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1Laboratoire Kastler Brossel, CNRS, UPMC, École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
2Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC,

Univ. Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France

PACS numbers:

CANONICAL TO GRAND-CANONICAL
CORRESPONDENCE AND THE FIT TO THE

LEE-HUANG-YANG PARAMETER

The pressure formula expresses the EoS P (µ) in the
grand-canonical ensemble where µ is fixed. We perform
a Legendre transform to the canonical ensemble (where
the density n is fixed) to obtain E(n) where E is the
ground-state energy:

E

N
=

h̄2

ma2
ξ(y ≡ na3) (1)

where ξ is the dimensionless energy and y is the usual
canonical interaction parameter. Similarly one writes the
grand-canonical EoS:

P (µ, a) =
(
h̄2

ma5

)
h

(
ν ≡ µ

g
a3

)
, (2)

Combining the Legendre transform −PV = E − µN
at zero temperature, with the Gibbs-Duhem formula
∂P/∂µ = n, one finds the following set of correspondence
equations:

ν(y, ξ) =
1

4π
(ξ(y) + yξ′(y)) (3)

h(y, ξ) = y(4πν(y, ξ)− ξ(y)) (4)

The inverse transformation can be readily derived using
∂E/∂N = µ instead of the Gibbs-Duhem relation. The
measured EoS, h(ν), can thus be used to extract the value
of the Lee-Huang-Yang parameter αLHY, that is defined
in the canonical ensemble as: ξ(y, α) = 2πy(1 + αy1/2).

SELF-CONSISTENT RECONSTRUCTION OF
THE EOS

The measurement of the EoS is based on the pressure
formula [1, 2]:

P (µz) =
mω2

r

2π
n̄(z) (5)

The pressure can thus be directly measured from
the doubly-integrated density profiles. The appropriate
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FIG. 1: (color online) Relation between the grand canonical
ν = µ

g
a3 and the canonical gas parameters y = na3. In solid

black line, the MF relation ν = y, in dashed red line ν(y) as
predicted by the LHY equation of state.

thermodynamic variable is the chemical potential µ that
varies in the trap according to µz = µ0− 1

2mω
2
zz

2 within
the local-density approximation (LDA). The main issue
lies in the determination of the global chemical potential
µ0 on each image. However, deducing µ0 from the
density profile is equivalent to the knowledge of n(µ),
the EoS itself. In previous studies, the global chemical
potential was determined using a known asymptotic
behaviour of the EoS [3–5]. Because the mean-field (MF)
limit is used to calibrate the density measurement, we
cannot rely on a similar method. To overcome this issue,
we have implemented a new scheme. The global chemical
potential value at T = 0 is given by µ0 = 1

2mω
2
zR

2
0 where

R0 is the value at which the density profile vanishes.
The determination of R0 on a density profile with finite
signal-to-noise ratio will in general depend on the choice
of the fitting function to the profile. The simplest choice
is the density profile expected by the MF prediction,
the inverted parabola. However this leads to an EoS
that is not self-consistent because the inverted parabola
assumes the MF-EoS to deduce a different EoS. One
can then implement an iterative scheme to obtain a
self-consistent EoS. At the first step, one start with
the density profiles n̄i(z) (for i = 1, ...,M) fitted with

n̄(1)(z) = n0

(
1− z2

R2

)2

. From the values of Ri, one

deduces µ(1)
0,i and a first step EoS P (1)(µ). From this
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first step EoS, one can generate density profiles (using
the pressure formula), using an interpolation function
for h(ν)(1) = 2πν2(1 + γ1ν + γ2ν

2). We fit again all
the density profiles but with fitting function deduced
from h(1)(µ), to get a second set of radii, and hence
a new set of chemical potentials µ

(2)
0,i for each image.

This procedure is iterated until a fixed point is reached
and that the EoS no longer changes with additional
iterations. The fixed point is a self-consistent EoS:
the values of µ0,i are determined using fitting function
consistent with the EoS that is deduced.

We checked the convergence of this procedure to the
correct solution and its robustness to the presence of
noise in the density profiles. Using the Lee-Huang-Yang
EoS, we generated a set of 15 density profiles, with a
gaussian noise with a standard deviation σ normalized
to the maximum amplitude of the profile at a value of
2150 a0 reached in the experiment. The EoS is then
reconstructed using the iterative scheme. In practical,
10 iterations are sufficient to reach the fixed point.
The self-consistent EoS obtained is then fitted with the
grand-canonical transformation of the Lee-Huang-Yang

energy E(α) =
(
h̄2

ma2

)−1

2πna3
(

1 + α
√
na3 + ...

)
.

For a gaussian noise of the same amplitude as the
experimental profiles (σ = 0.06), we find α = 4.7(3),
in agreement with the theoretical value 128

15
√
π
≈ 4.81,

demonstrating the validity of the procedure.
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FIG. 2: (color online) Iterative construction of the EoS from
images taken at a/a0 = 2150. Parameter of the Lee-Huang-
Yang beyond mean-field correction as a function of the itera-
tions. Error bars represent the statistical error on the fits.

The Quantum Monte Carlo simulations provide an in-
dependent test on the determination of the chemical po-
tential. The chemical potential associated with a given
atomic distribution from the QMC is obtained from a
fit of the wings of the density distribution with the
mean-field prediction. The value of the global chem-
ical potential can be used to check the experimental

one extracted from the self-consistent method. In the
condition of Fig.1, the extrapolation to T = 0 of the
QMC yields µQMC

0 /kB = 179.9 nK, while we extract
µexp

0 /kB = 177(2) nK from the density profile used for
the χ2-test (inset of Fig.1).

RF-SPECTROSCOPY OF FESHBACH
MOLECULES

The two-body interaction is described by the s-wave
scattering length a that we vary by means of a magnetic
Feshbach resonance. Its precise knowledge as a function
of the magnetic field B is crucial for the accurate deter-
mination of the EoS. In [6] the scattering length a(B) was
deduced from the axial size of trapped clouds, assuming
a gas at zero temperature, a method which by nature is
afflicted with significant uncertainties. Here, we perform
radio-frequency (RF) spectroscopy as in [7] to measure
the binding energy of weakly-bound dimers from which
we deduce the scattering length more precisely.
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FIG. 3: (color online) Binding energy of the Feshbach
molecules as a function of the magnetic field.

We prepare the atomic gas at a temperature of about
T/Tc = 1.2 and at a magnetic field B = 717 G on the
repulsive side of the Feshbach resonance near 740 G and
apply an rf-field during 50 to 200 ms. When the fre-
quency of the modulation is close to the binding energy
of the two-body bound state, pairs of free atoms are as-
sociated to dimers that are lost via collisional relaxation
into deeper bound states. We then obtain the binding
energy from a Gaussian fit to the dip in the number of
detected atoms. The binding energy Eb relates to the
scattering length via the following formula:

Eb =
h̄2

m(a− ā+R∗)2
, (6)

where ā is a finite range correction [8] and R∗ the
effective range of the interatomic potential [9]. Since the
values of these two parameters are not known accurately,
we restrict our measurement for the EoS to magnetic
fields higher than 733 G. In this range a/a0 > 700,
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much larger than ā = 30 a0 and R∗ = 58 a0 [7]. We
can compare our experimental data with the simpler
relation Eb = h̄2/(ma2) to obtain the scattering length
a(B). Fitting the parametrization a(B) = Γ

B−B0
to our

experimental results yields the position B0 = 737.8(2) G
and the width Γ/a0 = −3550(100) G of the Feshbach
resonance. These values are in agreement with those
found in [10] but differ from those in [6].

We thank S. Kokkelmans, N. Gross and L. Khaykovich
for discussions about the Feshbach resonance character-
istics.
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