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SMOOTH PROJECTIVE SYMMETRIC VARIETIES WITH

PICARD NUMBER ONE

ALESSANDRO RUZZI

Abstract. We classify the smooth projective symmetric G-varieties with Pi-
card number one (and G semisimple). Moreover we prove a criterion for the
smoothness of the simple (normal) symmetric varieties whose closed orbit is
complete. In particular we prove that, given a such variety X which is not
exceptional, then X is smooth if and only if an appropriate toric variety con-
tained in X is smooth.

A Gorenstein normal algebraic variety X over C is called a Fano variety if the
anticanonical divisor is ample. The Fano surfaces are classically called Del Pezzo
surfaces. The importance of Fano varieties in the theory of higher dimensional
varieties is similar to the importance of Del Pezzo surfaces in the theory of surfaces.
Moreover Mori’s program predicts that every uniruled variety is birational to a
fiberspace whose general fiber is a Fano variety (with terminal singularities).

Often it is useful to subdivide the Fano varieties in two kinds: the Fano varieties
with Picard number one and the Fano varieties with Picard number strictly greater
than one. For example, there are many results which give an explicit bound to some
numerical invariants of a Fano variety (depending on the Picard number and on the
dimension of the variety). Often there is an explicit expression for the Fano varieties
of Picard number one and another expression for the remaining Fano varieties.

We are mainly interested in the smooth projective spherical varieties with Picard
number one. The smooth toric (resp. homogeneous) projective varieties with Picard
number one are just projective spaces (resp. G/P with G simple and P maximal
parabolic). We classify the smooth projective symmetric G-varieties whose Picard
group is isomorphic to Z (with the hypothesis G semisimple). One can easily show
that they are all Fano, because the canonical bundle cannot be ample.

In [14] there are some partial results regarding the classification of smooth Fano
projective symmetric varieties with with low rank (and Picard number greater than
one). In [13], we give a geometrical description of these varieties; in particular, we
determine their group of automorphism. Moreover, if the action of this last group
is not transitive, then the variety is a linear section of a generalized flag variety
and it is lied to exceptional groups. See also [11] for a classification of the smooth
projective horospherical varieties with Picard number one.

Let G be a connected reductive algebraic group over C and let θ be an involution
of G. Let H be a closed subgroup of G such that Gθ ⊂ H ⊂ NG(G

θ). We will say
that a normal equivariant embedding of G/H is a symmetric variety. Any symmet-
ric variety can be covered by open G-subvarieties which are simple, i.e. have one
closed G-subvariety. In Section 1 we recall some known facts about symmetric va-
rieties and we fix the notations. In Section 2 we give a criterion for the smoothness
of the simple symmetric varieties whose closed orbit is complete (see Theorem 2.1
and Theorem 2.2). It is easily showed that every complete symmetric variety is
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covered by simple open symmetric G-subvarieties whose closed orbits are complete.
We generalize the results of Timashev (see [16]) and Renner (see [12]) on the equi-
variant embeddings of reductive groups. The idea of the proof is the following one.
First we reduce to the affine case, though there are some technical problems when
the variety is exceptional (see [5] for a definition of exceptional symmetric variety).
Given an affine X , we define a toric variety T · x0 contained in X and we prove that
X is smooth if and only T · x0 is smooth. In such case we relate the combinatorial
description of T · x0 to the colored fan of X (see [3] for a definition of colored fan).

In Section 3 we use the previous criterion to classify the smooth complete sym-
metric G-varieties with Picard number one and G semisimple (see Theorem 3.1).
We do not classify directly the projective smooth symmetric varieties with Picard
number one because there is a combinatorial classification of the complete symmet-
ric varieties, but it is not so easy to say which ones are projective. We prove that
the smooth complete symmetric varieties with Picard number one (and G semisim-
ple) have at most two closed orbits. Because of this fact we easily prove that they
are all projective. Observe that all the simple complete symmetric varieties are
projective by a theorem of Sumihiro.

1. Notations and background

In this section we introduce the necessary notations. The reader interested to
the embedding theory of spherical varieties can see [3] or [17]. In [18] is explained
such theory in the particular case of the symmetric varieties. Let G be a connected
reductive algebraic group over C and let θ be an involution of G. Let H be a closed
subgroup of G such that Gθ ⊂ H ⊂ NG(G

θ). We say that G/H is a symmetric
homogeneous variety. An equivariant embedding of G/H is the data of a G-variety
X together with an equivariant open immersion G/H →֒ X . A normal G-variety is
called a spherical variety if it contains a dense orbit under the action of an arbitrarily
chosen Borel subgroup of G. One can show that an equivariant embedding of G/H
is a spherical variety if and only if it is normal (see [5] Proposition 1.3). In this
case we say that it is a symmetric variety. We say that a subtorus of G is split
if θ(t) = t−1 for all its elements t. We say that a split torus of G of maximal
dimension is a maximal split torus and that a maximal torus containing a maximal
split torus is maximally split. One can prove that any maximally split torus is
θ stable (see [17] Lemma 26.5). We fix arbitrarily a maximal split torus T 1 and
a maximally split torus T containing T 1. Let RG be the root system of G with
respect to T and let R0

G be the subroot system of the roots fixed by θ. We define
R1

G = RG \R0
G. We can choose a Borel subgroup B containing T such that, if

α is a positive root in R1
G, then θ(α) is negative (see [5] Lemma 1.2). One can

prove that BH is dense in G (see [5] Proposition 1.3). Let D(G/H) be the set of
B-stable prime divisors of G/H ; its elements are called colors. Since BH/H is an
affine open orbit, the colors are the irreducible components of (G/H) \ (BH/H).
We say that a spherical variety is simple if it contains one closed orbit. Let X be a
simple symmetric variety with closed orbit Y . Let D(X) be the subset of D(G/H)
consisting of the colors whose closure in X contains Y . We say that D(X) is the
set of colors of X .

To each prime divisor D of X , we can associate the normalized discrete valuation
vD of C(G/H) whose ring is the local ringOX,D. One can prove thatD isG-stable if
and only if vD is G-invariant, i.e. vD(s·f) = vD(f) for each s ∈ G and f ∈ C(G/H).
Let N be the set of all G-invariant valuations of C(G/H) taking value in Z and
let N(X) be the set of the valuations associated to the G-stable prime divisors of
X . Observe that each irreducible component of X \ (G/H) has codimension 1
because G/H is affine. (To define N(X) we do not need that X is simple). Let
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S := T/ T ∩ H ≃ T · x0, where x0 = H/H denotes the base point of G/H . One
can show that the group C(G/H)(B)/C∗ is isomorphic to the character group χ(S)
of S (see [18] §2.3); in particular, it is a free abelian group. We define the rank of
G/H as the rank of χ(S); it is also equal to the dimension of S. We can identify
the dual group HomZ(C(G/H)(B)/C∗,Z) with the group χ∗(S) of one-parameter
subgroups of S; so we can identify χ∗(S)⊗R with HomZ(χ(S),R). The restriction
map to C(G/H)(B)/C∗ is injective over N (see [3] §3.1 Corollaire 3), so we can
identify N with a subset of χ∗(S)⊗ R. We say that N is the valuation semigroup
of G/H . Indeed, N is the semigroup constituted by the vectors contained in the
intersection of the lattice χ∗(S) with an appropriate rational polyhedral convex
cone CN ; we say that CN is the valuation cone. For each color D, we define ρ(D)
as the restriction of vD to χ(S). In general, the map ρ : D(G/H) → χ∗(S) ⊗ R is
not injective.

Let C(X) be the cone in χ∗(S) ⊗ R generated by N(X) and ρ(D(X)). We can
recoverN(X) from C(X). Indeed N(X) consists of the primitive vectors of the one-
dimensional faces of C(X) which intersect N (we say that a vector v ∈ χ∗(S)\{0}
is primitive if an equality v = av′, where v′ is a vector in χ∗(S) and a is a positive
integer, implies a = 1). We denote by cone(v1, ..., vr) the cone generated by the
vectors v1, ..., vr. Given a cone C in χ∗(S)⊗R and a subset D of D(G/H), we say
that (C,D) is a colored cone if:

(1) C is generated by ρ(D) and by a finite number of vectors in N ;
(2) the relative interior of C intersects CN .

Proposition 1.1 (see [3] §3.3 Théorème). The map X → (C(X), D(X)) is a
bijection from the set of simple symmetric varieties to the set of colored cones.

Given a symmetric variety X̃ (not necessarily simple), let {Yi}i∈I be the set of

G-orbits. Observe that X̃ contains a finite number of G-orbits, thus X̃i := {x ∈

X̃ | G · x ⊃ Yi} is open in X̃ and is a simple symmetric variety whose closed orbit

is Yi. We define D(X̃) as the set
⋃

i∈I D(X̃i). The family {(C(X̃i), D(X̃i))}i∈I is

called the colored fan of X̃ and determines completely X̃ . Moreover X̃ is complete

if and only if CN ⊂
⋃

i∈I C(X̃i) (see [3] §3.4 Théoremè 2).

Proposition 1.2 (see [3] §3.4 Théorème 1). A family {(Ci, Di)}i∈I of colored cones
is the colored fan of a symmetric variety if and only if

(1) given a colored cone (C′, D′) such that C′ is a face of Ci0 and D′ is the set
{D ∈ Di0 | ρ(D) ∈ Ci0} for an appropriate i0 ∈ I, then (C′, D′) belongs to
{(Ci, Di)}i∈I ;

(2) the intersections of CN with the relative interiors of the Ci are pairwise
disjoint.

We recall the description of the sets N and ρ(D(G/H)). Before that, we need
to associate a root system to G/H . The subgroup χ(S) of χ(T 1) has finite index,
so we can identify χ(T 1) ⊗ R with χ(S)⊗ R. Because T is θ-stable, θ induces an
involution of χ(T ) ⊗ R which we call again θ. The inclusion T 1 ⊂ T induces an
isomorphism of χ(T 1) ⊗ R with the −1 eigenspace of χ(T ) ⊗ R under the action
of θ (see [17] §26). Denoted by WG the Weyl group of G (with respect to T ), fix
arbitrarily a WG-invariant inner product ( ·, ·) over χ(T )⊗ R which coincides with
the product given by the Killing form over spanR(RG). We denote again ( ·, ·) the
restriction of this inner product to χ(T 1)⊗ R. Thus we can identify χ(T 1)⊗ R with
its dual χ∗(T

1)⊗ R. The set RG,θ := {β− θ(β) | β ∈ RG}\ {0} is a root system in
χ(S)⊗R (see [18] §2.3 Lemme), which we call the restricted root system of (G, θ);
we call the non zero β− θ(β) the restricted roots. If G is semisimple, then the rank
of G/H is equal to the rank of RG,θ, i.e. the dimension of spanR(RG,θ). Usually we



4 ALESSANDRO RUZZI

denote by β (respectively by α) a root of RG (respectively of RG,θ); often we denote
by ̟ (respectively by ω) a weight of RG (respectively of RG,θ). In particular, we
denote by ̟1, ..., ̟n the fundamental weight of RG (we have chosen the basis of
RG associated to B). Notice however that the weights of RG,θ are weights of RG.
The involution ι := −̟0 · θ of χ(T ) preserves the set of simple roots; moreover ι
coincides with −θ modulo the lattice generated by R0

G (see [17] p.169). Here ̟0 is
the longest element of the Weyl group of R0

G. We denote by α1, ..., αs the elements
of the basis {β − θ(β) |β ∈ RG simple}\{0} of RG,θ. Let bi be equal to 1

2 if 2αi

belongs to RG,θ and equal to 1 otherwise; for each i we define α∨
i as the coroot

2bi
(αi,αi)

αi. The set {α∨
1 , ..., α

∨
s } is a basis of the restricted dual root system R∨

G,θ,

namely the root system composed by the coroots of the restricted roots. We call the
elements of R∨

G,θ the restricted coroots. Let ω1, ..., ωs be the fundamental weights

of RG,θ with respect to {α1, ..., αs} and let ω∨
1 , ..., ω

∨
s be the fundamental weights

of R∨
G,θ with respect to {α∨

1 , ..., α
∨
s }. Let C

+ be the positive closed Weyl chamber

of χ(S) ⊗ R, i.e. the cone generated by the fundamental weights of RG,θ and by
the vectors orthogonal to spanR(RG,θ). We call −C+ the negative Weyl chamber.
Given a dominant weight λ of G, we denote by V (λ) the irreducible representation
of highest weight λ.

If G is semisimple and simply connected, then the lattice generated by the re-
stricted roots is isomorphic to the character group of T 1/(T 1∩NG(G

θ)). Moreover
the weight lattice of RG,θ is {̟ − θ(̟) |̟ ∈ χ(T )} and can be identified with
the character group of T 1/T 1 ∩ Gθ. We want to give another description of this
lattice. We say that a dominant weight ̟ ∈ χ(T ) is a spherical weight if V (̟)
contains a non-zero vector fixed by Gθ (in this definition we do not require that G

is semisimple). In this case, V Gθ

is 1-dimensional and θ(̟) = −̟. Thus we can
think ̟ as a vector in χ(S) ⊗ R. One can show that the lattice generated by the
spherical weights coincides with the weight lattice of RG,θ. See [4] Theorem 2.3
or [17] Proposition 26.4 for an explicit description of the spherical weights. Such
description implies that the set of dominant weights of RG,θ is the set of spherical
weights and that C+ is the intersection of χ(S)⊗ R with the positive closed Weyl
chamber of the root system RG. Sometimes we call

∑
Z+ω∨

i the set of spherical
coweights.

The set N is equal to −C+∩χ∗(S); in particular it consists of the lattice vectors
of the rational polyhedral convex cone CN = −C+. The set ρ(D(G/H)) is equal to
{α∨

1 , ..., α
∨
s } (see [18] §2.4 Propositions 1 and 2). Thus, given a simple symmetric

variety X , the set ρ(D(X)) consists of the primitive generators of the 1-dimensional
faces of C(X) not contained in −C+, because (αi, α

∨
j ) > 0 if and only if i = j.

For each i the fibre ρ−1(α∨
i ) contains at most 2 colors (see [18] §2.4 Proposition

1). We say that a simple restricted root αi0 is exceptional if there are two distinct
simple roots β1 and β2 in RG such that: 1) β1− θ(β1) = β2− θ(β2) = αi0 ; 2) either
θ(β1) 6= −β2 or θ(β1) = −β2 and (β1, β2) 6= 0. In this case we say that also α∨

i0
, θ

and all the equivariant embeddings of G/H are exceptional. If αi0 is exceptional
then the simple roots β1 and β2 are uniquely defined by the previous properties.
If G/H is exceptional, then ρ is not injective. Moreover, if H = NG(G

θ), then
ρ−1(α∨

i ) contains two colors if and only if α∨
i is exceptional. We say that G/H

contains a Hermitian factor if the center of [G,G]θ has positive dimension. If G/H
does not contain a Hermitian factor then ρ is injective (see [18] §2.4 Proposition 1).
If ρ is injective, we denote by Dα∨ the unique color contained in ρ−1(α∨).

Remark 1. One can suppose that G is the product of a connected, semisimple,
simply connected group and of a central split torus in the following way. Let

π : G̃ → [G,G] be the universal cover of the derived group of G. We consider the

group G′ = G̃×(T 1∩Z(G)0) and the map π′ : G′ → G defined by π′(g, t) = π(g) · t.
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The group G′ acts transitively on G/H by g · x := π′(g) · x for each x ∈ G/H
and g ∈ G′. Thus G/H is isomorphic to G′/(π′)−1(H). Moreover there is a
unique involution θ′ of G′ such that π′θ′ = θπ′ (see [15]). The group (π′)−1(H)

contains and normalizes (π′)−1(Gθ), hence it normalizes also π−1([G,G]θ)0 = (G̃)θ
′

.

Thus (π′)−1(H) contains and normalizes (G′)θ
′

, so G′/(π′)−1(H) is a G′-symmetric
variety. We can also suppose that the stabilizer of the base point x0 in Z(G)0 is the

subgroup of element of order 2. Indeed, it is sufficient to consider G̃ × T ′′, where
T ′′ is a torus such that T ′′/{t ∈ T ′′ | t2 = id} is isomorphic to (T 1∩Z(G)0) / (T 1∩
Z(G)0 ∩H).

In following, unless explicitly stated, we assume that G is as in Remark 1.
We say that θ is decomposable if G/Gθ is the product of (non trivial) symmetric

homogeneous varieties, up to quotient by a finite group. Otherwise we say that θ
is indecomposable. If θ is indecomposable and G/H contains a Hermitian factor,
we will say that G/H is Hermitian. If θ is indecomposable, we have the following

possibilities: 1) G is an one-dimensional torus; 2) G is simple and 3) G = Ġ × Ġ

with Ġ simple and θ defined by θ(x, y) = (y, x). In the last case G/Gθ is isomorphic

to Ġ and is not Hermitian. If G is semisimple, then θ is indecomposable if and only
if RG,θ is irreducible. For a classification of the indecomposable involutions see [17]
§26. If G/H is Hermitian, then Z(Gθ) has dimension 1 and RG,θ has type BCl, Cl,
B2 or A1. Suppose G semisimple (simply connected) and θ indecomposable, then
ρ−1(α∨

i ) contains two colors if and only if G/H is Hermitian, H = Gθ and α∨
i is

short (see [17] pages 177-178).
Let X be a simple symmetric variety with closed orbit Y . One can show that

there is a unique affine B-stable open set XB that intersects Y and is minimal for
this property. Moreover the complement X \XB is the union of the B-stable prime
divisors not containing Y (see [3] §2.2 Proposition). The stabilizer P of XB is a
parabolic subgroup containing B. There is a Levi subgroup L′ of P such that the
P -variety XB is the product RuP ×Z of the unipotent radical of P and of an affine
L′-spherical variety Z (see [3] §2.3 Théorème). We can choose L′ and Z so that x0

belongs to Z. Let L be the standard Levi subgroup of P . If X is not exceptional, we
will see that Z is a symmetric variety and that L′ can be chosen equal to L. Notice
that P is the stabilizer of

⋃
D∈D(G/H)\ D(X)D. Given an union Di1 ∪ ... ∪ Dis of

colors, we denote its stabilizer by P ({Di1 , ..., Dis}) or by PG({Di1 , ..., Dis}). Given
a root β, let Uβ be the unipotent one-dimensional subgroup of G corresponding to
β. Given µ ∈ χ∗(T ) ⊗ Q ≡ χ(T ) ⊗ Q, we denote by P (µ) the parabolic subgroup
of G generated by T and by the subgroups Uα corresponding to the roots α such
that (α, λ) ≥ 0. Given a subgroup K of G, we use the notation HK (respectively
BK) for the intersection K ∩H (respectively K ∩B).

Now, we want to describe the groups P = P (I), where I ⊂ D(G/H). Observe
that there is a Levi subgroup L′ of P such that P/HP = RuP × L′/HL′ . Indeed,
there is a Levi subgroup L′′ of P × C∗ such that P × C∗/HP × {±1} = RuP ×
(L′′∩P )/HL′′∩P ×C∗/{±1}, because of [3] §2.3 Théorème applied to an equivariant
embedding Z of G×C∗/H×{±1} such that D(Z) ≡ D(G/H) \ I (we have a one-to-
one correspondence between D(G/H) and D(G×C∗/H ×{±1}), which associates
to each D ∈ D(G/H) its C∗-span in G× C∗/H × {±1}).

To describe P (I), it sufficient to consider the case where G is semisimple, H =
Gθ, θ is indecomposable and I = {D}. Indeed P (Di1 , ..., Dis) is equal to the
intersections of the P (Di). Moreover if (G, θ) = (G1, θ)× (G1, θ) and D is a color
of G/H , then there is either a BG1

-stable divisor D1 of G1/G
θ
1 or a BG2

-stable
divisor D2 of G2/G

θ
2 such that D is the image of D1 × G2/G

θ
2, respectively of

G1/G
θ
1 ×D2, in G/H ; moreover P (D) is PG1

(D1)×G2, respectively G1×PG2
(D2).

Notice that D1, respectively D2, may be not prime.
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We begin with some recalls from [18] (see also [17] pages 177-178). Suppose by
simplicity that G is semisimple, write D(G/Gθ) = {D1, ..., Dm} and let π : G →
G/Gθ be the canonical projection. For any i, the ideal of π−1(Di) is principal be-
cause we have supposed G simply connected; let fi be a generator of π−1(Di). Let
P+ ⊂ C[G]∗ the multiplicative monoid constituted by the commune eigenvectors to
P (with respect to the left translation) and to Gθ (with respect to the right trans-

lation) and let PGθ

+ be the subset of P+ constituted by the Gθ-invariant vectors.
Up to normalization, the vectors {fi} forms a basis of P+. We can index the colors

so that fi belongs to PGθ

+ if and only if i ≤ r; in particular the Gθ-eigenvalue χi of

fj is trivial if and only if i ≤ r. Here r = m− 2rank χ(Gθ). We can also suppose

that χr+j = −χr+j+rank χ(Gθ) for each j = 1, ..., rank χ(Gθ). The monoid PGθ

+ is
free with basis {f1, ..., fr, fr+1fr+rank χ(Gθ)+1, ..., fr+rank χ(Gθ)fm}. The map, which

associates to any f ∈ P+ its P -weight ω(f), gives an isomorphism between PGθ

+

and the set of spherical weights. (We remark that in [18] is used a lightly different
map). Observe that P (Di) is equal to the stabilizer of the line Cfi.

Suppose now θ indecomposable, G semisimple and I = {D}. If G/Gθ is not

Hermitian, then PGθ

+ = P+ and ω(f1), ..., ω(fm) are the fundamental weights of
RG,θ; thus the stabilizer of Dα∨

i
is P (ωi). In this case, the colors of G/H are in one-

to-one correspondence with the colors of G/Gθ. More generally, if D ∈ D(G/Gθ) is

the unique color in ρ−1(ρ(D)), then ω(fi) belongs to PGθ

+ and P ({D}) is P (ω(fi));

moreover π−1(π(D)) is D, so also P ({π(D)}) is P (ω(fi)) (here π is the canonical
projection G/Gθ → G/H).

Next, we consider the colors D of G/Gθ such that ρ−1(ρ(D)) 6= {D}. Supposing
θ indecomposable, there is an exceptional root αi0 if and only if G/Gθ is Hermitian
and RG,θ has type BCl. In this case H = Gθ = NG(G

θ) and 2αi0 is a restricted
root; in particular α∨

i0 is the short simple restricted coroot and ρ−1(α∨
i0) contains

two colors, namely Dr+1 and Dr+2. Write αi0 = βi1 −θ(βi1) = βi2 −θ(βi2) as in the
definition of exceptional root. The weight of fr+1fr+2 is ωi0 = ̟i1+̟i2 . Thus fr+1

and fr+2 have weights respectively ̟i1 and ̟i2 ; the stabilizers of the corresponding
colors are respectively P (̟∨

i1
) and P (̟∨

i2
). There is an automorphism of G, fixing

T and B, which exchange P (̟∨
i1) with P (̟∨

i2); moreover, one can show, by the

Iwasawa decomposition (see [17] p.168), that this automorphism fixes Gθ, so it
induces an automorphism of G/Gθ exchanging D1 with D2. For this case, see also
[6] §4.

If G/H is Hermitian and non exceptional, then the restricted root lattice has
index two in the lattice generated by the spherical weights; the inverse image of
α∨
i contains two colors if and only if H = Gθ and α∨

i is short (see [17] page 177-
178). Therefore the weight of fr+1fr+2 is ω1 = 2̟1 if l is at most 2 and ωl = 2̟l

otherwise. The vectors fr+1 and fr+2 have the same weight, namely ̟1 if l ≤ 2
and ̟2 otherwise. Thus the colors corresponding to fr+1 and fr+2 have the same
stabilizer: respectively P (ω1) if l ≤ 2 and P (ωl) otherwise. Moreover these colors
have the same image in G/NG(G

θ). Hence the stabilizer of a color D of G/Gθ is
equal to the stabilizer of the image of D in G/NG(G

θ).
Now we list the exceptional indecomposable involutions. We have three pos-

sibilities: 1) (G, θ) has type AIII and G/Gθ is isomorphic to SLn+1/S(Ll ×
Ln+1−l) (with n 6= 2l − 1); 2) (G, θ) has type DIII and G/Gθ is isomorphic to
SO4l+2/GL2l+1; 3) (G, θ) has type EIII and G/Gθ is isomorphic to E6/D5 × C∗.
The possibilities for the stabilizer of a color D with ρ(D) exceptional are, respec-
tively: 1) P (ω̃l) and P (ω̃n+1−l); 2) P (ω̃2l) and P (ω̃2l+1); 3) P (ω̃1) and P (ω̃6).
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2. Smoothness of symmetric varieties

In this section we want to classify the smooth symmetric varieties. Clearly we can
reduce ourselves to studying the simple ones. Let X be a simple symmetric variety
with closed orbit Y . Recall that XB ≡ RuP × Z, where P = P (D(G/H) \D(X))
and Z is a L′-spherical affine variety for an appropriate Levi subgroup L′ of P ; we
have denoted by L the standard Levi subgroup of P .

Lemma 2.1. The homogeneous variety L′/HL′ is affine; in particular HL′ is re-
ductive.

Proof. RuP × (L′/HL′) is the intersection of the two affine open sets XB and
G/H , thus it is affine. Hence L′/HL′ is affine and HL′ is reductive. �

Lemma 2.2. If ρ−1(α∨) is contained in D(X) for each exceptional coroot α∨ in
ρ(D(X)), then the group L is θ-stable and L/HL is a symmetric space; moreover
we can choose L′ equal to L. In particular, L is θ-stable if X is not exceptional.

Proof of Lemma 2.2. Observe that P contains the stabilizer P̃ of BH/H . Indeed

the colors are exactly the prime divisors of G/H stabilized by P̃ . Let λ̃ ∈ χ∗(T )

such that P̃ = P (λ̃); λ̃ is a subgroup of T 1 (see [18] 2.2), so (λ̃, β) = 0 for every

root β in R0
G. Hence Uβ ⊂ P̃ ⊂ P and RL contains R0

G. Moreover RL is stabilized
by the involution ι, because β1 − θ(β1) = β2 − θ(β2) if and only if β1 = β2 or
β1 = ι(β2). Thus RL is stabilized by θ = −̟0ι, where ̟0 is the longest element
of the Weyl group of R0

G. Therefore P ∩ θ(P ) = L, HL = HP and we can suppose
L = L′. Notice that Lθ ⊂ L ∩H ⊂ NL(G

θ) ⊂ NL(L
θ). �

Under the hypotheses of the previous lemma, RL is generated by R0
G and by

the simple root β in R1
G such that ρ−1((β − θ(β))∨) is contained in D(X) (see the

description of P in the previous section). In particular, R∨
L,θ = ρ(D(X)) if G/H

has not Hermitian factors.
We are mostly interested in the smooth complete symmetric varieties, so we can

reduce ourselves to studying the simple affine varieties with a L′-fixed point.

Lemma 2.3. If Y is projective, then there is a unique point in Z fixed by L′.

Proof of Lemma 2.3. Notice that Z ′∩Y is one point x and is L′-stable. Moreover
x is unique because every affine spherical variety is simple. �

The hypothesis of the previous lemma is equivalent to the condition dim C(X)
= rank G/H . Now, we prove that X is not smooth if L is not θ-stable.

Theorem 2.1. Let X be a simple smooth symmetric variety with open orbit G/H
and suppose that the closed orbit Y is projective. Then ρ−1(α∨) is contained in
D(X) for each exceptional coroot α∨ in ρ(D(X)). In particular, L is θ-stable.

Observe that X is smooth if and only if Z is smooth. Moreover Z is smooth if
and only if it is a L′-representation. Indeed the affine L′-variety Z can be embedded
in a L′-representation and one can shift the fixed point in 0. Moreover, up to taking
a subrepresentation, we can identify Z with this representation because of Luna’s
fundamental lemma (see [10] II.2). To prove the lemma, it is sufficient to show that
there is not a representation of dimension dimL′/HL′ containing a vector v with
stabilizer HL′ . Observe that we can work with a quotient of L′ by a finite central
subgroup K contained in HL′ . Indeed, if Z is a L′-representation with the previous
properties, K acts trivially on Z, so Z is a (L′/K)-representation of dimension
(L′/K)/(HL′/K) and Stab(L′/K)(v) = (HL′/K). Remark that L′/K is not plus a
subgroup of G, however we can restrict to study Z, ”forgetting” the embedding of
Z in X . We want reduce to study varieties L′/HL′ with the following property:
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[*] There are an indecomposable exceptional involution (G′, θ′) and
a color D such that ρ(D) is exceptional, L′ is a Levi subgroup of

the stabilizer P ′ = PG′(D), HL′ = (L′)θ
′

and P ′/(P ′)θ
′

≡ RuP
′ ×

L′/HL′ .

Lemma 2.4. We can choose L′ isomorphic, up to quotient by a finite central
group in HL′ , to a product

∏s
i=0 Li so that L′/HL′ ≡

∏
Li/HLi

, where Li/HLi
is

a symmetric variety if s = 0 and satisfies [*] otherwise.

Proof of Lemma 2.4. First, we reduce to the case of an indecomposable invo-
lution. Write (G, θ) as

∏
(Gi, θ), where G0 ∩ L is θ-stable and the (Gi, θ) with

i > 0 are indecomposable exceptional involutions such that Gi ∩ L is not θ-stable.
Then G/H = G0/HG0

×
∏

i>0 Gi/G
θ
i . Indeed Gθ

i = NGi
(Gθ

i ) for each i > 0, thus

NG(G
θ) is generated by Gθ and HG0

. Thus it sufficient to prove the lemma for
the Gi/G

θ
i with i > 0. Finally, suppose θ an indecomposable exceptional involu-

tion and write P = P (I) with I ⊂ D(G/H). Let D be a color in I such that

ρ(D) is exceptional. If I contains at least two colors, let L̃ be the standard Levi

subgroup of P (I \ {D}), let L be the quotient of L̃ by Z([L̃, L̃]) and let P be the

quotient of P (I)∩ L̃ by Z([L̃, L̃]). We have P (I) = RuP (I \ {D})× (P (I)∩ L̃) and

P (I)/P (I)θ = RuP (I \ {D})× (P (I) ∩ L̃)/(P (I) ∩ L̃)θ = RuP (I \ {D})× P/P
θ
;

moreover L̃/L̃θ = L/L
θ
= [L,L]/[L,L]θ×Z(L)/Z(L)θ. On the other hand, there is

a Levi subgroup L ′ of P∩[L,L] such that P/P
θ
= RuP×L ′/(L ′)θ×Z(L ′)/Z(L ′)θ.

Thus we can choose L′ as the product of Z(L̃)0 with the inverse image of L ′ in L̃.
Notice that ([L,L], θ) is indecomposable and exceptional; moreover P ∩ [L,L] is the
stabilizer of D ∩ ([L,L]/[L,L]θ) in [L,L]. �

We know that given a semisimple group G, a symmetric variety G/H and an
irreducible G-representation V , then V H has dimension at most 1; moreover, if
dimV H = 1, V has dimension at least dimG/H + 1. We want to prove a
similar result for the varieties which satisfy [∗]. Such varieties have dimension
dimG/(G)θ − dimRuP , because P/HP = RuP × L′/HL′ . Explicitly dimL′/(L′)θ

is equal, respectively, to nl− l2 + l if G/Gθ = SLn+1/S(Ll × Ln+1−l), to 2l2 + l if
G/Gθ = SO4l+2/GL2l+1 and to 16 if G/Gθ = E6/D5 × C∗. In particular L′/(L′)θ

has dimension at least 2. We consider separately the case where dimL′/(L′)θ = 2,
because in such case L′/(L′)θ is isomorphic to a symmetric variety.

Lemma 2.5. If L′/HL′ has dimension 2, then it is isomorphic to SL2/SO2. Thus,
a non-trivial L′-representation V with V HL′ 6= 0 has dimension at least 3. More-
over, there are neither a smooth affine embedding of SL2/SO2 nor a smooth affine
embedding of SL2 × C∗/SO2 × {±1}.

Proof of Lemma 2.5. If dimL′/HL′ = 2, then G/H is isomorphic to SL3/
S(L1×L2) and P is either P (̟∨

1 ) or P (̟∨
2 ); thus L

′ is isomorphic to GL2. By the
Lemma 2.2, H0

L′ must be a maximal torus, hence L′/HL′ is a symmetric variety
isomorphic either to SL2/SO2 or to SL2/NSL2

(SO2). Observe that a spherical
SL2-representation has dimension at least 3. In this case the representation is
S2C2 and is an embedding of SL2 × C∗/NSL2

(SO2) × {±1}, where C∗ acts freely
over C2. We have only to prove that L′/HL′ is isomorphic to SL2/SO2. Suppose by
contradiction that HL′ is isomorphic to the almost direct product NSL2

(SO2) ·C
∗id

and let σ be an involution of GL2 such that GLσ
2 is H0

L′ . Let T ′ be a maximally
split torus of GL2 with respect to σ and let S′ = T ′/HT ′ , then χ(T ′)/χ(S′) contains
an element of order 2. Indeed χ(S′) is generated by 2β and χ(T ′) contains β (here
β is a root of GL2). We can identify C(L′/HL′)(BL′ )/C∗ with C(G/H)(B)/C∗, thus
we can identify χ(S) with χ(S′) as subset of χ(B); moreover we can identity both
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χ(T ) and χ(T ′) with χ(B). Thus also χ(T )/χ(S) contains an element of order 2.
But χ(S) is equal to ̟1 +̟2, so χ(T )/χ(S) = Z(̟1 +χ(S)) ∼= Z, a contradiction.
(Here ̟1 and ̟2 are the fundamental weights of SL3). �.

Lemma 2.6. Assume that L′/(L′)θ has dimension greater than 2, then there is
a subgroup K of L′ isomorphic to L ∩ θ(L) in such way that Lθ ⊂ L ∩ θ(L) is
isomorphic to a subgroup K ′ of Kθ. Let V be a L′-representation which contains a
vector v fixed by Kθ. Then the stabilizer of v in [K,K] is equal either to [K,K] or
to [K,K]′ := [K,K] ∩K ′.

Proof of Lemma 2.6. Write L′ = gLg−1; we have Lθ ⊂ P θ = (L′)θ, because
H = Gθ. Knowing the classification of indecomposable exceptional involution, one
can verify that there is an automorphism ϕ of L′ that send gLθg−1 onto Lθ. Let
K be the image of g(L ∩ θ(L))g−1 by ϕ, then Kθ contains K ′ := Lθ = ϕ(gLθg−1).
The last affirmation follows because [K,K]/[K,K]′ is a symmetric variety. �

Remark that K/K ′ is a symmetric variety.

Lemma 2.7. Let (G, θ) be an indecomposable exceptional involution, let D be a
color such that ρ(D) is exceptional, let P be the stabilizer of D and let L′ be a Levi
subgroup of P such that P/HP = RuP ×L′/HL′ . Suppose that dimL′/HL′ > 2 and
let K, respectively K ′, be as in the Lemma 2.6. Let V be a non-trivial irreducible
L′-representation such that V HL′ 6= 0. Then:

(1) dimV ≥ dimL′/HL′ and dimV 6= dimL′/HL′ + 1;
(2) if dimV = dimL′/HL′, then V HL′ has dimension 1 and (StabL′(v))0 is not

reductive for any v ∈ V HL′ \{0};
(3) if there is v ∈ V with stabilizer HL′ , then dimV ≥ dimL′/HL′ + 2.

Proof of the Lemma 2.7. Observe that the first two points of the lemma imply
the third one. Indeed, if V is as in the last point, then V cannot have dimension
equal to dimL′/HL′ because HL′ is reductive by the Lemma 2.2. Notice that K
contains a maximal torus; moreover there are two parabolic groups Q and Q− of
L′, containing respectively BL′ and the opposite of BL′ , such that Q ∩Q− = K is
a Levi subgroup of both them.

For each r, let {e1, ..., er} be the canonical basis of Cr. It is sufficient to
study the L′-representations with dimension at most dimL′/HL′ + 1. If G/H =

GLn+1/GLl×GLn+1−l (= SLn+1/S(Ll×Ln+1−l)), then L′ is isomorphic toGL(
⊕n−l+1

i=1 Cei)

×GL(
⊕n+1

i=n−l+2 Cei) in such way thatK corresponds toGL(
⊕l

i=1 Cei)×GL(
⊕n−l+1

i=l+1 Cei)×

GL(
⊕n+1

i=n−l+2 Cei) and K ′ corresponds to ∆ × GL(
⊕n−l+1

i=l+1 Cei), where ∆ is the

diagonal in GL(
⊕l

i=1 Cei) ×GL(
⊕n+1

i=n−l+2 Cei). Recall that n > 2. Suppose first

that [K,K] acts trivially on a non-zero vector of V HL′ ; in this case SL(
⊕n+1

i=n−l+2 Cei)
acts trivially on V . Using the fact that dimZ(K ′) = 2, it is not difficult to
prove that V [K,K] is one-dimensional and that Z(K ′) acts not trivially on it,
a contradiction. Hence, both the simple factors of [K,K] act not trivially on
V (otherwise there is (g, g) ∈ ∆ such that (g, g) · v 6= v). The representation

W :=
⊕n−l+1

i=1 Cei ⊗ (
⊕n+1

i=n−l+2 Cei)
∗ has dimension equal to dimL′/HL′ . If

there is another L′-representation, not isomorphic to W as [L′, L′]-representation,
over which both the simple factors of [K,K] acts non-trivially and which has di-
mension at most dimW + 1, then either n = 2l = 4 or l = 1. In the first
case such representation is isomorphic to W1 :=

∧2 ⊕3
i=1 Cei ⊗ (

⊕5
i=4 Cei)

∗ (as
[L′, L′]-representation); moreover it is isomorphic to W as [K,K]-representation.

In the second case, such representation is isomorphic to W2 :=
∧n−1 ⊕n

i=1 Cei
(as [L′, L′]-representation) and we have [K,K] = [K,K]′ = SL(

⊕n
i=2 Cei), thus

W2 is isomorphic, as [K,K]-representation, to the direct sum of a 1-dimensional
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trivial representation with the dual of the standard representation. The decom-

position W = (
⊕l

i=1 Cei ⊗ (
⊕n+1

i=n−l+2 Cei)
∗) ⊕ (

⊕n−l+1
l+1 Cei ⊗ (

⊕n+1
i=n−l+2 Cei)

∗)

is [K,K]-invariant; thus W [K,K]′ is 1-dimensional. One can show that RuQ stabi-

lizes any v ∈ W [K,K]′ ; moreover dimStabL′(v) = dimRuQ · [K,K]′ + 1. On the
other hand, dimZ(K) = 2 and Z(K) · v is at plus, one-dimensional. Therefore
T ′′ := StabZ(K)(v) is one-dimensional and the connected component of StabL′(v)

is the semidirect product RuQ⋉ (T ′′[K,K]′)0, so it is not reductive. Given any U
isomorphic, as [L′, L′]-representation, to W , to W1 or to W2, one can study in the

same manner U [K,K]′ and StabL′(v) for each v ∈ U [K,K]′\{0}.
If G = SO4l+2, then L′ is isomorphic to GL(C2l+1) in such way that K cor-

responds to GL(
⊕2l

i=1 Cei) × GL(Ce2l+1) and K ′ corresponds to Sp(
⊕2l

i=1 Cei) ×
GL(Ce2l+1). The non-trivial irreducible L

′-representations with dimension lesser or

equal to 2l2+ l+1 are isomorphic, as [L′, L′]-representations, to C2l+1, to
∧2

C2l+1,

to
∧2l−1

C2l+1 or to
∧2l

C2l+1. Let V be a L′-representation which contains a non-
zero vector w fixed byK ′ and that is isomorphic, as [L′, L′]-representation, to C2l+1.

We have (C2l+1)[K,K] = (C2l+1)[K,K]′ = Ce2l+1; thus V is C2l+1 ⊗ (
∧2l+1

C2l+1)∗

and w is a multiple of e2l+1⊗v, where v is a non-zero vector of (
∧2l+1

C2l+1)∗. The

stabilizer of e2l+1 ⊗ v in L′ is RuQ
− ⋉ (SL(

⊕2l
i=1 Cei)×GL(Ce2l+1)). If HL′ fixes

e2l+1⊗v, then HL′ is isomorphic to a subgroup of SL2l×C∗ (because the restriction
to HL′ of StabL′(e2l+1) → StabL′(e2l+1)/RuQ

− would be an isomorphism). How-
ever, one can show that there is not a reductive subgroup of SL2l ×C∗, containing
Sp2l × C∗, which has dimension equal to dimHL′, a contradiction. One can study
in the same manner the L′-representations isomorphic, as [L′, L′]-representations,

to
∧2l

C2l+1. On the other hand,
∧2

C2l+1 is isomorphic, as [K,K]-representation,

to
∧2 ⊕2l

i=1 Cei ⊕
⊕2l

i=1 Cei, hence (
∧2

C2l+1)[K,K]′ is 1-dimensional. the stabi-

lizer in L′ of any v ∈ (
∧2

C2l+1)[K,K]′ \ {0} contains RuQ; moreover dimStabL′ =
dimRuP · [K,K]′ + 1. On the other hand, T ′′ := StabZ(K)(v) is one-dimensional
because Z(K) · (v) is, at plus, one-dimensional. Therefore, the connected com-
ponent of StabL′(v) is the semidirect product RuP ⋉ (T ′′[K,K]′))0, so it is not

reductive. One can study
∧2l−1

C2l+1 in the same manner of
∧2

C2l+1 (notice that∧2l−1
C2l+1 is the dual representation of

∧2
C2l+1).

If L has type E6, then, up to isogeny, L′ is isomorphic to Spin10 × C∗, in such
way that K corresponds to Spin8 × SO2 × C∗ and K ′ corresponds to Spin7 × C∗.
By a dimensional count, one can show that HL′ is isomorphic to K (one have to use
the fact that K ′ ⊂ HL′ ⊂ L′). Observe that the hypothesis V HL′ 6= 0 implies that
Z(L′) acts trivially on V . The irreducible non-trivial Spin10-representations with
dimension at most 17 are the half-spin representations and the first fundamental
representation C10. One can easily show that none of such representation contains
a vector fixed by HL′ . �

Proof of Theorem 2.1. We work with a quotient L̃ of L′ by a central subgroup

in HL′ , so that we can write L̃ =
∏

Lj as in the Lemma 2.4. We denote by HL̃ the

image ofHL′ in L̃. We want to reduce ourselves to the case where L̃/L̃θ is a product
of a variety satisfying [∗] and, eventually, a 1-dimensional torus. Suppose Z smooth

and write Z =
⊕m

h=1 V (λh). Observe that L̃ has a dense orbit in each V (λh), say

L̃ ·vh; we can also suppose
∑m

h=1 vi = x0. Moreover Z(L̃)0 ·vh is contained in C∗vh,

so dim L̃ · vh ≤ dim ([L̃, L̃] · vh) + 1. Up to re-index, we can suppose that L1 does
not act trivially on V (λ1). Write λi =

∑
µi,j , where µi,j is a Lj-weight for each

i and j, so V (λi) is isomorphic to
⊗

j V (µi,j). Thus V (µi,j) contains a HL̃-fixed

vector v for each i and j; hence, by the Lemmas 2.5 and 2.7, dimV (µi,j) 6= 2 for
each j. Let I be the set {j | dimV (µ1,j) > 1}. If I contains at least 2 elements, then
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dimV (λ1) =
∏

j∈I dimV (µi,j) >
∑

j∈I dimV (µi,j) + 1 ≥
∑

j∈I dim (Lj/HLj
) +

1 ≥ dim L̃v1, a contradiction. Thus V (
∑

µ1,j) = V (µ1,1) ⊗ V (
∑

j 6=1 µ1,j), where

dimV (
∑

j 6=1 µ1,j) = 1. We have two possibilities: either V (λ1) is a smooth affine

embedding of L1 · v1 or there is a one-dimensional torus T1 ⊂
∏

i6=1 Li, such that

V (λ1) is a smooth affine embedding of (L1T1) · v1; in particular the dimension
of V (λ1) is at most dimL1/HL1

+ 1. This fact implies, by the Lemma 2.7, that
dimL1/HL1

is 2.
Finally, suppose that dimLi/HLi

= 2 for each i > 0. By the Lemma 2.5,
dimV (λi) = dim [L′, L′]vi + 1 for each i. Moreover we can suppose that, for each
i > 0, Li acts non-trivially on V (λj) if and only if i = j; otherwise L′ ·

∑m
1 vi is

not dense. We can identify L1/HL1
with GL2/(C

∗)2 and V (µ1,1) with S2C2. Let

n ∈ NSL2
((C∗)2)\(C∗)2, then n ·v1 = −v1. The center of L̃ acts with one character

over each V (λi); moreover Z(L̃)·
∑m

1 vi has dimension equal tom, because L̃·
∑m

1 vi

is dense in Z. Thus there is t ∈ Z(L̃) such that t
∑

vi = −v1+
∑

i>1 vi, so nt ∈ HL̃.

Therefore HL̃ is not generated by L̃θ and HL0
, a contradiction. �

In the rest of this section, we always suppose that L is θ-stable. We choose, as
basis of the root system RL of (L, T ), the basis associated to the Borel subgroup
BL. Let RL,θ be the restricted root system of (L, θ); it is contained in RG,θ. We
arbitrarily choose an order of the connected components of the Dynkin diagram of
RL,θ and we define Rj

L,θ as the subroot system of RL,θ corresponding to the j-th

connected component of the Dynkin diagram. Let {αj
1, ..., α

j
lj
} be the set of simple

roots of Rj
L,θ; we index them as in [8]. Let l be the rank of G/H and let n be the

semisimple rank of G. In particular we suppose that, if Rj
L,θ has type Alj , then

(αj
h, α

j
k) 6= 0 only if h belongs to {k− 1, k, k+1}. We prove the following theorem.

Theorem 2.2. Let X be a simple symmetric variety with open orbit G/H. Suppose
that the closed orbit Y is projective and that ρ−1(α∨) is contained in D(X) for
each exceptional coroot α∨ in ρ(D(X)). Then the closure of T · x0 in X is normal.
Moreover X is smooth if and only if this toric variety is smooth. This is equivalent
to the following conditions:

(1) The restricted root system RL,θ has type
∏p

i=1 Ali for appropriate integers
p, l1, ..., lp. Moreover the rank of G/H is greater or equal to

∑p
i=1(li + 1).

(2) The cone C(X) is generated by a basis of HomZ(χ(S),Z).
(3) We can index the dual basis {λ1

1, ..., λ
1
l1+1, λ

2
1, ..., λ

2
l2+1, ..., λ

q
lq+1} of χ(S) so

that (λj
h, (α

i
k)

∨) = δh,kδi,j and 1
lj+1 ((lj + 1)λj

i − iλj
lj+1

) is the i-th funda-

mental weight of Rj
L,θ.

Before proving the theorem, we make some remarks.
Remarks 2. i) We request that X is normal. Indeed there is a non normal

equivariant completion X̃ of a symmetric space such that the closure of T · x0 in

X̃ is smooth (see [18] §7.2). See also [16] §10 for an example of an affine non-

normal embedding Z̃ of a symmetric space such that the closure of T ·x0 is normal.

Moreover the open orbits respectively of X̃ and Z̃ are not exceptional.
ii) Given X which verifies the conditions of the theorem, we can almost describe

the associated colored cone. The cone C(X) is the dual cone of cone(λ1
1, ..., λ

q
lq+1)

and χ(S) is the free abelian group with basis {λ1
1, ..., λ

q
lq+1}. The set ρ(D(X)) is

constituted by the primitive vectors of the 1-faces of C(X) not contained in −C+;
moreover D(X) contains ρ−1({α∨}α∈RL,θ simple). Given any α∨ in ρ(D(X)) \R∨

L,θ,

then ρ−1(α∨) contains two elements, while ρ−1(α∨) ∩D(X) contains one element.
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Any of the two colors in ρ−1(α∨) can be a color of X . Remark that ρ is injective
over D(X).

iii) Suppose that L/HL is a group L̇, i.e. suppose that L = L̇ × L̇ and that

θ is defined by θ(x, y) = (y, x). The first condition of the theorem means that L̇
is the quotient of a product Π(SLli+1 × C∗) by a finite subgroup (some integer li
can be 0). If all the conditions of the theorem are verified, then L̇ is isomorphic
to the product ΠGLli+1 and Z is isomorphic to the product ΠMli+1, where Mli+1

is the algebra of complex matrices of order li + 1. Observe that the product of
matrices defines a product over ΠMli+1 which extends the product over ΠGLli+1.
This means that ΠMli+1 is an algebraic monoid whose unit group is ΠGLli+1.

iv) Timashev (see [16]) studied a particular class of equivariant embeddings
of reductive groups. These embeddings are not necessarily normal. Here G is
a product Ġ × Ġ and the involution θ is defined by θ(x, y) = (y, x). Timashev

supposes that there is a faithful Ġ-linear representation V =
⊕

V (µi) with the

following properties. The µi are all distinct and the map Ġ → P(
⊕

EndC(V (µi)))

is injective. He considers the closure of Ġ in P(
⊕

EndC(V (µi))) and obtains a
criterion for this variety to be normal, respectively smooth. Observe that G acts
on

⊕
EndC(V (µi)) ⊂ EndC(V ) and the action coincides with the one over V ⊗ V ∗

through the canonical isomorphism EndC(V ) ∼= V ⊗ V ∗. Also Renner (see [12])

considers the case where G/H is isomorphic to a reductive group Ġ, but he studies

the affine (normal) equivariant embeddings of Ġ with a G-fixed point. He classifies

the smooth ones in the case where the center of Ġ has dimension 1 and the derived
group of Ġ is simple.

Proof. First we reduce to affine case. Observe that X is smooth if and only if
Z is smooth. Let U (respectively UL) be the unipotent radical of B (respectively
of BL), then C[Z]UL is isomorphic to C[XB]

U , so C(G/H)(B)/C∗ is isomorphic
to C(L/HL)

(BL)/C∗; in our case T is contained in L and we can identify both
C(G/H)(B)/C∗ and C(L/HL)

(BL)/C∗ with χ∗(S). We can identify C[X ](B)/C∗

with C(X)∨∩ χ(S) and C[Z](BL)/C∗ with C(Z)∨∩ χ(S) (see [3] §3.2); in particular
we can identify C(X) ⊂ χ∗(S) ⊗ Q with C(Z) ⊂ χ∗(S) ⊗ Q. Let cl(T · x0, X)
(respectively T · x0) be the closure of T · x0 in X (respectively in Z). To reduce
to affine case it is now sufficient to prove that cl(T · x0, X) is normal (respectively
smooth) if and only if T · x0 is normal (respectively smooth). This fact holds
because the intersection of cl(T · x0, X) with XB is T · x0, so T · x0 is open in
cl(T · x0, X). Moreover cl(T · x0, X) is covered by the translates of T · x0 with
respect to the action of NGθ (T 1).

Observe that the combinatorial data C(Z), D(Z), χ(S) of Z does not change if
we substitute L by a finite cover or by a quotient by a normal subgroup contained
in HL. Thus we can substitute L with a group of simply connect type, as we
have done with G in the Remark 1. The only problem is that the group obtained
is no longer a subgroup of G. On the other hand we can restrict to consider Z,
”forgetting” X . In the following, we always consider an affine embedding Z of a
symmetric homogeneous variety L/HL, where L is as in the Remark 1.

Lemma 2.8. The closure of T · x0 in Z is normal.

Proof of Lemma 2.8. We have a commutative diagram

C[Z](T )/C∗

(( ((PPPPPPPPPPPP

C[Z](BL)/C∗

*




77ooooooooooo

�

�

// C[T · x0]
(T )/C∗.

(∗∗)
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Let WL,θ be the Weyl group of RL,θ; it is isomorphic to NLθ(T 1)/CLθ (T 1)
(see [17] Proposition 26.2). Observe that NLθ (T 1) acts on Z, so WL,θ acts on

C[Z](T )/C∗; moreover NLθ(T 1) acts on T · x0, thus WL,θ acts on C[T · x0]
(T )/C∗.

Hence the elements of WL,θ · (C(X)∨ ∩ χ(S)) are T -weights in C[T · x0]
(T )/C∗.

To prove that T · x0 is normal it is sufficient to show that the elements of WL,θ ·

(C(X)∨ ∩ χ(S)) are all the T -weights in C[T · x0]
(T )/C∗. This holds because of

the following lemma. Notice that T · x0 = S · x0 ≡ S and C[T · x0]
(T )/C∗ ≡

C[S · x0]
(S)/C∗. �

Lemma 2.9. Let λ be a L-spherical weight. If there is a T -eigenvector in C[Z] of
eigenvalue λ, then there is a BL-eigenvector in C[Z] of eigenvalue λ.

Proof of Lemma 2.9. Let v be a T -eigenvector in C[Z] of eigenvalue λ, we can
suppose that it is contained in an irreducible L-subrepresentation V (µ) of C[Z]
of highest weight µ. So λ = µ −

∑
ajβj , where a1, ..., an are positive integers and

β1, ..., βn are the simple roots of L. The cone C(Z) is generated by simple restricted
coroots α∨

1 , ..., α
∨
r and by appropriate vectors v1, ..., vl−r in the antidominant Weyl

chamber −C+ of RL,θ. Moreover, for each i, (λ, vi) = (µ, vi) +
∑

aj(βj ,−vi) ≥
(µ, vi) ≥ 0 because µ belongs to C(Z)∨. Moreover (λ, (αi)

∨) ≥ 0 for i = 1, ..., r
because λ is dominant, so λ belongs to C(Z)∨. Thus there is an eigenvector in
C[Z](BL) of T -eigenvalue λ. �

Now, we prove the necessity of the conditions.

Lemma 2.10. If Z is smooth, then [L,L] has type
∏

Ai and T · x0 is smooth.

We begin considering a particular case.

Lemma 2.11. Suppose that ([L,L], θ) is indecomposable and that Z(L) is 1-dimensional.
There are a subgroup Lθ ⊂ HL ⊂ NL(L

θ) and an affine smooth embedding of L/HL

if and only if RL has type Al−1. If a such embedding exists, then it is unique, up
to an equivariant isomorphism, and the closure of T · x0 in it is smooth.

Proof of Lemma 2.11. Let ς be the cone in χ∗(S)⊗R associated to T · x0 and let
ς∨ be the dual cone. Notice that an affine embedding Z of L/HL is smooth if and
only if it is a L-representation; in particular Z must be is an irreducible spherical
representation with dimension lesser than dim [L,L]. If moreover [L,L]/[L,L]θ is

isomorphic to a simple group L̇, i.e. [L,L] = L̇ × L̇ and θ(x, y) = (y, x), then Z is
isomorphic, as [L,L]-representation, to V (λ) ⊗ V (−ω0(λ)). Here ω0 is the longest

element of WL̇ and V (λ) is a L̇-representation with dimension lesser than dim L̇.
One can easily show that there is a representation with the request properties if
and only if RL,θ has type Al−1 (see the answer to ex. 24.52 in [7] p. 531 for a
list of the irreducible representations of a simple L with dimension at most dimL).
In this case Z is unique up to an isomorphism of L-varieties. More precisely Z is
isomorphic as [L,L]-representation to V (ωl) or to V (ω1). Now, we do a case-to-
case analysis to prove that, given a smooth Z, the subvariety T · x0 is smooth. We
denote by {f1, ..., fn} the dual basis of the canonic basis {e1, ..., en} of Cn.

i) If ([L,L], θ) has type AI, let Q be the symmetric bilinear form
∑

f2
i over Cn.

Then the involution is defined by θ(A) = (At)−1, L/Lθ is GL(Cn)/O(Cn, Q) and
Z is S2(Cn)∗. The subgroup T ⊂ GL(Cn) of diagonal matrices is a maximally split
torus, the vector fixed by Lθ is

∑n
i=1 f

2
i and T ·

∑n
i=1 f

2
i is

⊕n
i=1 Cf

2
i .

ii) If (L,L], θ) has type AII, let Q be the antisymmetric bilinear form
∑n

i=1 fi∧

fi+n over C2n. Then L/Lθ is GL(C2n)/Sp(C2n, Q) and Z is
∧2

(C2n)∗. The sub-
group T of diagonal matrices is a maximally split torus because it contains a max-
imal torus of Sp(C2n, Q) and dimT is equal to the semisimple rank of Lθ plus
the rank of L/Lθ. The vector fixed by Lθ is

∑n
i=1 fi ∧ fi+n and the closure of

T · (
∑n

i=1 fi ∧ fi+n) is the vector space spanned by f1 ∧ fn+1, ..., fn ∧ f2n.
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iii) If ([L,L], θ) has type BII, let Q be the symmetric bilinear form
∑n

i=1 fi ∧
fi+n + f2

2n+1 over C2n+1. Let ϕ be the linear transformation of C2n+1 such that

ϕ(ei) =





en+1 if i = 1

e1 if i = n+ 1

ei otherwise

.

Then L/Lθ is SO(C2n+1, Q)×C∗/SO((
⊕

i6=1,n+1 Cei⊕C(e1+en+1)), Q)×{±id} and

the involution over SO(C2n+1, Q) is the conjugation by the ϕ. The representation Z
is C2n+1, over which C∗ acts by twice a basic character. The subgroup T generated
by the diagonal matrices and by the center is a maximally split torus, the vector
fixed by Lθ is e1 − en+1 and the closure of T · (e1 − en+1) is Ce1 ⊕ Cen+1.

iv) If ([L,L], θ) has type DII, let Q be the symmetric bilinear form
∑n

i=1 fifi+n

over C2n. Then L/Lθ is SO(C2n, Q)
× C∗/SO((

⊕
i6=1,n+1 Cei ⊕ C(e1 + en+1)), Q) × {±id} and Z is C2n, over which

C∗ acts by twice a basic character. The subgroup T generated by the diagonal
matrices and by the center is a maximally split torus because dimT is equal to the
semisimple rank of Lθ plus the rank of L/Lθ. The vector fixed by Lθ is e1 − en+1

and the closure of T · (e1 − en+1) is the vector space spanned by e1 and en+1.
v) If ([L,L], θ) has type EIV , L/Lθ is E6 × C∗/F4 × {±id} and Z is V (ω1).

We will reduce to the already examined case of GL6/Sp6. First, we recall some
facts from [9]. Let AC be either the complexification QC of the quaternion or the
complexification OC of the octonions. Given a ∈ A, let ā be its conjugate. Let
J3(AC) be the space of AC-Hermitian matrices of order three, with coefficients in
AC:

J3(AC) =







r1 x̄3 x̄2

x3 r2 x̄1

x2 x1 r3


 , ri ∈ C, xi ∈ AC



 .

J3(AC) has the structure of a Jordan algebra with multiplication A ◦ B :=
1
2 (AB+BA), where AB is the usual matrix multiplication. There is a well defined
cubic form on J3(AC) called the determinant. The subgroup of GLC(J3(OC))
preserving the determinant is E6 and contains the subgroup preserving the Jordan
multiplication, namely F4. Moreover SL6 is contained in E6 ∩ GLC(J3(QC)) and
Sp6 = SL6∩F4. There is a simple subgroup K of F4 of type A1 such that SL6 ·K ⊂
E6 contains a maximal torus T of E6; T × Z(L)0 is maximally split because the
rank of E6 is the sum of the rank of F4 plus the rank of E6/F4. The group F4 fixes
the identity matrix because F4 preserve the Jordan product. Notice that J3(OC) is
the first fundamental representation of E6, while J3(QC) is the second fundamental
representation of SL6. Let T

1 be the maximal split torus contained in T × Z(L)0,
then T 1 is contained SL6 × Z(L)0, T 1 · Id is contained J3(QC) and Sp6 fixes Id.
(We have assumed that Z(L)0/{±1} is the connected center of GLC(J3(OC)).) �

Proof of Lemma 2.10. We proceed in a similar manner to the proof of The-

orem 2.1. Write L =
∏

Lj × T̃ , where the Lj are θ-stable semisimple normal

subgroups of L, the (Lj , θ) are simple and T̃ is a split central torus. Suppose
that there is a smooth affine embedding Z of L/HL, for an opportune subgroup
HL, and write Z as a sum of irreducible representations, say Z =

⊕
V (λh). Write

x0 =
∑

vh with vh ∈ V (λh), then L ·vh is dense in V (λh). On the other hand, T̃ ·vh
is contained in C∗vh, so dimL · vh ≤ dim [L,L] · vh + 1. Write λi =

∑
µi,j + νi,

where µi,j is a Lj-weight for each j and νi is a T̃ -character; the V (µi,j) con-
tain a Lθ-fixed vector, in particular dimV (µi,j) ≥ dimLj/HLj

+ 1 for each i and
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j. The [L,L]-representation V (
∑

j=1,...,r µi,j) is the tensor product of the Lj-

representations V (µi,j). Therefore, if µi,j 6= 0 for at least two index j1 and j2, then
dimV (λi) = dimV (

∑
µi,j) =

∏
j |µi,j 6=0 dimV (µi,j) >

∑
j |µi,j 6=0 dimV (µi,j) ≥∑

j |µi,j 6=0(dim (Lj/HLj
) + 1) ≥ dimL · vi (indeed dimL′

j/HL′

j
≥ 2 for each j).

Thus V (λi) is a smooth affine equivariant embedding of LjiTi · vi for an appro-

priate index ji and an appropriate one-dimensional subtorus Ti of T̃ ; moreover
StabLji

(vi) ⊂ NLji
(Lθ

ji). Every Li acts non-trivially over exactly one V (λi) and
the T · x0 is the product of the varieties T · vi, because L · x0 is dense in Z. Thus
T · x0 is the product of the closures of the T · vi (in the V (λi)). By the previous
lemma such closures are smooth and the Li have type Ali . �

Lemma 2.12. If Tx0 is smooth, then the conditions of the theorem are verified.

The hypothesis implies that ς∨ is generated by a basis e1, ..., el of χ(S). Now,
we want to describe C[T · x0] with relation to the restricted root system of (L, θ)
(when Tx0 is smooth). Recall that the elements of WL,θ ·C(X)∨ ∩χ(S) are the T -

weights in C[T · x0]
(T )/C∗ and that C[T · x0] is generated by S-seminvariant vectors

v(e1), ..., v(el) of weight respectively e1, ..., el. The symmetric group Sl acts on
{e1, ..., el}. Let σi,j be the transposition that exchanges ei with ej . The action of

WL,θ on χ(S) ⊗ R =
⊕

Rei is induced by the action of NLθ (T 1) on C[T · x0]
(T ).

Moreover NLθ(T 1) stabilizes C[T · x0]
(T ), so WL,θ stabilizes the basis {e1, ..., el} of

χ(S) ⊗ R; in particular WL,θ exchanges the ei. We want to describe the image of
WL,θ in Sl.

Lemma 2.13. If T · x0 is smooth, then, for every restricted L-root α, there are
two indices i and j such that α = ei − ej; in particular σα = σi,j . Moreover RL,θ

is reduced.

Proof of the Lemma 2.13. The orthogonal reflection σα of χ(S) ⊗ R stabilizes
the basis {e1, ..., el}. Thus σα can exchange only two of the ei, otherwise the (−1)-
eigenspace would have dimension at least 2. Suppose now that σα = σi,j , then
σα(ei − ej) = −(ei − ej), so ei − ej is a multiple of α. Moreover it must be an
integral multiple because ei − ej = σα(ej) − ej and ej is a weight. We can write
α as an integral linear combination of the ej in a unique way, so ei − ej = ±α.
Moreover, there is not a restricted root α such also 2α is a restricted root. Indeed,
by the previous part of the proof, there is i and j such that σα = σ2α = σi,j and
α = 2α = ±(ei − ej), a contradiction. �

Lemma 2.14. If T · x0 is smooth, then, for each fixed j, there is a subset {ej1, ..., e
j
lj+1}

of {e1, ..., el} such that the simple restricted roots in Rj
L,θ are ej1−ej2,..., e

j
lj
−ejlj+1;

in particular Rj
L,θ has type Alj .

Proof of the Lemma 2.14. The vectors ei − ej and eh − ek are orthogonal if

and only if the sets {i, j} and {h, k} are disjoint. Indeed
2(eh−ek,ei−ej)
(ei−ej ,ei−ej)

(ei − ej) =

(eh − ek) − σei−ej (eh − ek). Clearly we can choose ej1 and ej2 so that αj
1 is equal

to ej1 − ej2. Suppose that there is a subset {ej1, ..., e
j
s} such that αj

i is equal to

eji − eji+1 for each i < s (with s < lj + 1) and let eh − ek be a simple root αj
s

which is not orthogonal to the space generated by αj
1,...,α

j
s−1. Neither eh nor ek

belongs to {ej1, ..., e
j
s−1}, otherwise the Dynkin diagram would contain a cycle; thus

(αj
s, α

j
i ) = 0 for each i strictly lesser than s − 1. Hence (αj

s, α
j
s−1) 6= 0, so ejs is

equal either to eh or to ek. On the other hand, ejs cannot be equal to ek, otherwise

the root σαj
s
(αj

s−1) is equal to ejs−1 − eh = ejs−1 − ek + ek − eh = αj
s−1 − αj

s. Thus

ejs = eh, we can define ejs+1 = ek and the first part of the lemma is proved by
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induction. In particular, the Weyl group of Rj
L,θ is isomorphic to Slj+1. Therefore

Rj
L,θ has type Alj , because RL,θ is reduced by the Lemma 2.13. �

Remark 3. The sets {ej1, ..., e
j
lj+1} are pairwise disjoint because the sets Rj

L,θ are

pairwise orthogonal. Thus we can index the basis {e1, ..., el} as {e11, ..., e
1
l1+1, e

2
1, ...,

e2l2+1, ..., e
q
lq+1}, so that αj

i = eji − eji+1 for all i and j.

Lemma 2.15. Suppose T · x0 smooth and let λj
i be

∑i
h=1 e

j
h for each i and j. Then

C(X)∨ ∩ χ(S) is generated by the λj
i .

Proof of the Lemma 2.15. By the Lemma 2.9 and the diagram (∗∗) we have
C(X)∨ = cone(e11, ..., e

q
lq+1)∩C+. Using the Lemma 2.13, one can easily show that

the i-th fundamental weight ωj
i ofR

j
L,θ is equal to

1
lj+1 ((lj+1)λj

i−iλj
lj+1

). Moreover,

λj
lj+1 is invariant by WL,θ for each j, so it is orthogonal to spanR(RL,θ). Hence

cone(e11, ..., e
q
lq+1) ∩ C+ is equal to cone(λ1

1, ..., λ
q
lq+1). Indeed the restriction of

(ωj
i , ·) to spanR(RL,θ) coincides with the restriction of (λj

i , ·) for each i ≤ lj . On the
other hand, C+ ⊂ cone(e11, ..., e

q
lq+1) + cone(−e1l1+1,−e2l2+1, ...,−eqlq+1); moreover,

if a vector
∑

ajiλ
j
i =

∑
bjie

j
i belongs to cone(e11, ..., e

q
lq+1), then ajlj+1 = bjlj+1 is

positive for each j.
�

Conclusion of the proof of the Lemma 2.12. The Lemma 2.15 implies the second
condition of Theorem 2.2. The type of RL,θ is

∏p
i=1 Ali by the Lemma 2.14; on the

other hand rank G/H ≥
∑p

i=1(li+1) because of the Lemma 2.13 and of the Remark
3. The last condition of Theorem 2.2 is easily verified using the Lemma 2.13 and
the definition of the λj

i . �
Next, we come to the converse of Lemma 2.12.

Lemma 2.16. Suppose that the conditions of the Theorem 2.2 are verified. For all
j, let ej1 be λj

1 and let eji+1 = σαj
i
eji for every i ≤ lj. Then ς∨ ∩ χ(S) is

⊕
i,j Z

+eji

and eji+1 = λj
i+1 − λj

i for each 1 ≤ i ≤ lj; in particular T · x0 is smooth.

Proof of the Lemma 2.16. Recall that T · x0 is the toric variety associated to
the cone ς∨ = WL,θ · C(Z)∨, where C(Z)∨ is equal to cone(λ1

1, ..., λ
q
lq+1); thus

cone(e11, ..., e
q
lq+1) is contained in ς∨. We define ωj

0 := λj
0 := 0 for all j (we use such

definition only in the current proof). We prove that eji+1 = λj
i+1−λj

i by induction on

i. Suppose that this holds for i−1 and notice that λj
h = ωj

h+
h

lj+1λ
j
lj+1 for each j and

h < lj+1 (here ωj
h is the h-th fundamental weight ofRj

L,θ). We have eji+1 = σαj
i
(λj

i−

λj
i−1) =

1
lj+1λ

j
lj+1+σαj

i
(ωj

i −ωj
i−1) =

1
lj+1λ

j
lj+1+ωj

i+1−ωj
i = λj

i+1−λj
i , because the

λj
lj+1 are invariant under WL,θ. The equality eji+1 = 1

lj+1λ
j
lj+1 +ωj

i+1 − ωj
i implies

that σαj

h
eji+1 6= eji+1 only if h is equal to i + 1 or to i. Thus cone(e11, ..., e

q
lq+1) is

stabilized by WL,θ, hence it is equal to ς∨ because it contains C(Z)∨. �
Remark 4. Suppose that the conditions of the Theorem 2.2 are verified. The

previous lemma together with the Lemma 2.13 imply that αj
1 = 2λj

1 − λj
2 and

αj
i = −λj

i−1 + 2λj
i − λj

i+1 for each j and i > 1.
In the following lemma we need that L is as in the Remark 1; indeed, without

such assumption the Lemma 2.18 is false. We will use also the Lemma 2.12.

Lemma 2.17. If T · x0 is smooth, then Z is smooth.

First, we consider a particular case. Recall that, supposed T · x0 smooth, RL,θ

has type
∏

Alj .
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Lemma 2.18. Suppose that RL,θ has type Al−1 and that dimZ(L) = 1. Then,
there is one subgroup Lθ ⊂ HL ⊂ NL(L

θ) and one affine embedding Z of L/HL

such that the closure of T · x0 in Z is smooth (we request that HL ∩ Z(L)0 ≡
{±1} ⊂ C∗ ≡ Z(L)0). Moreover: i) HL and Z are unique up to an equivariant
isomorphism; ii) Z is smooth.

Proof of the Lemma 2.18. We have already show in the proof of the Lemma 2.11
that there are one subgroupH ′ and one affine L-variety Z ′ such that: 1) Lθ ⊂ H ′ ⊂
NL(L

θ); 2) Z ′ is an affine smooth embedding of L/H ′; such variety is unique up
to an equivariant isomorphism and the closure of T · x0 in it is smooth. Therefore,
by the Lemma 2.16, it is sufficient to prove that there is one Lθ ⊂ HL ⊂ NL(L

θ)
and one affine embedding of L/HL (up to equivariant isomorphism) satisfying the
conditions of the Theorem 2.2.

Let HL be a subgroup of L and let Z be an embedding of L/HL satisfying
the conditions of the Theorem 2.2; write C(Z) = cone((α1

1)
∨, ..., (α1

l−1)
∨, v1). To

determine HL is sufficient to determine HT (see [18] §2.2 Lemme 2). First, we

determine the subgroup HT∩[L,L]. Observe that
⊕l−1

i=1 Z(α
1
i )

∨ = χ∗(T ∩ [L,L]/T ∩

[L,L]θ) has finite index in χ∗(T ∩ [L,L]/HT∩[L,L]) and that χ∗(T ∩ [L,L]/HT∩[L,L])

is contained in χ∗(S). Hence χ∗(T ∩ [L,L]/HT∩[L,L]) is
⊕l−1

i=1 Z(α1
i )

∨ and HT∩[L,L]

is T ∩ [L,L]θ. On the other hand we have supposed that HZ(L)0 = (Z(L)0)θ, thus

χ := χ(T∩[L,L]/HT∩[L,L]×Z(L)0/HZ(L)0) is χ(T/T
θ) =

⊕l−1
i=1 Zω

1
i ⊕Zλ1

l , so χ(S)

has index l in χ (observe that χ(Z(L)0)⊗R = Rλ1
l because λ1

l is orthogonal to all
the simple restricted coroots). There is exactly one subgroup K of NL(L

θ)/Lθ of
order l which does not intersect neither N[L,L]([L,L]

θ)/[L,L]θ nor Z(L)0/{±id}.

Indeed notice that N[L,L]([L,L]
θ)/ [L,L]θ is isomorphic to the fundamental group

of RL,θ, namely the ciclic group of order l; on the other hand the unique subgroup
of C∗ of order l is the group of l-th roots of the unity. Therefore HL/L

θ is equal to
K, so χ∗(S) and HL are univocally determined. We can suppose, by the Remark
4, that (α1

i , v1) = −δi,l−1, up to an isomorphism of the Dynkin diagram. On
the other hand, {(α1

1)
∨, ..., (α1

l−1)
∨, v1} is a basis of χ∗(S), thus the image of v1

by the projection (χ∗(Z(L)0) ⊗ R) ⊕
⊕

R(α1
i )

∨ → χ∗(Z(L)0) ⊗ R is determined
up the sign. Therefore C(Z) is univocally determined up the automorphism of
L which is the identity on [L,L] and coincides with θ on Z(L)0. On the other
hand, D(Z) = D(L/HL) because Z is affine and dimC(Z) = rank χ∗(S) (see [3]
Corollaire 2, page 51). Therefore Z is univocally determined, up to automorphism.
�

Proof of the Lemma 2.17. Let {(α1
1)

∨, ..., (α1
l1
)∨, v1, (α

2
1)

∨, ..., (α2
l2
)∨, v2, ..., vq}

be the dual basis of {λ1
1, ..., λ

1
l1+1, λ

2
1, ..., λ

2
l2+1, ..., λ

q
lq+1}. Write L =

∏
Li × T̃

with (Li, θ) indecomposable and T̃ = Z(L)0. Let Ti be the inverse image in T 1 of
Im(vi) ⊂ S and define L′

i = LiTi. Observe that χ∗(Z(L)0) is 1
2χ∗(Z(L)0/HZ(L)0),

χ∗(T
1∩L′

i /HT 1∩L′

i
) is Zvi⊕

⊕lj+1
j=1 Z(αi

j)
∨ and χ∗(S) is

⊕
i χ∗(T

1∩L′
i /HT 1∩L′

i
).

Thus L is the direct product of the L′
i and HL =

∏
HL′

i
. Hence L/HL =

∏
L′
i/HL′

i
.

We have C(Z)∨ =
∑q

i=1 cone(λ
i
1, ..., λ

i
li+1), hence Z is the product of the affine em-

beddings Zi of L
′
i/HL′

i
corresponding respectively to the colored cones (cone(λi

1, ..., λ
i
li+1))

∨, ρ−1({α∨
1 , ..., α

∨
li
})).

These embeddings are smooth by the previous lemma, so Z is smooth. �
Remark 5. Let X be a smooth simple symmetric variety and suppose for sim-

plicity that χ(S) has rank equal to the rank of RL plus 1, in particular that RL

is irreducible. We want to remark that there is only one way to index the basis
of χ(S) that generates C(X)∨ so that it verifies the third condition. First ob-
serve that indexing this basis is equivalent to indexing the dual basis of χ∗(S).
Write C(X) ∩ χ∗(S) =

⊕
Z+(α1

i )
∨ ⊕ Z+v1. If we request that (α1

i , α
1
j ) 6= 0 only
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if i ∈ {j − 1, j, j + 1}, then the index of {(α1
1)

∨, ..., (α1
l−1)

∨} is defined up the non
trivial automorphism of the Dynkin diagram. The third condition of the theorem
implies that α1

1 = 2λ1
1 − λ1

2 and α1
i = −λ1

i−1 + 2λ1
i − λ1

i+1 for each i > 1; in par-

ticular (α1
i , v1) = −δl−1,i. Hence the condition (α1

l−1, v1) = −1 let us determine

completely the indexing of the basis {(α1
1)

∨, ..., (α1
l−1)

∨, v}.

3. Smooth complete symmetric varieties with Picard number one

In this section we always suppose G semisimple. We classify the smooth com-
plete symmetric varieties with Picard number one and we prove that they are all
projective. Let X be a smooth complete symmetric variety of rank l. Let n be
the number of colors that do not belong to X and let m be the number of one-
dimensional cones which are faces of a colored cone belonging to the colored fan
of X . Observe that we consider also the one-dimensional faces which do not in-
tersect the valuation cone. It is known that the Picard group of X is free and its
rank is equal to n + m − l. In fact, the rank of Pic(X) is equal to cardinality of
D(G/H)\D(X) minus the rank of G/H plus the rank of the group composed by
the functions over C(X) which are linear over each colored cone of X and assume
integral value over χ∗(S) ∩ C(X) (see [3] §5.2 Théorème); moreover the maximal
colored cone are generated by a basis of χ∗(S). If Pic(X) has rank one, then there
is at most one color which does not belong to X . We have two cases: 1) there is
one color that does not belong to X and X is simple (n = 1 and m = l); 2) all the
colors belong to X and m = l+ 1.

Lemma 3.1. If G/H has a smooth completion X with Picard number one, then
G/H has exactly l colors. Moreover, any maximal simple open G-stable subvariety
of X has still Picard number one.

Proof. There are exactly l + 1 B-stable divisor on X because n + m = l + 1
and ρ is injective over D(X). Among them, there must be at least one G-stable
divisor. (The cones spanned only by colors intersect the valuation cone just in 0).
On the other hand, there are at least l colors. Hence there are exactly l colors
corresponding to l distinct restricted coroots. �

Notice that N(X) contains one vector, say v. Let X̃ be a maximal simple open
G-subvariety of X . In the following we denote by L the standard Levi subgroup

of the stabilizer of X̃B. First of all, we prove that either RG,θ is irreducible or has
type A1×A1; next we will do a case-by-case analysis. In some cases we will classify

first the possibilities for X̃ and in a second time the possibilities for X . Observe
that in the previous section X was always a simple variety.

Lemma 3.2. (1) The root system RL,θ is irreducible and has type Al−1.
(2) Denote by α the simple restricted root such that α∨ does not belong to

ρ(D(X̃)). Then α must be an endpoint of the Dynkin diagram of RG,θ.

Proof. The rank of RG,θ is equal to rank of RL,θ plus 1, because ρ(D(X̃))

contains l − 1 elements and ρ is injective. On the other hand, as X̃ is smooth,
the rank (RG,θ) is also greater (or equal) than rank (RL,θ) plus the number of
connected components of the Dynkin diagram of RL,θ. Thus the first point of the
lemma follows. To prove the second point observe that the Dynkin diagram of RL,θ

is obtained from the one of RG,θ by removing the vertex corresponding to α. �

Lemma 3.3. The root system RG,θ is irreducible or its type is A1 ×A1.

Proof. Suppose that RG,θ is reducible, then its type is either Al−1 × A1 or
Al−1 × BC1, because of Lemma 3.2. We index the simple roots of RG,θ so that
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αl is orthogonal to the other simple roots and we denote by ω1 the first fun-
damental weight of the subroot system of type Al−1; in particular we assume

D(X̃) = {Dα∨

i
}i<l. The variety X̃ cannot be complete, otherwise C(X̃) contains

−ω1. Notice that C(X̃) contains also ω1, because ω1 is a linear combination of
α∨
1 , ..., α

∨
l−1 with positive coefficients. There is another maximal simple subvariety

with colors {Dα∨

j
}j 6=i for an appropriate i < l, because X̃ is not complete and X

contains exactly one G-stable divisor. Hence, by the Lemma 3.2, there is i < l such
that α1, ..., α̂i, ..., αl generate a root system of type Al−1. This is possible only if l
is equal to 2 and RG,θ has type A1 ×A1. �

Remarks 6. i) by the previous two Lemmas, the variety X may be non-simple
only if RG,θ has type A1 × A1, Al, B2, Dl or G2; ii) because of the Remark 5,
we know that (α∨

i , v) is equal either to −δi,1 or to −δi,l−1 for each i such that

α∨
i ∈ ρ(D(X̃)); iii) if G/H is Hermitian then, by the Lemma 3.1, H = NG(G

θ) and
there are no exceptional roots.

In the following we do a case-by-case analysis.
1) Suppose that RG,θ is reducible. We have seen that it has type A1×A1 and that

X is not simple. Thus X is covered by two simple open subvarieties whose associ-
ated colored cones are respectively (cone(α∨

1 , v), {Dα∨

1
}) and (cone(α∨

2 , v), {Dα∨

2
});

so v = −ω∨
1 − ω∨

2 because of the Remarks 6. Observe that the lattice generated
by α∨

1 and v is equal to the lattice generated by α∨
2 and v; more precisely it is the

lattice Z2ω∨
1 ⊕ Z(ω∨

1 + ω∨
2 ). Let {λ1, λ2} be the dual basis of {α∨

1 , v}. We have
λ1 = 1

2α1 −
1
2α2, λ2 = −α2 and 1

2 (2λ1 − λ2) =
1
2α1 = ω1. We can proceed in the

same manner for the dual basis of {α∨
2 , v}. We have proved that in this case X is

smooth.
In the following we always assume RG,θ irreducible. Moreover, we number the

simple restricted root as in [8].

Lemma 3.4. Let (G, θ) be an indecombosable involution and let (cone(α∨
1 , ...,

α∨
l−1, v), ρ

−1({α∨
1 , ..., α

∨
l−1})) be a colored cone in χ∗(T

1) ⊗ R. There is at most a

subgroup Gθ ⊂ H ⊂ NG(G
θ) such that the embedding X̃ of G/H corresponding to

the previous colored cone is smooth.

Proof of Lemma 3.4. Suppose that a such group exists; in particular RL,θ has
type Al−1. We can suppose that {α∨

1 , ..., α
∨
l−1, v} is a basis of χ∗(S); let {λ1, ..., λl}

be the dual basis. We have to prove that χ∗(S), or equivalently v, is univocally
determined. Notice that v is determined up to a multiplicative constant because it
generates a 1-dimensional face of the fixed colored cone. Moreover, if we substitute
v with a multiple, λ1, ..., λl−1 do not change because (λi, v) = 0 for each i < l.
Thus it is sufficient to prove that there is a unique possibility for λl. By the
Theorem 2.2, λl is equal to l(λ1 + ω̃1), thus it is univocally determined (here ω̃1 is
the first fundamental weight of the root system generated by α1, ..., αl−1). �

2) Suppose that RG,θ has rank 1. Then, for eachH such that Gθ ⊂ H ⊂ NG(G
θ),

there is a unique (non trivial) embedding and it is simple, projective, smooth, with
Picard number at most 2 and D(X) equal to the empty set. The group Pic(X)
has rank 2 if and only if G/H is Hermitian and H = Gθ. In this case we have two
possibilities: 1) (G, θ) has type AI, n = l = 1, G/H is isomorphic to SL2/SO2, the
restricted root system has type A1 and X is isomorphic to P1 × P1; 2) (G, θ) has
type AIV , G/H is isomorphic to SLn+1/S(L1 × Ln), the restricted root system
has type BC1, X is exceptional and isomorphic to Pn × (Pn)∗.

In the following we always assume that RG,θ has rank at least 2. We will work
with the standard inner product over Rn, for various n, and we will denote by
{e1, ..., en} the usual orthonormal basis. One can realize a root system of type Al−1

as the set {ei − ej | i 6= j} contained in the vector space {
∑

aiei ∈ Rl |
∑

ai =
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0}. Moreover, {e1 − e2, ..., el−1 − el} is a basis of the root system and the j-th

fundamental weight is 1
l (l

∑j
i=1 ei − j

∑l
i=1 ei).

3) Suppose that RG,θ has type Al. As before, we can realize RG,θ as the set
{ei − ej | i 6= j} ⊂ Rl+1; in particular we can identify the restricted roots with
the corresponding coroots. Up to an automorphism of the Dynkin diagram, we

can suppose that ρ(D(X̃)) = {α1, ..., αl−1}. First, we consider the case where X is

simple, i.e. X̃ is complete and coincides with X . In this case C(X̃) is generated

by −ω1 and ρ(D(X̃)). Indeed −ω2 = α1 − 2ω1 and −ωj+1 =
∑j

i=1 αj − ω1 −
ωj for each j = 2, ..., l − 1. We set fi = −el−i+1 and γi = αl−i, so that γi =

fi − fi+1 and −ω1 = 1
l+1 ((l + 1)fl −

∑l
i=0 fi) (we allow i to be 0). We have

renamed the simple restricted roots so that (γl−1,−ω1) = −1. Let {λ1, ..., λl} be

the dual basis of {γ1, ..., γl−1,−ω1}. We have λj = (
∑j

i=1 fi)− jf0, so (1/l)(lλj −

jλl) = (1/l)(l
∑j

i=1 fi − j
∑l

i=1 fi) is the j-th fundamental weight ω̃j of the root

system generated by γ1, ..., γl−1. Hence, the symmetric variety with ρ(D(X̃)) =

{α1, ..., αl−1}, N(X̃) = {−ω1} and χ∗(S) equal to the weight lattice of R∨
G,θ is

smooth. It is the only possibility for a simple X because of the Lemma 3.4.
Now we classify the X which are not simple. In this caseX has two closed orbits;

indeed the maximal colored cones of the colored fan ofX are (cone(α1, ..., αl−1, v), {Dα∨

1
, ...,

Dα∨

l−1
}) and (cone(α2, ..., αl, v), {Dα∨

2
, ..., Dα∨

l
}). Let bω1 be the primitive vector

of R+ω1; we have 1 ≤ b ≤ l + 1. Suppose first that (v, αl−1) = −δi,1 for each

i < l; then v =
∑l−1

i=1 aiγi − bω1, where the γi are as before. The ai are pos-
itive integers, because −C+ ∩ χ∗(S) ⊂ Z+(−ω1) +

∑
Z+γi; the coefficient of v

with respect to −ω1 is b because −bω1 belongs to the the lattice generated by

γ1, ..., γl−1 and v. Let {λ̃1, ..., λ̃l} be the dual basis of {γ1, ..., γl−1, v}; we have

λ̃l = (1/b)λl and λ̃i = λi − (ai/b)λl for each i < l. Because X̃ is smooth we have

ω̃j = 1
l (lλ̃j − jλ̃l) = 1

l (lλj − jλl) +
1
l (j −

laj

b − j
b )λl, so aj = (b−1)j

l . In partic-

ular l divides b − 1, so either b = 1 or b = l + 1. If b = 1, then the aj are all

zero and X̃ is complete, a contradiction. If b = l + 1, then aj = j for each j and
v = −ω1 − ωl is a root. Thus χ(S) must be the weight lattice of RG,θ. Notice that
−ω1 − ωl = −α1 − ...− αl, so {αl−1, ..., α1,−ω1 − ωl} is a basis of χ∗(S). Observe
that −ω1 − ωl is fixed by the non trivial automorphism of the Dynkin diagram.
Next, suppose that (αi, v) = −δi,l−1 for each i < l, so v = −ωl−1−aωl. We exclude
this case because the simple variety associated to cone(α2, ..., αl, v) is not smooth.

We have proved that, if X is not simple, then it is covered by two simple varieties
corresponding to the colored cones (cone(α1, ..., αl−1, −ω1 −ωl), {Dα∨

1
, ..., Dα∨

l−1
})

and (cone(α2, ..., αl,−ω1 − ωl), {Dα∨

2
, ..., Dα∨

l
}). If l is at least 3, then −ω2 does

not belongs neither to cone(α1, ..., αl−1,−ω1−ωl) nor to cone(α2, ..., αl, −ω1−ωl);
thus l must be 2. In this case, the previous colored cones define a complete variety
because cone(−α1,−α1 − α2) ⊂ cone(α2,−ω1 − ω2).

4) Suppose that RG,θ has type Bl with l > 2; then X must be simple. Observe
that the dual root system has type Cl and ρ(D(X)) = {α∨

1 , ..., α
∨
l−1}. We can

realize RG,θ as the set {±(ei ± ej) | i 6= j} ∪ {±ei} ⊂ Rl; moreover we can suppose
that the basis of RG,θ is {e1 − e2,...,el−1 − el, el}. The dual root system is {±(ei ±
ej) | i 6= j} ∪ {±2ei} ⊂ Rl and has basis {e1 − e2,...,el−1 − el, 2el}. Notice that the
cone generated by ρ(D(X)) and −C+ is equal to the cone cone(α∨

1 , ..., α
∨
l−1,−ω∨

1 ).

Indeed −ω∨
2 = α∨

1 − 2ω∨
1 and −ω∨

i =
∑i−1

j=1 α
∨
j −ω∨

1 −ω∨
i−1 for i ≥ 3. If χ(S) is the

root lattice of RG,θ, then C(X) ∩ χ∗(S) is generated by {α∨
1 , ..., α

∨
l−1,−ω∨

1 } which
is a basis of χ∗(S). Now we can proceed as in the case of Al because the Cartan
numbers (αi, α

∨
j ) with j < l are equal to the ones of Al; explicitly we define fi =

−el−i+1 and γi = αl−i, so that −ω1 = −ω∨
1 = fl, γ0 = −f1 and γi = γ∨

i = fi−fi+1
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for each i = 1, ..., l− 1. Let {λ1, ..., λl} be the dual basis of {γ∨
1 , ..., γ

∨
l−1,−ω∨

1 }; we

have λj =
∑j

h=1 fh, so (1/l)(lλj − jλl) = (1/l)(l
∑j

h=1 fh − j
∑l

h=1 fh) is the j-th
fundamental weight of the root system generated by γ1, ..., γl−1. We have proved
that in this case X is smooth. It is the only possibility because of Lemma 3.4.

5) Suppose now that RG,θ has type Cl. Then X must be simple and ρ(D(X))
must be equal to {α∨

1 , ..., α
∨
l−1}. Observe that the dual root system has type Bl. We

can realize RG,θ as {±(ei ± ej) | i 6= j} ∪ {±2ei} ⊂ Rl with basis {e1 − e2,...,el−1 −
el, 2el}; the dual root system is {±(ei ± ej) | i 6= j} ∪ {±ei}. The cone generated
by ρ(D(X)) and −C+ is cone(α∨

1 , ..., α
∨
l−1,−ω∨

1 ). Indeed −ω∨
2 = α∨

1 − 2ω∨
1 , −ω∨

i =∑i−1
j=1 α

∨
j − ω∨

1 − ω∨
i−1 for 2 < i < l and −2ω∨

l =
∑l−1

j=1 α
∨
j − ω∨

1 − ω∨
l−1. The

lattice χ∗(S) is generated by the restricted coroots because ω∨
l does not belong to

Z(−ω∨
1 ) ⊕

⊕l−1
i=1 Zα

∨
i ; thus G = Gθ. We have to exclude the cases where G/H is

Hermitian, because in such cases X would have rank 2. The set {α∨
1 , ..., α

∨
l−1,−ω∨

1 }

is a basis of χ∗(S) because −ω∨
1 = −

∑l
i=1 α

∨
i . We define fi = −el−i+1 and

γi = αl−i, so that −ω1 = −ω∨
1 = fl, γ0 = −2f1 and γi = γ∨

i = fi − fi+1 for each
i = 1, ..., l − 1. Let {λ1, ..., λl} be the dual basis of {γ∨

1 , ..., γ
∨
l−1,−ω1}, then λj =∑j

h=1 fh and (1/l)(lλj− jλl) = (1/l)(l
∑j

i=1 fi− j
∑l

i=1 fi) is the j-th fundamental
weight of the root system generated by γ1, ..., γl−1. Thus X is smooth if C(X) =

cone(γ∨
1 , ..., γ

∨
l−1,−ω1} and χ∗(S) =

⊕l
i=0 Zγ

∨
i ; it is the only possibility because of

Lemma 3.4.
6) Suppose that RG,θ has type B2. We can realize RG,θ as in the case of Bl

with l > 2. First suppose that ρ(D(X̃)) = {α∨
1 } and write v = −aω∨

1 − bω∨
2 . Let

{λ1, λ2} be the dual basis of {α
∨
1 , v}; we have λ1 = −α2−

b
a+2b (−α1−2α2) and λ2 =

1
a+2b (−α1−2α2). We have a = 1 because 1

2 (2λ1−λ2) =
1
2 (−2α2−

1+2b
a+2b (−α1−2α2))

must be 1
2α1. On the other hand 1 + 2b divides 2 because λ2 is a weight, so b = 0.

Hence v = −ω∨
1 ; in particular X̃ is complete and χ(S) is the restricted root lattice

because −ω∨
2 = −2ω∨

1 + α∨
1 . We have proved that there is only one smooth,

simple embedding with Picard number one and ρ(D(X̃)) = {α∨
1 }; moreover it is

complete. Thus there is no a smooth, complete, non simple embedding with Picard
number one, because otherwise it would strictly contain a simple, open, smooth G-

subvariety X̃ with Picard number one and ρ(D(X̃)) = {α∨
1 }. Finally, we consider

the case in which X is simple and ρ(D(X)) = {α∨
2 }, so C(X) = cone(−ω∨

2 , α
∨
2 ).

Because of the completeness of X , one can study this case exactly as the case 5)
of Cn. Observe that if G/H is Hermitian, then we have to consider only the first
possibility, because in the second case the Picard number would be 2.

7) Suppose now that RG,θ has type BCl. We can realize RG,θ as the set {±(ei±
ej) | i 6= j} ∪ {±2ei} ∪ {±ei} ⊂ Rl; we can also choose {e1 − e2,...,el−1 − el, el}
as basis of RG,θ. The weight lattice is equal to the root lattice; moreover, BCl

coincides with its dual root system in this realization as subset of Rl (but 2
(α,α)α

can be different from α). We proceed as in the cases of Bl and Cl. The G-
variety X must be simple; hence C(X) is the cone generated by −C+ and ρ(D(X)),
namely (cone(α∨

1 , ..., α
∨
l−1,−ω∨

1 ). Observe that we exclude the case where l = 2 and

ρ(D(X̃)) = {α∨
2 }, because RL,θ would have type BC1. The set {α

∨
1 , ..., α

∨
l−1, −ω∨

1 }
is a basis of the restricted coroot lattice because ω∨

1 = e1; now, one can prove the
smoothness of X exactly as in the case of Bn.

8) Suppose that RG,θ has type Dl. We can realize RG,θ as the set {±(ei±ej) | i 6=
j} ⊂ Rl; moreover we can choose {e1 − e2,...,el−1 − el, el−1 + el} as basis. In
particular, we can we identify the restricted roots with the corresponding coroots.

We can suppose, up to an automorphism of the Dynkin diagram, that ρ(D(X̃)) =

{α1, ..., αl−1}. Suppose first that (αi, v) = −δi,1 for each i < l, so v =
∑l−2

i=1(ia+i−
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1)αi+
(l−2)a+l−3

2 αl−1+
la+l−1

2 αl for an appropriate constant a. The restricted root

αl belongs to Zv⊕
⊕l−1

i=1 Zαi, thus its coordinate with respect to v, namely 2
la+l−1 ,

is an integer. On the other hand v = −ω1 − bωl; we obtain 2a = −b− 2 comparing
the coordinates of v in the bases of the simple restricted roots, respectively of
the fundamental spherical weights. The previous facts imply that b = 0, so v =
−ω1. We set fi = −el−i+1 and γi = αl−i, so that −ω1 = fl, γ0 = −f1 − f2
and γi = fi − fi+1 for each i = 1, ..., l − 1. Defining {λ1, ..., λl} as the dual basis

of {γ1, ..., γl−1, v}, we have λj =
∑j

i=1 fi for each j, thus 1
l (lλj − jλl) is the j-

th fundamental weight of RL,θ. Moreover the lattice χ∗(S) is freely generated by
ω1, ..., ωl−2, ωl−1 + ωl, 2ωl.

Suppose now that (αi, v) = −δi,l−1 for each i < l, thus v = −ωl−1 − bωl. More-

over v has to be equal to a
∑l−2

i=1 iαi +
(l−2)a−1

2 αl−1 + la+1
2 αl for an appropriate

constant a. We compare the coordinates of v in the bases of the simple restricted
roots, respectively of the fundamental spherical weights, obtaining 2a = −b − 1.
On the other hand, the restricted root αl must belong to the lattice generated by
{α1, ..., αl−1, v}, so its coordinate with respect to v, namely 2

la+1 , must be an inte-

ger; hence a = − 1
2 , v = −ωl−1 and l is equal either to 4 or to 6. If l = 4 we can

reduce this case to the one where C(X̃) = cone(α1, α2, α3,−ω1) by an automor-

phism of the Dynkin diagram. Finally consider the case where l = 6 and C(X̃) =

cone(α1, ..., α5,−ω5). The variety X̃ must be complete because the simple sym-
metric variety corresponding to (cone(α1, ..., α4, α6,−ω5), {Dα∨

1
, ..., Dα∨

4
, Dα∨

6
}) is

not smooth. But −ω3 is equal to − 3
2ω5 −

1
4α1 −

1
2α2 −

3
4α3 +

3
4α5, so it does not

belong to cone(α1, ..., α5,−ω5), a contradiction.
We have proved that, if l is different from 4, then there is at most one complete

symmetric variety with the requested properties and it is such that: 1) χ∗(S) =⊕l−2
i=1 Zωi ⊕ Z(ωl−1 + ωl) ⊕ Z2ωl; 2) the corresponding colored fan is formed by

(cone(α1, ..., αl−1,−ω1), {Dα∨

1
, ..., Dα∨

l−1
}), by (cone(α1, ..., αl−2, αl,−ω1), {Dα∨

1
, ...,

Dα∨

l−2
, Dα∨

l
}) and by their colored faces. We have to show that these combinato-

rial data define a variety and that this variety is complete. To verify that these
colored cones define a colored fan it is sufficient to prove that the intersection
of cone(α1, ..., αl−1,−ω1) with cone(α1, ..., αl−2, αl,−ω1) is cone(α1, ..., αl−2,−ω1).

Let
∑l−2

i=1 aiαi + bαl − cω1 =
∑l−2

i=1(ai − 2b)αi − bαl−1 + (−c + 2b)ω1 be a vec-
tor in the intersection, then b is equal to 0. The variety X is complete be-
cause cone(α1, ..., αl−1,−ω1) ∩ −C+ = cone(−ω1, ...,−ωl−2,−ωl−1 −ωl,−ωl) and
cone(α1, ..., αl−2, αl,−ω1) ∩ −C+ = cone(−ω1, ...,−ωl−2,−ωl−1 − ωl,−ωl−1). If l
is equal to 4, we can proceed in an analogous way.

If RG,θ has type El, we number the simple roots so that α1, α̂2, α3, ..., αl gen-
erated a root system of type Al−1; moreover we choose the inner product so that

αi = α∨
i for each i. Thus ρ(D(X̃)) has to be {α1, α̂2, α3, ..., αl} and X̃ must be

complete.
9) Suppose that RG,θ has type E6. Up to an automorphism of the Dynkin

diagram, we can suppose (αi, v) = −δi,6 for each i different from 2. Thus v =∑
aiαi = −aω2 − ω6, where a is a positive integer. We compare the coordinates

of v in the bases of the simple roots, respectively of the fundamental weights,
obtaining a2 = −2a− 1. On the other hand, α2 belongs to the lattice generated by
α1, α3, ..., α6, v, thus (a2)

−1 is an integer; hence v has to be −ω6. The weight −3ω1

is equal to −3ω6 − 2α1 −α3 + α5 + 2α6, so it does not belong to C(X̃). Thus X̃ is
not complete, a contradiction.

10) Suppose that RG,θ has type E7 and write v =
∑

aiαi. The coefficients
ai belong to 1

2Z because v is a weight. Moreover (a2)
−1 is an integer, because

α2 belongs to the lattice generated by α1, α3, ..., α7, v, thus a2 is equal either to
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±1 or to ± 1
2 . First suppose that (αi, v) = −δi,1 for each i different from 2, so

v = −ω1 − aω2 for an appropriate positive integer a. We compare the coordinates
of v in the bases of the simple restricted roots, respectively of the fundamental
spherical weights, obtaining a = 2

7 (−a2 − 2); thus a is not integer, a contradiction.
Finally, suppose that (α7, v) = −1. We have only to study the basis {λ1, ..., λ7},
where λ1 = ω1−

a1

a2
ω2, λi = ωi+1−

ai+1

a2
ω2 for 1 < i < 7 and λ7 = 1

a2
ω2. Comparing

the second coordinate of 1
7 (7λ1 − λ7) (with respect to the basis {α1, ..., α7}) with

the one of the first fundamental weight of RL,θ, we obtain 7a1 = 4a2 − 1. Thus
2(4a2 − 1) is integral multiple of 7, a contradiction.

11) Suppose that RG,θ has type E8 and write v =
∑

aiαi. Notice that the
root lattice of RG,θ is equal to the weight lattice. The integer a2 is ±1 because
{α1, α3, ..., α8, v} is a basis of χ∗(S). First, suppose that v = −ω1 − aω2 for an
appropriate positive integer a. We compare the coordinates of v in the two bases,
respectively of simple restricted roots and fundamental spherical weights, obtaining
a = 1

8 (−a2− 5); so a is not integer, a contradiction. Finally, suppose that (α8, v) =
−1. We have only to study the indexed basis {λ1, ..., λ8} with λ1 = ω1 − a1

a2
ω2,

λi = ωi+1−
ai+1

a2
ω2 for 1 < i < 8 and λ8 = 1

a2
ω2. Comparing the second coordinate

of 1
8 (8λ1 − λ8) (with respect to the basis {α1, ..., α8}) with the one of the first

fundamental weight of RL,θ, we obtain 8a1 = 5a2 − 1. On the other hand, 5a2 − 1
cannot be a integral multiple of 8, a contradiction.

12) If RG,θ has type F4, then RL,θ cannot have type A3 and there are no simple
smooth varieties with Picard number one.

13) Suppose that RG,θ has type G2 (and assume α1 short). Write v = −aω∨
1 −

bω∨
2 and observe that the weight lattice coincides with the root lattice. First,

suppose that D(X) contains Dα∨

1
, hence X contains a simple smooth subvariety

X̃ with C(X̃) = cone(α∨
1 , v). Let {λ1, λ2} be the dual basis of {α∨

1 , v}. We have
λ1 = − 1

3α2 +
b

9a+6b (3α1 + 2α2) and λ2 = − 1
3a+2b (3α1 + 2α2). Thus 3a+ 2b must

divide 2 and 3, so it must be 1, a contradiction. Thus X is simple and C(X) =
cone(α∨

2 ,−ω∨
2 ). The dual basis of {α∨

2 ,−ω∨
2 } is {−α1,−α2 − 2α1}. Moreover

1
2 (2λ1 − λ2) =

1
2α2 is the fundamental weight of RL,θ. Thus the variety associated

to (cone(α∨
2 ,−ω∨

2 ), Dα∨

2
) is smooth.

Lemma 3.5. Every smooth completion X of G/H with Picard number 1 is projec-
tive.

Proof. It is sufficient to consider the varieties which are not simple. There are
exactly two maximal colored cones, say (ς1, I1) and (ς2, I2); moreover there are
exactly two colors, say D1 ∈ I1 and D2 ∈ I2, which does not belong to I1 ∩ I2.
We claim that D1 + D2 is an ample divisor. Indeed, let ϕ be the function over
ς1 ∪ ς2 corresponding to D1 +D2 (see Theorem 3.1 in [1]) and let li be the linear
function which coincides with ϕ over ςi. The cone ςi is generated by ρ(Di) and
ς1 ∩ ς2; moreover ρ(D1) and ρ(D2) are permutated by the reflection with respect
to the hyperplane generated by ς1 ∩ ς2. Thus l1(ρ(D2)) = −1 < 1 = ϕ(ρ(D2))
and l2(ρ(D1)) = −1 < 1 = ϕ(ρ(D1)), because spanR(ς1 ∩ ς2) is the kernel of
both l1 and l2. Hence ϕ is strictly convex over the colored fan of X . Moreover
D(X) = D(G/H), therefore D1 +D2 is ample by Theorem 3.3 in [1]. �

We have proved the following theorem:

Theorem 3.1. Let G be a semisimple simply connected group and let G/H be a ho-
mogeneous symmetric variety. Suppose that there is a smooth, complete embedding
X of G/H with Picard number one. Then:

• Given G/H, there is, up to equivariant isomorphism, at most one embed-
ding with the previous properties.
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• The symmetric variety X is projective.
• The number of colors of G/H is equal to the rank l of G/H; in particular
there are no exceptional roots. If, in addition, l is at least 3, then G/H is
not Hermitian.

• The restricted root system RG,θ is irreducible or has type A1 ×A1.
• We have two possibilities:

(1) X is simple and D(X) has cardinality l − 1.
(2) X contains two closed orbits, D(X) is equal to D(G/H) and H has

index two in NG(G
θ).

In particular, X is simple if H = NG(G
θ).

• We have the following classification depending on the type of the restricted
root system RG,θ :
(1) If RG,θ has type A1×A1, then χ(S) has basis {2ω1, ω1+ω2}; in particu-

lar H has index two in NG(G
θ). Moreover, X has two closed orbits; the

maximal colored cones of the colored fan of X are (cone(α∨
1 ,−ω∨

1 −ω∨
2 ),

{Dα∨

1
}) and (cone(α∨

2 ,−ω∨
1 − ω∨

2 ), {Dα∨

2
}).

(2) If l = 1, then G/H can be isomorphic neither to SLn+1/S(L1 × Ln),
nor to SL2/SO2. With such hypothesis, G/H has a unique non trivial
embedding which is simple, projective, smooth and with Picard number
1.

(3) If RG,θ has type Al with l > 1, we have the following possibilities:
– H = NG(G

θ) and X is simple. In this case X is associated either
to the colored cone (cone(α∨

1 , ..., α
∨
l−1,−ω∨

1 ), {Dα∨

1
, ..., Dα∨

l−1
})

or to the one (cone(α∨
2 , ..., α

∨
l ,−ω∨

l ), {Dα∨

2
, ..., Dα∨

l
});

– H = Gθ and l = 2. In this case X has two closed orbits. The
maximal colored cones of the colored fan of X are (cone(α∨

1 ,−ω∨
1 −

ω∨
2 ), {Dα∨

1
}) and (cone(α∨

2 ,−ω∨
1 − ω∨

2 ), {Dα∨

2
}).

(4) If RG,θ has type B2, then X is simple and we have the following pos-
sibilities:

– H = NG(G
θ) and X is associated to the colored cone (cone(α∨

1 ,
−ω∨

1 ), {Dα∨

1
});

– H = Gθ and X is associated to the colored cone (cone(α∨
2 ,−ω∨

2 ),
{Dα∨

2
}). Moreover G/H cannot be Hermitian.

(5) If RG,θ has type Bl with l > 2, then H = NG(G
θ), X is simple and is

associated to the colored cone (cone(α∨
1 , ..., α

∨
l−1,−ω∨

1 ), {Dα∨

1
, ..., Dα∨

l−1
}).

(6) If RG,θ has type Cl, then H = Gθ, X is simple and corresponds to
the colored cone (cone(α∨

1 , ..., α
∨
l−1,−ω∨

1 ), {Dα∨

1
, ..., Dα∨

l−1
}). Moreover

G/H cannot be Hermitian.
(7) If RG,θ has type BCl with l > 1, then H = NG(G

θ) = Gθ, X is simple
and corresponds to the colored cone (cone(α∨

1 , ..., α
∨
l−1,−ω∨

1 ), {Dα∨

1
, ...,

Dα∨

l−1
}).

(8) If RG,θ has type Dl with l > 4, then χ∗(S) is freely generated by
ω∨
1 , ..., ω

∨
l−2, ω

∨
l−1+ω∨

l , 2ω
∨
l ; in particular H has index two in NG(G

θ).
X has two closed orbits; the maximal colored cones of the colored fan
of X are (cone(α∨

1 , ..., α
∨
l−1,−ω∨

1 ), {Dα∨

1
, ..., Dα∨

l−1
}) and (cone(α∨

1 , ...,

α∨
l−2, α

∨
l ,−ω∨

1 ), {Dα∨

1
, ..., Dα∨

l−2
, Dα∨

l
}).

(9) If RG,θ has type D4, then H has index two in NG(G
θ) and X has

two closed orbits. If χ∗(S) = Zω∨
i ⊕ Zω∨

2 ⊕ Z(ω∨
j + ω∨

k )⊕ Z2ω∨
k , then

the maximal colored cones of the colored fan of X are (cone(α∨
i , α

∨
2 ,

α∨
j ,−ω∨

i ), {Dα∨

i
, Dα∨

2
, Dα∨

j
}) and (cone(α∨

i , α
∨
2 , α

∨
k ,−ω∨

i ), {Dα∨

i
, Dα∨

2
,

Dα∨

k
}).
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(10) The type of RG,θ cannot be E6, E7, E8 or F4.
(11) If RG,θ has type G2 then H = NG(G

θ) = Gθ, X is simple and is
associated to the colored cone (cone(α∨

2 , ,−ω∨
2 ), {Dα∨

2
}).
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Errata corrige to “Geometrical description of smooth projective

symmetric varieties with Picard number equal to one”

In Theorem 2 of [13] it is said that “the smooth completion X of G2/(SL2×SL2)
with Pic(X) = Z parametrizes the subspaces W of C7 such that W ⊕ C1 is a
subalgebra of OC isomorphic to the complexified quaternions.” I would to thank
P. Chaput which pointed to me that I have only proved that X parametrizes the
subspace such that W ⊕ C1 is an associative subalgebra of OC of dimension four.
But W ⊕ C1 it is not always a composition algebra. Indeed, while W ⊕ C1 is a
composition algebra if W is in the open G2-orbit, when W is in the closed G2-orbit,
W ⊕C1 is isomorphic to the exterior algebra

∧∗
C2 of C2. In particular, the proof

of Proposition 1, §2.2 of [13] holds if one deletes the last line.
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