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Abstract

We consider the problem of estimating the division rate of a size-structured pop-
ulation in a nonparametric setting. The size of the system evolves according to a
transport-fragmentation equation: each individual grows with a given transport rate,
and splits into two offsprings of the same size, following a binary fragmentation process
with unknown division rate that depends on its size. In contrast to a deterministic
inverse problem approach, as in [23, 4], we take in this paper the perspective of sta-
tistical inference: our data consists in a large sample of the size of individuals, when
the evolution of the system is close to its time-asymptotic behavior, so that it can be
related to the eigenproblem of the considered transport-fragmentation equation (see
[22] for instance). By estimating statistically each term of the eigenvalue problem and
by suitably inverting a certain linear operator (see [4]), we are able to construct a more
realistic estimator of the division rate that achieves the same optimal error bound as
in related deterministic inverse problems. Our procedure relies on kernel methods with
automatic bandwidth selection. It is inspired by model selection and recent results of
Goldenschluger and Lepski [13, 14].
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1 Introduction

1.1 Motivation

Structured models have long served as a representative deterministic model used to de-
scribe the evolution of biological systems, see for instance [19] or [20] and references therein.
In their simplest form, structured models describe the temporal evolution of a population
structured by a biological parameter such as size, age or any significant trait, by means
of an evolution law, which is a mass balance at the macroscopic scale. A paradigmatic
example is given by the transport-fragmentation equation in cell division, that reads





∂

∂t
n(t, x) +

∂

∂x

(
g0(x)n(t, x)

)
+B(x)n(t, x) = 4B(2x)n(t, 2x), t ≥ 0, x ≥ 0,

gn(t, x = 0) = 0, t > 0,

n(t = 0, x) = n0(x), x ≥ 0.

(1.1)

The mechanism captured by Equation (1.1) can be described as a mass balance equa-
tion (see [1, 20]): the quantity of cells n(t, x) of size x at time t is fed by a transport
term g0(x) that accounts for growth by nutrient uptake, and each cell can split into two
offsprings of the same size according to a division rate B(x). Supposing g0(x) = κg(x),
where we suppose a given model for the growth rate g(x) known up to a multiplicative
constant κ > 0, and experimental data for n(t, x), the problem we consider here is to
recover the division rate B(x) and the constant κ.

In [23], Perthame and Zubelli proposed a deterministic method based on the asymptotic
behavior of the cell amount n(t, x) : indeed, it is known (see e.g. [21, 22]) that under
suitable assumptions on g and B, by the use of the general relative entropy principle (see
[19]), one has ∫ ∞

0

∣∣n(t, x)e−λt − 〈n0, φ〉N(x)
∣∣φ(x) dx −→

t→∞
0 (1.2)

where 〈n0, φ〉 =
∫
n0(y)φ(y)dy and φ is the adjoint eigenvector (see [21]). The density N

is the first eigenvector, and (λ,N) the unique solution of the following eigenvalue problem





κ
∂

∂x

(
g(x)N(x)

)
+ λN(x) = 4BN(2x)−BN(x), x > 0,

B(0)N(0) = 0,
∫
N(x)dx = 1, N(x) ≥ 0, λ > 0.

(1.3)

Moreover, under some supplementary conditions, this convergence occurs exponentially
fast (see [22]). Hence, in the rest of this article, we work under the following analytical
assumptions.
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Assumption 1 (Analytical assumptions).

1. For the considered nonnegative functions g and B and for κ > 0, there exists a
unique eigenpair (λ, N) solution of Problem (1.3).

2. This solution satisfies, for all p ≥ 0,
∫
xpN(x)dx <∞ and 0 <

∫
g(x)N(x)dx <∞.

3. The functions N and gN belong to Ws+1 with s ≥ 1, and in particular
∥∥N

∥∥
∞ <∞

and
∥∥(gN)′

∥∥
2
<∞. (Ws+1 denotes the Sobolev space of regularity s+1 measured in

L
2-norm.)

4. We have g ∈ L
∞(R+) with R+ = [0,∞).

Hereafter ‖•‖2 and ‖•‖∞ denote the usual L2 and L
∞ norms on R+. Assertions 1 and

2 are true under the assumptions on g and B stated in Theorem 1.1 of [3], under which
we also have N ∈ L

∞. Assertion 3 is a (presumably reasonable) regularity assumption,
necessary to obtain rates of convergence together with the convergence of the numerical
scheme. Assertion 4 is restrictive, but mandatory in order to apply our statistical approach.

Thanks to this asymptotic behavior provided by the entropy principle (1.2), instead
of requiring time-dependent data n(t, x), which is experimentally less precise and more
difficult to obtain, the inverse problem becomes: How to recover (κ,B) from observations
on (λ,N) ? In [23, 4], as generally done in deterministic inverse problems (see [5]), it was
supposed that experimental data were pre-processed into an approximation Nε of N with
an a priori estimate of the form ‖N −Nε‖ ≤ ε for a suitable norm ‖•‖. Then, recovering
B from Nε becomes an inverse problem with a certain degree of ill-posedness. From a
modelling point of view, this approach suffers from the limitation that knowledge on N is
postulated in an abstract and somewhat arbitrary sense, that is not genuinely related to
experimental measurements.

1.2 The statistical approach

In this paper, we propose to overcome the limitation of the deterministic inverse problems
approach by assuming that we have n data, each data being obtained from the measure-
ment of an individual cell picked at random, after the system has evolved for a long time
so that the approximation n(t, x) ≈ N(x)eλt is valid. This is actually what happens if
one observes cell cultures in laboratory after a few hours, a typical situation for E. Coli
cultures for instance, provided, of course, that the underlying aggregation-fragmentation
equation is valid.

Each data is viewed as the outcome of a random variableXi, eachXi having probability
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distribution N(x)dx. We thus observe (X1, . . . ,Xn), with

P(X1 ∈ dx1, . . . ,Xn ∈ dxn) =
n∏

i=1

N(xi)dxi,

and where P(•) hereafter denotes probability1. We assume for simplicity that the ran-
dom variables Xi are defined on a common probability space (Ω,F ,P) and that they
are stochastically independent. Our aim is to build an estimator of B(x), that is a func-
tion x  B̂n(x,X1, . . . ,Xn) that approximates the true B(x) with optimal accuracy and
nonasymptotic estimates. To that end, consider the operator

(λ,N) T(λ,N)(x) := κ
∂

∂x

(
g(x)N(x)

)
+ λN(x), x ≥ 0. (1.4)

From representation (1.3), we wish to find B, solution to T(λ,N) = L(BN), where

L
(
ϕ
)
(x) := 4ϕ(2x) − ϕ(x), (1.5)

based on statistical knowledge of (λ,N) only. Suppose that we have preliminary estimators
L̂ and N̂ of respectively T(λ,N) and N, and an approximation L−1

k of L−1. Then we can
reconstruct B in principle by setting formally

B̂ :=
L−1
k (L̂)

N̂
.

This leads us to distinguish three steps that we briefly describe here. The whole method
is fully detailed in Section 2.

The first and principal step is to find an optimal estimator L̂ for T(λ,N). To do so,
the main part consists in applying twice the Goldenschluger and Lepski’s method [14]
(GL for short). This method is a new version of the classical Lepski method [9, 10, 11,
12]. Both methods are adaptive to the regularity of the unknown signal and the GL
method furthermore provides with an oracle inequality. For the unfamiliar reader, we
discuss adaptive properties later on, and explain in details the GL method and the oracle
point of view in Section 2.

1. First, we estimate the density N by a kernel method, based on a kernel function K.
We define N̂ = N̂ĥ where N̂h is defined by (2.1) and the bandwidth ĥ is selected au-
tomatically by (2.3) from a properly-chosen set H. (see Section 2.1 for more details).
A so-called oracle inequality is obtained in Proposition 2 measuring the quality of
estimation of N by N̂ . Notice that this result, which is just a simplified version of
[14], is valid for estimating any density, since we have only assumed to observe an
n−sample of N, so that this result can be considered per se.

1In the sequel, we denote by E(•) the expectation operator with respect to P(•) likewise.
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2. Second, we estimate the density derivative (up to g) D = ∂
∂x(gN), again by a kernel

method with the same kernel K as before, and select an optimal bandwidth h̃ given
by Formula (2.6) similarly. This defines an estimator D̂ := D̂h̃ where D̂h is specified

by (2.4), and yields an oracle inequality for D̂ stated in Proposition 3. In the saemway
as for N, this result has an interest per se and is not a direct consequence of [14].

From there, it only remains to find estimators of λ and κ. To that end, we make the follow-
ing a priori (but presumably reasonable) Assumption 2 on the existence of an estimator
λ̂n of λ.

Assumption 2 (Assumption on λ̂n). There exists some q > 1 such that

ελ,n =
(
E[|λ̂n − λ|q]

)1/q
<∞, Rλ,n = E[λ̂2qn ] <∞.

Indeed, in practical cell culture experiments, one can track n individual cells that have
been picked at random through time. By looking at their evolution, it is possible to infer
λ in a classical parametric way, via an estimator λ̂n that we shall assume to possess from
now on2. Based on the following simple equality

κ = λρg(N) where ρg(N) =

∫
R+
xN(x)dx

∫
R+
g(x)N(x)dx

, (1.6)

obtained by multiplying (1.3) by x and integrating by part, we then define an estimator
κ̂n by (2.8). Finally, defining L̂ = κ̂nD̂+ λ̂nN̂ ends this first step. The second step consists
in the formal inversion of L and its numerical approximation: For this purpose, we follow
the method proposed in [4] and recalled in Section 2.4. To estimate H := BN , we state

Ĥ := L−1
k (L̂) (1.7)

where L−1
k is defined by (2.10) on a given interval [0, T ]. A new approximation result

between L−1 and L−1
k is given by Proposition 4. The third and final step consists in

setting B̂ := Ĥ
N̂
, clipping this estimator in order to avoid explosion when N becomes too

small, finally obtaining

B̃(x) := max(min(B̂(x),
√
n),−

√
n). (1.8)

2Mathematically sepaking, this only amounts to enlarge the probability space to a rich enough structure
that captures this estimator. We do not pursue that here.

6



1.3 Rates of convergence

Because of the approximated inversion of L on [0, T ], we will have access to error bounds

only on [0, T ]. We set
∥∥f

∥∥2
2,T

=
∫ T
0 f2(x)dx. for the L

2-norm restricted to the interval

[0, T ]. If the fundamental (yet technical) statistical result is the oracle inequality for Ĥ
stated in Theorem 1 (see Section 2.5), the relevant part with respect to existing works
in the non-stochastic setting [4, 23] is its consequence in terms of rates of convergence.
For presenting them, we need to assume that the kernel K has regularity and vanishing
moments properties.

Assumption 3 (Assumptions on K). The kernel K is differentiable with derivative K ′.
Furthermore,

∫
K(x)dx = 1 and

∥∥K
∥∥
2
and

∥∥K ′∥∥
2
are finite. Finally, there exists a positive

integer m0 such that
∫
K(x)xpdx = 0 for p = 1, . . . ,m0 − 1 and I(m0) :=

∫
|x|m0K(x)dx

is finite.

Then our proposed estimators satisfy the following properties.

Proposition 1. Under Assumptions 1, 2 and 3, let us assume that Rλ,n and
√
nǫλ,n are

bounded uniformly in n and specify L−1
k with k = n f. Assume further that the family of

bandwidth H = H̃ = {D−1 : D = Dmin, ...,Dmax} depends on n is such that 1 ≤ Dmin ≤
n1/(2m0+1) and n1/5 ≤ Dmax ≤ n1/2 for all n. Then Ĥ satisfies, for all s ∈ [1;m0 − 1]

E
[∥∥Ĥ −H

∥∥q
2,T

]
= O

(
n−

qs
2s+3

)
, (1.9)

Furthermore, if the kernel K is Lipschitz-regular, if there exists an interval [a, b] in (0, T )
such that

[m,M ] := [ inf
x∈[a,b]

N(x), sup
x∈[a,b]

N(x)] ⊂ (0,∞), Q := sup
x∈[a,b]

|H(x)| <∞,

and if ln(n) ≤ Dmin ≤ n1/(2m0+1) and n1/5 ≤ Dmax ≤ (n/ ln(n))1/(4+η) for some η > 0,
then B̂ satisfies, for all s ∈ [1,m0 − 1],

E
[∥∥(B̃ −B)1[a,b]

∥∥q
2

]
= O

(
n−

qs
2s+3

)
. (1.10)

1.4 Remarks and comparison to other works

1) Let us establish formal correspondences between the methodology and results when
recovering B from (1.3) from the point of view of statistics or PDE analysis. ¡ After
renormalization, we obtain the rate n−s/(2s+3) for estimating B, and this corresponds to
ill-posed inverse problems of order 1 in nonparametric statistics. We can make a parallel
with additive deterministic noise following Nussbaum and Pereverzev [18] (see also [15]
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and the references therein). Suppose we have an approximate knowledge of N and λ up
to deterministic errors ζ1 ∈ L

2 and ζ2 ∈ R with noise level ε > 0: we observe

Nε = N + εζ1, ‖ζ1‖2 ≤ 1, (1.11)

and λε = λ+ εζ2, |ζ2| ≤ 1. From the representation

B =
L−1T(N,λ)

N
,

where T(N,λ) is defined in (1.4), we have that the recovery of T(N,λ) is ill-posed in the
terminology of Wahba [25] for it involves the computation of the derivative of N . Since
L is bounded with an inverse bounded in L

2 and the dependence in λ is continuous, the
overall inversion problem is ill-posed of degree a = 1. By classical inverse problem theory
for linear cases3, this means that if N ∈ Ws, the optimal recovery rate in L

2-error norm
should be εs/(s+a) = εs/(s+1) (see also the work of Doumic, Perthame and collaborators
[23, 4]).

Suppose now that we replace the deterministic noise ζ1 by a random Gaussian white
noise: we observe

Nε = N + εB (1.12)

where B is a Gaussian white noise, i.e. a random distribution inW−1/2 that operates on test
functions ϕ ∈ L

2 and such that B(ϕ) is a centered Gaussian variable with variance ‖ϕ‖22.
Model (1.12) serves as a representative toy model for most stochastic error models such
as density estimation or signal recovery in the presence of noise. Let us formally introduce
the α-fold integration operator Iα and the derivation operator ∂. We can rewrite (1.12)
as

Nε = I1(∂N) + εB

and applying I1/2 to both side, we (still formally) equivalently observe

Zε := I1/2Nε = I3/2(∂N) + εI1/2
B.

We are back to a deterministic setting, since in this representation, we have that the noise
εI1/2

B is in L
2. In order to recover ∂N from Zε, we have to invert the operator I3/2,

which has degree of ill-posedness 3/2. We thus obtain the rate

εs/(s+3/2) = ε2s/(2s+3) = n−s/(2s+3)

for the calibration ε = n−1/2 dictated by (1.12) when we compare our statistical model
with the deterministic perturbation (see for instance [17] for establishing formally the cor-
respondence ε = n−1/2 is a general setting). This is exactly the rate we find in Proposition
1: the deterministic error model and the statistical error model coincide to that extent4.

3although here the problem is nonlinear, but that will not affect the argument.
4 The statistician reader willl note that the rate n−s/(2s+3) is also the minimax rate of convergence

when estimating the derivative of a density, see [6].
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2) The estimators Ĥ and B̂ do not need the exact knowledge of s as an input to recover
this optimal rate of convergence. We just need to know an upper bound m0 − 1 to choose
the regularity of the kernel K. This capacity to obtain the optimal rate without knowing
the precise regularity is known in statistics as adaptivity in the minimax sense (see [24]
for instance for more details). It is close in spirit to what the discrepancy principle can do
in deterministic inverse problems [5]. However, in the deterministic framework, one needs
to know the level of noise ε, which is not realistic in practice. In our statistical framework,
this level of noise is linked to the size sample n through the correspondence ε = n−1/2.

3) Finally, note that the rate is polynomial and no extra-logarithmic terms appear, as
it is often the case when adaptive estimation is considered (see [9, 10, 11, 12]).

The next section explains in more details the GL approach and presents our estimators
to a full extent, including the fundamental oracle inequalities. It also elaborates on the
methodology related to oracle inequality. The main advantage of oracle inequalities is
that they hold nonasymptotically (in n) and that they guarantee an optimal choice of
bandwidth with respect to the selected risk. Section 3 is devoted to numerical simulations
that illustrate the performance of our method. Proofs are delayed until Section 4.

2 Construction and properties of the estimators

2.1 Estimation of N by the GL method

We first construct an estimator of N . A natural approach is a kernel method, which is all
the more appropriate for comparisons with analytical methods (see [4] for the deterministic
analogue). The kernel function K should satisfy the following assumption, in force in the
sequel.

Assumption 4 (Assumption on the kernel density estimator). K : R → R is a contin-
uous function such that

∫
K(x)dx = 1 and

∫
K2(x)dx <∞.

For h > 0 and x ∈ R, define

N̂h(x) :=
1

n

n∑

i=1

Kh(x−Xi), (2.1)

where Kh(x) = h−1K(h−1x). Note in particular that E(N̂h) = Kh ⋆ N , where ⋆ denotes
convolution. We measure the performance of N̂h via its squared integrated error, i.e. the
average L

2 distance between N and N̂h. It is easy to see that

E[‖N − N̂h‖2] ≤
∥∥N −Kh ⋆ N

∥∥
2
+ E[‖Kh ⋆ N − N̂h‖2],
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with

E[‖Kh ⋆ N − N̂h‖22] =
1

n2
E
[ ∫ [ n∑

i=1

(
Kh(x−Xi)− E

(
Kh(x−Xi)

))]2
dx

]

=
1

n2

∫ n∑

i=1

E

[(
Kh(x−Xi)− E

(
Kh(x−Xi)

))2]
dx

≤ 1

n
E
[ ∫

K2
h(x−X1)dx

]
=

∥∥Kh

∥∥2
2

n
=

∥∥K
∥∥2
2

nh
.

Applying the Cauchy-Schwarz inequality, we obtain

E[‖N − N̂h‖2] ≤ ‖N −Kh ⋆ N‖2 +
1√
nh

∥∥K
∥∥
2
.

The first term corresponds to a bias term, it decreases when h → 0. The second term
corresponds to a variance term, which increases when h → 0. If one has to choose h in a
family H of possible bandwidths, the best choice is h̄ where

h̄ := argminh∈H
{∥∥N −Kh ⋆ N

∥∥
2
+

1√
nh

∥∥K
∥∥
2

}
. (2.2)

This ideal compromise h̄ is called the ”oracle”: it depends on N and then cannot be used
in practice. Hence one wants to find an automatic (data-driven) method for selecting this
bandwidth. The Lepski method [9, 10, 11, 12] is one of the various theoretical adaptive
methods available for selecting a density estimator. In particular it is the only known
method able to select a bandwidth for kernel estimators. However the method do not
usually provide a non asymptotic oracle inequality. Recently, Goldenschluger and Lepski
[13] developed powerful probabilistic tools that enable to overcome this weakness and
that can provide with a fully data-driven bandwidth selection method. We give here a
practical illustration of their work: how should one select the bandwidth for a given kernel
in dimension 1?

The main idea is to estimate the bias term by looking at several estimators. The
method consists in setting first, for any x and any h, h′ > 0,

N̂h,h′(x) :=
1

n

n∑

i=1

(Kh ⋆ Kh′)(x−Xi) = (Kh ⋆ N̂h′)(x).

Next, for any h ∈ H, define

A(h) := sup
h′∈H

{
‖N̂h,h′ − N̂h′‖2 −

χ√
nh′

‖K‖2
}
+

= sup
h′∈H

{
max

{
0, ‖N̂h,h′ − N̂h′‖2 −

χ√
nh′

‖K‖2
}}
,
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where, given ε > 0, we set χ := (1 + ε)(1 + ‖K‖1). The quantity A(h) is actually a good
estimator of

∥∥N −Kh ⋆ N
∥∥
2
up to the term

∥∥K
∥∥
1
(see (4.2) and (4.3) in Section 4). The

next step consists then in setting

ĥ := argmin
h∈H

{
A(h) +

χ√
nh

‖K‖2
}
, (2.3)

and our final estimator of N is obtained by putting N̂ := N̂ĥ. Let us specify what we are
able to prove at this stage.

Proposition 2. Assume N ∈ L
∞ and work under Assumption 4. If H ⊂ {D−1,D =

1, . . . ,Dmax} with Dmax = δn for δ > 0, then, for any q ≥ 1,

E
[
‖N̂ −N‖2q2

]
≤ C(q)χ2q inf

h∈H

{
‖Kh ⋆ N −N‖2q2 +

∥∥K
∥∥2q
2

(hn)q
}
+ C1n

−q,

where C(q) is a constant depending on q and C1 is a constant depending on q, ε, δ, ‖K‖2,
‖K‖1 and ‖N‖∞.

The previous inequality is called an oracle inequality, for we have E[‖N̂ − N‖2] ≤
(E[‖N̂ −N‖2q2 ])1/(2q) and ĥ is performing as well as the oracle h̄ up to some multiplicative
constant. In that sense, we are able to select the best bandwidth within our family H.

Remark 1. As compared to the results of Goldenschluger and Lepski in [13], we do not
consider the case where H is an interval and we do not specify K except for Assumption 4.
This simpler method is more reasonable from a numerical point of view, since estimating N
is only a preliminary step. The probabilistic tool we use here is classical in model selection
theory (see Section 4 and [16]) and actually, we do not use directly [13]. In particular
the main difference is that, in our specific case, we are able to get max(H) fixed whereas
Goldenschluger and Lepski [13] require max(H) to tend to 0 with n. The price to pay is
that we obtain a uniform bound (see Lemma 1 in Section 4.3) which is less tight, but that
will be sufficient for our purpose.

2.2 Estimation of ∂
∂x

(
g(x)N(x)

)
by the GL method

The previous method can of course be adapted to estimate

D(x) :=
∂

∂x

(
g(x)N(x)

)
.

We adjust here the work of [14] to the setting of estimating a derivative. We again use
kernel estimators with more stringent assumptions5 on K.

5For sake of simplicity we use the same kernel to estimate N and D but this choice is not mandatory.
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Assumption 5 (Assumption on the kernel of the derivative estimator). The function
K is differentiable,

∫
K(x)dx = 1 and

∫
(K ′(x))2dx <∞.

For any bandwidth h > 0, we define the kernel estimator of D as

D̂h(x) := 1
n

∑n
i=1 g(Xi)K

′
h(x−Xi)

= 1
nh2

∑n
i=1 g(Xi)K

′(x−Xi
h

)
.

(2.4)

Indeed

E(D̂h(x)) =

∫
K ′

h(x− u)g(u)N(u)du

=
(
K ′

h ⋆ (gN)
)
(x) =

(
Kh ⋆ (gN)′

)
(x).

Again we can look at the integrated squared error of D̂. We obtain the following upper
bound:

E[‖D̂h −D‖2] ≤ ‖D −Kh ⋆ D‖2 + E[‖Kh ⋆ D − D̂h‖2],
with

E[‖Kh ⋆ D − D̂h‖22 =
1

n2
E

[ ∫ [ n∑

i=1

(
g(Xi)K

′
h(x−Xi)− E

(
g(Xi)K

′
h(x−Xi)

))]2
dx

]

=
1

n2

∫ n∑

i=1

E

[(
g(Xi)K

′
h(x−Xi)− E

(
g(Xi)K

′
h(x−Xi)

))2]
dx

≤ 1

n
E
[ ∫

g2(X1)K
′
h
2
(x−X1)dx

]

≤
∥∥g

∥∥2
∞
∥∥K ′

h

∥∥2
2

n
=

∥∥g
∥∥2
∞
∥∥K ′∥∥2

2

nh3
.

Hence, by Cauchy-Schwarz inequality

E[‖D − D̂h‖2] ≤
∥∥D −Kh ⋆ D

∥∥
2
+

1√
nh3

∥∥g
∥∥
∞
∥∥K ′∥∥

2
.

Once again, there is a bias-variance decomposition, but now the variance term is of order
1√
nh3

∥∥K ′∥∥
2

∥∥g
∥∥
∞. We therefore define the oracle by

¯̄h := argminh∈H̃
{∥∥D −Kh ⋆ D

∥∥
2
+

1√
nh3

∥∥g
∥∥
∞
∥∥K ′∥∥

2

}
. (2.5)

Now let us apply the GL method in this case. Let H̃ be a family of bandwidths. We set
for any h, h′ > 0,

D̂h,h′(x) :=
1

n

n∑

i=1

g(Xi)(Kh ⋆ Kh′)′(x−Xi)

12



and

Ã(h) := sup
h′∈H̃

{
‖D̂h,h′ − D̂h′‖2 −

χ̃√
nh′3

‖g‖∞‖K ′‖2
}
+
,

where, given ε̃ > 0, we put χ̃ := (1 + ε̃)(1 + ‖K‖1). Finally, we estimate D by using
D̂ := D̂h̃ with

h̃ := argminh∈H̃
{
Ã(h) +

χ̃√
nh3

‖g‖∞‖K ′‖2
}
. (2.6)

As before, we are able to prove an oracle inequality for D̂.

Proposition 3. Assume N ∈ L
∞. Work under Assumption 5. If H̃ = {D−1,D =

1 . . . , D̃max}, with D̃max =
√
δ̃n for δ̃ > 0, then for any q ≥ 1,

E
[
‖D̂ −D‖2q2

]
≤ C̃(q)χ̃2q inf

h∈H̃

{
‖Kh ⋆ D −D‖2q2 +

(
∥∥g

∥∥
∞‖K ′‖2√
nh3

)2q}
+ C̃1n

−q,

where C̃(q) is a constant depending on q and C̃1 is a constant depending on q, ε̃, δ̃,
∥∥K ′∥∥

2
,∥∥K ′∥∥

1
,
∥∥g

∥∥
∞ and

∥∥N
∥∥
∞.

2.3 Estimation of κ (and λ)

As mentioned in the introduction, we will not consider the problem of estimating λ and we
work under Assumption 2: an estimator λ̂n of λ is furnished by the practitioner prior to
the data processing for estimating B. It becomes subsequently straightforward to obtain
an estimator of κ by estimating ρg(N), see the form of (1.6). We estimate ρg(N) by

ρ̂n :=

∑n
i=1Xi∑n

i=1 g(Xi) + c
, (2.7)

where c > 0 is a (small) tuning constant6. Next we simply put

κ̂n = λ̂nρ̂n. (2.8)

2.4 Approximated inversion of L
From (2.7), the right-hand side of (1.3) is consequently estimated by

κ̂nD̂ + λ̂nN̂ .

6In practice, one can take c = 0.
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It remains to formally apply the inverse operator L−1. However Given ϕ, the dilation
equation

L
(
ψ
)
(x) = 4ψ(2x) − ψ(x) = ϕ(x), x ∈ R+ (2.9)

admits in general infinitely many solutions, see Doumic et al. [4], Appendix A. Neverthe-
less, if ϕ ∈ L

2, there is a unique solution ψ ∈ L
2 to (2.9), see Proposition A.1. in [4], and

moreover it defines a continuous operator L−1 from L
2 to L

2. Since Kh and gK ′
h belong

to L
2, one can define a unique solution to (2.9) when ϕ = κ̂nD̂ + λ̂nN̂ . This inverse is

not analytically known but we can only approximate it via the fast algorithm described
below.

Given T > 0 and an integer k ≥ 1, we construct a linear operator L−1
k that maps a

function ϕ ∈ L
2 into a function with compact support in [0, T ] as follows. Consider the

regular grid on [0, T ] with mesh k−1T defined by

0 = x0,k < x1,k < · · · < xi,k := i
kT < . . . < xk,k = T.

We set

ϕi,k :=
k

T

∫ xi+1,k

xi,k
ϕ(x)dx for i = 0, . . . , k − 1,

and define by induction the sequence 7

Hi,k(ϕ) :=
1

4
(Hi/2,k(ϕ) + ϕi/2,k), i = 0, . . . , k − 1,

what gives, for i = 0 and i = 1

H0(ϕ) :=
1
3ϕ0,k, H1(ϕ) :=

4
21ϕ0,k +

1
7ϕ1,k.

Finally, we define

L−1
k (ϕ)(x) :=

k−1∑

i=0

Hi,k(ϕ)1[xi,k ,xi+1,k)(x). (2.10)

As stated in the introduction, we eventually estimate H = BN by

Ĥ = L−1
k (κ̂nD̂ + λ̂nN̂).

The stability of the inversion is given by the fact that L−1
k : L2 → L

2 is continuous, see
Lemma 4 in Section 4.3, and by the following approximation result between L−1 and L−1

k .

7for any sequence ui, i = 1, 2, . . ., we define

ui/2 :=
{ ui/2 if i is even

1
2
(u(i−1)/2 + u(i+1)/2) otherwise.
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Proposition 4. Let T > 0 and ϕ ∈ W1. Let L−1(ϕ) denote the unique solution of (2.9)
belonging to L

2. We have for k ≥ 1:

‖L−1
k (ϕ)− L−1(ϕ)‖2,T ≤ C

T√
k
‖ϕ‖W1 ,

with C < 1√
6
.

Hence, L−1
k behaves nicely over sufficiently smooth functions. Moreover the estimation

of N and the estimators κ̂n and λ̂n are essentially regular. Finally we estimate B as
stated in (1.8). The overall behaviour of the estimator is finally governed by the quality
of estimation of the derivative D, which determines the accuracy of the whole inverse
problem in all these successive steps.

2.5 Oracle inequalities for Ĥ

We are ready to state our main result, namely the oracle inequality fulfilled by Ĥ.

Theorem 1. Work under Assumptions 1 and 2 and let K a kernel satisfying Assumptions
4 and 5. Define H ⊂ {D−1,D = 1 . . . ,Dmax} with Dmax = δn for δ > 0 and H̃ ⊂ {D−1 :

D = 1, ..., D̃max} with D̃max =
√
δ̃n for δ̃ > 0. For k ≥ 1 and T > 0, let us define L−1

k by
(2.10) on the interval [0, T ]. Finally, define the estimator

Ĥ = L−1
k (λ̂nN̂ĥ + κ̂nD̂h̃),

where N̂ĥ and D̂h̃ are kernel estimators defined respectively by (2.1) and (2.4), and where

we have selected ĥ and h̃ by (2.3) and (2.6). Moreover take κ̂n as defined by (2.7) and
(2.8) for some c > 0.

The following upper bound holds for any n :

E
[∥∥Ĥ −H

∥∥q
2,T

]
≤ C1

{√
Rλ,n inf

h∈H̃

[
‖Kh ⋆ D −D‖q2 +

(
∥∥g

∥∥
∞‖K ′‖2√
nh3

)q]

+ inf
h∈H

[
‖Kh ⋆ N −N‖q2 +

(
∥∥K

∥∥
2√

nh

)q]
+ εqλ,n +

(
(‖N‖W1 + ‖gN‖W2)

T√
k

)q}
+ C2n

− q
2 ,

where C1 is a constant depending on q, g, N , ε, ε̃,
∥∥K

∥∥
1
and c; and C2 is a constant

depending on q, g, N, ε̃, ε, δ, δ̃,
∥∥K

∥∥
2
,
∥∥K

∥∥
1
,
∥∥K ′∥∥

2
,
∥∥K ′∥∥

1
.

1) Note that the upper bound quantifies the additive cost of each step used in the
estimation method. The first part is an oracle bound on the estimation of D times the
size of the estimator of λ. The second part is the oracle bound for N . Of course, the
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results are sharp only if λ̂ is good, which can be seen through ελ,n. Finally, the bound is
also governed by the approximated inversion through the only term where k appears. The
last term is just a residual term, that will be in most of the cases negligible with respect
to the other terms. In particular since all the previous errors are somehow unavoidable,
this means that, as far as our method is concerned, our upper bound is the best possible
that can be achieved in order to select the different bandwidths h, up to multiplicative
constants. Moreover, one can see how the limitation in k influences the method and how
large k needs to be chosen to guarantee that the main error comes from the fact that one
estimates a derivative.

2) The result holds for any n. In particular, we expect the method to perform well for
small sample size, see the numerical illustration below. This also shows that we are able
to select a good bandwidth as far as the kernel K is fixed, even if there is no assumption
on the moments of K and consequently on the approximation properties of K. In the next
simulation section, we focus on a Gaussian kernel which has only one vanishing moment
(hence one cannot really consider minimax adaptation for regular function with it) but for
which the bandwidth choice is still important in practice. The previous result guarantees
an optimal bandwidth choice even for this kernel, up to some multiplicative constant.

3) From this oracle result, we can easily deduce the rates of convergence of Proposition
1 at the price of further assumptions on the kernel K, i.e. Assumption 3 defined in the In-
troduction. Section 1.2.2 of [24] recalls how to build compactly supported kernels satisfying
Assumption 3. If m0 satisfies Assumption 3, then for any s ≤ m0, for any f ∈ Ws,

‖Kh ⋆ f − f‖2 ≤ C‖f‖Wshs,

where C is a constant that can be expressed by using K and m0 (see Theorem 8.1 of [8]).
Now, it is sufficient to choose h = D−1 of order n−1/(2s+3) to obtain (1.9). The complete
proof of Proposition 1 is delayed until the last section.

3 Numerical illustration

Let us illustrate our method through some simulations.

3.1 The numerical protocol

First, we need to build up simulated data: to do so, we depart from given g, κ and B
on a regular grid [0, dx, . . . ,XM ] and solve the direct problem by the use of the so-called
power algorithm to find the corresponding density N and the principal eigenvalue λ (see for
instance [4] for more details). We check thatN almost vanishes outside the interval [0,XM ];
else, XM has to be increased. The density N being given on this grid, we approximate it
by a spline function, and build a n-sample by the rejection sampling algorithm. For the
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sake of simplicity, we do not simulate an approximation on λ and keep the exact value,
thus leading, in the estimate of Theorem 1, to Rλ,n = λ2q and λ̂n = λ.

We then follow step by step the method proposed here and detailed in Section 2.

1. The GL method for the choice of N̂ = N̂h̄. We take the classical Gaussian kernel
K(x) = (2π)−1/2 exp

(
− x2/2

)
, set Dmax = n and limit ourselves to a logarithmic

sampling H = {1, 1/2, . . . , 1/9, 1/10, 1/20, . . . , 1/100, 1/200, . . . , 1/n} in order to re-
duce the cost of computations (The GL method is indeed the most time-consuming
step in the numerical protocol).

2. The GL method for the choice of D̂h. The procedure is similar except that we choose
here Dmax =

√
n. The selected bandwidths h̄ and h̃ can be different. We check that

the GL method does not select an extremal point of H.

3. The choice of κ̂n, as defined by (2.8).

4. The numerical scheme described in Section 2.4 and in [4] for the inversion of L.

5. The division by N̂ and definition of B̃ as described in (1.8).

At each step, we compare, in L
2-norm, the reconstructed function and the original one:

N̂ vs N, ∂
∂x(gN̂ ) vs ∂

∂x(gN), Ĥ vs BN and finally B̂ vs B.

3.2 Results on simulated data

We first test the three cases simulated in [4] in which the numerical analysis approach
was dealt with. Namely on the interval [0, 4], we consider the cases where g ≡ 1 and first
B = B1 ≡ 1, second B(x) = B2(x) = 1 for x ≤ 1.5, then linear to B2(x) = 5 for x ≥ 1.7.
This particular form is interesting because due to this fast increase on B, the solution
N is not that regular and exhibits a 2-peaks distribution (see Figure 1). Finally, we test
B(x) = B3(x) = exp(−8(x− 2)2) + 1.

In Figures 1 and 2, we show the simulation results with n = 5.104 (a realistic value
for in vitro experiments on E. Coli for instance) for the reconstruction of N, ∂

∂x(gN), BN
and B.

One notes that the solution can well capture the global behavior of the division rate B,
but, as expected, has more difficulties in recovering fine details (for instance, the difference
between B1 and B3) and also gives much more error when B is less regular (case of B2).
One also notes that even if the reconstruction of N is very satisfactory, the critical point
is the reconstruction of its derivative. Moreover, for large values of x, even if N and its
derivative are correctly reconstructed, the method fails in finding a proper division rate B.
This is due to two facts: first, N vanishes, so the division by N leads to error amplification.
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Figure 1: Reconstruction of N (left) and of ∂
∂x(gN) (right) obtained with a sample of

n = 5.104 data, for three different cases of division rates B.

Second, the values taken by B(x) for large x have little influence on the solutions N of the
direct problem: whatever the values of B, the solutions N will not vary much, as shown
by Figure 1 (left). A similar phenomenon occurred indeed when solving the deterministic
problem in [4] (for instance, we refer to Fig. 10 of this article for a comparison of the
results).

We also test a case closer to biological true data, namely the case B(x) = x2 and
g(x) = x. The results are shown on Figures 3 and 4 for n-samples of size 103, 5.103, 104

and 5.104.
One notes that reconstruction is already very good for N when n = 103, unlike the

reconstruction of ∂
∂x(gN) that requires much more data.

Finally, in Table 3.2 we give average error results on 50 simulations, for n = 1000,
g ≡ B ≡ 1. We display the relative errors in L

2 norms, (defined by ||φ − φ̂||L2/||φ||L2),
and their empirical variances. In Table 3.2, for the case g(x) = x and B(x) = x2, we
give some results on standard errors for various values of n, and compare them to
n−1/5, which is the order of magnitude of the expected final error on BN, since with a
Gaussian kernel we have s = 1 in Proposition 1. We see that our numerical results are in
line with the theoretical estimates: indeed, the error onH is roughly twice as large as n−1/5.
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Figure 2: Reconstruction of BN (left) and of B (right) obtained with a sample of n = 5.104

data, for three different cases of division rates B.

Error on N : average Variance Error on ∂
∂x(gN) : average Variance

0.088 0.15 0.51 0.28

Error on BN : average Variance Average ĥ Average h̃

0.39 0.29 0.12 0.40

n n−
1
5 ĥ h̃ error on N error on D error on H

103 0.25 0.1 0.5 0.06 0.68 0.42
5.103 0.18 0.07 0.3 0.03 0.45 0.28
104 0.16 0.08 0.3 0.035 0.46 0.29
5.104 0.11 0.04 0.2 0.014 0.31 0.19

4 Proofs

In Section 4.1, we first give the proofs of the main results of Section 2. This allows us, in
Section 4.2, to prove the results of Section 2.5, which require the collection of all the results
of Section 2, i.e. the oracle-type inequalities on the one hand and a numerical analysis
result on the other hand. This illustrates the subject of our paper that lies at the frontier
between these fields. Finally, we state and prove the technical lemmas used in Section 4.1.
These technical tools are concerned with probabilistic results, namely concentration and
Rosenthal-type inequalities that are often the main bricks to establish oracle inequalities,
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Figure 3: Reconstruction of N (left) and of ∂
∂x(gN) (right) obtained for g(x) = x and

B(x) = x2, for various sample sizes.

and also the boundedness of L−1
k . In the sequel, the notation �θ1,θ2,... denotes a generic

positive constant depending on θ1, θ2, . . . (the notation � simply denotes a generic positive
absolute constant). It means that the values of �θ1,θ2,... may change from line to line.

4.1 Proofs of the main results of Section 2

Proof of Proposition 2

For any h∗ ∈ H, we have:

‖N̂ −N‖2 ≤ ‖N̂ĥ −Nĥ,h∗‖2 + ‖Nĥ,h∗ − N̂h∗‖2 + ‖N̂h∗ −N‖2
≤ A1 +A2 +A3,

with
A1 := ‖N̂ĥ −Nĥ,h∗‖2 ≤ A(h∗) +

χ√
nĥ

‖K‖2,

A2 := ‖Nĥ,h∗ − N̂h∗‖2 ≤ A(ĥ) +
χ√
nh∗

‖K‖2

and
A3 := ‖N̂h∗ −N‖2.
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Figure 4: Reconstruction of BN (left) and of B (right) obtained for g(x) = x and B(x) =
x2, for various sample sizes.

We obtain

‖N̂ −N‖2 ≤ A(h∗) +
χ√
nĥ

‖K‖2 +A(ĥ) +
χ√
nh∗

‖K‖2 + ‖N̂h∗ −N‖2

≤ 2A(h∗) +
2χ√
nh∗

‖K‖2 + ‖N̂h∗ −N‖2. (4.1)

Since we have

A(h∗) = sup
h′∈H

{
‖N̂h∗,h′ − N̂h′‖2 −

χ√
nh′

‖K‖2
}
+

≤ sup
h′∈H

{{
‖N̂h∗,h′ − E[N̂h∗,h′ ]−

(
N̂h′ − E[N̂h′ ]

)
‖2 −

χ√
nh′

‖K‖2
}
+

+‖E[N̂h∗,h′ ]− E[N̂h′ ]‖2
}

(4.2)

and for any x and any h′

E
[
N̂h∗,h′(x))− E(N̂h′(x)

]
=

∫
(Kh∗ ⋆ Kh′)(x− u)N(u)du −

∫
Kh′(x− v)N(v)dv

=

∫ ∫
Kh∗(x− u− t)Kh′(t)N(u)dtdu −

∫
Kh′(x− v)N(v)dv

=

∫ ∫
Kh∗(v − u)Kh′(x− v)N(u)dudv −

∫
Kh′(x− v)N(v)dv

=

∫
Kh′(x− v)

( ∫
Kh∗(v − u)N(u)du −N(v)

)
dv,
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we derive

‖E(N̂h∗,h′)− E(N̂h′)‖2 ≤ ‖K‖1‖Eh∗‖2, (4.3)

where
Eh∗(x) := (Kh∗ ⋆ N)(x)−N(x), x ∈ R+

represents the approximation term. Combining (4.1), (4.2) and (4.3) entails

‖N̂ −N‖2 ≤ ‖N̂h∗ −N‖2 + 2‖K‖1‖Eh∗‖2 +
2χ√
nh∗

‖K‖2 + 2ζn,

with

ζn := sup
h′∈H

{
‖N̂h∗,h′ − E[N̂h∗,h′ ]−

(
N̂h′ − E[N̂h′ ]

)
‖2 −

χ√
nh′

‖K‖2
}
+

= sup
h′∈H

{
‖Kh∗ ⋆

(
N̂h′ − E[N̂h′ ]

)
− (N̂h′ − E[N̂h′ ])‖2 −

(1 + ε)(1 + ‖K‖1)√
nh′

‖K‖2
}
+

≤ (1 + ‖K‖1) sup
h′∈H

{
‖N̂h′ − E[N̂h′ ]‖2 −

(1 + ε)√
nh′

‖K‖2
}
+
.

Hence

E
[
‖N̂−N‖2q2

]
≤ �q

(
E
[
‖N̂h∗−N‖2q2

]
+
∥∥K

∥∥2q
1
‖Eh∗‖2q2 +χ2q ‖K‖2q2

(nh∗)q
+(1+

∥∥K
∥∥
1
)2q E[ξ2qn ]

)
,

where

ξn = sup
h′∈H

{
‖N̂h′ − E(N̂h′)‖2 −

(1 + ε)√
nh′

‖K‖2
}
+
.

Now, we have:

E
[
‖N̂h∗ −N‖2q2

]
≤ 22q−1

(
E
[
‖N̂h∗ − E[N̂h∗ ]‖2q2

]
+ ‖E[N̂h∗)−N‖2q2

]

≤ 22q−1
(
E
[
‖N̂h∗ − E[N̂h∗ ]‖2q2

]
+ ‖Eh∗‖2q2

)
.

Then, by setting

Kch∗(Xi, x) := Kh∗(x−Xi)− E(Kh∗(x−X1)),

we obtain

E
[
‖N̂h∗ − E[N̂h∗ ]‖2q2

]
= E

[( ∫ ( 1

n

n∑

i=1

Kch∗(Xi, x)
)2
dx

)q]

≤ 2q−1

n2q

(
E

[( n∑

i=1

∫
Kc2h∗(Xi, x)dx

)q]

+E

[∣∣∣
∑

1≤i,j≤n i 6=j

∫
Kch∗(Xi, x)Kch∗(Xj , x)dx

∣∣∣
q])

.
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Since
∫
Kc2h∗(Xi, x)dx =

∫ (
Kh∗(x−Xi)− E

[
Kh∗(x−X1)

])2
dx

≤ 2
( ∫

K2
h∗(x−Xi)dx+

∫ (
E
[
Kh∗(x−X1)

])2
dx

)

≤ 2
(
‖Kh∗‖22 +

∫
E
[
K2

h∗(x−X1)
]
dx

)

≤ 4‖Kh∗‖22 =
4

h∗
‖K‖22,

the first term can be bounded as follows

E
[( ∫ n∑

i=1

Kc2h∗(Xi, x)dx
)q] ≤

(4n
h∗

‖K‖22
)q
.

For the second term, we apply Theorem 8.1.6 of de la Peña and Giné (1999) (with 2q ≥ 2)
combined with the Cauchy-Schwarz inequality:

E

[∣∣∣
∑

1≤i,j≤n i 6=j

∫
Kch∗(Xi, x)Kch∗(Xj , x)dx

∣∣∣
q]

≤
(
E

[∣∣ ∑

1≤i,j≤n i 6=j

∫
Kch∗(Xi, x)Kch∗(Xj , x)dx

∣∣2q
]) 1

2

≤ �qn
q
(
E
[∣∣
∫
Kch∗(X1, x)Kch∗(X2, x)dx

∣∣2q]
) 1

2

≤ �qn
q
(
E
[∣∣
∫
Kc2h∗(X1, x)dx

∣∣2q]
) 1

2 ≤ �q

(4n
h∗

‖K‖22
)q
.

It remains to deal with the term E(ξ2qn ). By Lemma 1 below, we obtain

E[ξ2qn ] ≤ �
q,η,δ

∥∥K
∥∥

2
,
∥∥K

∥∥
1
,
∥∥N

∥∥
∞

n−q

and the conclusion follows.

Proof of Proposition 3

The proof is similar to the previous one and we avoid most of the computations for
simplicity. For any h0 ∈ H̃,

‖D̂h̃ −D‖2 ≤ ‖D̂h̃ − D̂h̃,h0
‖2 + ‖D̂h̃,h0

− D̂h0‖2 + ‖D̂h0 −D‖2
≤ Ã1 + Ã2 + Ã3,
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with

Ã1 := ‖D̂h̃ − D̂h̃,h0
‖2 ≤ Ã(h0) +

χ̃√
nh̃3

‖g‖∞‖K ′‖2,

Ã2 := ‖D̂h̃,h0
− D̂h0‖2 ≤ Ã(h̃) +

χ̃√
nh30

‖g‖∞‖K ′‖2

and
Ã3 := ‖D̂h0 −D‖2.

Then,

‖D̂h̃ −D‖2 ≤ 2Ã(h0) +
2χ̃√
nh30

‖g‖∞‖K ′‖2 + ‖D̂h0 −D‖2.

To study Ã(h0), we first evaluate

E[D̂h1,h2(x)] − E[D̂h2(x)]. = (Kh1 ⋆ Kh2 ⋆ (gN)′)(x)− (Kh2 ⋆ (gN)′)(x)

=

∫
D(t)(Kh1 ⋆ Kh2)(x− t)dt−

∫
D(t)Kh2(x− t)dt

=

∫
D(t)

∫
Kh1(x− t− u)Kh2(u)dudt −

∫
D(t)Kh2(x− t)dt

=

∫
D(t)

∫
Kh1(v − t)Kh2(x− v)dvdt −

∫
D(v)Kh2(x− v)dv

=

∫
Kh2(x− v)

( ∫
D(t)Kh1(v − t)dt−D(v)

)
dv

= (Kh2 ⋆ Ẽh1)(x),

where we set, for any real number x

Ẽh1(x) :=

∫
D(t)Kh1(x− t)dt−D(x)

= (Kh1 ⋆ D)(x)−D(x). (4.4)

It follows that

Ã(h0) = sup
h∈H̃

{
‖D̂h0,h − D̂h‖2 −

χ̃√
nh3

‖g‖∞‖K ′‖2
}
+

≤ sup
h∈H̃

{{
‖D̂h0,h − E[D̂h0,h]−

(
D̂h − E[D̂h]

)
‖2 −

χ̃√
nh3

‖g‖∞‖K ′‖2
}
+

+‖E[D̂h0,h]− E[D̂h]‖2
}

≤ sup
h∈H̃

{
‖D̂h0,h − E[D̂h0,h]− (D̂h − E[D̂h])‖2 −

χ̃√
nh3

‖g‖∞‖K ′‖2
}
+
+ ‖K‖1‖Ẽh0‖2

≤ (1 + ‖K‖1) sup
h∈H̃

{
‖D̂h − E[D̂h]‖2 −

(1 + ε̃)√
nh3

‖g‖∞‖K ′‖2
}
+
+ ‖K‖1‖Ẽh0‖2, (4.5)
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In order to obtain the last line, we use the following chain of arguments:

D̂h0,h(x) =
1

n

n∑

i=1

g(Xi)

∫
K ′

h(x−Xi − t)Kh0(t)dt

=

∫
Kh0(t)

( 1

n

n∑

i=1

g(Xi)K
′
h(x−Xi − t)

)
dt

and

E
[
D̂h0,h(x)

]
=

∫
Kh0(t)

( ∫
g(u)K ′

h(x− u− t)N(u)du
)
dt,

therefore

D̂h0,h(x)− E
[
D̂h0,h(x)

]
=

∫
Kh0(t)G(x − t)dt = Kh0 ⋆ G(x),

with

G(x) =
1

n

n∑

i=1

g(Xi)K
′
h(x−Xi)−

∫
g(u)K ′

h(x− u)N(u)du

= D̂h(x)− E
[
D̂h(x)

]
.

Therefore

‖D̂h0,h − E[D̂h0,h]‖2 ≤ ‖Kh0‖1‖G‖2
≤ ‖K‖1‖D̂h − E[D̂h]‖2,

which justifies (4.5). In the same way as in the proof of Proposition 2, we can establish
the following:

E
[
‖Ẽh0‖2q2

]
= E

[
‖D̂h0 −D‖2q2

]
≤ �q

(
‖Ẽh0‖2q2 +

(∥∥g
∥∥
∞‖K ′‖2√
nh30

)2q)
.

Finally, we successively apply (4.4), (4.5) and Lemma 1 in order to conclude the proof.

Proof of Proposition 4

We use the notation and definitions of Section 2.4. We have

‖L−1
k (ϕ)− L−1(ϕ)‖22,T =

k−1∑

i=0

xi+1,k∫

xi,k

(
Hi,k − L−1(ϕ)(x)

)2
dx :=

k−1∑

i=0

Li,k.
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We prove by induction that for all i, one has Li,k ≤ C2 T 2

k2
‖ϕ‖2W1 . The result follows by

summation over i. We first prove the two following estimates:

xi+1,k∫
xi,k

(
ϕi,k − ϕ(x)

)2
dx ≤ T 2

4π2k2
‖ϕ‖2W1 , (4.6)

|ϕi+1,k − ϕi,k|2 ≤ T
k ‖ϕ‖2W1 . (4.7)

By definition, ϕi,k is the average of the function ϕ on the interval [xi,k, xi+1,k] of
size T

k . Thus (4.7) is simply Wirtinger inequality applied to ϕ ∈ W1 on the interval
[xi,k, xi+1,k].For(4.7), we use the Cauchy-Schwarz inequality:

|ϕi+1,k − ϕi,k|2 =
k2

T 2

( xi+1,k∫

xi,k

(
ϕ(x+

T

k
)− ϕ(x)

)
dx

)2

=
k2

T 2

(
xi+1,k∫

xi,k

x+T
k∫

x

ϕ′(z)dz dx
)2

≤ k2

T 2

( xi+1,k∫

xi,k

√
T

k
‖ϕ‖W1dx

)2

=
T

k
‖ϕ‖2W1 .

We are ready to prove by induction the two following inequalities:

Li,k ≤ C2
1
T 2

k2 ‖ϕ‖2W1 , (4.8)

|Hi+1,k −Hi,k|2 ≤ C2
2
T
k ‖ϕ‖2W1 . (4.9)

for two constants C1 and C2 specified later on. First, for i = 0, we have

L0,k =

T
k∫

0

|H0,k(ϕ)− L−1(ϕ)(x)|2dx =

T
k∫

0

∣∣1
3
ϕ0,k − L−1(ϕ)(x)

∣∣2dx.

We recall (see Proposition A.1. of [4]) that L−1(ϕ)(x) =
∞∑
n=1

2−2nϕ(2−nx), and we use the

fact that 1
3 =

∞∑
n=1

2−2n and for a, b > 0, ab ≤ 1
2(a

2 + b2) in order to write

L0,k =

T
k∫

0

∣∣
∞∑

n=1

2−2n
(
ϕ0,k − ϕ(2−nx)

)∣∣2dx ≤
∞∑

n,n′=1

2−2n−2n′

T
k∫

0

|ϕ0,k − ϕ(2−nx)|2dx

≤ 1

3

∞∑

n=1

2−n

2−n T
k∫

0

|ϕ0,k − ϕ(y)|2dy ≤ 1

3

T 2

4π2k2
‖ϕ‖2W1 .
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This proves the first induction assumption for i = 0, and

|H1,k −H0,k|2 =
∣∣1
7
(ϕ1,k − ϕ0,k)

∣∣2 ≤ 1

72
T

k
‖ϕ‖2W1 ,

proves the second one. Let us now suppose that the two induction assumptions are true
for all j ≤ i− 1, and take i ≥ 1. Let us first evaluate

Li,k =

xi+1,k∫

xi,k

(
Hi,k − L−1(ϕ)(x)

)2
dx =

1

16

xi+1,k∫

xi,k

(
H i

2
,k + ϕ i

2
,k − L−1(ϕ)(

x

2
)− ϕ(

x

2
)
)2
dx.

We distinguish the case when i is even and when i is odd. Let i be even: then, by definition

Li,k ≤ 1

8

xi+1,k∫

xi,k

(
H i

2
,k−L−1(ϕ)(

x

2
)
)2
dx+

1

8

xi+1,k∫

xi,k

(
ϕ i

2
,k−ϕ(

x

2
)
)2
dx ≤ 1

4
(C2

1+
1

4π2
)
T 2

k2
‖ϕ‖2W1

by the induction assumption and Assertion 4.7 on ϕ for j = i
2 . If i is odd, we write by

definition

Li,k =
1

16

xi+1,k∫

xi,k

(
H i−1

2
,k+ϕ i−1

2
,k−L−1(ϕ)(

x

2
)−ϕ(x

2
)+

1

2
(H i+1

2
,k−H i−1

2
,k)+

1

2
(ϕ i+1

2
,k−ϕ i−1

2
,k)

)2

dx.

Hence, re-organizing terms, we can write

Li,k ≤ 1

2

x i−1
2 +1,k∫

x i−1
2 ,k

(
H i−1

2
,k −L−1(ϕ)(y)

)2

dy +
1

2

x i−1
2 +1,k∫

x i−1
2 ,k

(
ϕ i−1

2
,k − ϕ(y)

)2

dy

+
1

16

T

k
(H i+1

2
,k −H i−1

2
,k)

2 +
1

16

T

k
(ϕ i+1

2
,k − ϕ i−1

2
,k)

2

Putting together the four inequalities above (the estimates for ϕ and the induction as-
sumptions), we obtain

Li,k ≤ T 2

k2
‖ϕ‖2W1

(
C2
1

2
+

1

8π2
+
C2
2

16
+

1

16

)

and (4.8) is proved. It remains to establishe (4.9). Let us write it for i even (the case of
an odd i is similar):

|Hi+1,k −Hi,k|2 =
1

16
|H i+1

2
−H i

2
+ ϕ i+1

2
− ϕ i

2
|2 = 1

32
|H i

2
+1 −H i

2
+ ϕ i

2
+1 − ϕ i

2
|2.
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Hence, as previously, we obtain

|Hi+1,k −Hi,k|2 ≤
1

16

T

k
‖ϕ‖2W1(C

2
2 + 1).

To complete the proof, we remark that C2
2 = 1

15 and C2
1 = 1

4π2 +
1
8(1+

1
15 ) <

1
6 are suitable.

It is consequently sufficient to take C = C1.

4.2 Proof of Theorem 1 and Proposition 1

Proof of Theorem 1

It is easy to see that

‖Ĥ −H‖2,T = ‖L−1
k (κ̂D̂ + λ̂nN̂)− L−1(L(BN))‖2,T

≤ ‖L−1
k (κ̂D̂ + λ̂nN̂)− L−1

k (L(BN))‖2,T
+‖L−1

k (L(BN))− L−1(L(BN))‖2,T
≤ ‖L−1

k (κ̂D̂ + λ̂nN̂ − (κD + λN))‖2,T

+
1

3

T√
k
‖L(BN)‖W1 ,

thanks to Proposition 4. Note that L(BN) = κ(gN)′ + λN so that we can write

‖L(BN)‖W1 ≤ C(‖N‖W1 + ‖gN‖W2).

We obtain, thanks to Lemma 4 that gives the boundedness of the operator L−1
k :

‖Ĥ −H‖2,T ≤ �
(∥∥κ̂nD̂ − κD

∥∥
2,T

+
∥∥λ̂nN̂ − λN

∥∥
2,T

+ (‖N‖W1 + ‖gN‖W2)
T√
k

)

≤ �
(
|κ̂n|‖D̂ −D‖2 + |λ̂n|‖N̂ −N‖2 + |κ̂n − κ|‖D‖2 + |λ̂n − λ|‖N‖2

+ (‖N‖W1 + ‖gN‖W2)
T√
k

)

≤ �
(
|λ̂n||ρ̂n|‖D̂ −D‖2 + |λ̂n|

(
‖N̂ −N‖2 + |ρ̂n − ρg(N)|‖D‖2

)

+
(
‖N‖2 + |ρg(N)|‖D‖2

)
|λ̂n − λ|+ (‖N‖W1 + ‖gN‖W2)

T√
k

)
.

Taking expectation and using Cauchy-Schwarz inequality, we obtain for any q ≥ 1,

E[‖Ĥ −H‖q
2,T ] ≤ �q

[(
E[λ̂2qn ]

)1/2{(
E[ρ̂4qn ]

)1/4(
E[‖D̂ −D‖4q2 ]

)1/4
+
(
E[‖N̂ −N‖2q2 ]

)1/2

+ ‖D‖q2
(
E[|ρ̂n − ρg(N)|2q]

)1/2}

+
(
‖N‖2 + ρg(N)

∥∥D
∥∥
2

)q
E[|λ̂n − λ|q] +

(
(‖N‖W1 + ‖gN‖W2)

T√
k

)q]
.
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Now, Lemma 3 gives the behaviour of E[|ρ̂n − ρg(N)|2q]. In particular, we obtain

E[ρ̂4qn ] ≤ �q,g,N,c.

We finally apply successively Propositions 2 and 3 to obtain the proof of Theorem 1.

Proof of Proposition 1

We have already proved (1.9). It remains to prove (1.10). We introduce the event

Ωn = {2N̂ (x) ≥ m for any x ∈ [a, b]}.
Then, for n larger that Q2,

E

[( ∫ b

a

(
B̃(x)−B(x)

)2
dx

) q
2
]

= E

[( ∫ b

a

(
B̃(x)−B(x)

)2
dx× 1Ωn

) q
2
]
+ E

[( ∫ b

a

(
B̃(x)−B(x)

)2
dx× 1Ωc

n

) q
2
]

≤ E

[( ∫ b

a

(
B̂(x)−B(x)

)2
dx× 1Ωn

) q
2
]
+

(
2(b− a)(n+Q2)

) q
2 P(Ωc

n)

≤ E

[( ∫ b

a

(Ĥ
N̂

− H

N

)2
× 1Ωn

) q
2
]
+

(
4n(b− a)

) q
2 P(Ωc

n)

≤ E

[( ∫ b

a

(ĤN − N̂H

N̂N

)2
× 1Ωn

) q
2
]
+

(
4n(b− a)

) q
2 P(Ωc

n)

≤ �q,m,M,Q

(
E
[∥∥Ĥ −H

∥∥q
2

]
+ E

[∥∥N̂ −N
∥∥q
2

])
+
(
4n(b− a)

) q
2 P(Ωc

n).

The first term of the right hand side is handled by (1.9) and Proposition 2. The second
term is handled by Lemma 2 that establishes that P(Ωc

n) = O(n−q).

4.3 Technical lemmas

Concentration inequalities

We first state the following concentration result. Note that a more general version of this
result can be found in [13]. We nevertheless give a proof for the sake of completeness.

Lemma 1. We have the following estimates

• Assume that
∥∥K

∥∥
2
,
∥∥K

∥∥
1
,
∥∥g

∥∥
∞ and

∥∥N
∥∥
∞ are finite. For every q > 0, introduce

the grid H ⊂ {1, 1/2, ..., 1/Dmax} and Dmax = δn for some δ > 0. Then, for every
η > 0

E
[
sup
h∈H

{
‖N̂h − E[N̂h]‖2 −

(1 + η)√
nh

‖K‖2
}2q

+

]
≤ �q,η,δ‖K‖2,‖K‖1,‖N‖∞n

−q.
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• Assume that ‖K ′‖2, ‖K ′‖1, ‖g‖∞ and ‖N‖∞ are finite. For every q > 0, introduce

the grid H̃ ⊂ {1, 1/2, ..., 1/D̃max} and D̃max =
√
δ̃n for some δ̃ > 0. Then for every

η > 0

E
[
sup
h∈H̃

{
‖D̂h − E[D̂h]‖2 −

(1 + η)√
nh3

‖g‖∞‖K ′‖2
}2q

+

]
≤ �q,η,δ̃,‖K ′‖2,‖K ′‖1,‖g‖∞,‖N‖∞n

−q.

Proof. Let X be a real random variable and let us consider the random process

∀ t ∈ R, w(t,X) = ϕ(X)Ψ(t−X),

where ϕ and Ψ are measurable real-valued functions. Let X1, ...,Xn be n independent
and identically distributed random variables with the same distribution as X and let us
consider the process

∀ t ∈ R, ξϕ,Ψ(t) =

n∑

i=1

(
w(t,Xi)− E

[
w(t,X)

])
.

First, let us study the behavior of

∥∥ξϕ,Ψ
∥∥
2
=

( ∫
ξ2ϕ,Ψ(t)dt

)1/2
.

If B denotes the unit ball in L
2 and A is a countable subset of B, we have

∥∥ξϕ,Ψ
∥∥
2

= sup
a∈B

∫
a(t)ξϕ,Ψ(t)dt

= sup
a∈A

∫
a(t)ξϕ,Ψ(t)dt

= sup
a∈A

n∑

i=1

∫
a(t)

(
w(t,Xi)− E

[
w(t,X)

])
dt.

Hence one can apply Talagrand’s inequality (see the version of Bousquet in the independent
and identically distributed case [16, p 170]). For all ε, x > 0, one has:

P
(∥∥ξϕ,Ψ

∥∥
2
≥ (1 + ε)E[

∥∥ξϕ,Ψ
∥∥
2
] +

√
2vx+ c(ε)bx

)
≤ e−x,

where c(ε) = 1/3 + ε−1,

v = n sup
a∈A

E
[( ∫

a(t)
[
w(t,X) − E

(
w(t,X)

)]
dt
)2]

,

and

b = sup
y∈R,a∈A

∫
a(t)

[
w(t, y) − E

(
w(t,X)

)]
dt.

We study each term of the right hand term within the expectation.
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• Obviously, one has:

E
[
‖ξϕ,Ψ‖2

]
≤

(
E
[ ∫ ( n∑

i=1

(
w(t,Xi)− E

[
w(t,X)

]))2
dt
)1/2

=
( ∫ n∑

i=1

E
[(
w(t,Xi)− E

[
w(t,X)

])2]
dt
)1/2

≤
(
n

∫
E
[
w(t,X)2

]
dt
)1/2

.

But we easily see that for all y,

∫
w2(t, y)dt ≤ ‖ϕ‖2∞‖Ψ‖22, (4.10)

hence
E[
∥∥ξϕ,Ψ

∥∥
2
] ≤

√
n
∥∥ϕ

∥∥
∞
∥∥Ψ

∥∥
2
.

• Since v is a supremum of variance terms,

v ≤ n sup
a∈A

E
[( ∫

a(t)w(t,X)dt
)2]

≤ n sup
a∈A

E
[ ∫

|w(t,X)|dt
∫
a2(t)|w(t,X)|dt

]

≤ n sup
y∈R

∫
|w(t, y)|dt × sup

t∈R
E[|w(t,X)|]

≤ n‖ϕ‖2∞‖N‖∞‖Ψ‖21.

• The Cauchy-Schwarz inequality and (4.10) give

b = sup
y∈R

‖w(•, y)− E[w(.,X)]‖2

≤ sup
y∈R

‖w(•, y)‖2 +
(
E
[ ∫

w(t,X)2dt
])1/2

≤ 2‖ϕ‖∞‖Ψ‖2.

The main point here is that
√
v may be much smaller than E[‖ξϕ,Ψ‖2]. So, for all ε, x > 0,

P
(
‖ξϕ,Ψ‖2 ≥ (1 + ε)

√
n‖ϕ‖∞‖Ψ‖2 + ‖ϕ‖∞‖N‖1/2∞ ‖Ψ‖1

√
2nx+ 2c(ε)‖ϕ‖∞‖Ψ‖2x

)
≤ e−x.
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Now we consider a family M of possible functions ϕ and Ψ. Let us introduce some strictly
positive weights Lϕ,Ψ and let us apply the previous inequality to x = Lϕ,Ψ + u for u > 0.
Hence with probability larger than 1−

∑
(ϕ,Ψ)∈M e−Lϕ,Ψe−u, for all (ϕ,Ψ) ∈ M, one has

‖ξϕ,Ψ‖2 ≤ (1 + ε)
√
n‖ϕ‖∞‖Ψ‖2 + ‖ϕ‖∞‖N‖1/2∞ ‖Ψ‖1

√
2nLϕ,Ψ + 2c(ε)‖ϕ‖∞‖Ψ‖2Lϕ,Ψ

+‖ϕ‖∞‖N‖1/2∞ ‖Ψ‖1
√
2nu+ 2c(ε)‖ϕ‖∞‖Ψ‖2u. (4.11)

Let

Mϕ,Ψ = (1 + ε)
√
n‖ϕ‖∞‖Ψ‖2 + ‖ϕ‖∞‖N‖1/2∞ ‖Ψ‖1

√
2nLϕ,Ψ + 2c(ε)‖ϕ‖∞‖Ψ‖2Lϕ,Ψ.

It is also easy to obtain an upper bound of Rq for any q ≥ 1 with

Rq = E
[

sup
(ϕ,Ψ)∈M

(
‖ξϕ,Ψ‖2 −Mϕ,Ψ

)2q
+

]
=

∫ +∞

0
P
(

sup
(ϕ,Ψ)∈M

(
‖ξϕ,Ψ‖2 −Mϕ,Ψ

)2q
+

≥ x
)
dx.

Indeed

Rq ≤
∑

(ϕ,Ψ)∈M

∫ +∞

0
P
((∥∥ξϕ,Ψ

∥∥
2
−Mϕ,Ψ

)2q
+

≥ x
)
dx.

Then, let us take u such that

x = f(u)2q :=
(
‖ϕ‖∞‖N‖1/2∞ ‖Ψ‖1

√
2nu+ 2c(ε)‖ϕ‖∞‖Ψ‖2u

)2q
,

so

dx = 2q
(
f(u)

)2q−1(√
2n‖ϕ‖∞‖N‖1/2∞ ‖Ψ‖1

1

2
√
u
+ 2c(ε)‖ϕ‖∞‖Ψ‖2

)
du.

Hence

Rq ≤
∑

(ϕ,Ψ)∈M

∫ +∞

0
e−(Lϕ,Ψ+u)2q

(
f(u)

)2q−1(√
2n‖ϕ‖∞‖N‖1/2∞ ‖Ψ‖1

1

2
√
u
+ 2c(ε)‖ϕ‖∞‖Ψ‖2

)
du

≤ 2q
∑

(ϕ,Ψ)∈M
e−Lϕ,Ψ

∫ +∞

0
f(u)2qe−uu−1du,

≤ �q,ε

∑

(ϕ,Ψ)∈M
e−Lϕ,Ψ

[
nq‖N‖q∞‖ϕ‖2q∞‖Ψ‖2q1

∫ +∞

0
e−uuq−1du+ ‖ϕ‖2q∞‖Ψ‖2q2

∫ +∞

0
e−uu2q−1du

]
.

Finally, we have proved that

Rq ≤ �q,ε

∑

(ϕ,Ψ)∈M
e−Lϕ,Ψ

[
nq‖N‖q∞‖ϕ‖2q∞‖Ψ‖2q1 + ‖ϕ‖2q∞‖Ψ‖2q2

]
. (4.12)

Now let us evaluate what this inequality means for each set-up.
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• First, when ϕ = 1/n and Ψ = 1/hK(•/h), the family M corresponds to the family
H. In that case Mϕ,Ψ and Lϕ,Ψ will respectively be denoted by Mh and Lh. The
upper bound given in (4.12) becomes

Rq ≤ �q,ε

∑

h∈H
e−Lh

[
n−q‖N‖q∞‖K‖2q1 + n−2qh−q‖K‖2q2

]
. (4.13)

Now it remains to choose Lh. But

Mh = (1 + ε)
1√
nh

‖K‖2 + ‖N‖1/2∞ ‖K‖1
√

2Lh

n
+ 2c(ε)

1

n
√
h
‖K‖2Lh.

Let θ > 0 and let

Lh =
θ2‖K‖22

2‖N‖∞‖K‖21
√
h
.

Obviously the series in (4.13) is finite and for any h ∈ H, since h ≤ 1, we have:

Mh ≤ (1 + ε+ θ)
‖K‖2√
nh

+
c(ε)θ2‖K‖32
‖N‖∞‖K‖21

1

nh
.

Since Dmax = δn, one obtains that

Mh ≤
(
1 + ε+ θ +

c(ε)θ2‖K‖32
√
δ

‖N‖∞‖K‖21
)‖K‖2√

nh
.

It remains to choose ε = η/2 and θ small enough such that θ +
c(ε)θ2‖K‖32

√
δ

‖N‖∞‖K‖21
= η/2

to obtain the desired inequality.

• Secondly, if ϕ = g/n and Ψ = 1/h2K ′(•/h)the family M corresponds to the family
H̃. So,Mϕ,Ψ and Lϕ,Ψ will be denoted byM ′

h and L′
h respectively. The upper bound

given by (4.12) now becomes

Rq ≤ �q,ε

∑

h∈H̃

e−L′
h
[
n−qh−2q‖N‖q∞‖g‖2q∞‖K ′‖2q1 + n−2qh−3q‖g‖2q∞‖K ′‖2q2

]
. (4.14)

But

M ′
h = (1+ε)

1√
nh3/2

‖g‖∞‖K ′‖2+‖g‖∞‖N‖1/2∞ ‖K ′‖1
√

2L′
h

nh2
+2c(ε)‖g‖∞‖K ′‖2

L′
h

nh3/2
.

Let θ > 0 and let

L′
h =

θ2‖K ′‖22
2‖N‖∞‖K ′‖21h

.
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Obviously the series in (4.14) is finite and we have:

M ′
h ≤ (1 + ε+ θ)‖g‖∞

‖K ′‖2√
nh3

+
c(ε)θ2‖K ′‖32‖g‖∞

‖N‖∞‖K ′‖21
1

nh5/2
.

But h2 ≥ (δ̃n)−1. Hence

M ′
h ≤

(
1 + ε+ θ +

c(ε)θ2‖K ′‖32‖g‖∞
√
δ̃

‖N‖∞‖K ′‖21
)‖K ′‖2√

nh3
.

As previously, it remains to choose ε and θ accordingly to conclude.

�

The second result is based on probabilistic arguments as well.

Lemma 2. Under Assumptions and notations of Proposition 1, if there exists an interval
[a, b] in (0, T ) such that

[m,M ] := [ inf
x∈[a,b]

N(x), sup
x∈[a,b]

N(x)] ⊂ (0,∞), Q := sup
x∈[a,b]

|H(x)| <∞,

and if ln(n) ≤ Dmin ≤ n1/(2m0+1) and n1/5 ≤ Dmax ≤ (n/ ln(n))1/(4+η) for some η > 0
fixed, then there exists Cη, a constant depending on η, such that for n large enough,

P(Ωc
n) ≤ Cηn

−q.

Proof. Let x, y be two fixed point of [a, b] and for h ∈ H′, first let us look at

Zh(x, y) = N̂h(x)− N̂h(y)− [Kh ⋆ N(x)−Kh ⋆ N(y)].

One can apply Bernstein inequality to Zh(x, y) (see e.g. (2.10) and (2.21) of [16]) to obtain:

E
[
eλZh(x,y)

]
≤ exp

[ λ2v2(x, y)

2(1 − λc(x, y))

]
, ∀λ ∈ (0, 1/c(x, y)),

with

c(x, y) =
1

3n
sup
u∈R

|Kh(x− u)−Kh(y − u)|

and

v2(x, y) =
1

n

∫

R

|Kh(x− u)−Kh(y − u)|2N(u)du.

But, with K the Lipschitz constant of K,

c(x, y) ≤ K
3nh2

|x− y|
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and

v2(x, y) ≤ K2

nh4
|x− y|2.

Let x0 be a fixed point of [a, b]. One can apply Theorem 2.1 of [2] which gives that, if

Zh = sup
x∈[a,b]

|Zh(x, x0)|

then for all positive x,

P(Zh ≥ 18(
√
v2(x+ 1) + c(x+ 1)) ≤ 2e−x,

with

v2 =
K2

nh4
|b− a|2

and

c =
K

3nh2
|b− a|.

But one can similarly prove, using Bernstein’s inequality, that

P
(
|N̂h(x0)−Kh ⋆ N(x0)| ≥

√
�N,Kx

nh
+�K

x

nh

)
≤ 2e−x.

Hence

P

(
∃x ∈ [a, b], |N̂h(x)−Kh ⋆ N(x)| ≥

√
�N,Kx

nh4
+�K

x

nh2

)
≤ 4e−x.

We apply this inequality with x = q log(n) +Dη, D = D′
min, . . . ,D

′
max. We obtain

P

(
∃h ∈ H′, ∃x ∈ [a, b], |N̂h(x) −Kh ⋆ N(x)| ≥

√
�N,K,q log(n)

nh4+η
+�K,q

log(n)

nh2+η

)

≤ 4

Dmax∑

D=1

e−Dη

n−q = �ηn
−q.

Consequently, since log(n)
nh4+η → 0 uniformly in h ∈ H′, for n large enough,

P(∃h ∈ H′,∃x ∈ [a, b], |N̂h(x)−Kh ⋆ N(x)| ≥ m/4) ≤ �ηn
−q.

But since N ∈ Ws+1, s ≥ 1, then N ′ ∈ Ws so N ′ is bounded on R. Then

Kh ⋆ N(x)−N(x) =

∫
Kh(x− y)(N(y)−N(x))dy

=

∫
K
(x− y

h

)(y − x

h

) ∫ 1

0
N ′(x+ u(y − x))dudy

= h

∫
tK

(
t
) ∫ 1

0
N ′(x− uht)dudt.
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So,
|N(x)−Kh ⋆ N(x)| ≤ �N,Kh.

Because of the definition of H′ this term tends to 0, uniformly in x and h. Hence for n
large enough, for all x ∈ [a, b] and all h ∈ H′

Kh ⋆ N(x) ≥ N(x)−m/4 ≥ 3m/4.

Consequently, for n large enough,

P(∃h ∈ H′,∃x ∈ [a, b], 2N̂h(x) < m) ≤ �ηn
−q.

�

Rosenthal-type inequality

The following result studies the behavior of the moments of ρ̂n.

Lemma 3. For any p ≥ 2,

E
[
|ρ̂n − ρg(N)|p

]
≤ �p,g,N,cn

−p/2.

Proof. We have:
E
[
|ρ̂n − ρg(N)|p

]
≤ �p(An +Bn),

with

An := E

[∣∣∣
∑n

i=1Xi

n
∫
g(x)N(x)dx + c

−
∫
R+
xN(x)dx

∫
R+
g(x)N(x)dx

∣∣∣
p]

and

Bn := E

[∣∣∣
∑n

i=1Xi∑n
i=1 g(Xi) + c

−
∑n

i=1Xi

n
∫
g(x)N(x)dx + c

∣∣∣
p]
.

We use the Rosenthal inequality (see e.g. the textbook [7]): if R1, . . . , Rn are independent
centered variables such that E[|R1|p] <∞, with p ≥ 2 then

E
[∣∣ 1
n

n∑

i=1

Ri

∣∣p] ≤ �pn
−p

(
nE |R1|p +

(
nER2

1

)p/2)
. (4.15)

36



We recall that Assumption 1 ensures that E[Xp
i ] =

∫
xpN(x)dx < ∞, for any p ≥ 1.

Hence, for the first term An, using (4.15), we have:

An = E

[∣∣∣
1
n

∑n
i=1Xi∫

g(x)N(x)dx + c
n

−
∫
R+
xN(x)dx

∫
R+
g(x)N(x)dx

∣∣∣
p]

≤ �g,N,c E

[∣∣∣ 1
n

n∑

i=1

Xi

∫

R+

g(x)N(x)dx −
∫

R+

xN(x)dx
( ∫

g(x)N(x)dx +
c

n

)∣∣∣
p]

≤ �p,g,N E

[∣∣∣ 1
n

n∑

i=1

Xi −
∫

R+

xN(x)dx
∣∣∣
p]

+�g,N,cn
−p

≤ �p,g,N,cn
−p/2.

Let us turn to the term Bn:

Bn = E
[∣∣

∑n
i=1Xi∑n

i=1 g(Xi) + c
−

∑n
i=1Xi

n
∫
g(x)N(x)dx + c

∣∣p]

≤
(
E
[∣∣ 1
n

n∑

i=1

Xi

∣∣2p])1/2 ×
(
E
[∣∣

1
n

∑n
i=1 g(Xi)−

∫
g(x)N(x)dx(

1
n

∑n
i=1 g(Xi) +

c
n

)( ∫
g(x)N(x)dx + c

n

)
∣∣2p])1/2

≤ ‖gN‖−p
1

(
E
[∣∣ 1
n

n∑

i=1

Xi

∣∣2p])1/2(E
[∣∣

1
n

∑n
i=1 g(Xi)−

∫
g(x)N(x)dx

1
n

∑n
i=1 g(Xi) +

c
n

∣∣2p])1/2

≤ �p,g,N

(
E
[∣∣ 1
n

n∑

i=1

Xi − E[X1]
∣∣2p +

∣∣E[X1]
∣∣2p)1/2 ×

(
E
[∣∣

1
n

∑n
i=1 g(Xi)−

∫
g(x)N(x)dx

1
n

∑n
i=1 g(Xi) +

c
n

∣∣2p])1/2

≤ �p,g,N

(
E
[∣∣

1
n

∑n
i=1 g(Xi)−

∫
g(x)N(x)dx

1
n

∑n
i=1 g(Xi) +

c
n

∣∣2p])1/2.

Now, we set for γ > 3p

Ωn =
{∣∣ 1
n

n∑

i=1

g(Xi)−
∫
g(x)N(x)dx

∣∣ ≤
√

2γVar(g(X1)) log n

n
+
γ‖g‖∞ log n

3n

}

(recall that Assumption 1 states that ‖g‖∞ < ∞, which also implies E[g(X1)
2] < ∞).

Since g is positive, the Bernstein inequality (see Section 2.2.3 of [16]) gives:

P(Ωn) ≥ 1− 2n−γ . (4.16)
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Therefore, we bound from above the term Bn by a constant �p,g,N times

(
E
[∣∣

1

n

∑n
i=1

g(Xi)−
∫
g(x)N(x)dx

1

n

∑n
i=1

g(Xi) +
c
n

∣∣2p1Ωn
+
∣∣
1

n

∑n
i=1

g(Xi)−
∫
g(x)N(x)dx

1

n

∑n
i=1

g(Xi) +
c
n

∣∣2p1Ωc
n

])1/2

≤ �p,g,N,cn
−p/2 +�p,g,N

√
2(nc−1‖g‖∞)pn−γ/2

≤ �p,g,N,cn
−p/2,

where we have used (4.15) for the first term and (4.16) for the second one. This concludes
the proof of the lemma. �

The boundedness of L−1
k

Lemma 4. For any function ϕ, we have:

∥∥L−1
k (ϕ)

∥∥
2,T

≤
√

1

3

∥∥ϕ
∥∥
2,T
.

Proof. We have:

∫
|L−1

k (ϕ)(x)|2dx = T
k

k−1∑
i=0

|Hi,k(ϕ)|2 = T
k

k−1∑
i=0

(
1
4(H i

2
,k(ϕ) + ϕ i

2
,k)

)2

= T
k

([ k−1
2

]∑
j=0

1
16

(
Hj,k + ϕj,k

)2
+

[ k
2
]∑

j=1

1
64 (Hj,k + ϕj,k +Hj−1,k + ϕj−1,k)

2

)

≤ T
k

([ k−1
2

]∑
j=0

1
8

(
H2

j,k + ϕ2
j,k

)
+

[ k
2
]∑

j=1

1
16 (H

2
j,k + ϕ2

j,k +H2
j−1,k + ϕ2

j−1,k

))

≤ 1
4
T
k

k−1∑
i=0

(
H2

j,k + ϕ2
j,k

)
= 1

4

(∫
|L−1

k (ϕ)(x)|2dx+ T
k

k−1∑
i=0

ϕ2
j,k

)
.

At the second line, we have distinguished the i’s that are even and the i’s that are odd.
At the third line, we have used the inequalities (a+ b)2 ≤ 2a2 +2b2 and (a+ b+ c+ d)2 ≤
4(a2 + b2 + c2 + d2). By substraction, we obtain

∫
|L−1

k (ϕ)(x)|2dx ≤ 1

3

T

k

k−1∑

i=0

ϕ2
j,k.

The Cauchy-Schwarz inequality gives:

( xi+1,k∫

xi,k

ϕ2(x)dx

)2

≤ T

k

xi+1,k∫

xi,k

ϕ2(x)dx,
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so that

T

k

k−1∑

i=0

ϕ2
j,k =

T

k

k−1∑

i=0

k2

T 2

(
xi+1,k∫

xi,k

ϕ(x)dx
)2 ≤

T∫

0

ϕ2(x)dx

and finally we obtain the desired result:
∫

|L−1
k (ϕ)(x)|2dx ≤ 1

3

∫
ϕ2(x)dx.

�
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