-

Xt = (J,

158 Assuming s; < s, it is also hold that n,; < np. We have already shown
159 that in this case if np < 1 then the trivial equilibrium is globally stable while
160 for nr > 1 is unstable. Concerning the positive equilibrium X*, the same
161 assumption reduces its existence conditions to nyy < 1 < np. In the next
162 proposition we prove that s; < s, and 7, > 1 imply unbounded solutions of

163  system (2).

164 Proposition 3.4 Let s; < sy andny > 1. If (J(t), M(t), F(t)) is the solution
165  of system (2) associated to the non-negative initial condition (J(0), M (0), F'(0)) #

166  (0,0,0) then {(J(t),M(t), F(t)) :t € N} is unbounded.
167  Proof: see appendixz A.3.

168  After that, we propose a sufficient condition for the permanence of the system
169 (2). We use the definition of permanence found in [Kon et al, 2004] which
170  ensures that the total population density neither explodes nor goes to zero.
171 To prove the permanence of system (2) we apply theorem 3 in [Kon et al, 2004];
172 for that we need system (2) to be dissipative, i.e., we need to find a compact
173 set K C R such that for all X(0) € R} there exists a T' = T'(X(0)) such
174  that X(¢t) € K for all t > T. In the next proposition we present a condition
175 on the investment rate in the female function, ®, that ensures system (2)

176  dissipativeness.

11
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Proposition 3.5 Let ny < 1. If x@(aj)zs bounded on [0, oo) then system (2)

18 dissipative.
Proof: see appendiz A.4.

Now, we state in the following proposition sufficient conditions for system (2)

permanence which is a direct consequence of theorem 3 in [Kon et al, 2004].

Proposition 3.6 Letny < 1 and np > 1. If x®(x) is bounded on [0, 00) then

system (2) is permanent.

In the next section we are presenting a set of simulations to complete the study
of those cases where the performed analysis does not help in characterizing the
asymptotic behaviour of solutions. These unknown cases correspond to the sit-
uation of existence of a unique positive equilibrium point, X* = (J*, M*, F*),
for which it is not known whether it is stable or not. In terms of parameters
Ny and ng, we are dealing with cases with a fixed 1y, < 1 and different values
of np > 1. We should also choese a specific form for the allocation function
® that verifies the condition imposed in proposition 3.6 so that system (2) is
permanent. This choice is in a sense robust because it can be proved, see chap-
ter 16 in [Hirsch and Smale, 1974], that if we take a perturbation (C') of @,
i.e., another allocation function ® such that |®(z) — ®(z)| and |®'(z) — ' (z)|
are small for every z € Ry, the existence of the positive equilibrium X* in the
case of @, when it is hyperbolic, imply the existence of a close hyperbolic equi-
librium X* in the case of ® which moreover shares the same stability features

with X*.

12
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4 Numerical results:

In this section we pursue the analysis of the asymptotic behaviour of solutions

of system (2) by means of numerical simulations.

We use particular forms of function ®, the investment rate in the female role.
In Getz [1996] it is analyzed the influence of abrupt density dependence on
the oscillations of a population by means of simple discrete models and us-
ing different density-dependent forms. Here we adapt the so-called generalized

27 where the param-

Ricker function as presented in [Getz, 1996], ®x () = e~
eter «y is called the "abruptness” parameter and controls how rapidly density

dependence sets in.

In the sequel we study how v, the abruptness parameter, s; and sy, the adult
survival rates, and (3, and (5, the competition coefficients, affect the stability of
the system. For this, we look for ng, the female inherent reproductive number,
bifurcation values where the positive equilibrium point X* = (J*, M*, F*)
loses its stability as well as the values where the orbits that we calculate get

positive Largest Lyapunov Exponents (LLE).

4.1 The Effect of the abruptness parameter ~:

To illustrate the influence of the abruptness parameter v on the destabilization
of the positive equilibrium point X* we first calculate, figure A.2, the spectral
radius of its associated Jacobian matrix for different values of v € {1,1.5, 2}
and 7y € [1, 14] while keeping fixed the rest of parameters values. Let us recall

that Proposition 3.3 ensures the asymptotical stability of X* for np € (1, 14¢).

13
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It is shown in figure A.2 that th.is.spe(-:tral radius is less than 1, i.e., X*
asymptotically stable, for nr between 1 and a bifurcation value denoted nj.

On the other hand, we see that X* is unstable for ny > nj}.
[Fig. 2 about here.]

We notice that the larger the value of v the smaller the value of 1}, i.e, there
is a clear destabilizing effect produced by an increasing abruptness, the pa-
rameter that governs how rapidly an increase of the weighted total population
density is reflected on sex allocation going towards a more biased male distri-

bution.

To illustrate what happens once the positive equilibrium loses its stability we
use the results of a number of numerical simulations. We calculate orbits of
system (2), with initial conditions X (0) = (.J(0), M(0), F(0)) = (20,15, 10),
three different values of v € {1,1.5,2}, nr € [0,80]-and the rest of parameters
values being the same as those previously used. We also calculate the LLE of

each of these orbits.

In figure 3(a) it is shown fory = 1 the juvenile orbit diagram for values of np
near biffurcation point,i.e., for each value of nr the points in its corresponding
vertical line approximate the long term behaviour of juveniles density J(t),
thus they approximately represent the orbit attractor. It is noticed that for low
values of 1z the asymptotic behaviour corresponds to the juvenile component
J* of the positive equilibrium. The same is shown in figures 3(b) and 3(c) for

7 = 1.5 and y = 2 respectively.
[Fig. 3 about here.]

14
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In figure A.4, using ng as a paran’iet.er, the LLE of the orbits represented in
figure A.3 are plotted for the three different values of the abruptness parameter

v e {1,1.5,2}.
[Fig. 4 about here.]

To quantify the destabilizing effects of v we use, on the one hand, the low-
est value of ng from which positive Lyapunov exponents appear, henceforth
denoted ng° (Fig. A.4), and, on the other hand, the amplitude of the orbit at-
tractors (Fig. A.3). We observe that increasing 7 entails decreasing 7% while
there is an increase of the orbits attractors amplitude. We can then conclude
that an increase of parameter v promotes instability and chaotic-like oscilla-
tions in the population and that this kind of behaviour is reinforced as long
as the value of np is increased. Larger sensibility to density dependence of
sex allocation together with larger female inherent rate reproductive number

implies more complex population dynamics.

4.2 The effect of the adult survival rates:

The survival rates s; and sy constitute important parameters of the model
since they characterize species iteroparity. To see their influence on the sta-
bility of the population dynamics we perform a numerical study analogous to

that already done for v in the previous section.

The first index we use to assess the stability of the population is 7}, the
bifurcation value of np where the positive equilibrium X* of system (2) loses
its stability. We calculate nj for the different values of the survival rates s;

and s in [0.1,0.9], with s; < s, and fixed values of the rest of parameters. In

15
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figure A.5 it is shown a 2D represe.nt.atior-l of 7}, in terms of s; and ss.
[Fig. 5 about here.]

Understanding an increase of 7} as a population stability rise, we notice the
clear stabilization effect of increasing the female survival rate. In fact, for any
fixed value of s; we see that the larger s, the bigger nj. This is not the case
of s1, as we can see that for certain values of sy the largest values of nj. are
found for intermediate values for s; while the lowest values of 7} are found
for either small or large values of s;. This is certainly due to the asymmetric

roles of males and females.

Once the positive equilibrium X* loses its stability, our index to assess the
complexity of population dynamics are the values of n7°, that represent where
orbits start to possess positive Lyapunov exponents. We identify increasing
Ny with a gain in population stability. To obtain 77° we calculate the orbits
of system (2), with the same conditions on X (0) and nr as previously and
for the different values of s; and sy in [0.1,0.9], and fixed values of the rest
of parameters. The 2D representation of 77 in terms of s; and s, is shown
in figure A.6, where we notice that the complexity of population dynamics
increases as a result of low survival rates. High values of s; and sy imply
that very high values of nr are needed to get chaotic-like behaviour of system
orbits. This stabilization effect of the dynamical system can be assimilated to
iteroparity [Demetrius, 1971, Getz, 1996]: the repeated production of offspring
throughout the life cycle versus semelparity, where each individual reproduces

only once during its life.
[Fig. 6 about here.]

16
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4.3  The effect of the competition coefficients:

As the female role is more expensive in terms of reproductive energy, we
assume in this section that the female competition effect, represented by [, is
larger than the corresponding male effect, ;, on juvenile gender choice, i.e. ,

B2 > 1. The results in previous sections are not affected by this assumption.

We calculate nj, for the different values of the competition coefficients 3; and
fo in [0, 50], with 3; < f35, and fixed values of the rest of parameters as before.
In figure A.7, similarly to figure A.5, it is shown a 2D representation of 7} in
terms of 3 and (3,. We notice that the lowest values of 1 are found for /3

either small or close to fs.

[Fig. 7 about here.]

The results of the calculation of 7, as done in previous sections, are shown

in figure A.8.

[Fig. 8 about here.]

We note a clear destabilizing pattern, 1y decreasing, directly related to the
increase of the male competition coefficient ;. The fact that males and fe-
males are comparable in terms of reproductive energy entails a more complex

population dynamics.

5 Discussion and conclusion

In this work we propose a model for the dynamics of an iteroparous out-

crossing simultaneous hermaphroditic population whose life cycle consists of

17
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a juvenile growth stage followed by.a .repr(-)ductive one with two different adult
sexual roles. At maturation period, the transition to the reproductive stage
depends on population density through a weighted total population size that

differentiates by gender the competition between juvenile and adult stages.

This approach suppose that sex allocation is not fixed during evolution but
remains flexible throughout adult life and can be adjusted to current environ-
mental conditions, this was already proved by many authors [Schérer, 2009],

our goal is to study the implication at a population dynamics level of this fact.

Apart from the parameters directly appearing in system (2) we have in-
troduced 7, and ng, the male and female inherent net reproductive num-
bers. We have proved that the system (2) has a positive equilibrium point
X* = (J*, M*, F*) if and only if either ny, < 1 and np. > 1 or ny > 1
and nrp < 1. Moreover, it exists a branch of non-extinction equilibrium pairs
(nr, X*), which bifurcates from the point (1, X*)= (1,0) which results sta-
ble when ny; < 1 and 1 Z 1 and unstable when 7y, > 1 and np < 1. Further
more, under condition s; < s, we proved that if ), > 1 the population grows
unboundedly and if nr < 1 the population gets extinct. In the rest of the
discussion we assume 1y < 1 and ng > 1, where we proved the permanence
of the system (2) provided that 2®(z) be a bounded function for z € [0, 00),

x

which is the case for the generalized Ricker function ®p (x) = e used in

the numerical simulations of section 4.

Parameter 1z close to 1 represents, through X*, low population density and
also female biased sex allocation due to density dependence effects. We proved
that X* is locally asymptotically stable whenever np is bigger and close to 1,

that is, a low population density implies a stabilization of the population with
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a sex allocation almost completely biased towards the female role. Density

dependent sexual allocation protects hermaphroditic species from extinction.

Parameter 7, close to 1 or high values of parameter ng represent high popu-
lation density at equilibrium X* what entails a decrease of the female invest-
ment rate. This situation corresponds to a loss of stability of the population
dynamics which, depending on other parameters values, may become chaotic.
In this context we studied the influence of density dependence through the
abruptness parameter v. We found that the more severe the effects of den-
sity dependence are, i.e., the larger the parameter 7, the more complex the
population dynamics becomes. We have also studied the influence of survival
rates obtaining that the complexity of population dynamics increases if they
are low while high values of s; and specially of sy imply that very high values
of nr are needed to get chaotic-like behaviour of system orbits. An important
applied consequence of the last point is that selective mortality might have a
destabilization effect on exploited simultaneous hermaphroditic species. Con-
cerning competition parameters we also found a destabilizing effect when the
male coefficient [3; is high, that is, when the reproductive energy consumed

by males and females is comparable.

We have shown, following the schema in Higgens [Higgins et al., 1997], that
the population dynamics shows a sensibility to changes in life history parame-
ters and in sex allocation patterns. Numerical simulations reveal the existence
of chaotic-like long-term behaviour of the population dynamics for certain
domains of parameters values. In this sense iteroparity and abruptness pa-
rameters have opposite effects. The latter is prone to imply chaotic behaviour
whereas the former promotes stability. Complex dynamics implies a strong

variability in the densities of male and female adults what induces also a
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strong variation in sex rati(.). Thi:s \;a;iati-(.)-.n. i.r.lvolves an .inc.rease of the number
of sex role changes per individual with the corresponding energy expenses. In
the case that this energy cannot be allocated, the concerned species has an
evolutionary constraint in avoiding complex dynamics which should be coun-

teracted by means of life history parameters such as ng, s, s; and s,.

It is implicit in model (2) that sex-allocation is regulated by two mechanisms
acting at two different time scales. The first one is an evolutionary mechanism
reflected in the existence of a sex-allocation function in terms of population
density and the second one has to do with the population dynamics derived
from this sex-allocation function. We proved, as the inherent rate reproductive
number increases, that this dynamics can be very complex to the point of ex-
hibiting chaotic-like attractors. However, we have to note that few experimen-
tal works exhibit these dynamical phenomena, perhaps because they suppose
that population density remains constant or absolute fitness values are mea-
sured as the breeding number instead of using the inherent net reproductive
rate, [Caswell, 2001], as we do. Integrating model (2) into an adaptative dy-
namics model for the traits g; and 5, or s; and sy, could help understanding

the relationships between the mentioned two times scales.

In general, sex allocation responses to environmental variability occurs at the
individual level. In our model, the study scale is at the population level and,
therefore, the response of the population to environmental changes should be
considered as the average of individual responses. To perform the study at the
individual level we could use a computational model like an IBM (individual
based model) which would allow subsequently a very interesting comparison

between both macroscopic and microscopic approaches.
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Finally, we have to note that the same sex allocation behaviour is observed
for some sequential hermaphroditic species. An analogous modelling approach
could be used in this case provided that the model integrates a new adult class
representing asexual individuals and the corresponding transitions from the

female and male classes to the asexual one after the reproductive period.

A Appendix:

A.1 Proof of proposition 3.2

fi < faand s; < s imply

J(t+1)=sJ(t)+ fiM(t) + foF(t) < sJ(t) + fo(M(t) + F(t))

MA+1)+F(t+1) =nJ(t) + s1M(t) +s2F(t) < wJ(t) + s2(M(t) + F (1))
(A1)

Considering now the linear system

x(t+ 1) = sx(t) + fay(t)
(A.2)

y(t+1) = ma(t) + soy(t)
we find that np < 1 implies that the strictly dominant eigenvalue of the
associated matrix is less than 1 and so for any initial condition (z(0),y(0))

the corresponding solution verifies lim;_, . (z(t), y(¢)) = (0,0).
On the other hand, for every ¢t > 0, J(t) < z(t) and M(t) + F(t) < y(t) imply
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401 that J(t+1) <z(t+1)and M(t+ 1)+ F(t+1) <y(t+1):

402  Using (A.1) we have

403  Now, for any initial condition (.J(0), M (0), F'(0)) of system (2), setting z(0) =
404 J(0) and y(0) = M (0)+F(0) as initial conditions of system (A.2), the previous
405 inequalities imply that J(¢) < z(t) and M(t) + F(t) < y(t) for every t-> 0,

406 and so we obtain limy_,(J(t), M (t), F'(t)) = (0,0,0).

407 A.2  Proof of proposition 3.3 and equation (5)

408 The condition for the existence of a positive equilibrium of system (2) (see
409 1.2.5 in [Cushing, 1998]) is that n(W) = 1, i.e., ny (1 = (W) + np®(W) =1
410 or ®(W) = (1 —nm)/(nr — ) = k. Thus, there exists a positive equilibrium
411 X* of system (2) if and only if k € (0,1). In this case, X* = (J*, M*, F*) is
412  unique and can be straightforwardly calculated as the eigenvector of matrix
413 P(® !(k)) associated to eingevalue 1 that verifies ®(J* + Sy M* + By F*) = k,

414 see (5).

415 The proof of proposition 3.3 is a direct consequence of the results in sec-
416  tion 1.2.2 of [Cushing, 1998]. Writing P(ng, X (t)) = T(W(t)) + npF, where
417 F = "LFF, and using ng as bifurcation parameter, theorem 1.2.4 ensures the

418 existence of a branch of positive equilibria bifurcating from the equilibrium

22



419
420
421
422
423

424

425

426

427

428
429

430

431

432

ACCEPTED MANUSCRIPT

pair X = 0 and nr = 1. The condition of existence of positive equilibria
k € (0,1) is equivalent to either 7y, < 1 and np > 1 (bifurcation to the right)
or 7y > 1 and g < 1 (bifurcation to the left). Now applying theorem 1.2.6 of
[Cushing, 1998], as in our case w’ Bv = fy(1 — s)/nr > 0, we obtain that the
bifurcation is stable if it is to the right and unstable if it is to the left, what

proves the proposition.

A.3  Proof of proposition 3./

fi < faand s; < s imply

J(t+1)=sJ(t)+ fiM(t) + foF(t) > sJ(t) + f1(M(t) +-F(t))

M+1)+F(t+1) =nJ(t) + s1M(t) + soF(t) > wJ(t) + s1(M(t) + F (1))
(A.3)

Considering now the linear system

n(t+ 1) = sx(t) + fry(t)
(A.4)

y(t+1) = mx(t) + s1y(t)
Condition 13, > 1 implies that the strictly dominant eigenvalue of the associ-
ated matrix is larger than 1 and so for any initial condition (x(0), y(0)) # (0, 0)

the corresponding solution verifies limy ., (2(t), y(t)) = (4+oc, +00).

On the other hand, for every t > 0, J(t) > z(t) and M(t)+ F(t) > y(t) imply

that J(t+1) > z(t+1) and M(t+ 1)+ F(t+1) > y(t+1):
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Using (A.4) we have

J(t+1) > sJ(t) + fr(M(t) + F(t)) > sz(t) + fiy(t) = z(t + 1)

M@t+1)+ F(t+1) > 7 J(t) + s1(M(t) + F(t)) > wa(t) + s1y(t) = y(t +1).
Now, for any non-negative initial condition (.J(0), M(0), F(0)) # (0,0,0) of
system (2), setting x(0) = J(0) and y(0) = M(0) + F(0) as initial conditions
of system (A.4), the previous inequalities imply that J(¢) > x(¢) and M(t) +

F(t) > y(t), for every t > 0, and so that {(J(¢),M(t), F(t)) : t € N} is

unbounded.

A.4  Proof of proposition 3.5

Let Ky > 0 be such that z®(z) < K for.all z > 0.

For every solution X (t) = (J(t), M(t), F(t)) € R3 of system (2) we have

F(t+1) =a®(WI(t))J(t) + soF(t) < m®(J(t))J(t) + soF(t) < K¢y + soF(t)

Since 0 < sy < 1, there exists 77 = T1(X(0)) > 0 such that for ¢ > 77 (X (0))

F(t) < =K,

Now we have for all ¢ > 77 (X (0)) that
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J(t+1)=sJ(t)+ fiM(t) + foF(t) < sJ(t) + f1M(t) + fo K,
Mt+1)=n(1—=2W(t))J(t) +s1M(t) < mJ(t) + s M (1)

444  and thus

J(t+ 1) S f1 J(t) f2K1
< +
M(t+1) T 81 M(t) 0
s fi
Since 7y, < 1 we have that the spectral radius of matrix is less than
™ 51

445
446 1 and so we can find T5(X(0)) > T7(X(0)) such that for all ¢ > T5(X (0))

-1

J(t) 10 s fi f2 K,

K
_ _ _ Ky

L = nu
M(t) 01 'Sy 0

1—51

447  what completes the proof.
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Conceptual model.

The spectral radius of the Jacobian matrix associated to the
equilibrium point X* = (J*, M*, F*) of system (?7?) is shown
for three different values of v € {1,1.5,2}, as 1y increases from
1 to 14, with s = 0.05, s; = 0.25, s, = 0.4, 7 = 0.6, f; = 0.01,
fo=nr(1 = s)(1 —s9)/m, By =1, B = 1.5 and ®(z) = e ".
N} represents the bifurcation value where X* loses its stability.

Using the female inherent reproductive number np as

a parameter, orbit diagrams for the juvenile density

J are shown for system (?7?7) with parameter values

s = 0.05, 5 = 025, s = 04, 7 = 0.6, f, = 0.01,
fa=nr(1—s)(1—s9)/m, f1 =1 and [, = 1.5, initial conditions
X(0) = (J(0), M(0), F(0)) = (20,15,10), and ®(z) = e™%": (a)
v=1, (b) v =1.5 and (¢) v = 2 (note the different vertical
scales).

The largest Lyapunov exponents (LLE) of the orbit-of system
(?77?) is shown for three different values of v € {1,1.5,2}, as
nr increases from 0 to 22, with parameters values and initial
conditions as in Fig. ?7. np° represents. the largest value of np
such that the LLE of the orbit is negative for np < n%.

The value 75, value of np for which the positive equilibrium
point X* = (J*, M*, F*) of system (?7?) loses its stability,
is shown for s; € [0.1,0.9] and sy € [s1,0.9], with s = 0.05,
7 =0.6, fi =0.01, 5; =1, fy = 1.5 and ®(x) = e 7.

The value 7%, smallest value of np starting from which

the corresponding orbit has a positive LLE, is shown for

s1 € [0.1,09], s € [s1,0.9], with s = 0.05, 7 = 0.6, f; = 0.01,
1 =1,.0y=15and ®(z) =e *.

The value 7y, value of np for which the positive equilibrium
point X* = (J*, M*, F*) of system (?7) loses its stability,
is shown for f; € [0,50] and B, € [f1,50], with s = 0.05,
s1 =0.25, s = 0.4, 7 = 0.6, f{ = 0.01 and ®(x) = e~".

The value 17, smallest value of np starting from which

the corresponding orbit has a positive LLE, is shown for

p1 € [0,50] and 5y € [y, 50], with s = 0.05, s = 0.25, s = 0.4,
m=0.6, fi =0.01 and ®(z) = e *.
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Fig. A.1. Conceptual model.
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Fig. A.2. The spectral radius of the Jacobian matrix associated to the equilib-
rium point X* = (J*, M*, F*) of system (2) is shown for three different values of
v € {1,1.5,2}, as np increases from 1 to 14, with s = 0.05, s; = 0.25, s9 = 0.4,
=06, fi =0.01, fo =np(l —s)(1 —s9)/m, f1 =1, fo=1.5and ®(z) =e 7. 0k
represents the bifurcation value where X* loses its stability.
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Fig. A.3. Using the female inherent reproductive number nr as a parameter, orbit
diagrams for the juvenile density J are shown for system (2) with parameter values
s = 0.05, S1 = 0.25, S9 = 0.4, T = 0.6, f1 = 0.01, fg = 77F(1 - S)(l - SQ)/ﬂ',
B1 = 1 and o = 1.5, initial conditions X (0) = (J(0), M(0), F(0)) = (20,15, 10),
and ®(z) = e *": (a) y =1, (b) v = 1.5 and (c) v = 2 (note the different vertical
scales).
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Fig. A.4. The largest Lyapunov exponents (LLE) of the orbit of system (2) is shown
for three different values of y € {1,1.5,2}, as np increases from 0 to 22, with
parameters values and initial conditions as in Fig. A.3. % represents the largest
value of nr such that the LLE of the orbit is negative for np < n%.
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Fig. A.5. The value 7}, value of nr for which the positive equilibrium point

X* = (J*, M*, F*) of system (2) loses its stability, is shown for s; € [0.1,0.9] and
s9 € [$1,0.9], with s = 0.05, 7 = 0.6, f1 =0.01, 5 =1, By = 1.5 and ®(x) = e ”.
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Fig. A.6. The value ng°, smallest value of nr starting from which the corresponding

orbit has a positive LLE, is shown for s; € [0.1,0.9], so € [s1,0.9], with s = 0.05,
m=0.6, f; =0.01, 5y =1, s = 1.5 and (D(:IZ) =e 7,
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Fig. A.7. The value 7}, value of nr for which the positive equilibrium point
X* = (J*,M*,F*) of system (2) loses its stability, is shown for g; € [0,50] and
B2 € [B1,50], with s = 0.05, s = 0.25, s9 = 0.4, 7 = 0.6, f; = 0.01 and ®(z) = e~ *.
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Fig. A.8. The value ng°, smallest value of nr starting from which the corresponding
orbit has a positive LLE, is shown for 5, € [0,50] and f2 € [f1, 50], with s = 0.05,
s1=0.25, s =0.4, 7 = 0.6, f; = 0.01 and ®(z) = e~ *.
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