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Abstract

Cell sorting is a dynamical cooperative phenomenon that is fundamental for
tissue morphogenesis and tissue homeostasis. According to Steinberg’s differen-
tial adhesion hypothesis, the structure of sorted cell aggregates is determined
by physical characteristics of the respective tissues, the tissue surface tensions.
Steinberg postulated that tissue surface tensions result from quantitative differ-
ences in intercellular adhesion. Several experiments in cell cultures as well as in
developing organisms support this hypothesis.

The question of how tissue surface tension might result from differential
adhesion was addressed in some theoretical models. These models describe the
cellular interdependence structure once the temporal evolution has stabilized.
In general, these models are capable of reproducing sorted patterns. However
the model dynamics at the cellular scale are defined implicitly and are not well-
justified. The precise mechanism describing how differential adhesion generates
the observed sorting kinetics at the tissue level is still unclear.

It is necessary to formulate the concepts of cell level kinetics explicitly. Only
then it is possible to understand the temporal development at the cellular and
tissue scales. Here we argue that individual cell mobility is reduced the more
the cells stick to their neighbors. We translate this assumption into a precise
mathematical model which belongs to the class of stochastic interacting particle
systems. Analyzing this model, we are able to predict the emergent sorting
behavior at the population level. We describe qualitatively the geometry of cell
segregation depending on the intercellular adhesion parameters. Furthermore,
we derive a functional relationship between intercellular adhesion and surface
tension and highlight the role of cell mobility in the process of sorting. We show
that the interaction between the cells and the boundary of a confining vessel
has a major impact on the sorting geometry.
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1. Introduction

Cell sorting is a biological process where heterotypic cell populations in
composite aggregates segregate into spatially confined homotypic cell clusters.
In a series of cell-sorting experiments, Holtfreter [Holtfreter, 1939] and subse-
quently many other biologists [for instance Armstrong, 1989; Beysens, Forgacs
and Glazier, 2000] showed that dissociated embryonic tissue in a Petri-dish sorts
spontaneously. The sorting proceeds via the coalescence of small islands into
larger ones until the cells are aggregated within cell clusters that are homo-
geneous with respect to the cell type. In general, cells of any pair of types
segregate into distinct tissues, not only cells that are in contact during normal
development [Forgacs and Foty, 2004].

It is widely assumed that the observed bulk behavior of cell populations in
vitro results from type-dependent differences in individual cell properties. In
particular, cell-type dependent disparities in the expression of molecules that
regulate intercellular adhesion are held to be responsible for cell sorting. In vivo,
cell segregation phenomena play a role in a range of developmental processes,
most importantly tissue morphogenesis and tissue homeostasis. One would like
to understand to which extent the intracellular regulation of spatiotemporal ex-
pression patterns of binding molecules guides the development and stabilization
of biological tissues. This cannot be accomplished until one understands the
details and mechanisms of cell sorting.

Cell sorting is commonly regarded to be the result of biological processes at
different spatial scales. At the tissue level (macroscopic scale) cells of different
populations separate into immiscible cell aggregates where striking similarities
with the phase-separation of fluids are observed phenomenologically. Intercellu-
lar adhesion, the supposed cause of cell sorting, as well as other characteristics
of individual cells such as cell migration properties are attributes at the cellular
level (mesoscopic scale). They in turn result from biochemical interactions at
the level of proteins (microscopic scale). Considering time-scales, cell sorting,
like the related morphogenetic processes, is observed over long timescales (min-
utes to hours) whereas processes at cellular and lower levels typically develop
over short (seconds) to medium (minute) timescales. Accordingly, several exper-
imental and theoretical studies aim to understand cell sorting and intercellular
adhesion at various spatial and temporal scales [Armstrong, Painter, and Sher-
ratt, 2006; Forgacs, Foty, Shafrir and Steinberg, 1998; Krieg, Arboleda-Estudillo,
Puech, Käfer, Graner, Müller and Heisenberg, 2008; Lecuit and Lenne, 2007;
Niessen and Gumbiner, 2002; Shi, Chien and Leckband, 2008].

At the population level, cells in a tissue behave remarkably similar to mole-
cules in a liquid. This was observed and formulated by Steinberg in his famous
differential adhesion hypothesis (DAH) [Steinberg, 1963]. Steinberg postulates
that there exist measurable physical quantities of homotypic tissues, the tissue
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surface tensions, which determine the geometry of sorted cell patterns. He pro-
posed further, in analogy to the linkage of liquid surface tension with cohesive
interactions between molecules in a liquid, that cell-type dependent differences
in tissue surface tensions are induced by quantitative differences in the strength
of intercellular adhesion. Subsequently, Steinberg, Foty and colleagues devel-
oped a concept of tissue surface tension and conducted a series of experiments
to show that this quantity behaves in many ways analogously to liquid surface
tension. The phenomenological similarity between tissues and fluids could thus
be successfully exploited and quantified [Beysens et al., 2000; Forgacs et al.,
1998; Foty, Forgacs, Pfleger and Steinberg, 1994; Steinberg, 1963].

Liquids are cohesive materials with mobile subunits, the molecules, that are
subjected to thermal fluctuations. Utilizing the phenomenological analogy be-
tween liquids and tissues, the DAH therefore implicitly acknowledges that there
are two key mechanisms at the cell level that contribute to the observed behav-
ior at the tissue level, cell mobility and intercellular adhesion. Cell mobility is
a prerequisite for active tissue rearrangement and is thereby essential for the
process of sorting. It is widely agreed, that the cells in a tissues are able to
change their spatial positions [Upadhyaya, Rieu, Glazier and Sawada, 2001].
Regarding intercellular adhesion, it is accepted [Wolpert, 2007], that there is a
complex system of attraction and repulsion mechanisms operating between cells
of various types. Holtfreter coined the expression ‘cell affinity’ for the result-
ing effective attractive (or repulsive) force. In this spirit the term ‘intercellular
adhesion’ is used here to describe the affinity of two cells of possibly different
types regardless of the particular molecular basis for their interaction.

By now it is widely accepted [Green, 2008], that sticky and mobile cells at the
mesoscopic scale produce the cell sorting which is observed at the macroscopic
scale. However the precise link that connects the two scales is still unknown. It
was shown experimentally, that tissue surface tension, as measured by specific
surface tensiometers [Foty, Pfleger, Forgacs and Steinberg, 1996], increases lin-
early with the expression level of certain adhesion molecules such as cadherins
[Foty and Steinberg, 2005]. However it is still open from the experimental as
well as theoretical point of view, in what way cell migration is damped by in-
tercellular adhesion and to what extent the dynamic behavior at the cell level
determines the dynamic behavior at the tissue level. In short, what is the
mechanism that couples intercellular adhesion and surface tension and which
role does cell migration play in this process?

If one tries to transfer the idea that tissues behave like fluids from tissue to
cell-level, then it is necessary to acknowledge that there are fundamental dif-
ferences in the microscopic sources of mesoscopic behavior. Liquid molecules
move passively in response to thermal fluctuations. In contrast, cells move
passively as well as actively. Active cell displacements are powered by the cell
metabolism and are controlled by cell-intrinsic regulation processes. Considering
the cohesive forces between the subunits we also find major differences. Liquid
molecules are held together by van der Waals forces, hydrogen bonds and ionic
interactions. The molecular basis for intercellular adhesion are specific bind-
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ing molecules, particularly cadherins, that interact with molecules of adjoining
cells. The expression of those binding molecules is controlled by cell-intrinsic
regulation mechanisms. There is evidence that binding molecules function in
other intracellular processes [Halbleib and Nelson, 2006; Marsden and DeSi-
mone, 2003]. This means that the formation of adhesive bonds can alter the
intracellular structure and directly affect cell mobility. In the context of can-
cer invasion, this was already acknowledged in theoretical models [Gerisch and
Chaplain, 2008; Ramis-Conde, Drasdo, Anderson and Chaplain, 2008]. Thus
the analogy between liquids and tissues cannot be simply transferred to cell
level. Instead a mathematical model is necessary to formulate the concepts on
the cell level kinetics explicitly. Then the analysis of this model reveals whether
these ideas are consistent with experimental and theoretical findings at cellular
and tissue scales.

The question that we address here is how the mesoscopic and macroscopic
properties in the process of cell sorting are connected. We conjecture that
cell movement is less the more a cell sticks to its neighbors. We translate
this assumption into a precise mathematical model. Analyzing this model, we
solely rely on stringent mathematical reasoning, since we believe that one does
not fully understand the consequences of a model until one can prove rigorous
theorems. We are able to predict the emergent behavior at the population level.
We qualitatively describe the geometry of cell segregation depending on the
intercellular adhesion parameters. Thereby we find a functional relationship
between intercellular adhesion and surface tension and highlight the role of cell
mobility in the process of sorting. We show that the interaction between the
cells and the boundary of a confining vessel has a major impact on the sorting
geometry.

2. Models of Sorting

There are already several mathematical models that address the question of
how tissue surface tension is connected with individual cell properties, in partic-
ular with the strength of intercellular adhesion. We discuss here two influential
models which are to some respects related to our approach, the cellular Potts
model of Glazier and Graner [Glazier and Graner, 1993] and an Ising-like model
of Mouchizuki [Mouchizuki, Takeda, Ide and Iwasa, 1997]. Both models are spa-
tially discrete stochastic equilibrium models which are computationally analyzed
with the help of Monte Carlo simulations. It is assumed that typical cell con-
figurations which are observed once the temporal development has stabilized
are just those which minimize some (surface) energy functional. This energy
functional or ‘Hamiltonian’ represents the overall interdependence structure be-
tween the cells and is therefore dependent on the individual cell characteristics.
Although the physical term ‘energy’ is used here, the constructed Hamiltonians
do not represent physical energies but are idealized mathematical concepts used
to describe at a macroscopic scale the state of a large number of interacting
components. These models, which have their origin in statistical physics, do
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not describe dynamical behavior but characterize the system’s state once the
temporal evolution has stabilized.

Exploring the energy landscape corresponding to a given Hamiltonian can
be hard to accomplish rigorously, therefore one often uses Markov chain Monte
Carlo (MCMC) methods. That is, one constructs a Markov chain whose sta-
tionary measure is exactly the equilibrium state that one intends to study. The
configurations that are visited by the Markov chain after some relaxation period
are then typical configurations of the model system. There are various possible
methods to construct this auxiliary Markov chain, and one can try to find one
which converges exceptionally fast or one which can be readily computed. In
any case, it is not clear to what extent this Markov chain resembles the actual
or assumed dynamical behavior of the biological system at hand.

In both of the above cited studies, such MCMC methods were applied where
the particular Markov transition mechanism allows a meaningful interpretation
in terms of the original cell sorting problem. However neither study includes a
thorough examination that clarifies whether there is at least a qualitative agree-
ment of essential dynamical characteristics between model system and original
cell sorting problem. Therefore it cannot be assumed that the reported kinetic
properties emerge from the conjectured interconnection between mesoscopic and
macroscopic scale. Instead the model’s temporal development can be rather ar-
tificial since it is a byproduct of the more-or-less ad-hoc MCMC dynamics.

Glazier, Graner and coworkers [Glazier and Graner, 1993; Mombach, Glazier,
Raphael and Zajac, 1995], were the first to address the question of how tissue
surface energy might relate to the adhesive bonds between individual cells in
a tissue. They developed a model, where cells of certain types 1, ...,K are
placed on a two- or three-dimensional square lattice in such a way that each
cell covers several lattice sites. The Hamiltonian consists of two terms. The
first term weighs the deviation from a cell-type dependent target cell volume
and is parameterized by an elasticity parameter λ and the cell-type dependent
target cell volumes V1, ..., VK . The second term weights the cell surface length
and is parameterized by cell-type dependent surface-energy terms (Jij)i,j=1,...K .
Here any particular piece of unit length of a type-i cell surface is given weight
Jij , if the cell adjoins with this part of the surface to a cell of type j. Thus
the Hamiltonian incorporates variations in cell volume as well as differential
adhesion.

Using computer simulations, Glazier and Graner studied the equilibrium
measure corresponding to the Hamiltonian, which is the Gibbs measure in math-
ematical terms. They implemented a mixture of Voter and Metropolis dynam-
ics to sample typical configurations and observed sorted patterns for selected
choices of the parameters. This supports their claim that the Hamiltonian can
be interpreted to quantify the interfacial and surface free energies of a tissue in
the sense of Steinberg’s differential adhesion hypothesis.

In addition, they regarded the temporally discrete dynamical process that is
given by the chosen Markov transition mechanism as being a dynamical model
of the process of sorting. It switches the occupancy of one single lattice site
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per time step, which causes one cell to increase its volume by one lattice site
and another cell to decrease its volume, accordingly. This volume fluctuation
induces shifts in each cell center of mass and was therefore claimed to represent
random cell motion.

There are some drawbacks of this model. First, spatial cell displacements are
modeled implicitly via volume fluctuations and are therefore dependent on the
interplay of several parameters that are not directly related to cell mobility nor
to concepts on cell-intrinsic events (microscopic scale). Therefore it is not pos-
sible to assess to what extent theoretical and empirical ideas on cell migration
are reflected correctly. Second, it is not clear whether the implemented Markov
transition mechanism results in a correct MCMC algorithm. Since the authors
modified the standard Metropolis algorithm (supposedly in order to obtain a
biologically more realistic behavior), common results in MCMC theory do no
longer apply. Hence it has to be shown explicitly that the stationary measure
of the chosen Markov chain is indeed the one which is specified by the given
Hamiltonian. Actually, there are indications that the system fixates in the long-
time limit in a state where one cell occupies all lattice sites, since these states
are absorbing [Brémaud, 1999, §4.6]. This would clearly be an artifact and mo-
tivates the question whether the authors really explore the energy landscape of
the specified Hamiltonian. If not, the equilibrium behavior is not determined
by the Hamiltonian alone which reopens the question about a suitable concept
of surface tension and surface energy. And lastly, there is a question of spatial
resolution. The decision to model cells in such a way that one cell covers several
lattice sites brings about some technical difficulties. For instance, the elasticity
parameter cannot be varied much since a single cell would otherwise decompose
into several separated components. For the same reason, the standard Metropo-
lis algorithm cannot be applied. This high spatial resolution would be justified if
more biological detail was captured. However it is not apparent that the cellular
Potts model realistically describes biological properties below cell level.

Mouchizuki and colleagues [Mouchizuki et al., 1997] claimed that it is nec-
essary to ‘model the stochastic or random movement of the cells explicitly, and
model the effect of differential adhesion as a bias of cell exchange rate’. However
they rather picked a standard MCMC model, the so-called spin-exchange Ising
model, and interpreted it in cell sorting terms.

In detail, cells of two types B, W were placed on a two-dimensional square
lattice in such a way that each cell occupies exactly one site and such that there
are no empty lattice sites. The strength of homo- and heterotypic intercellular
adhesion between two adjoint cells was quantified by parameters λBB , λWW and
λBW . A Hamiltonian, called ‘total adhesion’ was specified to be the weighted
sum of all nearest-neighbor bonds. Then the standard Kawasaki dynamics was
applied and interpreted as random exchange of cell locations between neighbor-
ing cells. This resulting rate for an exchange of spatial cell position is biased
towards increasing the total adhesion of the spatial pattern.

Mouchizuki and his coworkers studied the temporal development of their
Markov chain model with the help of computer simulations and developed sev-
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eral order parameters which helped to characterize the sorting process. They
studied the equilibrium behavior by applying a heuristic computational routine
and proposed an abrupt transition from mixed to sorted equilibrium behavior as
some effective adhesion parameter is increased. This effective adhesion param-
eter depends on λBB , λWW and λBW as well as on some migration parameter
m.

Despite the author’s claim to present a dynamical model for cell sorting
we would like to classify Mouchizuki’s Ising-like model as an equilibrium model.
Kawasaki dynamics are standard MCMC transition mechanisms for lattice mod-
els when one wants to conserve the number of individuals, such as cells or parti-
cles, that are located on the lattice. Therefore the corresponding Markov chain
can be interpreted to resemble nearest-neighbor cell migration. However we
challenge whether this dynamics shows the correct qualitative behavior. For
instance, for some situations the rate for a change of spatial positions is higher
the stronger the homo- and heterotypic bindings to adjacent cells are. It is not
apparent and was not discussed in the cited paper whether there are biological
mechanisms that justify this model behavior.

We find that it is necessary to define a model of the dynamical features of
cell sorting which describes our conception of individual cell behavior. Then
we can explore the implications for the longtime behavior of large cell popula-
tions and can check whether our conclusions are consistent with experimental
observations.

Often important qualitative characteristics are revealed only with the help of
some temporal or spatial limit procedures. Then qualitatively different behavior
in certain regions of the phase space becomes apparent and phase transitions can
be detected. This cannot be accomplished by computer simulations. Therefore
we formulate a model which is analytically tractable.

3. Interacting particle model

We propose a dynamic individual-based mathematical model for the process
of sorting. In particular, we explicitly model the migration of individual cells
based solely on spatial competition and the adhesive properties of the individual
cells. We focus on pattern formation aspects of sorting which result from active
rearrangement of cell configurations and exclude proliferation and apoptosis.

A population of cells of different types is considered, where the cell-types
are denoted by numbers 0, 1, ..., n, n ≥ 1.

We assume that all cells regardless of type have similar volume and spheroid
shape. It is not appropriate to treat the cells to be points in space, since
migration needs to be modeled at the spatial scale of cell size. Instead, we
incorporate volume exclusion. We place the cells on a d-dimensional square
lattice, d = 2, 3, where each cell occupies exactly one lattice site. Then the
lattice spacing corresponds to the cell diameter. Each arrangement of cells on
the lattice is a configuration. Note that the discreteness of space makes the
model simpler to handle and analyze.
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We aim to understand the dynamics of cell populations that consist of n
different cell types and whose spatial arrangement can have medium in between.
To this end, we interpret the cell type 0 to be an unoccupied lattice point and
types 1, ..., n to be biological cells of certain type.

However there is another interpretation in case n = 1, that is W = {0, 1}. In
this case, each arrangement of 0’s and 1’s on the lattice models a cell population
of two different cell types without medium in between. We call this a fully
occupied system.

We denote the lattice by S ⊂ Zd, d = 2, 3. Here we concentrate on the
two cases that S = Zd or that S is bounded, that is |S| < ∞. We define
T := {T ⊂ S : |T | < ∞}, where |T | is the cardinal number of a set T ⊂ S. Let
be W = {0, 1, ..., n} the set of all possible cell types. Then the configuration
space is given by

X = WS = {η : S → W}.
A configuration is an element of the configuration space,

η = {η(x)}x∈S ∈ X.

With only one cell of type j, cell migration is modeled by a simple nearest-
neighbor random walk on the lattice. The corresponding transition matrix is
given by pj := αjp = (αjp(x, y))x,y∈S with

p(x, y) =

{
1, |x− y| = 1
0, otherwise.

(3.1)

The parameter αj ≥ 0 characterizes the migration speed of type-j cells, j ∈W ,
and the expression |x− y| denotes the Manhattan distance between two lattice
sites x = (x1, ..., xd), y = (y1, ..., yd) ∈ S, that is

|x− y| := |x1 − y1|+ ... + |xd − yd|.

We assume that αj > 0 for j �= 0.
If there is more than one cell on the lattice but no adhesive interplay, we

define that the cells interact by virtue of the exclusion principle. A randomly
chosen cell of type j attempts to jump on a given neighboring site with rate
αj . If the target site is already occupied by a cell of type i, then both cells
interchange their positions with rate αi + αj . Effectively, the configuration
changes only for i �= j. Given a configuration η ∈ X, the transition

η → ηxy with ηxy(z) :=

⎧⎪⎨
⎪⎩

η(y), z = x,

η(x), z = y,

η(z), z �= x, z �= y,

describes the change in the configuration as the cell at x jumps to an empty
site y, or vice versa, or if both locations x, y are occupied the cells at x and
y interchange their positions. In the case that both sites x, y are empty or
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occupied by cells of the same type, the configuration is not altered by the above
transition. We specify the rates for a transition η → ηxy to be

c0(x, y, η) =

{
(αη(x) + αη(y))p(x, y) if η(x) �= η(y)
0 otherwise,

where x, y ∈ S, η ∈ X. For W = {0, 1} this model is a so-called symmetric
nearest-neighbor exclusion process [Liggett, 1985].

Adhesive interactions between cells bias the cell migration. If a cell strongly
sticks to neighboring cells then the cell mobility is lessened. Thus the rate for
the cell’s transition to one of the neighboring sites is decreased. We assume that
adhesion works only between cells in contact. Therefore we only consider bonds
between cells on neighboring sites, that are sites at Manhattan distance one.
The strength of the bond between two cells depends on the cell types. Thus
the bond between two cells of type i and j, respectively, is weighted by a value
βij ∈ R. Naturally, we assume the matrix

β = (βij)i,j∈W

of adhesion parameters to be symmetric. For x, y ∈ S, η ∈ X, we model the rate
for a transition η → ηxy to be

c(x, y, η) = c0(x, y, η) exp

⎧⎨
⎩−

∑
z:|z−x|=1

βη(x)η(z) −
∑

z:|z−y|=1

βη(y)η(z)

⎫⎬
⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(αη(x) + αη(y))p(x, y)×
× exp

{
−∑

z:|z−x|=1 βη(x)η(z) −
∑

z:|z−y|=1 βη(y)η(z)

}
,

if η(x) �= η(y),

0, otherwise.

(3.2)

The interpretation is as follows. Suppose we have a cell of type i at position x
and a cell of type j at y, then both cells exchange their positions with a rate
that is proportional to

exp

⎧⎨
⎩−

∑
z:|z−x|=1

βiη(z) −
∑

z:|z−y|=1

βjη(z)

⎫⎬
⎭ .

This rate is smaller the more the cells adhere to neighboring cells. Positional
exchanges of other than nearest-neighbor cells are suppressed. See Figure 1 for
an example. Note that for W = {0, 1} the model falls in the class of so-called
stochastic lattice gases with speed change [Spohn, 1991].

The transition rates embody the local behavior of cell mobility. We do not
assume that there are any chemical markers which guide cell behavior, therefore
the cells have no ability to gain knowledge of their more distant or even global
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Figure 1: Type-specific cell migration of on a square lattice is biased by nearest-neighbor
intercellular adhesion.

Type-1 cells (dark gray) and type-2 cells (light gray) are arranged on a two-
dimensional square lattice. Left: The dark cell located within the shadowed
area can move freely since it has no nearest neighbors and is not subject to
intercellular adhesion therefore. A transition to the empty site within the shad-
owed area happens with rate α1. Right: After the transition has taken place,
the dark cell adheres to two neighboring type-2 cells. The rate for the reverse
transition is decreased to α1 exp{−2β12}.
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environments. The cell dynamics depends solely on the cell configuration in the
direct neighborhood of the regarded cells.

We assume that cell jumps to neighboring lattice sites follow a stochastic
rule. This reflects the observation that, besides adhesive bindings and spatial
competition, a variety of minor influences determines the migration behavior of
biological cells. Those influences can be the inner cell structure, which is not
modeled explicitly here, inhomogeneities of the environment or fluctuations in
cell shape and volume. All of them together give rise to the stochastic com-
ponent of the model. We suppose further that the future evolution of the cell
population depends solely on the present spatial arrangement of the cells, that is
the present cell configuration. We therefore formulate a Markov process model.

We treat time as a continuous quantity. A discretization of time, as very
often used for computer simulations, would not help us to analyze the model.
From our analytical viewpoint, continuous-time models are easier to handle
and more natural. See Klauss and Voss-Boehme [2008] for the derivation of a
according time-discrete model.

The family c = (c(x, y, .))x,y∈S of transition rates which are specified by (3.2)
describes the dynamics at the cellular scale. It determines a Markov process on
X which shall be called the cell sorting model. For bounded volumes, that is
for |S| < ∞, this Markov process is a finite Markov chain, which is well-defined
as soon as the effect of the boundary is described. This will be done in the
following. The specifics of how to define the cell sorting model for S = Zd are
presented at the end of this section.

If the lattice is finite, that is if |S| < ∞, the cell sorting model is uniquely
determined as soon as the initial state and the boundary conditions are fixed.
We consider the cases of periodic and fixed boundary conditions. In both cases,
we alter the expression in (3.2) for those cells that are located next to the
boundary of the considered volume in order to obtain a meaningful behavior
near the boundary.

If S = ΛN := [0, N − 1]d ∩ Zd, N ∈ N, we can define periodic boundary
conditions. For N ∈ N, let be

NZd :=
{
z ∈ Zd : z = (Nx1, ..., Nxd) for some x1, ..., xd ∈ Z

}
and

|x|ΛN
:= min{|y| : y ∈ x + NZd}, x ∈ ΛN ,

where z+B := {y+z : y ∈ B}, z ∈ Rd, B ⊂ Rd. Note that this means essentially
that we identify the points of ΛN with the points of the discrete d-dimensional
torus of diameter N . Replacing in the above equations (3.1) and (3.2) the
Manhattan norm |.| by the norm |.|ΛN

, we define a family cN
p = (cN

p (x, y, ·))x,y∈S

of transition rates on XN := WΛN . For each initial state, the family cN
p of

time-homogeneous transition rates uniquely determines a Markov chain on X.
In detail, let be C(XN ) the set of all real functions on XN and define a Markov
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generator AN
p : C(XN ) → C(XN ) by the equation

AN
p f(η) :=

∑
x,y∈ΛN

cN
p (x, y, η)(f(ηxy)− f(η)), f ∈ C(XN ), η ∈ XN . (3.3)

The generator AN
p is a bounded operator, since XN is a finite set. In the context

of Markov chains one often works with the Q-matrix aN
p instead of the generator,

which is is given by the relation

aN
p :=

(
aN

p (η, ξ)
)
η,ξ∈XN

=
(
AN

p 1{ξ}(η)
)
η,ξ∈XN

. (3.4)

Note that the correspondence between aN
p and AN

p is one-to-one. It is well-
known from standard Markov chain theory (see, for example, Brémaud [1999])
that for each probability measure ν0 on XN the operator AN

p uniquely deter-
mines a continuous-time Markov chain with initial distribution ν0 and state
space XN which has right continuous paths with left limits (cadlag paths).

Definition 3.1. Fix N ∈ N and choose a probability measure ν0 on XN .
Let cN

p = (cN
p (x, y, ·))x,y∈ΛN

be the family of transition rates which is defined
above. The corresponding continuous-time Markov chain on XN which has
cadlag paths and initial distribution ν0 is called cell sorting model in ΛN with
periodic boundary conditions and with start in ν0.

If we want to define a cell sorting model with fixed boundary condition, we
set S = Zd, fix a volume V ⊂ S with |V | < ∞ and choose a so-called external
condition ζ ∈ X. During the temporal development, the external condition
ζ shall remain fixed but it will influence the rates for cell migration next to
the boundary. To accomplish this, we define, for ζ ∈ X, v ∈ XV := WV , a
configuration τV (ζ, v) ∈ X by

τV (ζ, v)(z) :=

{
ζ(z), z ∈ S\V,

v(z), z ∈ V.
(3.5)

We put
cV
ζ (x, y, η) := c(x, y, τV (ζ, η)), x, y ∈ V, η ∈ XV , (3.6)

where c(x, y, .) is given by (3.2), and obtain a family cV
ζ = (cV

ζ (x, y, ·))x,y∈V of
transition rates on XV . As above, the family cV

ζ determines a Markov generator
AV

ζ : C(XV ) → C(XV ) by

AV
ζ f(η) :=

∑
x,y∈V

cV
ζ (x, y, η)(f(ηxy)− f(η)), f ∈ C(XV ), η ∈ XV . (3.7)

Here C(XV ) is the set of all real functions on XV . The corresponding Q-matrix
aV

ζ is given by

aV
ζ =

(
aV

ζ (η, ξ)
)
η,ξ∈XV

=
(
AV

ζ 1{ξ}(η)
)
η,ξ∈XV

. (3.8)
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For each probability measure ν0 on XV , the operator AV
ζ uniquely determines

a continuous-time Markov chain with initial distribution ν0 and state space XV

which has cadlag paths.

Definition 3.2. Fix V ⊂ S and choose a probability measure ν0 on XV . Let
cV
ζ = (cV

ζ (x, y, ·))x,y∈V be the family of transition rates which is defined in (3.6).
The corresponding continuous-time Markov chain on XV which has cadlag paths
and initial distribution ν0 is called cell sorting model in V with fixed boundary
condition ζ and with start in ν0.

The dynamics of a cell sorting model in bounded volume V ⊂ S with fixed
boundary condition ζ ∈ X is easy to illustrate. Given a present configuration η ∈
XV , imagine a clock at each (unordered) pair of neighboring sites {x, y}, x, y ∈
V, |x − y| = 1, which is set to an exponential time with parameter cV

ζ (x, y, η).
The system waits until the first clock rings, say it is the clock at the pair {x0, y0}.
Then the transition η → ηx0y0 is performed, that is the occupancy at x0 and
y0 is exchanged, and all clocks are set anew to exponential times, now with
parameters cV

ζ (·, ·, ηx0y0). Actually, any cell sorting model in bounded volume
develops in this way. One only has to substitute the respective transition rates
for cV

ζ .

In addition to the cell sorting model in bounded volumes it is necessary
to have a well defined model for S = Zd as well. This is because important
qualitative characteristics of the model cannot be revealed until one applies
suitable spatiotemporal limit procedures. Therefore it is essential to have a
well-defined stochastic process even for S = Zd. However, for unbounded S,
the state space X is innumerable. Therefore standard results of Markov chain
theory no longer apply and the question of existence and uniqueness of a Markov
process corresponding to the transition rates in (3.2) becomes non-trivial. In the
following we show that the cell sorting model fits into the concept of interacting
particle systems (IPS) as defined in Liggett [1985]. We apply general results on
the existence and uniqueness of interacting particle systems which ensure that
the cell sorting model is well-defined. To this end, we collect essential properties
of the transition rates.

Proposition 3.3. Let the family of transition rates (c(x, y, ·))x,y∈S be given by
(3.2). Then the following properties are fulfilled.

(A) translation invariance:

c(x, y, η) = c(x + z, y + z, θzη), x, y, z ∈ S, η ∈ X,

where θz : X→ X : (θzη)(u) := η(u− z), u ∈ S, for any z ∈ S.
(B) finite range jumps:

c(x, y, ·) = 0 if |x− y| > 1.

(C) local rates:
c(x, y, η) = c(x, y, ζ) for any x, y ∈ S and η, ζ ∈ X with η(z) = ζ(z) for
z ∈ {z ∈ S : |z − x| ≤ 1 or |z − y| ≤ 1}.
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(D) positive rates:
inf

x,y∈S
|x−y|≤1

inf
η∈X,

η(x)�=η(y)

c(x, y, η) > 0.

(E) irreducible rates: For any two different sites x, y ∈ S there exists a finite
sequence x = x0, x1, ..., xn = y ∈ S such that xi �= xi−1 and

min{c(xi−1, xi, η) : η ∈ X, η(xi−1) �= η(xi)} > 0

for all 1 ≤ i ≤ n.
(F) uniformly bounded rates:

sup
x∈S

∑
y �=x

sup
η∈X

c(x, y, η) < ∞.

Proof. Properties (A)–(C) are found directly from the definition of the respec-
tive rates. We show that properties (A)–(C) imply (F): Let o = (0, ..., 0) ∈ Zd.
By (B) and (C) we have

sup
η∈X

c(o, y, η) =

⎧⎪⎨
⎪⎩

0, if |y| �= 1
sup
η∈X

η(z)=0,|z|>2

c(x, y, η) < ∞, if |y| = 1.

Hence
∑

y �=o c(o, y, η) < ∞. Property (F) follows now from the translation in-
variance (A).

Proposition (D) follows from the observation that

c(x, y, η) ≥
(

min
j∈W\{0}

αj

)
exp

{
−4d max

i,j∈W
βij > 0

}
> 0

for any x, y ∈ S with |x− y| ≤ 1 and any η ∈ X with η(x) �= η(y).
Finally, (D) gives that

min{c(z1, z2, η) : η ∈ X, η(z1) �= η(z2)} > 0, if |z1 − z2| = 1.

Since there is always a path along the edges of the lattice Zd which connects to
given points x, y ∈ S, this implies (E).

By Liggett [1985, Ch. 1], each family of transition rates c = c(x, y, ·)x,y∈S

which satisfies (A)–(C) above uniquely defines a Markov process on X, which
is a called a Feller process. We introduce some formalism now in order to make
this statement sound.

Suppose that the set W is equipped with the discrete metric d. Then (W, d)
is a compact metric space and the σ−field W = B(W ) of all Borel sets coincides
with the power set of W . The product space X = WS is equipped with the
product topology which is metrizable. Note that X is compact w.r.t. the product
topology. The product σ−field F = WS coincides with the Borel σ-field B(X).

The space of all continuous real functions on X equipped with the supremum
norm is denoted by C(X). This set is complete and separable. A real function
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f on X is called a tame function if there is a finite set T ⊂ S, |T | < ∞ such
that f(η) = f(ζ) for any η, ζ ∈ X with η(x) = ζ(x) for x ∈ S\T . Thus tame
functions depend only on finitely many coordinates. It is easily verified that the
(countable) set T (X) of all tame functions is a dense subset of C(X) [Georgii,
1988, (2.21)].

We are given an operator A which acts on T (X) by

(Af)(η) =
∑

x,y∈S

c(x, y, η) (f (ηxy)− f(η)) , f ∈ T (X), η ∈ X. (3.9)

This operator is well-defined, that means, for f ∈ T (X), the above infinite sum
converges absolutely and defines a continuous function on X. This follows from
Liggett [1985, Prop.I.3.2], since the family of transition rates (c(x, y, ·))x,y∈S

satisfies the conditions of Proposition 3.3 (A)-(C). The closure of A is the
generator of a Markov semigroup (Tt)t≥0 on C(X) [Liggett, 1985, Th.I.3.9].
Given a probability measure ν0 on (X,F), the operator A uniquely determines
a Markov process (ηt)t≥0 with initial distribution ν0 and state space (X,F),
which has cadlag paths [Liggett, 1985, Thm.I.1.5]. Note that νt, the distribution
of ηt, is given by the relation

νt(f) = ν0(Ttf), f ∈ C(X), t ≥ 0.

Definition 3.4. Let c = c(x, y, ·)x,y∈S be the family of rate functions which
is given by (3.2) and let A be the corresponding Markov pre-generator that is
defined in (3.9). The associated Markov process which has cadlag paths and
initial distribution ν0 ∈P(X,F) is called cell sorting model in Zd with start in
ν0.

We end up with a stochastic, continuous-time, individual-based model of
interacting cells on a regular square-lattice, which can be used to study the
emergent dynamic properties on tissue scale. Based on the commonly accepted
view that cell mobility and differential intercellular adhesion are essential for
tissue segregation, we present a model where the two factors interact dynami-
cally. We argue that cell adhesion dampens cell mobility which means that the
cells are the less mobile the more they stick to each other. This assumption
is translated into a precise mathematical model which belongs to the class of
stochastic interacting particle systems. Any further details at the cellular level
which might have an effect on cell mobility or intercellular adhesion such as the
control of cell shape or cell size are considered to be of minor importance and
are integrated into the stochastic component. We have two model parameters,
the mobility parameter α, that regulates the rate of cell displacement, and the
adhesion parameter β = (βij)i,j∈W , which describes the strength of intercellular
adhesion. This allows to study the effect of each factor separately.

Our IPS-model for cell sorting is defined via the specification of (local) transi-
tion rates. This reflects our understanding that it is the concept of the dynamics
at the cellular scale which will be reproduced by the model. Mathematically,
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our model for cell sorting is a Markov process that describes the temporal de-
velopment of the spatial cell arrangement within a discretized fixed volume. In
the case where the considered volume is bounded, the model simplifies to a fi-
nite Markov chain and can be described by standard mathematical methods.
In order to reveal essential qualitative properties when analyzing such systems,
it is a fundamental necessity to go beyond finite systems and to study the
model in its infinite-volume limit. However in the case of unbounded volumes,
the state space becomes innumerable and the corresponding stochastic model
would be no longer a Markov chain. Therefore, we have chosen the technically
more involved approach to develop an IPS-model, which can be considered as
an infinite-volume analog of the finite system and includes the finite model as
a special case.

4. Mathematical Analysis

In this section, the key arguments of the analysis are presented. Predomi-
nantly technical and intermediate findings as well as detailed proofs are shifted
to the Appendix. An elucidating summary of the analytic findings and a dis-
cussion of the consequences for the model behavior can be found in Section
5.

We concentrate on an analysis of the longtime behavior of our model to-
gether with a characterization of the steady states. Since we have a stochastic
model, the steady states are probability measures which are invariant under the
dynamics. We show that the invariant measures are reversible with respect to
the cell sorting dynamics, that is we prove that the probability flux between
any two states is balanced. The reversible measures are characterized further to
be Gibbs measures. This property is exploited to answer the question of which
typical spatial arrangements the model system exhibits in the longtime limit.

Gibbs measures are equilibrium models which originate from statistical me-
chanics (see, for instance Georgii [1988] for their mathematical foundation).
They are probability measures on the configuration space X which are defined
via potentials and their corresponding Hamiltonians. The potential is a postu-
late about the system’s interdependence structure once the temporal evolution
has stabilized. It is the starting point for equilibrium modeling. Hamiltonians
and Gibbs measures are constructed from the potential in a standard way. By
analyzing them the consequences of the postulated interdependence structure
in equilibrium are explored.

Our approach is contrary. Instead of conjecturing an interdependence struc-
ture for the system’s steady states, we prove that the model dynamics implies
a special structure of the invariant measures. We show that the invariant mea-
sures are Gibbs measures with respect to a certain potential which is specified
explicitly. Thus the interdependence structure in equilibrium emerges as a con-
sequence of the assumptions on the system dynamics.

We start with an investigation of the infinite model in paragraphs 4.1 and
4.2, that is we study the cell sorting model in S = Zd. The model behavior in
large but bounded volumes is analyzed in paragraph 4.3.
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4.1. Reversible measures are Gibbs measures
Suppose that S = Zd and let be given a family c of transition rates by (3.2).

The set of all probability measures on (X,F) is denoted by P(X,F). We recall
that we have a Markov generator A and a Markov semigroup (Tt)t≥0 on C(X)
which are uniquely associated to the family c.

Definition 4.1. A measure μ ∈P(X,F) is invariant w.r.t. (Tt)t≥0 if and only
if

μ(f) = μ(Ttf), f ∈ C(X), t ≥ 0.

The set of all invariant measures w.r.t. (Tt)t≥0 is denoted by I = I (c).

There is a subset of I that is often easier to characterize. This is the set
of reversible measures on (X,F). Reversible measures are characterized by the
property that the probability flux between any two states is balanced.

Definition 4.2. A measure μ ∈P(X,F) is reversible w.r.t. (Tt)t≥0 if and only
if

μ(fTtg) = μ(gTtf), f, g ∈ C(X), t ≥ 0.

The set of all reversible measures w.r.t. (Tt)t≥0 is denoted by R = R(c).

Note that R ⊂ I and I �= ∅, but, in general, R = ∅ is possible [Liggett,
1985, I.1.8(f) and I.5.2].

The concept of canonical Gibbs measures that was developed within the
context of statistical physics is well-suited to characterize the reversible measures
in our model. Gibbs measures are defined with respect to some potential which
determines the behavior inside bounded volumes conditioned on the outside
configuration (see Georgii [1988] as an excellent general reference).

In detail, define, for T ⊂ S, the local configuration space XT := WT , the
corresponding projection πT : X → XT : πT (η) = {η(x)}x∈T =: ηT and the
σ-algebra FT = π−1

T (WT ). Let us agree to write π−1
T (v) for the set π−1

T ({v}) =
{η ∈ X : πT (η) = v}, v ∈ XT . We recall the definition T = {T ⊂ S : |T | < ∞}.

Let us recollect the formula (3.5), where transformations τT : X×XT → X

are defined for T ∈ T . The configuration τT (η, v), which is given by

τT (η, v)(z) =

{
η(z), z ∈ S\T
v(z), z ∈ T,

arises from η ∈ X by substituting v ∈ XT for the sub-configuration ηT =
(η(x))x∈T .

Definition 4.3. A family Φ = (ΦT )T∈T of FT -measurable real functions ΦT :
X → R is a finite range potential, if there is a real number r > 0 such that
ΦT = 0 for any T ∈ T with max

x,y∈T
|x− y| > r.
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Each finite range potential Φ can be assigned to a family (HΦ
T )T∈T of Hamil-

tonians by
HΦ

T (η) =
∑
V ∈T

V ∩T �=0

ΦV (η), T ∈ T , η ∈ X, (4.1)

and a family (hΦ
T )T∈T of Boltzmann factors by the relation

hΦ
T (η) = exp

{
−HΦ

T (η)
}

, T ∈ T , η ∈ X. (4.2)

For w ∈W, T ∈ T , denote

NT : X×W → N0 : NT (η, w) =
∑
x∈T

1{ζ:ζ(x)=w}(η). (4.3)

That is, NT (η, w) gives the number of type-w cells within the volume T . Put
NT = (NT (w, ·))w∈W . The σ-algebra of events which are invariant under per-
mutation of the sites in T is denoted by

ET = σ(πS\T ,NT ) ⊂ F .

The term
ZT (ζ) =

∑
η∈OT (ζ)

hT (η), ζ ∈ X,

is referred to as the canonical partition function. The sum is taken over the set
OT (ζ) = {η ∈ X : ηS\T = ζS\T ,NT (η) = NT (ζ)} of those configurations that
satisfy the outside condition ζS\T and have got the same particle numbers as ζ
inside of T .

Definition 4.4. Suppose that Φ is a finite range potential. A probability
measure μ ∈P(X,F) is a canonical Gibbs measure w.r.t. Φ, if

μ(π−1
T (v)|ET )(ζ) = Z−1

T (ζ) hΦ
T (τT (ζ, v))1N−1

T (NT (ζ))(τT (ζ, v)), μ− a.s.,

where T ∈ T , v ∈ XT , ζ ∈ X. The set of all canonical Gibbs measures w.r.t. Φ
is denoted by Gc(Φ).

After having defined canonical Gibbs measures, we are able to state that the
reversible measures of the cell sorting model in infinite volume S = Zd agree
with the canonical Gibbs measures w.r.t the potential Φ.

Theorem 4.5. Let the family c = (c(x, y, ·))x,y∈S of transition rates be given
by (3.2). Then there exists a finite range potential Φ = (ΦT )T∈T such that

R(c) = Gc(Φ) �= ∅.
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We prove this theorem by showing that the transition rates c satisfy a so-
called detailed balance condition w.r.t. to the finite range potential Φ = (ΦT )T∈T
given by

ΦT : X→ R : η �→
{
−βη(x)η(y), if T = {x, y} with |x− y| = 1
0, otherwise.

(4.4)

See the Appendix, §AppendixA.1, for details. Note that the corresponding
Hamiltonian (HΦ

T )T∈T as defined in (4.1) satisfies

HΦ
T (η) = −

∑
{x,y}:|x−y|=1
{x,y}∩T �=∅

βη(x)η(y), η ∈ X, T ∈ T . (4.5)

The potential Φ is not uniquely determined by the transition rates of the
model. In case W = {0, 1}, we can characterize the set of reversible measures
with the aid of an especially simple potential. Let be

β∗ := β00 − 2β01 + β11, (4.6)

and define Φ̃ = (Φ̃T )T∈T by

Φ̃T (η) =

{
−β∗ η(x)η(y), if T = {x, y} with |x− y| = 1
0, otherwise.

(4.7)

It is clear that Φ̃ is a finite range potential in the sense of Definition 4.3. The
potential Φ̃ is known in the mathematical literature under the name Ising po-
tential.

As is shown in Lemma AppendixA.4 in the Appendix, §AppendixA.2, the
family c of transition rates satisfies the detailed balance condition w.r.t. the finite
range potential Φ̃ = (Φ̃T )T∈T given by (4.7). As an immediate consequence we
find:

Proposition 4.6. Let c = (c(x, y, ·))x,y∈S be given by (3.2) and Φ̃ = (Φ̃T )T∈T
given by (4.7). Then

R(c) = Gc(Φ̃) �= ∅.

Thus the findings of this paragraph are the following. The reversible mea-
sures of the cell sorting model on S = Zd are canonical Gibbs measures w.r.t. the
potential Φ. If the fully occupied system is considered, we find that the poten-
tial Φ is equivalent to the simpler and well-studied Ising potential. This implies
that the reversible measures of the fully occupied cell sorting model on S = Zd

coincide with the canonical Gibbs measures with respect to the Ising potential.
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4.2. Invariant states
Now we ask whether non-reversible invariant measures exist for the cell

sorting model on S = Zd. This question can be answered for at most two-
dimensional, fully occupied systems, that is for W = {0, 1} and d = 1 or d = 2.

Theorem 4.7. Let W = {0, 1} and suppose d = 1 or d = 2. If the family of
finite range transition rates c = (c(x, y, ·))T∈T is given by (3.2), then

I (c) = Gc(Φ̃) �= ∅.

Proof. We apply Sakagawa’s Theorem 2.1 [Sakagawa, 2000]. This theorem is
valid if the exchange rates satisfy 3.3 (B)-(F) as well as the detailed balance
condition (A.1) w.r.t. a finite range potential Φ̃ = (Φ̃T )T∈T that fulfills

Φ̃T (η) = φ(T )
∏
x∈T

η(x) (4.8)

for some φ : T → R. If we choose

φ(T ) =

{
β∗, T = {x, y} with |x− y| = 1,

0, otherwise,
(4.9)

then we find that the assertion of the theorem is implied by Proposition 3.3 and
Lemma AppendixA.4.

There is no such result in dimension d ≥ 3 or for n ≥ 2.

4.3. Large finite systems
The cell sorting model on Zd is an idealization which is developed as a

framework for spatio-temporal limit procedures. Actually, one is interested in
the behavior of systems in large but finite volumes. The object of this paragraph
is the longtime behavior of the cell sorting model in bounded volumes. We
study the ergodic properties of those systems, that is we describe the set of
invariant measures and their domains of attraction. The question of which
spatial arrangement the model system shows in the long-time limit is addressed
in Paragraph 4.4.

For reasons of clarity, we state the results on the ergodic behavior for the
cell sorting model with fixed boundary conditions as defined in Definition 3.2.
Note that all arguments apply to the cell sorting model with periodic boundary
conditions as well.

We fix a bounded volume V ∈ T and an external condition ζ ∈ X. Suppose
that the family cV

ζ of transition rates is given by (3.6). We recall that cV
ζ

determines a Markov chain on XV = WV with Q-matrix aV
ζ and generator AV

ζ .
Let us denote the set of all probability measures on XV by P(XV ).

Definition 4.8. (i) A measure μ ∈P(XV ) is invariant w.r.t. AV
ζ if and only

if
μ
(
AV

ζ f
)

= 0, f ∈ C(XV ).

The set of all invariant measures w.r.t. AV
ζ is denoted by I

(
cV
ζ

)
.
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(ii) A measure μ ∈P(XV ) is reversible w.r.t. AV
ζ if and only if

μ(fAV
ζ g) = μ(gAV

ζ f), f, g ∈ C(XV ).

The set of all reversible measures w.r.t. AV
ζ is denoted by R

(
cV
ζ

)
.

We observe that the cell numbers within V are conserved under the dynamics
induced by AV

ζ . Indeed, we recall that NV (.) is the vector of cell numbers defined
in (4.3) and we choose κ ∈ NV , where

NV :=

{
κ = (k0, ..., kn) ∈ NW

0 :
n∑

i=0

ki = |V |
}

.

Then the set
Xκ

V := {ζ ∈ XV : NV (ζ) = κ}
is invariant (closed) under the action of AV

ζ . It follows from proposition 3.3(D),
that any two configurations with the same cell numbers per type communicate.
The latter means that, for any η, ζ ∈ Xκ

V , there exist an n ∈ N such that
(aV

ζ )n(η, ζ) > 0, that is ζ can be obtained from η by performing a finite number
of nearest-neighbor exchange steps which each have positive rate. That way, the
state space XV is partitioned into closed communicating classes Xκ

V , κ ∈ NV .
This is the basis for the following assertions, which are implied by standard
Markov-chain theory (see, for example, Brémaud [1999]).

Proposition 4.9. (i) Assume that κ ∈ NV . There exists a unique probability
measure μκ

ζ on XV which is invariant with respect to aV
ζ and satisfies

μκ
ζ (Xκ

V ) = 1.
(ii) The set of invariant probability measures with respect to AV

ζ is given by

IV :=

{
μ ∈P(XV ) : μ =

∑
κ∈NV

γκμκ
ζ , γκ ≥ 0,

∑
κ∈NV

γκ = 1

}
.

After having described the invariant measures of the cell sorting model in
bounded volume, we turn to the question of which probability distribution on
XV is observed in the longtime limit limit.

Theorem 4.10. Let ν0 denote the initial distribution of some Markov process
generated by AV

ζ . Then the distribution at time t, referred to as νt, t ≥ 0,
satisfies

lim
t→∞

νt(η) =
∑

κ∈NV

ν0(Xκ
V )μκ

ζ (η), η ∈ XV .

Now we characterize further the invariant measures of the finite adhesion
model. We will show that each invariant measure is actually reversible and coin-
cides with a bounded-volume canonical Gibbs state with respect to the potential
Φ defined in (4.4). To this end, we first define canonical Gibbs measures with
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fixed boundary conditions. Next we show that the canonical Gibbs measures
are reversible measures of the cell sorting model with fixed boundary condition.
As reversible measures are invariant, we can employ uniqueness arguments to
show that the invariant measures coincide with the canonical Gibbs measures.

Definition 4.11. Suppose that Φ is a finite range potential and let HΦ
V and

hΦ
V be given by (4.1) and (4.2). For V ∈ T and ζ ∈ X, the probability measure

μV,ζ ∈P(XV ) is a Gibbs measure w.r.t. Φ in V with boundary condition ζ, if

μV,ζ(η) = Z−1
V,ζ exp

{
−HΦ

V (τV (ζ, η))
}

= Z−1
V,ζ hΦ

V (τV (ζ, η)), η ∈ XV ,

where
ZV,ζ :=

∑
η∈XV

hΦ
V (τV (ζ, η))

is the normalizing factor. The family (μV,ζ)V ∈T is a grand-canonical Gibbs
ensemble w.r.t. the potential Φ and the boundary condition ζ.

If the cell numbers per type are prescribed, we arrive at the concept of
canonical Gibbs measures in bounded volume.

Definition 4.12. Suppose that κ ∈ NV and that Φ is a finite range potential.
Let HΦ

V and hΦ
V be given by (4.1) and (4.2). The probability measure μV,ζ,κ ∈

P(XV ) is a canonical Gibbs measure with potential Φ, boundary condition ζ
and cell numbers κ, if

μV,ζ,κ(η) = Z−1
V,ζ,κ exp

{
−HΦ

V (τV (ζ, η))
}
1N−1

V (κ)(η)

= Z−1
V,ζ,κ hΦ

V (τV (ζ, η))1N−1
V (κ)(η), η ∈ XV ,

where
ZV,ζ,κ :=

∑
η∈XV

hΦ
V (τV (ζ, η))1N−1

V (κ)(η)

is the normalizing factor. Given a net (κ(V ) = (k1, ..., kn)(V ))V ∈T with κ(V ) ∈
NV and limV ∈T |V |−1kj(V ) = pj , j ∈W, the family (μV,ζ,κ(V ))V ∈T is a canon-
ical Gibbs ensemble w.r.t. Φ, boundary condition ζ and cell densities (pj)j∈W .

After having defined the canonical Gibbs states with fixed boundary condi-
tion, we state that they are reversible measures of the cell sorting model with
fixed boundary condition. The proof of this proposition can be found in the
Appendix, §AppendixA.3.

Proposition 4.13. Suppose that a potential Φ is given by (4.4) and let be κ ∈
NV . Then the canonical Gibbs measure μV,ζ,κ corresponding to Φ is reversible
with respect to AV

ζ .

Since the canonical Gibbs measure μV,ζ,κ is reversible, it is invariant w.r.t the
dynamics AV

ζ . In addition, it holds that μV,ζ,κ(Xκ
V ) = 1. By Proposition 4.9(i),

there is exactly one invariant measure μκ
ζ that satisfies μκ

ζ (Xκ
V ) = 1. Thus

μκ
ζ = μV,ζ,κ and one obtains the following corollary of Theorem 4.10.
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Corollary 4.14. Let ν0 ∈ P(XV ) denote the initial distribution of some
Markov process generated by AV

ζ . Suppose that ν0(Xκ
V ) = 1 for some κ ∈ NV .

Then the distribution at time t, referred to as νt, t ≥ 0, satisfies

lim
t→∞

νt(η) = μV,ζ,κ(η), η ∈ XV .

4.4. Phase segregation
We consider the question of which spatial arrangement the model system

shows in the long-time limit. It will be shown that the equilibrium measures of
large finite systems exhibit a typical geometry, which is disclosed by a renor-
malization procedure.

Suppose that W = {0, 1} and d = 2. There is a critical parameter value
β∗c > 0, such that for β∗ > β∗c the Gibbs ensemble has more than one limit
point as the volume is enlarged to Zd. This non-uniqueness is reflected in
a phase segregation phenomenon for the canonical Gibbs ensemble. That is,
for large finite volume V and fixed β∗ > β∗c the canonical Gibbs measure in
V concentrates on those configurations that are characterized by high type-
1-cell density p∗+(β∗) inside some connected component and small type-1-cell
density p∗−(β∗) outside this component. The values β∗c and p∗± can be explicitly
calculated, see (4.10) and (4.11) below. The shape of the type-1 cluster can be
detailed further by a variational problem, the Wulff construction.

We follow Dobrushin, Kotecky and Shlosman [1992] for a sketch of the main
ideas. For reasons of clarity, we state the results for canonical Gibbs ensembles
with periodic boundary conditions, as defined in detail in the appendix. This
corresponds to the situation where boundary effects are neglected. Actually,
phase segregation occurs for models with fixed boundary condition as well. The
boundary conditions have a major impact on the shape of the segregated regions.
This effect is discussed in Paragraph 4.5.

We recall that the cell sorting model with periodic boundary conditions is
described in Definition 3.1. By considerations analogous to those in Paragraph
4.3, we find that the longtime behavior of the cell sorting model in ΛN =
[0, N − 1] ∩ Zd with periodic boundary condition and type-1-cell number R is
described by the measure μβ∗,N,R, which is a canonical Gibbs measure on ΛN

with respect to the potential Φ and with periodic boundary conditions. See
§AppendixA.4 for the exact definition of μβ∗,N,R.

We will derive an asymptotic result for the measure μβ∗,N,R on ΛN as the
length-size N of the cube ΛN tends to infinity. To accomplish this, we embed
ΛN into the continuous torus T̂ = Rd/Zd of diameter 1. The details of this
embedding can be found in §AppendixA.5. The main idea is that a configuration
on ΛN is identified with the empirical measure of the suitably scaled type-1-cell
positions within this configuration. Carrying forward this idea to the measures
on XN , a measure measure μN on XN = WΛN is transformed into a measure
μ̂N on the space M(T̂ ) of bounded Borel measures on T̂ . Further, we define

β∗c := 2 ln(1 +
√

2) = 2 sinh−1(1) (4.10)
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and

p∗± = p∗±(β∗) =
±m(β∗) + 1

2
, (4.11)

where

m(β∗) :=

[
1−

(
sinh

(
β∗

2

))−4
]1/8

, β∗ > β∗c . (4.12)

Assume now that β∗ > β∗c and let (RN )N∈N be a sequence of integers satis-
fying

RN

|ΛN |
→ p as N →∞ with p∗−(β∗) < p < p∗+(β∗). (4.13)

Suppose that γ is a continuous self-avoiding curve on the torus T̂ dividing it
into just two connected components U0, U1. We define a measure μ̂γ ∈ M(T̂ )
by

μ̂γ =
∫

T̂

δ̂γ+x dx, (4.14)

where δ̂γ+x is a Dirac measure on M(T̂ ) supported by a single point in M(T̂ ),
namely by the Borel measure(

p∗+1U1+x(y) + p∗−1U0+x(y)
)

dy (4.15)

on T̂ . The sets U1 and U0 are denoted as high and low density domains, respec-
tively, of the measure (4.15).

Definition 4.15. The canonical ensemble (μβ∗,N,RN
)N∈N exhibits asymptotic

phase segregation along some curve γ, if the measures μ̂β∗,N,RN
weakly converge

to m(β∗)μ̂γ for any sequence RN satisfying (4.13).

The interpretation is as follows. The Borel measure δγ+x on the torus T̂ has
the density function p∗+1U1+x(y) + p∗−1U0+x(y), y ∈ T̂ . This function attains
the values p∗+ on the set U1 + x and p∗− on the set U0 + x. The two regions
are separated by the curve γ + x, which is a shift of γ. Thus, if the ensem-
ble (μβ∗,N,RN

)N∈N exhibits asymptotic phase segregation along some curve γ,
then the canonical Gibbs measures μβ∗,N,RN

, when rescaled to unit volume, are
asymptotically concentrated on such configurations where a high-density phase
with characteristic density p∗+ is separated from a low-density phase with char-
acteristic density p∗− by the curve γ or one of its shifts γ + x. Note that the
absolute position of the boundary γ cannot be fixed since the canonical Gibbs
measures with periodic boundary condition are translation invariant. Therefore
it is evident that one finds in (4.14) an equiprobable distribution of all shifts
γ + x of the curve γ.

We can now state the result on phase segregation in the cell sorting model
with periodic boundary condition.
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Theorem 4.16. Suppose that d = 2. For any β∗ > β∗c , p ∈ (p∗−(β∗), p∗+(β∗)),
there exists some curve γβ∗,p such that for any sequence (RN )N∈N satisfying
(4.13) the ensemble (μβ∗,N,RN

)N∈N exhibits asymptotic phase segregation along
the curve γβ∗,p.

Remark 4.17. (1) The curve γβ∗,p is yielded by the Wulff construction. It is
characterized by the property that a functional called total surface tension
is minimized among all closed self-avoiding rectifiable curves which enclose
a given volume [Dobrushin et al., 1992]. In detail, there is a functional
W, which assigns to each subset T ⊂ T̂ with rectifiable boundary ∂T the
total surface tensionW(∂T ). The total surface tensionW can be calculated
directly from the Hamiltonian (4.5) though not in a simple way. Compare
Dobrushin et al. [1992, §1.5] for the explicit formula. Among all subsets
T ⊂ T̂ of a given volume v and with rectifiable boundary, the Wulff droplet
of size v is that set Wβ∗,v ⊂ T̂ which minimizes the total surface tension,
that is

W(∂Wβ∗,v) = min
T⊂T̂ ,volume(T )=v,

∂T is rectifiable

W(∂T ).

The density of type-1 cells in the Wulff droplet Wβ∗,v is p∗+, while the
density of type-1 cells outside of Wβ∗,v is p∗−. Since the overall density of
type-1 cells is p, we find that the volume of the Wulff droplet is v = v(p) =
(p− p∗−)(p∗+ − p∗−)−1.

(2) The shape of γβ∗,p sensitively depends on the shape of the considered
bounded volume and the boundary conditions. See the discussion in the
next paragraph for details.

(3) If β∗ > β∗c but p < p∗− or p > p∗+, the overall cell density of the dominating
cell type is already above the characteristic cell density p∗+ that would be
expected in the segregated region. This situation is called super saturation.
There are no clusters of the rare cell type observed macroscopically, because
there are not enough cells of this type in the aggregate [Dobrushin et al.,
1992]

(4) If 0 < β∗ < β∗c , there is no phase segregation. The canonical Gibbs mea-
sures are almost product measures. This means that we typically observed
disorder in the longtime limit.

Proof. Dobrushin et al. [1992, Thm.1.7, Thm.1.8] combined with Ioffe
[1995]; Ioffe and Schonmann [1998]. The main tool for the cited results is a
surface order large deviation theorem for the defect of magnetization.

4.5. Impact of the boundary conditions
In the preceding paragraph, we have stated the results on phase segregation

for periodic boundary conditions, thus neglecting the effects of potential cell-
boundary interactions. Now we explain what happens when we take such effects
into account. For fixed boundary conditions, we also observe phase segregation.
However the shape of the clusters as well as the decision of which cell-type sorts
into the center of the volume depend on the boundary conditions. It will turn
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out that the geometry of phase segregation is very sensitive to the shape of
the considered volume as well as to differences in the strength of cell-boundary
interaction. We even observe a boundary phase transition, that is an abrupt
change of the system’s longtime spatial arrangement resulting from a smooth
change at the boundary.

Suppose that d = 2 and W = {0, 1, b}. We fix a volume V ⊂ S = Zd and
consider the cell sorting model in V with fixed boundary condition as given
in Definition 3.2. We allow only the two alternate states 0 or 1 at the lattice
sites in V , thus we require that the cell number κ = (k0, k1, kb) ∈ N3

0 satisfies
k0 + k1 = |V | and kb = 0. The boundary of V shall be composed solely of type-
b cells, that is we concentrate on spatially homogeneous boundary conditions
ζb ∈ X, where ζb(x) = b, x ∈ S. The parameters β0b and β1b describe the
strength of the cell-boundary interaction. Let us define

γ∗ := 2β1b − 2β0b − β11 + β00. (4.16)

We distinguish several special situations. If γ∗ = β∗, where β∗ is defined in
(4.6), we have a cell sorting model with 1-boundary. Note that we have γ∗ =
β∗ if, for instance, β0b = β01 and β1b = β11. If γ∗ = −β∗, for instance for
β0b = β00, β1b = β10, we have a cell sorting model with 0-boundary. In case
that γ∗ = 0, we have a cell sorting model with free boundary.

By Corollary 4.14, the longtime behavior of the cell sorting model with
fixed boundary conditions is described by the canonical Gibbs measures μV,ζb,κ

as given in Definition 4.12. Consequently, we will consider phase segregation
in the canonical Gibbs ensemble with fixed boundary condition. The relevant
results in the mathematical literature that shall be applied are formulated in
the context of thermodynamics. In particular, the theory on equilibrium crystal
shapes as a result of the interatomic forces is relevant. These problems are
studied with the help of Gibbs measures on the space EV := {−1, 1}V or
E := {−1, 1}S . Therefore it is necessary to embed the measures on XV , in
particular the canonical Gibbs measures μV,ζ,κ, into the set P(EV ) of measures
on EV . For this, we define a bijection F : X→ E : η �→ ωη by

F (η)(x) = ωη(x) = 2η(x)− 1, x ∈ V. (4.17)

Obviously, the function F−1 : E→ X : ω �→ ηω satisfies

F−1(ω)(x) = ηω(x) =
ω(x) + 1

2
, x ∈ V. (4.18)

The function F induces a bijection between P(XV ) and P(EV ) by

F (μ) := μ ◦ F−1, μ ∈P(XV )

and
F−1(μ̄) := μ̄ ◦ F, μ̄ ∈P(EV ).

It turns out that the invariant measures μV,ζ,κ of the cell sorting model are
mapped by F onto the so-called canonical Ising models.
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Definition 4.18. A measure μ̄β,γ,m on EV is a canonical Ising model with
parameters β, γ ∈ R and excess magnetization m ∈ [−|V |, |V |], if

μ̄β,γ,m(ω) = Z−1
β,γ,m exp

{
−H̄β,γ(ω)

}
1M̄−1

V (m)(ω), ω ∈ EV ,

where M̄V : EV → R : MV (ω) =
∑

x∈V ω(x) gives the excess magnetization,

Zβ,γ,m :=
∑

ω∈EV

exp
{
−H̄β,γ(ω)

}
1M−1

V (m)(ω),

is the normalizing factor and

H̄β,γ(ω) := −β

2

∑
x,y∈V,
|x−y|=1

ω(x)ω(y)− γ
∑

x∈V,y∈V c

|x−y|=1

ω(x) (4.19)

is the Ising Hamiltonian.

The basis for our discussion of the impact of the boundary conditions is the
following embedding result. The proof of this proposition can be found in the
Appendix, §AppendixA.6.

Proposition 4.19. Suppose that κ = (k0, k1, 0) with k0 + k1 = |V | and define
ζb ∈ X by ζb(x) = b, x ∈ S. Let μV,ζb,κ denote the canonical Gibbs measure
w.r.t. the potential Φ given by (4.4). Then

F (μV,ζb,κ) = μ̄β,γ,m,

where m = k1 − k0, β = β∗/4, γ = γ∗/4 and μ̄β,γ,m is a canonical Ising model.

This proposition allows us to apply the results of Shlosman [1989] and Bod-
ineau, Ioffe and Velenik [2000] on asymptotic phase segregation for canonical
Ising models. All of these findings are proven rigorously in the mentioned liter-
ature. Because of the elaborate mathematical machinery which is necessary to
state the results in full precision, we only sketch the main results.

Fix V = ΛN = [−N, N ]2∩Z2 with N large and choose κ = (k0, k1, 0) ∈ NV .
Define p = k1|V |−1. Further, suppose that β∗ > βc and p ∈ (p∗−, p∗+), where
p∗± are defined in (4.11). This is the parameter region where phase segregation
is observed. We consider first the case of 1-boundary conditions, that is the
case γ∗ = β∗. In this regime the configurations with many type-1 cells close to
the boundary are favored. Hence the typical configurations under μV,ζb,κ show
a large cluster of type-0 cells surrounded by type-1 cells. The 0-cluster does
not touch the boundary of V , if V is large enough to contain the whole Wulff
droplet of size p|V |. When the number of the 0-cells becomes so large that the
Wulff droplet of this size cannot be placed inside the volume V , the shape of the
0-cluster is given by a modified Wulff construction. See Shlosman [1989, §1.4]
for details. A qualitative picture illustrating both cases is given in Figure 2.

The case of 0-boundary conditions, where γ∗ = −β∗, can be understood by
symmetry arguments. When the roles of 0 and 1 are exchanged, then the cell
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density p.

In case of 1-boundary conditions, that is for γ∗ = β∗ > β∗c , type-0 cells (dark
grey) sort to the center of the aggregate. They are surrounded by type-1 cells
(light grey). The left picture shows the sorting geometry if the type-1 cell
density p satisfies p∗− ≤ p ≤ p∗+ but p is small enough that the whole Wulff
droplet of size v(p) = (p− p∗−)(p∗+− p∗−)−1 can be placed inside the unit square.
In this case, the 0-cluster has a Wulff shape and does not touch the boundary. If
p∗− ≤ p ≤ p∗+, but the Wulff droplet of size v(p) does not fit into the unit square,
the shape of the 0-cluster is given by a modified Wulff construction (right).

sorting model with type-1-cell density p and 0-boundary conditions is trans-
formed into a cell sorting model with type-1-cell density 1− p and 1-boundary
conditions. The parameter β∗ does not change since it is symmetric in 0 and
1. Note that 1 − p ∈ (p∗−, p∗+) if and only if p ∈ (p∗−, p∗+). Consequently, for
0-boundary conditions, we see a type-1 cluster which is surrounded by type-0
cells. The shape of this cluster is again determined by the Wulff or modified
Wulff construction.

The typical configurations that are observed in the long-time limit for empty
boundary conditions, that is for γ∗ = 0, are shown in Figure 3. See Shlosman
[1989, §1.4] for details.

If one relaxes the restrictions on the shape of V , that is if one allows that V
is some bounded convex subset of Z2, then essentially the above results remain
valid. However the shape of the Wulff droplet can change. See Bodineau et al.
[2000, §IV] for details.

In principle, studies on phase segregation for spatially non-homogeneous
boundary conditions are possible as well. However the Wulff construction re-
quires the solution of a variational problem that might be very complicated.
The case of rectangle-shaped V where the boundary condition at one wall is
different from the type-1 boundary conditions at the other walls is considered
in Bodineau et al. [2000, §IV]. It is shown that the shape of the type-0 clus-
ter changes abruptly from the Wulff shape to the Winterbottom shape as the
boundary conditions are varied. This phenomenon is an example for a boundary
phase transition.
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density p.

For free boundary conditions, that is for γ∗ = 0, type-1 cells (light grey) separate
from type-0 cells (dark grey) in the longtime limit, if the effective adhesion
parameter is sufficiently high (β∗ > β∗c ). The 1-cluster has the form of one
fourth of the Wulff shape and is located in one of the corners of the unit square,
if the type-1 cell density p is slightly bigger than p∗− (left). If p is slightly below
p∗+, a type-0 cluster in one of the corners of the unit square is observed, which
has the form of one fourth of the Wulff shape (right). For intermediate values
of p, a serial arrangement is observed (middle).

5. Model Behavior

The mathematical analysis of our cell sorting model suggests that our model
describes basic mechanisms in the process of sorting. In particular, phase seg-
regation, which is interpreted as cell sorting, is observed in the longtime limit.

We have a fairly complete picture for two-dimensional, fully occupied two-
type systems, that is for W = {0, 1} and d = 2. In this case, our cell system
consists of cells of two different types where all sites are occupied by cells of either
type. If the differential adhesion parameter β∗ = β00 + β11− 2β01 is sufficiently
high then the typical pattern arising in the longtime limit is characterized by
two clear-cut separated regions consisting of virtually only one cell type.

The volume proportion of these two regions is determined by the ratio of
type-0 and type-1 cell numbers while the asymptotic shape of the segregated
domains is given by the solution of an isoperimetric problem, the Wulff shape.
The latter is defined by that closed rectifiable curve which minimizes a func-
tional, called surface tension or interfacial free energy, with respect to all closed
rectifiable curves enclosing a fixed volume. The Wulff shape depends sensitively
on the boundary conditions and the overall form of the given volume where the
sorting takes place. The surface tension functional can be derived directly from
the potential (4.7) of the cell sorting model and is therefore related to the in-
dividual cell-cell interaction based on intercellular adhesion. In this respect our
cell sorting model provides a link how differential intercellular adhesion causes
tissue surface tension. It shows that tissue surface tension can indeed guide
the phenomenology of the cell sorting process as was postulated by the DAH
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Figure 4: The sorting hierarchy is determined by the strengths of the cell-boundary
interactions.

The parameters β0b and β1b specify the strength of the interaction between a cell
of the respective type and the boundary. The value γ∗ = 2β1b−2β0b−β11 +β00

determines the sorting hierarchy. Type-0 cells (dark grey) wrap type-1 cells
(light grey) for γ∗ = β∗ (left) but sort to the center of the aggregate if γ∗ = −β∗

(middle). For γ∗ = 0 a serial structure is observed (right).

[Steinberg, 1962].
Considering the question of which cell type sorts into the center of the given

volume, we find that the boundary conditions are fundamental. The situation
at the boundary is characterized by the adhesion parameters β0b and β1b which
specify the strength of adhesive interaction between a cell of the respective type
and the boundary. The model predicts that the question of which cell type sorts
into the center of the volume can be determined from the value of the parameter
γ∗ = 2β1b − 2β0b − β11 + β00. For γ∗ = β∗, we observed that a type-0 cluster is
surrounded by type-1 cells, while type-1 cells sort to the center of the aggregate
for γ∗ = −β∗. In the case that γ∗ = 0 only partial engulfment is observed (see
Fig. 4).

In contrast to the phase segregation observed for a sufficiently high differ-
ential adhesion parameter, there is a parameter region where disorder persists.
Below a critical value β∗c , there are just unorganized states possible in the long-
time limit, that is our cell sorting model predicts that there is no cell sort-
ing for these parameter values. This means in particular, that the difference
(β00 + β11) − 2β01 has to be larger than the threshold value β∗c in order to
achieve phase segregation and that it is not sufficient to require that β∗ is just
positive.

We find an intermediate behavior for a differential adhesion parameter β∗

only slightly above the critical value. When we observe asymptotic phase seg-
regation in this parameter regime, then the decomposition is not complete but
characterized by a typical concentration p∗+ = p∗+(β∗) of the dominating cell
type. This coefficient p∗+ depends exclusively on the differential adhesion pa-
rameter β∗ and not on the given total cell numbers. Its value is slightly above
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1/2 if β∗ is close to β∗c . If the density p of type-1 cells is not in the interval[
p∗−, p∗+

]
, there is no phase segregation because the volume is statured by the

dominating cell typ. Only for p ∈
[
p∗−, p∗+

]
the system exhibits sorting with

characteristic concentration p∗+ of the dominating cell type.
Note that neither the critical differential adhesion parameter β∗c nor the

typical concentration p∗+ of the dominating cell type in the case of segregated
volumes depend on the given concentrations of the two cell types. The latter
factor solely influences the volume proportion of the segregated regions.

In summary, the model predicts a phase transition, that is an abrupt change
from intermingled (unsorted) to segregated (sorted) longtime behavior, as the
differential adhesion parameter β∗ increases. So the parameter β∗ regulates
whether sorting occurs or disorder persists and it determines the characteris-
tic cell density of the dominating cell type within the segregated regions. The
shape of the segregated patterns for β∗ > β∗c is controlled by the surface tension,
which in turn is functionally related to the intercellular adhesion parameters.
In contrast, the cell type that sorts to the center is determined by the order be-
tween the cell-boundary adhesion parameters β0b and β1b. These results on the
qualitative longtime behavior can be summarized in a phase diagram (Fig. 5).

The migration parameter α neither plays any role for the classification of the
longtime behavior nor for the geometry of the segregated patterns. However it
influences the pace of relaxation to equilibrium. The higher the cell mobility
is the faster the cell system converges to its stationary state provided that the
other system parameters are kept constant.

Mathematically, the cell sorting model is a (generalized) stochastic lattice
gas model. For a characterization of the qualitative longtime behavior, we could
show that the system converges in the long run to a stationary measure which
is even reversible and belongs to the class of Gibbs ensemble measures with
respect to the (generalized) Ising potential. The study of essential properties
of Gibbs measures is an active mathematical field of its own. For the case
that W = {0, 1}, that is for the fully occupied two-type cell sorting model, we
could exploit mathematical or statistical physics results on phase segregation
for Gibbs measures w.r.t the Ising potential in the canonical ensemble.

This link between reversible measures and Gibbs measures could be made
precise for the cell sorting model in an infinite volume as well. We showed
that the reversible measures of the infinite cell sorting model coincide with the
(infinite) Gibbs measures with respect to the generalized Ising potential. This
presents the opportunity for ambitious further research on emergent dynamic
properties which relies on the application of proper spatio-temporal limit proce-
dures. Again the cell sorting model with W = {0, 1} is better understood, since
in this case we know additionally that there are no non-reversible stationary
states.

Further questions on stationary measures for the infinite model as well as
phase transition and phase segregation in the cell sorting model with more than
two cell types are still open. It turns out that hitherto existing methods for the
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Figure 5: Phase diagram for the longtime behavior of the cell sorting model.

The effective adhesion parameter β∗ and the density p of the dominating cell
type determine the longtime behavior of the cell sorting model. For 0 < β∗ < β∗c ,
the typical configurations that are observed in the longtime limit are disordered
(intermingled states). Above the critical value β∗c , phase segregation is observed
for 0.5 ≤ p < p∗+(β∗). In the parameter region β∗ > β∗c , p > p∗+(β∗), the
dominating cell type outnumbers the alternate cell type so much that phase
segregation is impossible (super saturated states). The green line is the graph
of p∗+(β∗) for β∗ > β∗c .
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analysis of such models heavily rest on the fact that there are only two possible
states per spatial site.

Our cell sorting model is a stochastic particle based model which reflects our
perception about individual adhesion-biased cell migration. Its emergent long-
time behavior at the tissue level is characterized by two qualitatively different
regimes: phase segregation and disorder. The mobility parameter does not in-
fluence the characteristics of the resulting pattern but guides the temporal scale
of the pattern formation. Our cell sorting model is an IPS-model and therefore
allows further rigorous mathematical analysis.

6. Discussion

6.1. Biological Foundation of the Modeling Assumptions
The proposed model is an interacting particle system which is constructed

from our idea of adhesion-biased cell migration at the cellular scale. It is defined
via the specification of local transition rates. Thereby our concept of the cell
dynamics is (qualitatively) translated into the dynamical properties of the model
system. We have concentrated on two influencing factors at the cellular scale,
cell migration and intercellular adhesion, bundling additional influences into a
stochastic component. The resulting Markov process model is the first genuine
dynamical model of cell sorting as a result of intercellular interaction which can
be analyzed rigorously. Although a caricature of the complex interactions within
real biological cell aggregates, it is complex enough to reproduce cell sorting
at the tissue scale. In this respect it is a ‘minimal model’, showing that our
simplified picture of the processes at the cellular scale might contain the essential
variables that explain cell sorting. On the other hand, the limited number of
influencing variables allows a thorough mathematical analysis which reveals far-
reaching implications. And it opens up the road for further research on the
dynamic properties of cell sorting. Our main hypothesis, that cell adhesion
dampens cell mobility, that is the cells are less mobile the more they stick to
each other, is formulated and analyzed on purely mathematical grounds without
resort to arguable analogies with physical behavior.

Despite the undoubted importance of cell migration for cell sorting, there
are only a few experimental or theoretical results, which describe the properties
of individual cell mobility within cellular aggregates or estimate the impact of
several types of intercellular interaction on cell locomotion. The intuition that
individual cell mobility is lower the more a cell adheres to its neighbors seems to
be plausible but shall be discussed explicitly. Our assumption is supported by
the findings in Upadhyaya et al. [2001]. There Upadhyaya and coworkers mon-
itored and analyzed the motion of single endodermal cells within homotypic
endodermal and ectodermal cell aggregates. They show that the effective diffu-
sion constant for individual endodermal cells in an endodermal environment is
smaller than that in an ectodermal environment. Presuming that the strength
of intercellular adhesion between ectodermal cells is less than that between en-
dodermal cells [Krieg et al., 2008], we can conclude that cells are more motile
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in a less cohesive environment. Nevertheless it is not clear from this study that
differences in the adhesive intercellular interaction cause the observed variation
in single cell mobility. There might be other interactions between cells in con-
tact which affect cell locomotion. Note that our model parameters βij , i, j ∈W ,
which we have called adhesion parameters out of habit, describe the effect of
adhesive interaction as well as that of other short range intercellular processes
with an impact on cell mobility. Here adhesion is certainly essential but other
processes such as the modulation of cortical tension due to actin filament reor-
ganization in intercellular contact zones might turn out to be relevant as well.
So, on one hand, our model shows that quantitative differences in any short-
range intercellular mechanism which has an effect on cell locomotion results in
cell sorting provided the differences are large enough. This confirms the cri-
tique by Harris [Harris, 1976] of the DAH. On the other hand, we see that the
determining which intercellular process is essential and which one is of minor
importance is a problem that needs to be studied at the protein to cell level.
Here the challenge is to estimate the effect of molecular interaction between
cells in contact on the ability of the cells to detach and move away. Once there
are sufficiently high contact-specific differences in cell mobility, sorting occurs
regardless of the microscopic sources of these variations.

Considering the concept of intercellular adhesion in cell sorting studies, we
find that the prevalent picture is dominated by a static view which is rooted
in the analogy to physical adhesion and cohesion, for instance between liquid
molecules. The latter is the result of van der Waals forces, hydrogen bonds or
electrostatic interaction and is characterized by the following three important
properties [Harris, 1976]. Firstly, physical adhesion is equivalent to close range
attraction, that is the forces that pull the molecules of a liquid together are
the same that hold them together. Secondly, physical adhesions are reversible
bonds, which means that the breaking of an adhesive binding is just the reverse
of its formation. Thirdly, the existence of adhesive bonds does not alter the
internal structure of the involved molecules. Intercellular adhesion differs from
adhesion between liquid molecules since these properties do not hold in gen-
eral for intercellular adhesion in each mentioned respect. First, several adhesive
bonds between cells develop after cells come into contact, so that the cells are
held together by additional forces compared to those which pulled them to-
gether. The overall strength of intercellular bindings increases with time (on a
scale that is relevant for cell migration) [Krieg et al., 2008]. Secondly, the abil-
ity of a cell to detach from a neighboring cell might follow different rules and
is, in general, not just the reverse of the bond-forming process. And thirdly,
intercellular adhesion is mediated by cell surface molecules which function in
various other cellular processes [Halbleib and Nelson, 2006; Marsden and DeS-
imone, 2003]. This means that the formation of adhesive bonds can change
the intracellular structure and thereby alter several cellular properties such as
cell locomotion characteristics. Therefore we suggest abandoning the physical
analogies and adopting a dynamical viewpoint by directly assessing the effect
of intercellular bindings on individual cell mobility.

Our consequent dynamical viewpoint allows us to overcome another chal-
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lenge connected with the DAH and several existing cell sorting models such as
Glazier and Graner [1993]. Employing the liquid-tissue analogy, it is assumed
there that cell aggregates are closed thermodynamic systems, since the applied
results on minimization of surface tension in liquids rely on the principle of
energy conservation. However cells can produce energy by themselves, so cell
aggregates are thermodynamically open. Therefore, even when one postulates
the existence of some ‘adhesion energy’ or ‘surface tension energy’ for cell ag-
gregates, it cannot be assumed a priori that cell migration is such that the ‘free
(adhesive or interfacial) energy’ is minimized. Instead, this property might re-
sult at the tissue scale from the characteristics of the individual cell dynamics.
Besides, ‘adhesion energy’ or ‘surface tension energy’ are properties at the tissue
scale. So the postulate that cell migration is directed towards the minimization
of these quantities implies that each individual cell must gain information about
the spatial arrangement within the whole cell aggregate in order to decide on
the next migration step. Are there cell-intrinsic mechanisms that can accom-
plish this task? If one excludes global diffusive signalling, then cells can only
collect information about their local environment and behave according to this
information. Therefore, the real question is whether individual cell behavior
based on local information actually leads to global minimization of the proposed
quantities. This cannot be answered theoretically until one specifies a dynami-
cal model where the individual cell behavior within cell aggregates is based on
biologically realistic assumptions about the local intercellular interaction.

By proposing an IPS-model we have chosen a well-established model class
where powerful tools exist for the analysis. IPS models require that the space
is discretized, which is a disadvantage with regard to both the biological situa-
tion and some technicalities in the model specification and analysis. However,
currently the mathematical theory for analogous modeling problems in contin-
uous space is not developed enough to set up and analyze a cell sorting model
within this framework [Kondratiev, Kutoviy and Minlos, 2008]. It remains open
– and is actually a subject of current mathematical research – to what extent
the spatial discretization affects the model predictions.

The model can easily be amplified to incorporate more detail at the cellular
scale. For instance, concerning cell shape and orientation, we implicitly assume
that the cells have a spatially symmetric form (spheres or cubes) and that
they do not show a preferred orientation of movement. If one suspects that
the cells polarizations affect cell sorting, than these details can be included
into the cell sorting model by changing the local state space to W = {0} ∪
{(k, v) : k = 1, ..., n, v ∈ {e1,−e1, ..., ed,−ed}}, where ei denotes the i-th unit
vector of Rd, i = 1, ..., d, with the interpretation that the pair (k, v) represents
a cell of type k oriented in direction v. Adjusting the transition rules such
that they reflect the assumed effect of orientation on cell migration one can
start to analyze the model. Another generalization of the model would be to
allow larger interaction neighborhoods, thus reproducing the effect of filopodia
in intercellular adhesion. Of course, the more detail is included, the harder the
analysis becomes. So far, only models with comparatively simple local state
space W and small interaction neighborhood can be analyzed rigorously.
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Since our cell sorting model is still well-defined for unbounded volumes,
it becomes possible to explore its dynamical behavior at characteristic scales.
There exist already several mathematical results in this direction, for instance
Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim [2007], but for a detailed
application to the cell sorting model these results must be developed further.

6.2. Model Predictions for Cell Sorting Behavior
Concerning the analysis of the longtime behavior in the cell sorting model we

would like to discuss two main results. Firstly, there is a phase transition from
unordered to ordered patterns in the longtime limit as the effective parameter
β∗ increases. Since the results of our analysis are of qualitative nature, the
critical value β∗c cannot be quantified precisely but it is clear that the condition
2β01 < β00+β11 does not automatically imply that cell sorting occurs. This fact
is often ignored in studies concerning cell sorting [Shi et al., 2008; Steinberg,
1963]. In particular, whenever the impact of specific binding molecules on cell
sorting is to be estimated one should take into account the existence of this
threshold. Note further that disorder is found in the longtime limit for each
β∗ = β00 + β11 − 2β01 that is non-negative but below the critical value β∗c ,
but not in the parameter regime 2β01 < β00 + β11. In the latter case, the
effective differential adhesion parameter β∗ is negative, which means that we
have essentially repulsion between unlike cell types. The patterns that are
expected in the long run are of checkerboard type [Blöte and Wu, 1990; van den
Berg, 1993; Dobrushin, Kolafa and Shlosman, 1985; Georgii and Higuchi, 2000],
and can therefore be easily mistaken with unordered patterns. However, for
checkerboard-type patterns, the degree of order, measured for instance by the
absolute values of the spatial correlations, is high. When one requires that
β∗ > 0, then just the relative distances between the adhesion parameters βij

count, but not the position of zero within the ordered chain. This means that our
results on cell sorting apply as well to a wide parameter regime with intercellular
repulsion.

Secondly, once we see phase segregation for β∗ > β∗c , an important question
is which cell type sorts into the center of the cell aggregate. The DAH predicts
that it is the cell type with the higher homotypic intercellular adhesion. How-
ever recent studies disagree with this hypothesis [Krieg et al., 2008]. Our model
suggests that the type-specific differences in the strength of cellular interaction
with the surrounding material determine the sorting hierarchy in two-type sort-
ing experiments. This agrees with the experimental findings in Ninomiya and
Winklbauer [2007], where it was reported that otherwise identical cell aggre-
gates show different sorting hierarchy when one aggregate is wrapped by an
epithelial layer. In our model, the parameters β0b, β1b which control the sort-
ing hierarchy quantify the overall effect of those processes between the cells at
the boundary of the cell aggregate and the surrounding medium which have an
impact on cell locomotion. Here adhesive interaction is an important candidate
but other mechanisms such as the interface-specific intracellular modulation of
actomyosin filaments might have an effect as well [Krieg et al., 2008]. Depending
on the properties of the surrounding medium, the processes that dominate the
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cell-medium interactions can be different from those that are important for the
effect of intercellular contact on cell locomotion. Note further that the shape of
the underlying volume where the sorting takes place influences the geometry of
the sorted pattern. Therefore the study of sorting within a growing cell aggre-
gate might produce unexpected results which cannot be inferred directly from
the static volume geometry.

Another result of our analysis is the discovery that the temporal evolution
of the system is directed towards the minimization of a functional that can
be interpreted as surface tension. That means, starting with an idea about the
impact of the local environment on the individual cell dynamics, we can describe
the emergent cooperative longtime behavior. So the postulates of the DAH on
the existence of tissue surface tensions and on the ability of cell aggregates to
arrange themselves in configurations of minimal surface tension are now results
of the analysis instead of assumptions. The surface tension functional is defined
in relation to the adhesion parameters without to resorting to physical analogies.

The mobility parameter α does not influence the characteristics of the phase
segregation patterns observed in the longtime limit. However it does affect the
pace of the sorting process. The process of phase segregation is slower for smaller
α. Note that sorting is also slowed down by an increased β∗. Therefore, for small
α and very large β∗, the process of cellular rearrangements might not reach the
fully sorted regime within biologically relevant time scales. In this case, we
expect only partially sorted cell aggregates, where small to medium-sized cell
clusters of one type are scattered within a sea of alternate cell types.

6.3. Applied Methods for the Model Analysis
We have focused on the rigorous analysis of the two-dimensional fully occu-

pied two-type cell sorting model (W={0,1}, d=2). For this situation, we show
that our model is equivalent to a stochastic lattice gas with Ising potential and
exploit existing mathematical tools and results in this field. In the case where
more than two cell types are involved in a cell sorting experiment or when the
system is three-dimensional, the proposed model is still applicable. A mathe-
matically pure analysis is much more complicated and might be accompanied
by an empirical study of the model implications. In this respect it is impor-
tant to notice that the temporal development of an IPS-model can be easily
simulated on a computer by suitable time discretization. The trajectories of
the resulting time-discrete Markov chain show the same longtime behavior as
the continuous-time cell sorting model. See Klauss and Voss-Boehme [2008] for
details.

We do not expect qualitatively different results for the analysis of our cell
sorting model in the three-dimensional case. Cerf and Pistora showed in Cerf
and Pisztora [2000] that also for d ≥ 3 the typical configurations that appear in
the long term are those with minimal surface tension, where again the surface
tension is a functional at tissue scale that can be derived from the intercellular
adhesion coefficients.
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6.4. Summary
Our model bridges the gap between ideas concerning cell migration and

intercellular interaction at the cellular scale that are currently debated and
tissue scale predictions on the longtime behavior of the whole cell aggregate
which were put forward by the DAH. By concentrating on simplified dynamic
properties, we observe the existence of a phase transition in the onset of sorting,
highlight the role of cell-boundary interaction in the cell sorting hierarchy and
derive a concept of surface tension that is related to the biological properties at
the cellular scale. We conclude that the interaction between the cells and the
boundary of a confining vessel has a major impact on the sorting geometry. The
model allows further studies of the emergent dynamic characteristics of the cell
sorting process.

Appendix

AppendixA.1. Detailed balance condition and proof of Theorem 4.5

Definition AppendixA.1. A family of finite range transition rates c = (c(x, y, ·))x,y∈S

satisfies the detailed balance condition w.r.t. the finite range potential Φ =
(ΦT )T∈T , if

c(x, y, ·)hΦ
{x,y} is E{x,y}-measurable, x, y ∈ S. (A.1)

Lemma AppendixA.2. If the family of finite range transition rates c =
(c(x, y, ·))x,y∈S satisfies the detailed balance condition w.r.t. a finite range po-
tential Φ = (ΦT )T∈T , then

R(c) ⊃ Gc(Φ) �= ∅.

If, in addition, c is irreducible, then R(c) = Gc(Φ).

Proof. It follows from Georgii [1979, Thm. 1.21 and Remark 1.28] that Gc(Φ) �=
∅ for any finite-range potential Φ. The proposition R(c) ⊃ Gc(Φ) as well as the
equality R(c) = Gc(Φ) for c irreducible are implied by Georgii [1979, Thm. 2.14].

Lemma AppendixA.3. Let the family of transition rates c = (c(x, y, ·))x,y∈S

be given by (3.2). Then the family c of transition rates satisfies the detailed
balance condition w.r.t. the finite range potential Φ = (ΦT )T∈T given by (4.4).

Proof. If |x− y| �= 1 then c(x, y, η) = c(x, y, ηxy) = 0, hence

c(x, y, η)hΦ
{x,y}(η) = c(x, y, ηx,y)hΦ

{x,y}(η
x,y).
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Now assume that x, y ∈ S, |x− y| = 1. Since

hΦ
{x,y}(η) = exp

⎧⎪⎪⎨
⎪⎪⎩−Φ{x,y}(η)−

∑
z:|x−z|=1,

z �=y

Φ{x,z}(η)−
∑

z:|y−z|=1,
z �=x

Φ{y,z}(η)

⎫⎪⎪⎬
⎪⎪⎭

= exp

⎧⎨
⎩

∑
z:|x−z|=1

βη(x)η(z) +
∑

z:|y−z|=1

βη(y)η(z) − βη(x)η(y)

⎫⎬
⎭ ,

we find

c(x, y, η)hΦ
{x,y}(η) = c0(x, y, η) exp

⎧⎨
⎩−

∑
z:|z−x|=1

βη(x)η(z) −
∑

z:|z−y|=1

βη(y)η(z)

⎫⎬
⎭

× exp

⎧⎨
⎩+

∑
z:|x−z|=1

βη(x)η(z) +
∑

z:|y−z|=1

βη(y)η(z) − βη(x)η(y)

⎫⎬
⎭

=c0(x, y, η) exp
{
−βη(x)η(y)

}
=

{
(αη(x) + αη(y))p(x, y) exp

{
−βη(x)η(y)

}
, if η(x) �= η(y),

0, otherwise.

The last term depends on η only via N{x,y}(η). Therefore the function c(x, y, .)hΦ
{x,y}

is E{x,y}-measurable and the detailed balance condition is satisfied.

Proof of Theorem 4.5. The assertion of Theorem 4.5 follows directly from
Lemma AppendixA.2, Lemma AppendixA.3 and Proposition 3.3 (E).

AppendixA.2. Detailed balance condition w.r.t Φ̃
Lemma AppendixA.4. Let the family of transition rates c = (c(x, y, ·))x,y∈S

be given by (3.2). Then the family c of transition rates satisfies the detailed
balance condition w.r.t. the finite range potential Φ̃ = (Φ̃T )T∈T given by (4.7).

Proof. If |x− y| �= 1 then c(x, y, η) = c(x, y, ηxy) = 0, hence

c(x, y, η)hΦ̃
{x,y}(η) = c(x, y, ηx,y)hΦ̃

{x,y}(η
x,y).

Now assume that x, y ∈ S, |x − y| = 1 and η ∈ X. For any u, v ∈ S with
|u− v| = 1, we have

Φ{u,v}(η) = −βη(u)η(v)

= −β00(1− η(u))(1− η(v))− β01(1− η(u))η(v)
− β10η(u)(1− η(v))− β11η(u)η(v)

= −(β00 − 2β01 + β11)η(u)η(v) + (β00 − β01)(η(u) + η(v))− β00

= Φ̃{u,v}(η) + (β00 − β01)(η(u) + η(v))− β00.
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Hence

HΦ̃
{x,y}(η)−HΦ

{x,y}(η) =

=
[
Φ̃{x,y}(η)− Φ{x,y}(η)

]
+

∑
z:|z−x|=1

z �=y

[
Φ̃{x,z}(η)− Φ{x,z}(η)

]

+
∑

z:|z−y|=1
z �=x

[
Φ̃{y,z}(η)− Φ{y,z}(η)

]

= (−β00 + β01) (η(x) + η(y)) + β00

+
∑

z:|z−x|=1
z �=y

[(−β00 + β01)(η(x) + η(z)) + β00]

+
∑

z:|z−y|=1
z �=x

[(−β00 + β01)(η(y) + η(z)) + β00]

= 2d [(−β00 + β01)(η(x) + η(y))] + (4d− 1)β00

+
∑

z:|z−x|=1
z �=y

(−β00 + β01)η(z) +
∑

z:|z−y|=1
z �=x

(−β00 + β01)η(z).

The last term depends on η only via (η(z))z∈S\{x,y} and N{x,y}(η). Therefore
HΦ
{x,y}−HΦ̃

{x,y} and hΦ
{x,y}/hΦ̃

{x,y} are E{x,y}-measurable. Thus we conclude from
Lemma AppendixA.3 that c satisfies the detailed balance condition with respect
to Φ̃.

AppendixA.3. Proof of proposition 4.13
Since XV is a finite discrete space, any continuous function on XV is a finite

linear combination of indicator functions 1{ξ}, ξ ∈ XV . Thus, by the linearity
of AV

ζ , it is enough to show that∫
1{ξ}AV

ζ 1{η} dμV,ζ,κ =
∫

1{η}AV
ζ 1{ξ} dμV,ζ,κ, η, ξ ∈ XV , η �= ξ.

Using (3.8), this is equivalent to

aV
ζ (ξ, η) μV,ζ,κ(ξ) = aV

ζ (η, ξ) μV,ζ,κ(η), η, ξ ∈ XV , η �= ξ..

We observe that for η, ξ ∈ XV , η �= ξ,

aV
ζ (η, ξ) =

{
cV
ζ (x, y, η), if ξ = ηxy,

0, otherwise.

Hence the above equation is trivially satisfied for any pair η, ξ ∈ XV with
ξ �∈ {ηxy : x, y ∈ V, |x− y| = 1}. It remains to show that

cV
ζ (x, y, η)μV,ζ,κ(η) = cV

ζ (x, y, ηxy)μV,ζ,κ(ηxy) (A.2)
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for any η ∈ XV and x, y ∈ V . The validity of this equation is inferred from
the following consideration. Fix x, y ∈ V . From the definition (4.1) of the
Hamiltonian HΦ

V we find that

HΦ
V =

∑
T∈T

T∩V �=∅

ΦT

=
∑
T∈T

T∩{x,y}�=∅

ΦT +
∑
T∈T

T∩V �=∅,T∩{x,y}=∅

ΦT

= HΦ
{x,y} + R,

where the summand
R :=

∑
T∈T

T∩V �=∅,T∩{x,y}=∅

ΦT

is E{x,y}-measurable. Hence R(ξ) = R(ξxy) for each ξ ∈ X. Applying Lemma
AppendixA.3 and using (4.2), we obtain

c(x, y, ξ)hΦ
V (x, y, ξ) = c(x, y, ξ)hΦ

{x,y}(x, y, ξ) exp{R(ξ)}
= c(x, y, ξxy)hΦ

{x,y}(x, y, ξxy) exp{R(ξxy)}
= c(x, y, ξxy)hΦ

V (x, y, ξxy), ξ ∈ X.

Inserting ξ = τV (ζ, η) with η ∈ XV , we find

c(x, y, τV (ζ, η))hΦ
V (x, y, τV (ζ, η)) = c(x, y, τV (ζ, ηxy))hΦ

V (x, y, τV (ζ, ηxy)).

Hence

cV
ζ (x, y, η)hΦ

V (x, y, τV (ζ, η))Z−1
V,ζ,κ1N−1

V (κ)(η) =

= cV
ζ (x, y, ηxy)hΦ

V (x, y, τV (ζ, ηxy))Z−1
V,ζ,κ1N−1

V (κ)(η
xy), η ∈ XV ,

since 1N−1
V (κ)(η) = 1N−1

V (κ)(η
xy). By Definition 4.12, this is exactly the equation

(A.2).

AppendixA.4. Canonical Gibbs measures with periodic boundary conditions
We recall that the cell sorting model with periodic boundary conditions is

described in Definition 3.1. We consider cubes ΛN = [0, N−1]∩Zd and identify
the points of ΛN with the points of the discrete torus of diameter N . For N ∈ N,
we define the map τ∗N : XN → X which assigns to η ∈ XN those (uniquely
determined) configuration ζ = τ∗N (η) in X that satisfies ζ(y) = η(x) for any
y ∈ NZd + x. Since there are only two alternate states per lattice site, we have
for the particle numbers defined in (4.3) that NT (., 0) = |T | −NT (., 1), T ∈ T .
Therefore let us agree to abbreviate NT (η) := NT (η, 1), η ∈ XN .
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Definition AppendixA.5. The probability measure μβ∗,N,R ∈ P(XN ) is a
canonical Gibbs measure w.r.t. Φ in ΛN with periodic boundary conditions and
type-1-cell number R, if

μβ∗,N,R(η) = Z−1
β∗,N,R hΦ

V (τ∗N (η))1N−1
ΛN

(R)(η), η ∈ XN ,

where
Zβ∗,N,R :=

∑
η∈XN

hΦ
V (τ∗ΛN

(η))1N−1
ΛN

(R)(η).

Given an integer sequence (RN )N∈N with 0 ≤ RN ≤ Nd and limN→∞RN/Nd =
p, the family (μβ∗,N,RN

)N∈N is a canonical Gibbs ensemble w.r.t. Φ, periodic
boundary conditions and type-1-cell density p ∈ [0, 1].

AppendixA.5. Embedding of the discrete torus into the continuous torus
We recall that the points of the cube ΛN = [0, N1] ∩ Zd are identified with

the points of a discrete torus of diameter N . This torus can be embedded into
the continuous torus T̂ = Rd/Zd. The norm in T̂ is given by |x|T̂ := min{|y| :
y ∈ x + Zd}. We use M(T̂ ) to denote the space of bounded Borel measures on
T̂ equipped with the topology of weak convergence. We transform measures on
the torus ΛN into measures on (M(T̂ ),B(M(T̂ ))), where B(M(T̂ )) denotes
the Borel σ-algebra of M(T̂ ). For this, it is useful to represent configurations
as measures on T̂ . Namely, denoting by δx the Dirac measure supported by the
point x ∈ T̂ , we associate with each configuration η ∈ XN the measure

μη =
1
|ΛN |

∑
x∈ΛN

η(x)δx/N .

Thus a measure measure μN on XN = WΛN is transformed into a measure μ̂N

on M(T̂ ) by
μ̂N (A) = μN ({η : μη ∈ A}), A ∈M(T̂ ).

AppendixA.6. Proof of Proposition 4.19
For η ∈ XV , we observe that F (η) ∈ M̄−1

V (m) if and only if η ∈ N−1
V (k1),

since M̄V (F (η)) = 2NV (η) − |V |, η ∈ XV and 2k1 = m + |V |. Therefore it is
sufficient to show that

HΦ
V (τV (ζb, η)) = H̄β,γ(F (η))−Q(η), η ∈ XV , (A.3)

where HΦ
V is defined in (4.5) and Q : XV → R is some EV -measurable function.

Indeed, we obtain from (A.3) that

μ̄β,γ,m(F (η)) =Z−1
β,γ,m exp

{
−H̄β,γ(F (η))

}
1M̄−1

V (m)(F (η))

=Z−1
β,γ,m exp{−Q(η)} exp

{
−HΦ

V (τV (ζb, η))
}
1N−1

V (k1)(η), η ∈ XV .

Comparing this formula with the Definition 4.12, we find that

ZV,ζ,κ = Zβ,γ,m exp{Q(η)},
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because Q is EV -measurable. Therefore

μ̄β,γ,m(F (η)) = μV,ζ,κ(η), η ∈ XV .

Since F (μV,ζb,κ) = μ̄β,γ,m if and only if μV,ζb,κ = F−1(μ̄β,γ,m) = μ̄β,γ,m ◦ F ,
this implies the assertion.

We show (A.3). For η ∈ XV , we find

−HΦ
V (τV (ζb, η)) =

1
2

∑
x,y∈V
|x−y|=1

βη(x)η(y) +
∑

x∈V,y∈V c

|x−y|=1

βη(x)b

=
1
8

∑
x,y∈V
|x−y|=1

[(β00 + 2β01 + β11) + (ωη(x) + ωη(y))(β11 − β00) + ωη(x)ωη(y)β∗]

+
1
2

∑
x∈V,y∈V c

|x−y|=1

[ωη(x)(β1b − β0b) + β0b + β1b] ,

since

4βη(x)η(y) =4β00(1− η(x))(1− η(y))
+ 4β01[(1− η(x))η(y) + η(x)(1− η(y))] + 4β11η(x)η(y)

=β00(1− ωη(x))(1− ωη(y))
+ β01[(1− ωη(x))(1 + ωη(y)) + (1 + ωη(x))(1− ωη(y))]
+ β11(1 + ωη(x))(1 + ωη(y))

=β00(1− ωη(x)− ωη(y) + ωη(x)ωη(y))
+ β01(1− ωη(x) + ωη(y)− ωη(x)ωη(y))
+ β01[(1 + ωη(x)− ωη(y))− ωη(x)ωη(y)]
+ β11(1 + ωη(x) + ωη(y) + ωη(x)ωη(y))

=(β00 + 2β01 + β11) + ωη(x)(−β00 + β11) + ωη(y)(−β00 + β11)
+ ωη(x)ωη(y)(β00 − 2β01 + β11)

=(β00 + 2β01 + β11) + (ωη(x) + ωη(y))(−β00 + β11) + ωη(x)ωη(y)β∗

and

2βη(x)b =2β0b(1− η(x)) + 2β1bη(x)
=β0b(1− ωη(x)) + β1b(1 + ωη(x))
=ωη(x)(β1b − β0b) + β0b + β1b.
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Hence

−HΦ
V (τV (ζb, η)) =

β∗

8

∑
x,y∈V
|x−y|=1

ωη(x)ωη(y) +
1
8

∑
x,y∈V
|x−y|=1

(β00 + 2β01 + β11)

+
(β11 − β00)

8

∑
x,y∈V
|x−y|=1

(ωη(x) + ωη(y))

+
1
2

∑
x∈V,y∈V c

|x−y|=1

[ωη(x)(β1b − β0b) + β0b + β1b]

=
β∗

8

∑
x,y∈V
|x−y|=1

ωη(x)ωη(y) +
1
8

∑
x,y∈V
|x−y|=1

(β00 + 2β01 + β11)

+
(β11 − β00)

8

⎡
⎢⎣8dNV (η)− 4d|V | − 2

∑
x∈V,y∈V c,
|x−y|=1

ωη(x)

⎤
⎥⎦

+
1
2

∑
x∈V,y∈V c

|x−y|=1

[ωη(x)(β1b − β0b) + β0b + β1b] ,

because∑
x,y∈V
|x−y|=1

(ωξ(x) + ωξ(y)) =
∑

x,y∈V
|x−y|=1

ωξ(x) +
∑

x,y∈V
|x−y|=1

ωξ(y)

=2
∑

x,y∈V
|x−y|=1

ωξ(x)

=2
∑
x∈V

∑
y∈V,

|x−y|=1

ωξ(x)

=2
∑
x∈V

∑
y∈S,

|x−y|=1

ωξ(x)− 2
∑
x∈V

∑
y∈V c,
|x−y|=1

ωξ(x)

=2
∑
x∈V

∑
y∈S,

|x−y|=1

(2ξ(x)− 1)− 2
∑
x∈V

∑
y∈V c,
|x−y|=1

ωξ(x)

=4
∑
x∈V

ξ(x)
∑
y∈S,

|x−y|=1

1− 2
∑
x∈V

∑
y∈S,

|x−y|=1

1− 2
∑
x∈V

∑
y∈V c,
|x−y|=1

ωξ(x)

=8dNV (ξ)− 4d|V | − 2
∑
x∈V

∑
y∈V c,
|x−y|=1

ωξ(x).
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Thus we get

−HΦ
V (τV (ζb, η)) =

β∗

8

∑
x,y∈V
|x−y|=1

ωη(x)ωη(y) +
1
8

∑
x,y∈V
|x−y|=1

(β00 + 2β01 + β11)

+ (β11 − β00)dNV (η)− 1
2
(β11 − β00)d|V |

+
∑

x∈V,y∈V c

|x−y|=1

[
ωη(x)

(
β1b − β0b

2
− β11 − β00

4

)
+ β0b + β1b

]

=
β∗

8

∑
x,y∈V
|x−y|=1

ωη(x)ωη(y) +
γ∗

4

∑
x∈V,y∈V c

|x−y|=1

ωη(x) + Q(η),

=−Hβ,γ(F (η)) + Q(η)

where the term

Q(η) :=
1
8

∑
x,y∈V
|x−y|=1

(β00 + 2β01 + β11)

+ (β11 − β00)dNV (η)− 1
2
(β11 − β00)d|V |

+
1
2

∑
x∈V,y∈V c

|x−y|=1

(β0b + β1b)

is EV measurable.
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