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FANO SYMMETRIC VARIETIES WITH LOW RANK

Alessandro Ruzzi

Abstract

The symmetric projective varieties of rank one are all smooth and
Fano by a classic result of Akhiezer. We classify the locally factorial
(respectively smooth) projective symmetric G-varieties of rank 2 which
are Fano. When G is semisimple we classify also the locally factorial
(respectively smooth) projective symmetric G-varieties of rank 2 which
are only quasi-Fano. Moreover, we classify the Fano symmetric G-varieties
of rank 3 obtainable from a wonderful variety by a sequence of blow-ups
along G-stable varieties. Finally, we classify the Fano symmetric varieties
of arbitrary rank which are obtainable from a wonderful variety by a
sequence of blow-ups along closed orbits.

keywords: Symmetric varieties, Fano varieties.

MSC 2010: 14M17, 14J45, 14L30

A Gorenstein (projective) normal algebraic variety X over C is called a Fano
variety if the anticanonical divisor is ample. The Fano surfaces are classically
called Del Pezzo surfaces. The importance of Fano varieties in the theory of
higher dimensional varieties is similar to the importance of Del Pezzo surfaces
in the theory of surfaces. Moreover Mori’s program predicts that every uniruled
variety is birational to a fiberspace whose general fiber is a Fano variety (with
terminal singularities).

Let θ be an involution of a reductive group G (over C) and let H be a closed
subgroup of G such that Gθ ⊂ H ⊂ NG(G

θ). A symmetric variety is a normal
G-variety with an open orbit isomorphic to G/H . The symmetric varieties are a
generalization of the toric varieties. The toric smooth Fano varieties with rank
at most four are been classified. By [AlBr04], Theorem 4.2 there is only a finite
number of Fano smooth symmetric varieties with a fixed open orbit. In [Ru07]
we have classified the smooth compact symmetric varieties with Picard number
one and G semisimple, while in [Ru10] we have given an explicitly geometrical
description of such varieties; they are automatically Fano.

In this work, we want to classify the Fano symmetric varieties with low rank
(and G semisimple). First, we consider a special case of arbitrary rank. We say
that a variety X is quasi Q-Fano if −KX is a nef and big Q-divisor. Fixed an
open orbit G/H with G semisimple, there is a unique maximal compactifica-
tion between the ones which have only one closed orbit. Such variety is called
the standard compactification. If it is also smooth, it is called the wonderful
compactification; this is the case, for example, if H = NG(G

θ) (see [dCoPr83],
Theorem 3.1). We prove that the standard symmetric varieties are all quasi
Q-Fano and we describe when they are Fano. We determine also the symmet-
ric Fano varieties obtainable from a wonderful one by a sequence of blow-ups
along closed orbits. In particular, we prove that such a variety must be either a
wonderful one or the blow-up of a wonderful one along the unique closed orbit.
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Next we consider the symmetric varieties of rank at most three. The rank
of a symmetric variety X is defined as the rank of C(X)(B)/C∗, where B is
any fixed Borel subgroup of G. The symmetric varieties with rank one are all
wonderful; moreover one can show that they are isomorphic, under the action
of Aut0(X), either to a projective homogeneous variety G/P with P maximal,
or to Pn × Pn (see [A83]). Thus they are all Fano.

We classify all the locally factorial (resp. smooth) Fano symmetric varieties
of rank 2. When G is semisimple, we classify also the locally factorial (resp.
smooth) symmetric varieties which are only quasi-Fano. In the proof of such
result we obtain a classification of the toroidal Fano varieties of rank 2 with G
semisimple (without assumption on the regularity).

Finally, we classify the smooth Fano symmetric varieties of rank three which
are obtainable from a wonderful one by a sequence of blow-ups alongG-subvarieties
(in particular G is semisimple). This class of varieties is quite large; indeed any
compact symmetric variety is dominated by a variety obtained from the wonder-
ful one by a sequence of blow-ups along G-subvarieties of codimension two (see
[dCoPr85], Theorem 2.4). This result on 3-rank varieties can be generalized to
varieties obtainable from a generic wonderful varieties of rank 3 by a sequence
of blow-ups along G-subvarieties (without suppose G/H symmetric).

1 Introduction and notations

In this section we introduce the necessary notations. The reader interested to
the embedding theory of spherical varieties can see [Kn91], [Br97a] or [T06]. In
[Vu90] is explained such theory in the particular case of symmetric varieties.

1.1 First definitions

Let G be a connected reductive algebraic group over C and let θ be an involution
of G. Given a closed subgroup H such that Gθ ⊂ H ⊂ NG(G

θ), we say that
G/H is a symmetric space and that H is a symmetric subgroup. A normal
G-variety is called a spherical variety if it contains a dense B-orbit (B is a
chosen Borel subgroup of G). We say that a subtorus of G is split if θ(t) = t−1

for all its elements t; moreover it is a maximal split torus if it has maximal
dimension. A maximal torus containing a maximal split torus is maximally
split; any maximally split torus is θ stable (see [T06], Lemma 26.5). We fix
arbitrarily a maximal split torus T 1 and a maximally split torus T containing
T 1. Let RG be the root system of G w.r.t. T . We can choose a Borel subgroup
T ⊂ B such that, for any positive root α, either θ(α) = α or θ(α) is negative.
Moreover, BH is dense in G (see [dCoPr83], Lemma 1.2 and Proposition 1.3).
In particular, every normal equivariant embedding of G/H is spherical; we call
it a symmetric variety.

We can assume that G is the direct product of a simply connected, semisim-
ple group with a central split torus.

1.2 Colored fans

Now, we introduce some details about the classification of the symmetric va-
rieties by their colored fans (this classification is defined more generally for
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spherical varieties). Let D(G/H) be the set of B-stable prime divisors of G/H ;
its elements are called colors. We say that a spherical variety is simple if it con-
tains one closed orbit. Let X be a simple symmetric variety with closed orbit
Y . We define the set of colors of X as the subset D(X) of D(G/H) consisting
of the colors whose closure in X contains Y . To each prime divisor D of X ,
we can associate the normalized discrete valuation vD of C(G/H) whose ring is
OX,D; D is G-stable if and only if vD is G-invariant. Let N be the set of all G-
invariant valuations of C(G/H) taking value in Z and let N(X) be the set of the
valuations associated to the G-stable prime divisors of X . Observe that each ir-
reducible component of X \ (G/H) has codimension one, because G/H is affine.
Let S := T/ T ∩H ≃ T · (eH/H). One can show that the group C(G/H)(B)/C∗

is isomorphic to the character group χ(S) of S (see [Vu90], §2.3); in particular,
it is a free abelian group. We define the rank l of G/H as the rank of χ(S). We
can identify the dual group HomZ(C(G/H)(B)/C∗,Z) with the group χ∗(S) of
one-parameter subgroups of S; so we can identify χ∗(S)R with HomZ(χ(S),R).
The restriction map to C(G/H)(B)/C∗ is injective over N (see [Br97a], §3.1
Corollaire 3), so we can identify N with a subset of χ∗(S)R. We say that N is
the valuation monoid of G/H . For each color D, we define ρ(D) as the restric-
tion of vD to χ(S). In general, the map ρ : D(G/H)→ χ∗(S)R is not injective.
Let C(X) be the cone in χ∗(S)R generated by N(X) and ρ(D(X)). We say that
the pair (C(X), D(X)) is the colored cone of X; it determines univocally X (see
[Br97a], §3.3 Théorème).

Let Y be an orbit of a symmetric variety X . The set {x ∈ X | G · x ⊃ Y }
is an open simple G-subvariety of X with closed orbit Y , because any spherical
variety contains only a finite number of G-orbits. Let {Xi} be the set of open
simple subvarieties of X and define the set of colors of X , D(X), as

⋃
i∈I D(Xi).

The family F(X) := {(C(Xi), D(Xi))}i∈I is called the colored fan of X and de-

termines completely X (see [Br97a], §3.4 Théorème 1). Moreover X is compact
if and only if cone(N) is contained in the support |F(X)| :=

⋃
i∈I C(Xi) of the

colored fan (see [Br97a], §3.4 Théoremè 2).
Given a symmetric variety X we denote by ∆ (or by ∆X) the fan associated

to the colored fan of X , by ∆(i) the set of i-dimensional cones in ∆ and by
∆[p] the set of primitive generators of the 1-dimensional cones of ∆. The fan
∆ is formed by all the faces of the cones C such that there is a colored cone
(C,F ) ∈ F(X). The toric varieties are a special case of symmetric varieties. If
X is a toric variety, then D(G/H) is empty and we need only to consider the fan
∆X (actually the theory of colored fans is a generalization of the classification
of toric varieties by fans).

1.3 Restricted root system

To describe the sets N and ρ(D(G/H)), we associate a root system to G/H .
We can identify χ(T 1)R with χ(S)R because [χ(S) : χ(T 1)] is finite. We call
again θ the involution induced on χ(T )R. The inclusion T 1 ⊂ T induces an
isomorphism of χ(T 1)R with the (−1)-eigenspace of χ(T )R under the action of
θ (see [T06], §26). Denote by WG the Weyl group of G (w.r.t. T ). We can
identify χ(T 1)R with its dual χ∗(T

1)R by the restriction ( ·, ·) to χ(T 1)R of a
fixed WG-invariant non-degenerate symmetric bilinear form on χ(T )R . Let R0

G

be the set of roots fixed by θ and let R1
G be RG \R

0
G. Let R

i,+
G := Ri

G ∩R
+
G.

The set RG,θ := {β − θ(β) | β ∈ R1
G} is a root system in χ(S)R (see [Vu90],
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§2.3 Lemme), which we call the restricted root system of (G, θ); we call the non
zero β − θ(β) the restricted roots. Usually we denote by β (resp. by α) a root
of RG (resp. of RG,θ); often we denote by ̟ (resp. by ω) a weight of RG

(resp. of RG,θ). We denote by RG = {β1, ..., βn} the basis of RG associated

to B and by ̟1, ..., ̟n the fundamental weights of RG. Let R
i

G be RG ∩ R
i
G.

There is a permutation θ of R
1

G such that, ∀β ∈ R
1

G, θ(β) + θ(β) is a linear

combination of roots in R
0

G. We denote by α1, ..., αs the elements of the basis

RG,θ := {β − θ(β) |β ∈ R
1

G} of RG,θ. If RG,θ is irreducible we order RG,θ as in
[Bo68]. Let bi be equal to 1

2 if 2αi belongs to RG,θ and equal to one otherwise;

for each i we define α∨
i as the coroot 2bi

(αi,αi)
αi. The set {α

∨
1 , ..., α

∨
s } is a basis of

the dual root system R∨
G,θ. We call the elements of R∨

G,θ the restricted coroots.
Let ω1, ..., ωs be the fundamental weights of RG,θ w.r.t. {α1, ..., αs} and let
ω∨
1 , ..., ω

∨
s be the fundamental weights of R∨

G,θ w.r.t. {α∨
1 , ..., α

∨
s }. Let C+ be

the positive closed Weyl chamber of χ(S)R and let C− := −C+.
We say that a dominant weight ̟ ∈ χ(T ) is a spherical weight if V (̟)

contains a non-zero vector fixed by Gθ. In this case, V (̟)G
θ

is one-dimensional
and θ(̟) = −̟, so ̟ belongs to χ(S)R. One can show that set of dominant
weights of RG,θ is the set of spherical weights and that C+ is the intersection of
χ(S)R with the positive closed Weyl chamber of RG. Suppose βj − θ(βj) = αi,
then ωi is a positive multiple of ̟j + ̟θ(j). More precisely, we have ωi =

̟j + ̟θ(j) if θ(j) 6= j, ωi = 2̟j if θ(j) = j and βj is orthogonal to R0
G and

ωi = ̟j otherwise (see [ChMa03], Theorem 2.3 or [T06], Proposition 26.4). We
say that a spherical weight is regular if it is strictly dominant as weight of the
restricted root system.

1.4 The sets N and D(G/H)

The set N is equal to C−∩ χ∗(S); in particular, it consists of the lattice vectors
of the rational, polyhedral, convex cone C− = cone(N). The set ρ(D(G/H)) is

equal to R
∨

G,θ and any fibre ρ−1(α∨) contains at most 2 colors. For any simple
spherical variety X , N(X) is formed by the primitive generators of the 1-faces
of C(X) which are contained in cone(N). When X is symmetric, also ρ(X)
can be recovered by C(X): its elements generate the 1-faces of C(X) which are
not contained in C−. We say that (G, θ) indecomposable if the unique normal,
connected, θ-stable subgroup of G is the trivial one. In this case the number
of colors is at most equal to rank (G/H) + 1. If θ is indecomposable then
there are three possibilities: i) G is simple; ii) G = Ġ × Ġ with Ġ simple and
θ(x, y) = (y, x); iii) G = C∗ and θ(t) = t−1. See [Wa72], §1.1 for a classification
of the involution of a simple group. In [Wa72] (and in [Ru10], §1) are also
indicated the Satake diagrams of the indecomposable involutions. The Satake
diagram of any involution (G, θ) is obtained from the Dynkin diagram of G as

follows: 1) the vertices corresponding to element of R
0

G (resp. of R
1

G) are black

(resp. white); 2) two simple roots β1, β2 ∈ R
1

G such that θ(β1) = β2 are linked
by a double-headed arrow.

If ♯D(G/H) > rank(G/H) and (G, θ) is indecomposable, we have two pos-
sibilities: 1) Gθ = H = NG(G

θ); 2) H = Gθ and [Gθ : NG(G
θ)] = 2. In the last

case any element of NG(G
θ)\Gθ exchanges two colors and RG,θ has type A1,

B2 or Cn. We say that a simple restricted root α is exceptional if ♯ρ−1(α∨) = 2
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and 2α is a restricted root. In this case the irreducible factor of RG,θ containing
α is associated to an indecomposable factor of G/Gθ as in 1). We say that also
(G, θ) and any symmetric variety (with open orbit G/H) are exceptional. We
denote by Dα the sum of the colors in ρ−1(α∨) and by Dω the G-stable divisor
corresponding to (R≥0ω,∅) ∈ F(X).

1.5 Toroidal symmetric varieties

In this section we want to define a special class of varieties. We say that a
spherical variety is toroidal if D(X) = ∅. Let (C,F ) be a colored cone of
X, we say that the blow-up of X along the subvariety associated to (C,F ) is
the blow-up of X along (C,F ). In the following of this section we suppose G
semisimple. Then there is a special simple compactification of G/H because
NG(H)/H is finite. This compactification, called the standard compactification
X0, is associated to (cone(N),∅) and it is the maximal simple compactification
of G/H in the dominant order. We define ei as the primitive positive multiple
of −ω∨

i (in χ∗(S)), so ∆X0
[p] = {e1, ..., el}. The standard compactification is

wonderful (i.e. it is also smooth) if and only if χ∗(S) =
⊕

Zei. De Concini
and Procesi have proved that X0 is wonderful if H = NG(G

θ), or equivalently
χ∗(S) =

⊕
Zω∨

i (see [dCoPr83] Theorem 3.1).
The standard compactification X0 contains an affine toric S-variety Z0,

which is a quotient of an affine space by a finite group. The toroidal varieties
are the symmetric varieties which dominates the standard compactification and
are in one-to-one correspondence with the S-toric varieties which dominates Z0.

Let P be the stabilizer of the B-stable affine open set U := X0 \
⋃

D(G/H)D.

This open set is P -isomorphic to RuP × Z0, where RuP =
∏

β∈R1,+
G

Uβ is the

unipotent radical of P and dimZ0 = rankX0. To any toroidal variety X we
associated the inverse image Z of Z0 by the projection X → X0. Moreover,
X \

⋃
D(G/H)D is P -isomorphic to RuP ×Z. The toroidal varieties are also in

one-to-one correspondence with a class of compact toric varieties in the following
way. To a symmetric variety X , we associate the closure Zc of Z in X ; Zc is
also the inverse image of Zc

0. The fan of Z is the fan ∆X associated to the
colored fan of X , while the fan of Zc consists of the translates of the cones of
Z by the Weyl group WG,θ

∼= NGθ(T 1)/CGθ(T 1) of RG,θ.

1.6 The Picard group

The class group of a symmetric variety is generated by the classes of the B-
stable prime divisors modulo the relations div(f) with f ∈ C(G/H)(B). Indeed
Cl(BH/H) = Pic(BH/H) is trivial. Given ω ∈ χ(S) we denote by fω the
element of C(G/H)(B) with weight ω and such that fω(H/H) = 1.

A Weyl divisor
∑

D∈D(G/H) aDD+
∑

E∈N(X) bEE is a Cartier divisor if and

only if, for any (C,F ) ∈ F(X), there is hC ∈ χ(S) such that hC(E) = aE
∀E ∈ C and hC(ρ(D)) = aD ∀D ∈ F . Let PL′(X) be the set of functions
on the support |F(X)| such that: 1) are linear on each colored cone; 2) are
integer on χ∗(S) ∩ |F(X)|. Let L(X) ⊂ PL′(X) be the subset composed by
the restrictions of linear functions and let PL(X) := PL′(X)/L(X). The {hC},
corresponding to any Cartier divisor, defines an element of PL(X). If X is
compact, there is an exact sequence (see [Br89], Théorème 3.1):

5



0→
⊕

D∈D(G/H)\D(X)

ZD → Pic(X)→ PL(X)→ 0.

A Cartier divisor is globally generated (resp. ample) if and only if the
associated function is convex (resp. strictly convex) and hC(ρ(D)) ≤ aD (resp.
hC(ρ(D)) < aD) ∀(C,F ) ∈ F(X) and ∀D ∈ D(G/H) \ F . Given any linearized
line bundle L, the space H0(X,L) is a multiplicity free G-module and, if L is
globally generated, the highest weights of H0(X,L) are the elements of χ(S) ∩
hull({hC}dimC=l), where hull({x1, ..., xm}) is the convex hull of x1, ..., xm (see
[Br89], §3). Thus, a Cartier divisor on a projective symmetric variety is nef if
and only if it is globally generated. Moreover, a nef G-stable Cartier divisor
on a projective symmetric variety is big if and only if the associated piecewise
linear function h is such that (

∑
C∈∆(l) hC , R

∨) 6= 0 for each irreducible factor

R∨ of R∨
G,θ (see [Ru09] Theorem 4.2). In particular, when θ is indecomposable

every non-zero nef G-stable divisor is big. When X is toroidal we have an exact
split sequence

0→ Pic(X0)→ Pix(X)→ Pic(Z)→ 0.

A normal variety X is locally factorial if the Picard group is isomorphic
to the class group, while X is Q-factorial if Pic(X)Q ∼= Cl(X)Q. A simple
symmetric variety associated to a colored cone (C,F ) is locally factorial if: i)
C is generated by a subset of a basis of χ∗(S) and ii) ρ is injective over F
(see [Br97b] for a general statement in the spherical case). When the variety is
toroidal the locally factoriality is equivalent to the smoothness.

An anticanonical divisor −KX of X is
∑

α∈R
∨

G,θ
aαDα +

∑
E∈N(X)E with

∑
aαωα = 2ρ−2ρ0. Here 2ρ := 2ρRG

=
∑

α∈R+

G
ωα is the sum of all the positive

roots of RG, while 2ρ0 := 2ρR0
G
is the sum of the positive roots in R0

G.

Let k (or kX) be the piecewise linear function associated to −KX . The
anticanonical divisor −KX is linearly equivalent to a unique G-stable divisor
−K̃X . The piecewise linear function k̃ (or k̃X) associated to −K̃X is equal

to k − 2ρ + 2ρ0 over N(X) and to 0 over ρ(D(X)). Indeed −K̃X is −KX +
div(

∏
α∈RG,θ

faα
α ), where fα ∈ C(G/H)(B) is an equation of Dα (of weight ωα).

In particular k̃ = k − 2ρ+ 2ρ0 if X is toroidal.

2 Standard symmetric varieties

In the following, unless explicitly stated, we always suppose G semisimple (we
will consider the general reductive case mainly in §5.3). Moreover, we often
denote the normalizator NG(H) by N(H). In this section we show that all the
standard symmetric varieties are quasi Q-Fano varieties; moreover we classify
the Fano ones. When the rank of G/H is one, the standard compactification
X0 of G/H is the unique G-equivariant compactification. In such a case X0

is an homogeneous projective variety w.r.t. Aut0(X) by [A83]; moreover it is
wonderful and Fano, because either it is Pn × Pn or it has Picard number one.

First of all, we reduce ourselves to the indecomposable case. Write (G, θ)
as a product

∏
(Gj , θ) of indecomposable involutions and let Xj be standard

compactification of Gj/(Gj ∩H).
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G/H θ n, l wonderful

Spin2n+1/(Spinl × Spin2n+1−l) BI n ≥ l ≥ 4 no
Spin7/(Spin3 × Spin4) BI n = l = 3 no

Sp2n/N(GLn) CI n = l ≥ 3 yes
Spin2l/N(Spinl × Spinl) DI n = l ≥ 4 yes

Spin2n/H DI n = l ≥ 6 no
(Gθ ⊂ H ( N(Gθ))

Spin2n/(Spinl × Spin2n−l) DI n > l ≥ 4 no
Spin8/(Spin3 × Spin5) DI n = 4, l = 3 no

E6/N(C4) EI yes
E7/N(A7) EV yes
E7/A7 EV no
E8/D8 EV III yes

F4/(C3 ×A1) FI yes
G2/(A1 ×A1) G yes

Figure 1: Non Q-Fano standard indecomposable symmetric varieties

Lemma 2.1 The variety X is (quasi) Q-Fano if and only if all the Xi are
(quasi) Q-Fano.

Proof. The weight k̃X is equal to
∑
k̃Xi

. �.
A standard symmetric variety is always Q-factorial; in particular, KX is a

Q-Cartier divisor. Moreover, if X is wonderful then also the Xj are wonderful
and X =

∏
Xj (see [Ru09] Corollary 2.1). We have the following theorem:

Theorem 2.1 Let X be a standard indecomposable symmetric variety. Let n
be the rank of G and let l be the rank of X. Then:

• The anticanonical divisor of X is always a nef and big Q-divisor.

• Suppose X wonderful. Then it is not a Fano variety if and only: i) if the
involution induced on χ(S)R is −id; ii) RG,θ is different from An and Bn;
iii) H = NG(G

θ).

• The standard indecomposable varieties whose anticanonical divisor is not
ample are compactifications of the symmetric spaces in Figure 1.

Proof. We have to determine when (k̃C− , αi) ≤ 0 for each i ∈ {1, ...l}. We
can write −2ρ+ 2ρ0 as the sum of the spherical weights −2ρ̃ = −2

∑
βj∈R

1

G

̟j

and 2ρ̃0 =−2
∑

βj∈R
0

G

̟j+2ρ0. Write βj−θ(βj) = αi, so (k̃C− , αi) = 2(kC− , βj)

and (2ρ̃0, αi) = 4(ρ0, βj) ≤ 0. Thus (−2ρ + 2ρ0)(α
∨
i ) = −1 if ωi = 2̟j

and (−2ρ + 2ρ0)(α
∨
i ) ≤ −2 otherwise. Suppose now H autonormalizing, i.e.

H = N(Gθ); the case where H ( N(H) is very similar. We want to study

kC− = −
∑l

i=1 αi. By the expression of the Cartan matrix of RG,θ, kC−(α∨
i ) ≤ 1

for each i. Therefore k̃C− is always anti-dominant. If k̃C− is not regular, then
there is (a unique) αi = 2βj ∈ RG,θ such that kX(α∨

i ) = 1; in particular G is

simple. By the classification of the involutions by their Satake diagrams, k̃C−

is not regular if and only if θ = −id over χ(S) and RG,θ is different by Al and
Bl. �
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3 Blows-ups along closed orbits

In this sections we want to prove a partial result in arbitrary rank. We restrict
ourselves to the smooth toroidal case. For the toric varieties of rank 2 one can
easily proves the following property (*):

Let Z be a smooth toric variety of rank 2 and let Z ′ be a smooth toric variety
birationnaly proper over Z. If the anticanonical bundle of Z ′ is ample, then also
the anticanonical bundle of Z is ample.

This allows to prove easily that a smooth toric variety proper over A2 with
ample anticanonical bundle is either A2 or its blow-up in the origin. We would
like to use a similar property to classify the smooth toroidal Fano symmetric
varieties. Unfortunately the previous property (*) is false already in rank three.
Indeed, let Z be the 3-dimensional toric variety whose fan ∆ has maximal cones
cone(e1, e2, e3) and cone(e1, e2, e1 + e2 − e3), where {e1, e2, e3} is any basis of
χ∗(S). The function associated to its anticanonical bundle is linear, so −KZ

is nef but non-ample. Furthermore, the blow-up Z ′ of Z along cone(e1, e2) is
Fano. We can take Z × Am as higher dimensional example.

In the previous example, we have considered a blow-up along a subvariety
with strictly positive dimension. Now, we prove a property similar to (*) con-
sidering only blow-ups along compact orbits, i.e. S-fixed points. In the next
section, we prove a much stronger statement when the rank is three.

Lemma 3.1 Let Z be a smooth l-dimensional toric variety whose fan contains
two l-dimensional cones σ+ and σ− such that: i) σ+ ∩ σ− has dimension l − 1
and ii) σ+ ∪ σ− is strictly convex. Assume moreover that the piecewise linear
function associated to the anticanonical bundle of Z is not strictly convex on
σ+ ∪ σ−. Then the anticanonical bundle of any toric variety obtained from Z
by a sequence of blow-ups centred in S-fixed points is not ample.

We can reformulate the first hypothesis in a more combinatorial way. Indeed,
we can write σ+ = cone(v1, ..., vl−1, v+) and σ− = cone(v1, ..., vl−1, v−) with
v1, ..., vl−1, v+, v− primitive and v+ + v− =

∑
aivi, where the ai are positive

integers, not all zero.
Proof of Lemma 3.1. The anticanonical bundle of a variety with satisfies the

hypotheses of the lemma is not ample. Thus, it is sufficient to show that the
blow-up Z ′ of Z centered in any σ ∈ ∆(l) satisfies again the hypotheses of the
lemma. We can suppose σ = σ+ by symmetry. Then the fan of Z ′ contains σ−
and σ′ := cone(v1, ..., vl−1, v++

∑
vi). We have (v++

∑
vi)+v− =

∑
(ai+1)vi,

so Z ′ satisfies the hypotheses w.r.t. σ− and σ′. �
Now we can classify the toric varieties with ample anticanonical bundle which

are obtained from Al by a sequence of blow-ups centered in S-fixed points.

Proposition 3.1 Let Z be a smooth toric variety with ample anticanonical bun-
dle which is obtained from Al by a sequence of blow-ups centered in S-fixed
points, then it is either Al or the blow-up of Al in the S-fixed point.

Proof. One can easily see that the blow-up Z1 of Al in the S-stable point has
ample anticanonical bundle. The blow-up of Z1 in the S-fixed point correspond-
ing to cone(e1, ..., êj , ..., el,

∑
ei) satisfies the hypotheses of the previous lemma

w.r.t. cone(e1, ..., êh, ..., el,
∑l

i=1 ei) and cone(e1, ..., êh, ..., êj , ..., el,
∑l

i=1 ei,

2
∑l

i=1 ei − ej), where h 6= j. �
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Thus, a symmetric variety obtained from a wonderful one by a sequence
of blow-ups along closed orbits can be Fano only if it is either the wonderful
variety or its blow-up along the closed orbit. We have already considered the
wonderful case. Now, we prove that, when such blow-up is Fano, the rank of
every indecomposable factor of RG,θ is at most 3.

Lemma 3.2 Let X1,...,l be the blow-up of the wonderful compactification of
G/H and suppose that RG,θ contains an irreducible factor of rank at least three.
If X1,...,l is Fano then it is indecomposable, has rank 3 and H ( N(Gθ).

Proof. The weights {k̃C} associated to −K̃X1,...,l
are λi = −2ρ+ 2ρ0 − (l −

2)e∗i +
∑

j 6=i e
∗
j with i = 1, ..., l. First, suppose G/H indecomposable and write

e∗i = −xiαi. If H ( N(Gθ), then RG,θ has type A1, B2 or Cl.

We consider two cases. First, suppose that there is βh ∈ R
1

G orthogonal
to R0

G. Write βh − θ(βh) = αj , so 0 > (λj , α
∨
j ) = (−2ρ + 2ρ0, α

∨
j )) + ((l −

2)xjα
∨
j , α

∨
j ) − (

∑
i6=j xiα

∨
i , α

∨
j ) ≥ −2 + 2(l − 2)xj + 0. Observe that x−1

j ≤ 2,

so l = 3 and H ( N(Gθ).
If there is not such a root, we have the following possibilities: 1) θ has type

AII and G/Gθ is SL2l+2/Sp2l+2; 2) θ has type CII and G/Gθ is Sp2n/(Sp2l×
Sp2n−2l); 3) θ has type DIII and G/Gθ is SO4l+2/GL2l+1. Then there are

β3, β5 ∈ R
0
G orthogonal to R

0

G\{β3, β5} and β4 ∈ R
1
G such that α2 = β3+2β4+

β5. Moreover, (β3, β3) = (β4, β4) = (β5, β5), α
∨
2 = 1

(β2,β2)
α2 and xi = 1 if i < l.

Thus 0 > (λ2, α
∨
2 ) = (−2ρ+2ρ0, α

∨
2 ))+(l−2)(α2, α

∨
2 )−(α1, α

∨
2 )−x3(α3, α

∨
2 ) ≥

−4 + 2(l− 2) + 1 + x3, so we have again l = 3 and H ( N(Gθ).
Finally, suppose θ decomposable. Let (G, θ) = (G1, θ1)× (G2, θ2) with l

′ :=
rank (G1/G

θ
1) ≥ 3 and define the weight λ′i for G1 in an analogous way to

the λi. We have λi = λ′i − (l − l′)e∗i + ω where ω is orthogonal to RG1,θ.
By the previous part of the proof there is always an i with λ′i(α

∨
i ) ≥ −1, so

λi(α
∨
i ) ≥ λ

′
i(α

∨
i ) +

1
2 (αi, α

∨
i ) ≥ 0, a contradiction. �

By an explicit analysis of the indecomposable involutions of rank at most
three we obtain:

Theorem 3.1 Let G/H be a symmetric space of rank l (> 1) associated to
an involution θ and let X be a compact symmetric variety obtained from the
wonderful compactification of G/H by a sequence of blow-ups along closed orbits.

1. If X is a Fano variety then either it is the wonderful variety X0 or it is
the blow-up X1,...,l of X along the closed orbit.

2. If there is an indecomposable factor of (G, θ) of rank at least 3 then X1,...,l

is not Fano.

3. If (G, θ) has rank at least 6 and has an indecomposable factor of rank 2,
then X1,...,l is not Fano.

4. If X1,...,l is Fano, the possibilities for the indecomposable factors of G/H
are as in Figure 2 (we indicate also the eventual conditions on rank G/H
so that such a factor can appear).
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G′/H ′ θ|G′ rank G/H rank G′/H ′

SL3 A2 l = 2 2
Spin5 B2 l = 2 2

SL6/N(Sp6) AII l = 3 2
SLn+1/S(GL2 ×GLn−1), n ≥ 4 AIII l = 2 2
Sp2n/Sp4 × Sp2n−4, n ≥ 5 CII l ≤ 3 2

Sp8/Sp4 × Sp4 CII l = 3 2
Sp8/N(Sp4 × Sp4) CII l = 2 2

SO10/GL5 DIII l ≤ 3 2
E6/N(D5 × C∗) EIII l ≤ 4 2
E6/N(F4) EIV l ≤ 5 2
PSL2 A1 l = 2 1
SL2 A1 l ≤ 3 1

SLn+1/N(SOn) AI l = 2 1
SLn+1/SOn AI l = 2 1
SL6/N(Sp6) AII l ≤ 3 1
SL6/Sp6 AII l ≤ 5 1

SLn+1/N(S(GL1 ×GLn)) AIV l ≤ n+ 1 1
SO2n+1/N(SO1 × SO2n) BII l ≤ n+ 1 1
SO2n+1/(SO1 × SO2n) BII l ≤ 2n 1
Sp2n/(Sp2 × Sp2n−2) CII l ≤ 2n 1

SO2n/N(SO1 × SO2n−1) DII l ≤ n 1
SO2n/(SO1 × SO2n−1) DII l ≤ 2n− 1 1

F4/B4 FII l ≤ 12 1

Figure 2: Fano X1,...,l

4 Regular Fano varieties of rank 3

In this section we suppose X0 wonderful; recall that {e1, e2, e3} is the basis of
χ∗(S) which generates C−. We classify all the Fano symmetric varieties obtain-
able by a wonderful symmetric variety of rank three from X0 by a succession of
blow-ups along G-subvarieties. This class of varieties contains many varieties;
indeed each compact symmetric variety is dominated by a smooth toroidal va-
riety obtained by a succession of blow-ups along G-subvarieties of codimension
two. We begin proving a result similar to Lemma 3.1.

Let Z̃ be the toric variety whose fan ∆̃ has maximal cones cone(v1, v2, v+)
and cone(v1, v2, v− = x1v1 + x2v2 − v+), where {v1, v2, v+} is a basis of χ∗(S),

x1+x2 > 0 and x1 ≥ x2 ≥ 0. The anticanonical bundle of Z̃ is ample if and only
if x1 = x1+x2 = 1. In this case, Z̃ is the blow up of A3 along a stable subvariety
of codimension 2. Moreover, the anticanonical bundle of Z̃ is nef, but non-ample
if and only if x1 + x2 = 2. We have two possibilities: either v+ + v− = v1 + v2
or v+ + v− = 2v1. In the first case we have a variety isomorphic to the variety
Z of the previous section. This is the more problematic case, so we will study
it in a second time.

Lemma 4.1 Let Z be a smooth 3-dimensional toric variety whose fan contains
two maximal cones cone(v1, v2, v+) and cone(v1, v2, v−) such that v+ + v− =
x1v1 + x2v2, where x1 and x2 are integers with x1 ≥ x2 ≥ 0. Suppose moreover

10



that x1 ≥ 2. Then the anticanonical bundle of any toric variety Z ′ obtained
from Z by a sequence of blow-ups along S-subvarieties is not ample.

Proof. Remark that the anticanonical bundle of Z is not ample. We say that
a variety satisfies weakly the hypotheses of the lemma if x1 +x2 ≥ 2 (instead of
x1 ≥ 2). We use the following trivial observation: x1 + x2 > 2 implies x1 ≥ 2.
One can try to prove this lemma by induction as the Lemma 3.1. Unfortunately
we can prove only the following weaker statement.

Lemma 4.2 Let Z be a toric variety which satisfies weakly the hypotheses of
Lemma 4.1 and let Z ′ be the blow-up of Z along a cone τ .

1. If τ 6= cone(v1, v2), then Z
′ satisfies the hypotheses of Lemma 4.1.

2. If Z satisfies the hypotheses of Lemma 4.1, then Z ′ satisfies weakly the
hypotheses of Lemma 4.1.

Proof. We can suppose τ ⊂ cone(v1, v2, v−) by symmetry. If τ 6= cone(v1,
v2), we have three possibilities: τ = cone(v1, v−), τ = cone(v2, v−) and τ =
cone(v1, v2, v−). We always have ∆Z′ [p] = ∆Z [p] ∪ {v

′ := v− + b1v1 + b2v2}
with b1, b2 ∈ {0, 1}. Moreover, ∆Z′ contains the cones cone(v1, v2, v+) and
cone(v1, v2, v

′) and we have v′ + v+ = (x1 + b1)v1 +(x2 + b2)v1 with (x1 + b1)+
(x2 + b2) > 2, so Z1 satisfies the hypotheses of the lemma.

Finally let τ = cone(v1, v2). The fan of Z ′ contains the cones cone(v1, v1 +
v2, v+) and cone(v1, v1 + v2, v−). We have v+ + v− = (x1 − x2)v1 + x2(v1 + v2)
with (x1 − x2) + x2 = x1 ≥ 2. �

Now, we consider the general case. We have a sequence Z = Z0 ← Z1 ←
...← Zi ← ...← Zr = Z ′ where Zi+1 is the blow-up of Zi along the cone τi. Let
∆i = ∆Zi

and let j be the maximal index such that Zj satisfies the hypotheses
(w.r.t. cone(w1, w2, w+) and cone(w1, w2, w−)). By the previous lemma Zj+1

satisfies weakly the hypotheses, in particular its anticanonical bundle is not
ample. By the maximality of j, Zj+1 does not satisfies the hypotheses, so Zj+1

contains a variety isomorphic to Z. Let ∆ be the fan of such variety. If ∆r

contains ∆ then −KZ′ is not ample. Otherwise there is a minimal h such that
∆ is not contained in ∆h+1. We claim that Zh+1 satisfies the hypotheses of the
lemma, a contradiction.

By the previous lemma τj = cone(w1, w2). We know that Zj+1 satis-
fies weakly the hypotheses w.r.t. σ+ = cone(w1, w1 + w2, w+) and σ− =
cone(w1, w1 + w2, w−). Moreover, the open subvariety of Zj+1 with maximal
cones σ+ and σ− is isomorphic to Z. By the Lemma 4.2 2) we can suppose
τh = cone(w1, w1 + w2).

The fan of Zh+1 contains two cones cone(w1+w2, w+, 2w1+w2) and cone(w1+
w2, w+, w

′), with w′ = w2 + x1(w1 + w2) + x2w+ and x1, x2 ≥ 0. There-
fore Zh+1 satisfies the hypotheses of the lemma w.r.t. these cones. Indeed
(2w1 + w2) + w′ = (2 + x1)(w1 + w2) + x2w+. �

Now we want to study the varieties which contain an open subvariety iso-
morphic to Z. Observe that these varieties are never Fano varieties. Let Z be
such a variety and let Z ′ be the blow-up of Z along the subvariety of Z associ-
ated to cone(e1, e2). We prove that, if Z ′ satisfies the hypotheses of Lemma 4.1,
then there are not Fano varieties obtainable from Z by a sequence of blow-ups.
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Lemma 4.3 Let Z be a smooth 3-dimensional toric variety whose fan contains
cone(v1, v2, v3) and cone(v1, v2, v1 + v2 − v3) for suitable v1, v2, v3. Let Z ′ be
the blow-up of Z along the stable subvariety corresponding to cone(v1, v2) and
let Z ′′ be a toric variety obtained from Z by a sequence of blow-ups along S-
subvarieties. If the anticanonical bundle of Z ′′ is ample, then Z ′′ is obtainable
from Z ′ by a sequence of blow-ups along S-subvarieties.

Proof. We cannot proceed as in the previous lemma, because we do not know
the other cones of ∆Z . We have again a sequence Z = Z0 ← Z1 ← ... ← Zi ←
... ← Zh = Z ′′ where πi+1 : Zi+1 → Zi is the blow-up along τi. First of all,
there is a (minimal) cone τj contained in cone(v1, v2, v3, v1 + v2 − v3), because
otherwise the anticanonical bundle of Z ′′ is not ample. By Lemma 4.1, τj is
cone(v1, v2). We want to reorder the cones associated to the subvarieties along
which we are blowing-up. Clearly this operation is not well defined in general.

We consider the following sequence of blow-ups: Z = Z ′
0 ← Z ′

1 ← ...← Z ′
i ←

... ← Z ′
j+1, where π

′
0 : Z ′

1 → Z ′
0 is the blow-up along τj and π′

i+1 : Z ′
i+1 → Z ′

i

is the blow-up along τi−1 for each i ≥ 1. Let ∆′
i = ∆Z′

i
. We show that these

blow-ups are well defined and that Z ′
j+1 = Zj+1.

The cone τi−1 belongs to ∆′
i for each 1 ≤ i ≤ j because τi is contained

in |∆|\cone(v1, v2, v3, v1 + v2 − v3) for each i ≤ j. Moreover, the elements of
∆′

1(3) not contained in cone(v1, v2, v3, v1 + v2− v3) are exactly the elements of
∆0(3) \ {cone(v1, v2, v3), cone(v1, v2, v1 + v2 − v3)}.

Z is the union of the following two open S-subvarieties: U1 whose fan has
maximal cones cone(v1, v2, v3) and cone(v1, v2, v1 + v2 − v3); U2 whose fan has
maximal cones ∆(3) \ {cone(v1, v2, v3), cone(v1, v2, v1 + v2 − v3)}.

The blow-up π′
0 induces an isomorphism between U2 and its inverse image,

because cone(v1, v2) is not contained in any maximal cone of U2. In the same
way πj induces an isomorphism between the inverse image of U2 in Zj and its
inverse image in Zj+1. So the inverse image of U2 in Zj+1 is isomorphic to the
the inverse image of U2 in Z ′

j+1. Moreover π′
j ◦ ... ◦ π

′
2 induces an isomorphism

between (π′
1)

−1(U1) and its inverse image. In the same way πj−1◦ ...◦π1 induces
an isomorphism between U1 and its inverse image. So the inverse image of U1 in
Zj+1 is isomorphic to the the inverse image of U1 in Z ′

j+1. The lemmas follows
because there is at most one morphism between two toric S-varieties extending
the identity automorphism of S. �

We now restrict the possible Fano symmetric varieties with rank three (and
fixed G/H) which are obtainable as before to a finite explicit list.

Proposition 4.1 The toric varieties obtainable from A3 by a sequence of blow-
ups and with ample anticanonical bundle are, up to isomorphisms:

1. A3;

2. a 2-blow-up of A3;

3. the 3-blow-up of A3;

4. the variety whose fan has maximal cones: cone(e1, e1 + e2, e1 + e2 + e3),
cone(e1, e3, e1+e2+e3), cone(e2, e3, e1+e2+e3) and cone(e2, e1+e2, e1+
e2 + e3). This variety is obtainable from A3 by two consecutive blow-ups
along subvarieties of codimension two;
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5. the variety whose fan has maximal cones: cone(e1, e3, e1 + e2 + 2e3),
cone(e1, e1+e2+e3, e1+e2+2e3), cone(e1, e2, e1+e2+e3), cone(e2, e1+
e2 + e3, e1 + e2 + 2e3) and cone(e2, e3, e1 + e2 + 2e3). This variety is
obtainable from A3 by a 3-blow up followed by a 2-blow up.

Proof. We proceed as follows: the anticanonical bundle of A3 is ample, so
we consider all the possible blow-ups of A3. Let Z be a blow-up of A3: 1)
if Z satisfies the hypotheses of Lemma 4.1 we know that there are not toric
varieties with ample anticanonical bundle and obtainable from Z by a sequence
of blow-ups; 2) if Z satisfies the hypotheses of the Lemma 4.3 we study the
variety Z ′ of such lemma; 3) finally, if the anticanonical bundle Z is ample, we
reiterate the procedure. Observe that a priori it is possible that Z belongs to
none of the previous cases. In the following, if two blow-ups of a given variety
are isomorphic, we examine only one of them. Given a toric variety Z, let ∆ be
its fan and let k be the piecewise linear function associated to −KZ . Suppose
that all the maximal cones in ∆ are 3-dimensional. Remember that −KZ is
ample if and only if, given any cone C ∈ ∆(3) and any v ∈ ∆[p] with v /∈ C,
(kC)(v) < 1.

Let Z0 = A3; it has ample canonical bundle. Up to isomorphisms there are
two blow-ups of A3: the blow-up Z1 along cone(e1, e2) and the blow-up Z2 along
cone(e1, e2, e3).

One can show that the anticanonical bundle of Z1 is ample because ∆1(2) =
{cone(e1, e3, e1 + e2), cone(e2, e3, e1 + e2)} and ∆[p] = {e1, e2, e3, e1 + e2}. The
blow-ups of Z1 are, up to isomorphisms: i) the blow-up Z11 along cone(e1, e3);
ii) the blow-up Z12 along cone(e1, e1+ e2); iii) the blow-up Z13 along cone(e1+
e2, e2, e3); iv) the blow-up Z14 along cone(e1 + e2, e3).

The variety Z11 satisfies the hypotheses of the Lemma 4.3 w.r.t. cone(e3, e1+
e2, e1 + e3) and cone(e3, e1 + e2, e2). Hence we have to study the blow-up
Z11b of Z11 along cone(e3, e1 + e2). This variety satisfies the hypotheses of the
Lemma 4.3 w.r.t. cone(e1+e2, e1+e3, e1) and cone(e1+e2, e1+e3, e1+e2+e3).
Hence we have to study the the blow-up Z11c of Z11b along cone(e1+e2, e1+e3).
Z11c satisfies the hypotheses of the Lemma 4.3 w.r.t. cone(e1+e2, e1+e2+e3, e2)
and cone(e1+e2, e1+e2+e3, 2e1+e2+e3). Hence we have to consider the blow-up
Z11d of Z11c along cone(e1+e2, e1+e2+e3). Z11d satisfies the hypotheses of the
Lemma 4.1 w.r.t. cone(e2, e1+e2+e3, e3) and cone(e2, e1+e2+e3, 2e1+2e2+e3).
Thus there are not toric varieties with ample anticanonical bundle and obtained
from Z11 by a sequence of blow-ups.

Z12 satisfies the hypotheses of the Lemma 4.1 w.r.t. cone(e3, e1+e2, 2e1+e2)
and cone(e3, e1 + e2, e2). Z13 satisfies the hypotheses of the Lemma 4.1 w.r.t.
cone(e3, e1 + e2, e1) and cone(e3, e1 + e2, e1 + 2e2 + e3).

The anticanonical bundle of Z14 is ample because ∆14(2) = {cone(e1 +
e2, e1, e1+ e2+ e3), cone(e1, e3, e1 + e2+ e3), cone(e2, e3, e1 + e2+ e3), cone(e1 +
e2, e2, e1 + e2 + e3)} and ∆[p] = {e1, e2, e3, e1 + e2, e1 + e2 + e3}. The blow-ups
of Z14 are: i) the blow-up Z141 of Z14 along cone(e1, e1 + e2); ii) the blow-up
Z142 of Z14 along cone(e1 + e2, e1 + e2 + e3); iii) the blow-up Z143 of Z14 along
cone(e3, e1+e2+e3); iv) the blow-up Z144 of Z14 along cone(e2, e3, e1+e2+e3); v)
the blow-up Z145 of Z14 along cone(e2, e1+e2, e1+e2+e3); vi) the blow-up Z146

of Z14 along cone(e1, e3); vii) the blow-up Z147 of Z14 along cone(e1, e1+e2+e3).
The variety Z141 satisfies the hypotheses of the Lemma 4.1 w.r.t. cone(e1 +

e2, e1+e2+e3, e2) and cone(e1+e2, e1+e2+e3, 2e1+e2). The variety Z142 satisfies
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the hypotheses of the Lemma 4.1 w.r.t. cone(e1, e1 + e2 + e3, 2e1 + 2e2 + e3)
and cone(e1, e1 + e2 + e3, e3). The variety Z143 satisfies the hypotheses of the
Lemma 4.1 w.r.t. cone(e1, e1 + e2 + e3, e1 + e2) and cone(e1, e1 + e2 + e3, e1 +
e2 + 2e3). The variety Z144 satisfies the hypotheses of the Lemma 4.1 w.r.t.
cone(e3, e1 + e2 + e3, e1) and cone(e3, e1 + e2 + e3, e1 + 2e2 + 2e3). The variety
Z145 satisfies the hypotheses of the Lemma 4.1 w.r.t. cone(e2, e1 + e2 + e3, e3)
and cone(e2, e1 + e2 + e3, 2e1 + 3e2 + e3).

The variety Z146 satisfies the hypotheses of the Lemma 4.3 w.r.t. cone(e1, e1+
e2 + e3, e1 + e3) and cone(e1, e1 + e2 + e3, e1 + e2). Hence we have to study the
blow-up of Z146 along cone(e1, e1+e2+e3). This variety is Z11c, so there are no
toric varieties with ample anticanonical bundle which are obtained from Z146

by a sequence of blow-ups.
The variety Z147 satisfies the hypotheses of the Lemma 4.3 w.r.t. cone(e1 +

e2, e1 + e2 + e3, e2) and cone(e1 + e2, e1 + e2 + e3, 2e1 + e2 + e3). Hence we have
to study the blow-up Z147b of Z147 along cone(e1+e2, e1+e2+e3). This variety
satisfies the hypotheses of the Lemma 4.1 w.r.t. cone(e2, e1 + e2 + e3, e3) and
cone(e2, e1 + e2 + e3, 2e1 + 2e2 + e3). Observe that we have classified the toric
varieties with anticanonical bundle which are obtained from Z1 by a sequence
of blow-ups.

The anticanonical bundle of Z2 is ample because ∆2(2) = {cone(e2, e3, e1 +
e2+e3), cone(e1, e3, e1+e2+e3), cone(e1, e2, e1+e2+e3)} and ∆2(p) = {e1, e2, e3,
e1 + e2 + e3}. The blow-ups of Z2 are, up to isomorphisms: i) the variety Z14;
ii) the blow-up Z21 of Z2 along cone(e1, e2, e1 + e2 + e3); iii) the blow-up Z22 of
Z2 along cone(e3, e1 + e2 + e3).

Z21 satisfies the hypotheses of the Lemma 4.1 w.r.t. cone(e2, e1+e2+e3, e3)
and cone(e2, e1 + e2 + e3, 2e1 + 2e2 + e3).

The anticanonical bundle of Z22 is ample because ∆22(2) = {cone(e1, e3, e1+
e2+2e3), cone(e1, e1+e2+e3, e1+e2+2e3), cone(e1, e2, e1+e2+e3), cone(e2, e1+
e2 + e3, e1 + e2 + 2e3), cone(e2, e3, e1 + e2 + 2e3)} and ∆22[p] = {e1, e2, e3, e1 +
e2 + e3, e1 + e2 + 2e3}.

The blow-ups of Z22 are, up to isomorphisms: i) the variety Z143 which
satisfies the hypotheses of the Lemma 4.1; ii) the blow-up Z221 of Z22 along
cone(e3, e1+e2+2e3); iii) the blow-up Z222 of Z22 along cone(e1+e2+e3, e1+e2+
2e3); iv) the blow-up Z223 of Z22 along cone(e1, e1+e2+2e3); v) the blow-up Z224

of Z22 along cone(e1, e3); vi) the blow-up Z225 of Z22 along cone(e1, e1+e2+e3);
vii) the blow-up Z226 of Z22 along cone(e1, e3, e1 + e2 + 2e3); viii) the blow-up
Z227 of Z22 along cone(e1, e1 + e2 + e3, e1 + e2 + 2e3); ix) the blow-up Z228 of
Z22 along cone(e1, e2, e1 + e2 + e3).

Z221 satisfies the hypotheses of the Lemma 4.1 w.r.t. cone(e1, e1 + e2 +
2e3, e1 + e2 + e3) and cone(e1, e1 + e2 + 2e3, e1 + e2 + 3e3). Z222 satisfies the
hypotheses of the Lemma 4.1 w.r.t. cone(e1, e1 + e2+2e3, e3) and cone(e1, e1 +
e2 +2e3, 2e1 +2e2 +3e3). Z223 satisfies the hypotheses of the Lemma 4.1 w.r.t.
cone(e1+e2+e3, e1+e2+2e3, e2) and cone(e1+e2+e3, e1+e2+2e3, 2e1+e2+2e3).

Z224 satisfies the hypotheses of the Lemma 4.3 w.r.t. cone(e1, e1 + e2 +
2e3, e1 + e2 + e3) and cone(e1, e1 + e2 + 2e3, e1 + e3). Hence we have to study
the blow-up Z224b of Z224 along cone(e1, e1+e2+2e3). This variety satisfies the
hypotheses of the Lemma 4.1 w.r.t. cone(e1, e1 + e2 + e3, e2) and cone(e1, e1 +
e2 + e3, 2e1 + e2 + 2e3). Z225 satisfies the hypotheses of the Lemma 4.3 w.r.t.
cone(e1, e1+e2+2e3, 2e1+e2+e3) and cone(e1, e1+e2+2e3, e3). Hence we have
to study the blow-up Z225b of Z225 along cone(e1, e1+e2+2e3). Z225b satisfies the
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G/H θ m̄1 m1

PSL2 A1 1 0
SL2 A1 2 1
SL2/N(SO2) AI 0 0 h
SL2/SO2 AI 1 0 h
SL2/N(Sp2) AII 2 1
SL2/Sp2 AII 4 3
SLn/S(GL1 ×GLn−1) AIV n n− 1 e
SO2n+1/N(SO1 × SO2n) BII n− 1 n− 1
SO2n+1/(SO1 × SO2n) BII 2n− 1 2n− 2
Sp2n/(Sp2 × Sp2n−2) CII 2n− 1 2n− 2
SO2n/S(O1 ×O2n−1) DII n− 1 n− 2
SO2n/(SO1 × SO2n−1) DII 2n− 2 2n− 3
F4/B4 FII 11 10

Figure 3: Weights of rank 1 symmetric spaces

hypotheses of the Lemma 4.3 w.r.t. cone(2e1+e2+e3, e1+e2+2e3, e1+e2+e3)
and cone(2e1+ e2 + e3, e1+ e2+2e3, 2e1+ e2+2e3). Hence we have to consider
the blow-up Z225c of Z225b along cone(2e1+ e2 + e3, e1 + e2+2e3). This variety
satisfies the hypotheses of the Lemma 4.1 w.r.t. cone(e1+e2+e3, e1+e2+2e3, e2)
and cone(e1 + e2 + e3, e1 + e2 + 2e3, 3e1 + 2e2 + 3e3).

Z226 satisfies the hypotheses of the Lemma 4.1 w.r.t. cone(e1, e1 + e2 +
2e3, e1 + e2 + e3) and cone(e1, e1 + e2 + 2e3, 2e1 + e2 + 3e3). Z227 satisfies the
hypotheses of the Lemma 4.1 w.r.t. cone(e1 + e2 + e3, e1 + e2 + 2e3, e2) and
cone(e1 + e2 + e3, e1 + e2 + 2e3, 3e1 + 2e2 + 3e3). Z228 satisfies the hypotheses
of the Lemma 4.1 w.r.t. cone(e1, e1 + e2 + e3, e1 + e2 + 2e3) and cone(e1, e1 +
e2 + e3, 2e1 + 2e2 + e3). �

Let G/H be a symmetric space of rank three such that the standard com-
pactification X0 of G/H is wonderful. We introduce the following notations:

• we denote by Xij the blow-up of X0 along (cone(ei, ej),∅);

• we denote by X123 the blow-up of X0 along the closed G-orbit;

• we denote by X123,ij the blow-up of X123 along (cone(ei, ej),∅);

• we denote by X123,i the blow-up of X123 along (cone(ei, e1 + e2 + e3),∅).

By [Ru09] Corollary 2.1, if (G, θ) = (G1, θ) × (G2, θ) and X0 is wonderful,
then H = H1 × H2, where Hi := H ∩ Gi. Given an 1-rank symmetric space
Gi/Hi, let ψi(r) := −2ρ + 2ρ0 − re∗i , mi := max{r : ψi(r)(α

∨
i ) < 0} and

m̄i := max{r : ψi(r)(α
∨
i ) ≤ 0}. In Figure 3 are written the value of mi and m̄i

for the various Gi/Hi. Moreover, we indicate by e (resp. by h) when Gi/Hi is
exceptional (resp. hermitian non-exceptional). By an explicitly analysis we can
prove the following theorems.

Theorem 4.1 Let G/H be an indecomposable symmetric space of rank 3 such
that its standard compactification X0 is wonderful. If X is a smooth Fano
compactification of G/H obtained from X0 by a sequence of blow-ups along G-
subvarieties, then it is X0, X12, X13, X23 or X123,13. More precisely, the Fano
ones are those which appears in Figure 4.
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G/H θ X

PSL4 A3 X0, X13

SO7 B3 X0

PSp6 C3 X0, X13

Sp6 C3 X0, X13

SL4/N(SO4) AI X0

SL8/N(Sp8) AII X0, X12, X13, X23, X123,13

SLn+1/S(L3 × Ln−2), n ≥ 6 AIII X0, X13

SL6/N(S(L3 × L3)) AIII X0

SL6/S(L3 × L3) AIII X0

SO2n+1/N(SO3 × SO2n−2) BI X0

Sp6/N(GL3) CI ∄
Sp6/GL3 CI X0

Sp12/N(Sp6 × Sp6) CII X0, X12, X13, X23

Sp12/(Sp6 × Sp6) CII X0, X12, X13, X23, X123,13

Sp2n/(Sp6 × Sp2n−6), n > 6 CII X0, X12, X13, X23, X123,13

SO2n/N(SO3 × SO2n−3) DI X0

SO12/N(GL6) DIII X0, X12

SO12/N(GL6) DIII X0, X12

SO14/GL7 DIII X0, X12, X13, X23, X123,13

E7/N(E6 × C∗) EVII X0, X12

E7/(E6 × C∗) EVII X0, X12

Figure 4: Fano indecomposable symmetric varieties of rank 3

Theorem 4.2 Let G/H be a symmetric space such that X0 is wonderful and
such that (G, θ) = (G1, θ)×(G2, θ) with rank Gi/G

θ
i = i. If X is a smooth Fano

compactification of G/H obtained from X0 by a sequence of blow-ups along G-
subvarieties, then it is X0, X12, X13, X23, X123, X123,12, X123,13, X123,23,
X123,1, X123,12 or X123,3. More precisely, the classification of such varieties is
as in Figure 5. In the second column, we indicate the conditions on m1 so that
X is Fano.

Theorem 4.3 Let G/H be a symmetric space such that X0 is wonderful. Sup-
pose that (G, θ) = (G1, θ) × (G2, θ) × (G3, θ) with rank Gi/G

θ
i = 1 and let xr

be the number of factors Gi such that ψi(r) is antidominant and regular. If
X is a smooth Fano compactification of G/H obtained from X0 by a sequence
of blow-ups along G-subvarieties, then it is X0, X12, X13, X23, X123, X123,12,
X123,13, X123,23, X123,1, X123,2 or X123,3. More precisely, we have the following
classification (depending on G/H):

• If x1 ≤ 1, then the smooth Fano compactifications of G/H are X0, X12,
X13 and X23. In particular, there are four of them.

• If x1 = 2, then there are five Fano varieties. Let i < j be the indices such
that ψi(1) and ψj(1) are anti-dominant and regular. The smooth Fano
compactifications of G/H are X0, X12, X13, X23 and X123,ij .
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G2/H2 m1 X

PSL3 − X0, X12, X13, X23

SO5 − X0, X12

Spin5 − X0, X12, X13, X23

G2 − X0, X13

SL3/N(SO3) − X0

SL6/N(Sp6) − X0, X12, X13, X23, X123,23

m1 ≥ 1 X123, X123,12, X123,13

SLn+1/S(GL2 ×GLn−1) − X0, X12, X13, X23

(n ≥ 5) m1 ≥ 1 X123,13

SL5/S(GL2 ×GL3) − X0, X12, X13, X23

SL4/N(S(GL2 ×GL2)) − X0

SL4/S(GL2 ×GL2) − X0, X12

SO5/S(O2 ×O3) − X0

SO5/(SO2 × SO3) − X0

SO2n+1/S(O2 ×O2n−1) − X0, X13

SO2n+1/(SO2 × SO2n−1) − X0, X13

Sp2n/Sp4 × Sp2n−4 − X0, X12, X13, X23, X123,23

(n ≥ 5) m1 ≥ 1 X123, X123,12, X123,13

m1 ≥ 2 X123,2

Sp8/N(Sp4 × Sp4) − X0, X12, X13, X23

Sp8/Sp4 × Sp4 − X0, X12, X13, X23, X123,23

m1 ≥ 1 X123, X123,12, X123,13

SO2n/S(O2 ×O2n−2) − X0, X13

SO2n/SO2 × SO2n−2 − X0, X13

SO8/N(GL4) − X0, X12

SO8/GL4 − X0, X12

SO10/GL5 − X0, X12, X13, X23, X123,23

m1 ≥ 1 X123, X123,12, X123,13

E6/D5 × C∗ − X0, X12, X13, X23, X123,23

m1 ≥ 1 X123, X123,12, X123,13, X123,1

m1 ≥ 2 X123,2, X123,3

E6/N(F4) − X0, X12, X13, X23, X123,23

m1 ≥ 1 X123, X123,12, X123,13, X123,1

m1 ≥ 2 X123,2, X123,3

G2/(A1 ×A1) - ∄

Figure 5: Fano decomposable symmetric varieties of rank 3
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• If (x1, x2) is equal to (3, 0) or to (3, 1), then there are eight Fano varieties:
X0, X12, X13, X23, X123, X123,12, X123,13 and X123,23.

• If (x1, x2) = (3, 2), then there are nine Fano varieties. Suppose that the
ψj(2) with j 6= i are anti-dominant and regular, then the Fano varieties
are: X0, X12, X13, X23, X123, X123,12, X123,13, X123,23 and X123,i.

• If (x1, x2) = (3, 3), then there are eleven Fano varieties: X0, X12, X13,
X23, X123, X123,12, X123,13, X123,23, X123,1, X123,2 and X123,3.

Remark that the first part of the proof holds in a more general contest.

Corollary 4.1 Given any wonderful G-variety X0 of rank 3 (even non sym-
metric) and any Fano variety X obtained from X0 by a succession of blow-ups
along G-stable subvarieties, then X is one of the following varieties: X0, X12,
X13, X23, X123, X123,12, X123,13, X123,23, X123,1, X123,2 or X123,3.

5 (Quasi) Fano symmetric varieties of rank 2

5.1 Fano symmetric varieties

In this section we consider the quasi-Fano locally factorial symmetric varieties
with rank 2 (and G only reductive). Remark that to individuate univocally
a projective 2-rank symmetric variety with ρ injective over ̺−1(̺(D(X)) is
sufficient to give ∆[p]. We begin classifying the Fano varieties with G semi-
simple. First, we consider two special cases: i) G/H is indecomposable, while
X is neither simple nor toroidal; ii) X is toroidal.

Lemma 5.1 Let X be a locally factorial projective symmetric variety. Suppose
that G/H is indecomposable and that X is neither simple nor toroidal, then
RG,θ = A2, H = Gθ and F(X) contains (cone(−α∨

1 − α
∨
2 ),∅).

Proof. We do a case-to-case analysis. 1) Suppose RG,θ = A2 and H =
N(Gθ). Then there is cone(α∨

1 , v) in ∆, with v := −x
3α

∨
1 −

y
3α

∨
2 ∈ int(C−)

primitive. We can write −ω∨
2 as a positive integral combination of α∨

1 and v;
thus y ∈ {1, 2}. Moreover, 0 < (−v, α2) = −

x
3 + 2y

3 , so 0 < x < 2y. If y = 1,
then v = − 1

3 (ω
∨
1 +ω

∨
2 ) /∈ χ∗(S). If y = 2, we have three possibilities: i) v = −ω∨

2

which is not regular; ii) v = − 2
3 (ω

∨
1 +ω∨

2 ) /∈ χ∗(S); iii) v = −α∨
1 −

2
3α

∨
2 /∈ χ∗(S).

2) Suppose RG,θ = A2 and H = Gθ. Then there is cone(α∨
1 , v) in ∆, with

v := −xα∨
1 − yα

∨
2 primitive. Hence y = 1 because {α∨

1 , v} is a basis of χ∗(S).
Moreover, 0 < (−v, α2) = −x+ 2, so v = −α∨

1 − α
∨
2 as in the statement.

3) Suppose that RG,θ = B2 and that cone(α∨
1 , v) ∈ ∆, with v := −xα∨

1−
y
2α

∨
2

primitive. We can write −ω∨
2 = −α∨

1 − α
∨
2 as a positive integral combination

of α∨
1 and v; thus y ∈ {1, 2}. Moreover, 0 < (−v, α2) = −x + y, so 0 < x < y.

Therefore v = −ω∨
2 is not regular.

4) Suppose that RG,θ = B2 and that cone(α∨
2 , v) ∈ ∆. If H = N(Gθ), then

{α∨
2 , v} cannot be a basis of χ∗(S) = Zα∨

1 ⊕ Zα∨

2

2 .
5) Suppose RG,θ = B2 and H = Gθ. Suppose also that cone(α∨

2 , v) ∈ ∆,
with v := −xα∨

1 − yα
∨
2 primitive. Then x = 1 because {α∨

2 , v} is a basis of
χ∗(S). Moreover, 0 < (−v, α1) = 2− 2y, so 0 < y < 1.
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6) Suppose RG,θ = BC2 and cone(α∨
1 , v) ∈ ∆, with v := −xα∨

1 − yα∨
2

primitive. As before y = 1. Moreover, 0 < (−v, α2) = −x+ 1, so 0 < x < 1.
7) Suppose RG,θ = BC2 and cone(α∨

2 , v) ∈ ∆, with v := −xα∨
1 − yα∨

2

primitive. As before x = 1 and 0 < (−v, α1) = 2− y, so v = −ω∨
1 is not regular.

8) Suppose RG,θ = G2 and cone(α∨
1 , v) ∈ ∆, with v := −xα∨

1 − yα
∨
2 primi-

tive. As before y = 1 and 0 < (−v, α2) ≤ −3x+ 2, so 0 < x < 2
3 .

9) Suppose RG,θ = G2 and cone(α∨
2 , v) ∈ ∆, with v := −xα∨

1 − yα
∨
2 prim-

itive. As before x = 1. Moreover, 0 < (−v, α1) = 2 − y and 0 < (−v, α2) =
−3 + 2y; thus 3 < 2y < 4. �

In the next two lemmas, we do not make any hypothesis on the regularity
of X .

Lemma 5.2 Let X be a Fano symmetric variety with G semisimple. Then
F(X) contains at most three colored 1-cones.

Proof. Suppose by contradiction thatF(X) contains (σi := cone(vi, vi+1),∅),
with i = 1, 2, 3 and v1, v2, v3, v4 primitive. We can write v2 as a positive linear
combination xv1 + yv4 of v1 and v4. Then kσ2

(v1) < k(v1) = 1, kσ2
(v4) <

k(v4) = 1 and 1 = kσ2
(v2) = xkσ2

(v1) + ykσ2
(v4) ≤ 0. �

Lemma 5.3 Let X be a Fano non-simple toroidal symmetric variety. Then
X0 is smooth and ∆[p] is either {e1, e1 + re2, e2} or {e1, re1 + e2, e2}. These
varieties are smooth if and only if r = 1.

Proof. By the previous lemma, we have ∆[p] = {e1, e2, v} for an appropriate
v. First suppose that X0 is smooth, i.e. χ∗(S) = Ze1 ⊕ Ze2, and write v =
x1e1 + x2e2. For each i, let σi = cone(ei, v) and {i, ic} = {1, 2}, so kσi

is
e∗i +

1−xi

xic
e∗ic . If x1 ≥ 2 and x2 ≥ 2, then 1−x1

x2
and 1−x2

x1
are strictly negative

integers, so x1 ≥ x2 + 1 ≥ x1 + 2, a contradiction.
Suppose now that X0 is singular. Then RG,θ is either A2 or A1 × A1. In

the first case, ei = −3ω
∨
i and the strictly positive integer k(−ω∨

1 −ω
∨
2 ) is lesser

than 1
3k(−3ω

∨
1 ) +

1
3k(−3ω

∨
2 ) =

2
3 , a contradiction.

Finally suppose RG,θ = A1 × A1 and χ∗(S) = Z2ω∨
2 ⊕ Z(ω∨

1 + ω∨
2 ). Then,

there is i such that −ω∨
1 −ω

∨
2 = av+b(−2ω∨

i ) with a, b ≥ 0. The integer a+b =
k(−ω1 − ω2) is strictly lesser than 1

2k(−2ω1) +
1
2k(−2ω2) = 1, a contradiction.

�

Remark that the previous two lemmas apply also to a toroidal symmetric
variety with −KX ample, |F(X)| convex and generated by a basis of χ∗(S)
(without supposing X compact). Now, we state the main result of this section.

Theorem 5.1 Let G/H be a symmetric space of rank 2 (with G semisimple).

• If a (projective) symmetric variety X is Fano then ρ−1(ρ(D(X))) = D(X).
If moreover X is locally factorial, then ♯ρ(D(X)) = ♯ρ−1(ρ(D(X))).

• If RG,θ is irreducible and X is a Fano locally factorial equivariant com-
pactification of G/H, we have exactly the following possibilities for ∆[p]:

1. ∆[p] = {e1, α
∨
1 } if ♯ρ

−1(α∨
1 ) = 1 and RG,θ is not G2;

2. ∆[p] = {e2, α
∨
2 } if ♯ρ

−1(α∨
2 ) = 1 and RG,θ is not B2;

3. ∆[p] = {e2, α
∨
2 } if RG,θ = B2 and H = Gθ;
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4. ∆[p] = {−ω∨
1 ,−ω

∨
2 } if G/H 6= G2/(SL2 × SL2) and H = N(Gθ);

5. ∆[p] = {−2ω∨
1 ,−ω

∨
2 } if RG,θ = B2 and H = Gθ;

6. ∆[p] = {α∨
1 , α

∨
2 ,−α

∨
1 − α

∨
2 } if H = Gθ and RG,θ = A2;

7. ∆[p] = {α∨
1 ,−ω

∨
1 − ω

∨
2 ,−3ω

∨
1 } (and ∆[p] = {α∨

2 ,−ω
∨
1 − ω

∨
2 ,−3ω

∨
2 })

if H = Gθ and RG,θ = A2;

8. ∆[p] = {α∨
1 ,−ω

∨
1 − ω

∨
2 ,−4ω

∨
1 − ω

∨
2 ,−3ω

∨
1 } (and ∆[p] = {α∨

2 ,−ω
∨
1 −

ω∨
2 ,−ω

∨
1 − 4ω∨

2 ,−3ω
∨
2 }) if H = Gθ, RG,θ = A2 and θ 6= −id over

χ∗(T );

9. ∆[p] = {e1, e2, e1 + e2} if χ∗(S) = Ze1 ⊕ Ze2 and −2ρ+ 2ρ0 + e∗i ∈
int(C−) for each i.

The previous varieties are singular in the following cases:

– ∆[p] = {ei, α
∨
i } and i = 1, 2 if RG,θ = A2;

– ∆[p] = {e1, α
∨
1 } if RG,θ = B2, H = Gθ (and ♯D(G/H) = 2);

– ∆[p] = {e2, α
∨
2 } if RG,θ = BC2 (and ♯D(G/H) = 2).

• Suppose (G, θ) = (G1, θ)× (G2, θ) and let mi be as in section §4. If χ∗(S)
= Ze1 ⊕ Ze2, we have the following locally factorial Fano varieties:

1. ∆[p] = {e1, e2};

2. ∆[p] = {e1, e2, e1 + e2};

3. ∆[p] = {α∨
1 ,−α

∨
1 ,−rα

∨
1 + e2} if r ≤ m2 + 1 and ♯ρ−1(α∨

1 ) = 1;

4. ∆[p] = {α∨
2 ,−α

∨
2 , e1 − rα

∨
2 } if r ≤ m1 + 1 and ♯ρ−1(α∨

2 ) = 1;

5. ∆[p] = {α∨
1 ,−α

∨
1 ,−rα

∨
1 + e2,−(r + 1)α∨

1 + e2} if r ≤ m2 and
♯ρ−1(α∨

1 ) = 1;

6. ∆[p] = {α∨
2 ,−α

∨
2 , e1 − rα∨

2 , e1 − (r + 1)α∨
2 } if r ≤ m1 and

♯ρ−1(α∨
2 ) = 1;

7. ∆[p] = {α∨
1 , α

∨
2 ,−α

∨
1 − α

∨
2 } if ♯D(G/H) = 2.

Only the first two are smooth.

• If G/H is decomposable but χ∗(S) = Z(12α
∨
1 + 1

2α
∨
2 ) ⊕ Zα∨

2 , we have the
following locally factorial Fano compactifications of G/H:

1. ∆[p] = {α∨
1 , α

∨
2 ,−

1
2α

∨
1 −

1
2α

∨
2 };

2. ∆[p] = {α∨
1 ,−α

∨
1 ,−

2r+1
2 α∨

1 −
1
2α

∨
2 } if 0 ≤ r ≤

m2+1
2 ;

3. ∆[p] = {α∨
2 ,−α

∨
2 ,−

1
2α

∨
1 −

2r+1
2 α∨

2 } if 0 ≤ r ≤
m1+1

2 ;

4. ∆[p] = {α∨
1 ,−α

∨
1 ,−

2r+1
2 α∨

1−
1
2α

∨
2 ,−

2r+3
2 α∨

1−
1
2α

∨
2 } if 0 ≤ r ≤

m2−1
2 ;

5. ∆[p] = {α∨
2 ,−α

∨
2 ,−

1
2α

∨
1−

2r+1
2 α∨

2 ,−
1
2α

∨
1−

2r+3
2 α∨

2 } if 0 ≤ r ≤
m1−1

2 .

The first is smooth, while the other ones are smooth if and only if r = 0.

Remark that, supposing RG,θ = A1 × A1, the mi have the same value if
χ∗(S) = Z(ω∨

1 +ω∨
2 )⊕Z2ω∨

2 or if H = Gθ. Moreover, ♯D(G/H) = 2 if χ∗(S) =
Z(ω∨

1 + ω∨
2 ) ⊕ Z2ω∨

2 , because any n ∈ H \ Gθ exchanges the colors of G/Gθ

associated to the same coroot.
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Proof. The first property holds because −KX is linearly equivalent to a
G-stable divisor. Let ai := (2ρ− 2ρ0)(α

∨
i ) for each i; recall that a1, a2 ≥ 1 (see

§2). In the following we always suppose ♯ρ(D(X)) = ♯ρ−1(ρ(D(X))).
I) Suppose X simple. If X is toroidal (i.e. X = X0) have to exclude

the following cases by §2: i) G/H = G2/(SL2 × SL2); ii) RG,θ = A2 and
H = Gθ; iii) RG,θ = A1 × A1 and χ∗(S) = Z2ω∨

1 ⊕ Z(ω∨
1 + ω∨

2 ). In the
first case X0 is not Fano, while in the last two cases X0 is not smooth. If
ρ(D(X)) = {α∨

1 }, then θ is indecomposable because C(X) is strictly convex.
Moreover, ∆[p] = {α∨

1 , e1 = −x1α
∨
1 − x2α

∨
2 } and kX = a1ω1 −

x1a1+1
x2

ω2; so
kX(α∨

2 ) ≤ 0 < a2. Thus we have only to verify if X is locally factorial. We
have to exclude two cases: 1) ∆(2) = {cone(α∨

1 ,−ω
∨
1 )} and RG,θ = G2; 2)

∆(2) = {cone(α∨
2 ,−ω

∨
2 )}, RG,θ = B2 and H = N(Gθ).

II) Suppose now thatX is not simple. In the toroidal case ∆[p] = {e1, e2, e1+
e2} and X0 is smooth by Lemma 5.3. This variety is Fano if and only if −2ρ+
2ρ0 + e∗i is antidominant and regular for each i. III) Assume moreover that X
is not toroidal. Suppose first θ indecomposable. Then, by Lemma 5.1, RG,θ =
A2, H = Gθ and ∆(2) contains cone(α∨

1 ,−α
∨
1 − α∨

2 ), up to reindexing. If
ρ(D(X)) contains also α∨

2 then ∆(2) = {cone(α∨
1 ,−α

∨
1 − α

∨
2 ), cone(α

∨
2 ,−α

∨
1 −

α∨
2 )}. Moreover, k̃X(α∨

1 ) = k̃X(α∨
2 ) = 0 and k̃X(−α∨

1 − α∨
2 ) ≥ 1, so k̃X is

strictly convex.
If ρ(D(X)) = {α∨

1 }, then ∆[p] contains −3ω∨
1 . Remark that {−α∨

1 −
α∨
2 ,−3ω

∨
1 } is a basis of χ∗(S). By the Lemma 5.3 we have two possibilities for

∆[p]: {α∨
1 ,−α

∨
1 −α

∨
2 ,−3ω

∨
1 } or {α

∨
1 ,−α

∨
1 −α

∨
2 ,−4ω

∨
1 −ω

∨
2 ,−3ω

∨
1 }. In the first

case there are not other conditions because the weights of k are a1ω1−(a1+1)ω2

and −ω2. In the last case we have to impose that a1, a2 > 1. Indeed the weights
of k are a1ω1 − (a1 + 1)ω2, −α2 and −ω1 + ω2. Moreover (−α2)(α

∨
1 ) < a1 and

(−ω1 + ω2)(α
∨
2 ) < a2. In §2, we have seen that a1 ≤ 1, a2 ≤ 1 if and only if

θ = −id.
IV) Suppose now θ decomposable. First suppose D(X) = D(G/H). Then

∆(2) contains cone(α∨
1 , x(−mα

∨
1 − α

∨
2 )) and cone(α

∨
2 , x(−α

∨
1 − rα

∨
2 )) with x ∈

{1, 12}. Remark that R+(−mα∨
1 −α

∨
2 ) = R+(−α∨

1 −
1
mα

∨
2 ) and x(−α

∨
1 − rα

∨
2 ) /∈

cone(α∨
1 , x(−mα

∨
1 − α∨

2 )) so r ≤ 1
m . Therefore ∆(2) = {cone(α∨

1 , x(−α
∨
1 −

α∨
2 )), cone(α

∨
2 , x(−α

∨
1 − α

∨
2 ))}.

V) Suppose now that ρ(D(X)) contains exactly one coroot, say α∨
1 . Suppose

X0 smooth and let σ0 := cone(α∨
1 ,−mα

∨
1 + e2) be in ∆(2). The case with X0

singular is very similar. We can apply the Lemma 5.3 to the maximal open
toroidal subvariety X ′ of X (whose colored fan has support cone(−α∨

1 ,−mα
∨
1 +

e2)). There are two possibilities for ∆X′ : its maximal cones are either {σ1 :=
cone(−α∨

1 ,−mα
∨
1 + e2)} or {σ1 := cone(−mα∨

1 + e2,−(m + 1)α∨
1 + e2), σ2 :=

cone(−α∨
1 ,−(m+1)α∨

1 + e2)}. In the first case the unique non-trivial condition

is kσ1
(α∨

2 ) < a2, which is equivalent to the following one: k̃σ1
(α∨

2 ) = (ψ2(m −

1))(α∨
2 ) < 0. In the second case the unique non-trivial condition is k̃σ2

(α∨
2 ) =

(ψ2(m))(α∨
2 ) < 0.

Now, we verify the smoothness of such varieties. First, we explain the con-
ditions for a projective locally factorial symmetric variety X with rank two to
be smooth (see [Ru07], Theorems 2.1 and 2.2). Let Y be a open simple G-
subvariety of X whose closed orbit is compact; then the associated colored cone
(C,F ) has dimension two. Write C = cone(v1, v2) and let C∨ = cone(v∗1 , v

∗
2) be

the dual cone; we take v1 and v2 primitive. If X is smooth then ρ is injective
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over F and ρ(F ) does not contain any exceptional root. Suppose such conditions
verified and let R′ the root subsystem of RG,θ generated by the simple roots α
such that α∨ ∈ ρ(F ) and ♯ρ−1(α∨) = 1. If there is not such a root, then Y is
smooth. Otherwise Y it is smooth if and only if: i) R′ has type A1; ii) up to
reindexing, 1

2 (2v
∗
1 − v

∗
2) is the fundamental weight of R′.

Suppose now that C = cone(α∨
1 ,−rα

∨
1 −α

∨
2 ) with −rα

∨
1 −α

∨
2 primitive. If X

is Fano, then ♯ρ−1(α∨
1 ) = 1. If moreover θ is indecomposable, then RG,θ = A2,

H = Gθ and r = 1. Furthermore R′ is A1 and C∨ = cone(v∗1 = ω1 − ω2, v
∗
2 =

−ω2). Hence
1
2 (2v

∗
1−v

∗
2) =

1
2α1; thus Y is smooth. If G/Gθ = G1/G

θ
1×G2/G

θ
2,

then R′ = RG1,θ, H = Gθ
1× (H ∩G2) and C

∨ = cone(v∗1 = ω1−rω2, v
∗
2 = −ω2).

Hence RG1,θ has to be A1 and
1
2 (2v

∗
1−v

∗
2) = ω1+(12−r)ω2 has to be

1
2α1. Thus Y

is not smooth. Suppose now that RG,θ = A1×A1, χ∗(S) = Z2ω∨
1 ⊕Z(ω∨

1 +ω∨
2 )

and C = cone(α∨
1 ,−

2r+1
2 α∨

1 −
1
2α

∨
2 ). Then R′ is A1 and C∨ = cone(v∗1 =

ω1 − (2r + 1)ω2, v
∗
2 = −2ω2); moreover, 1

2 (2v
∗
1 − v

∗
2) = ω1 − 2rω2; thus Y is

smooth if and only if r = 0. The other cases are similar. �
Using the Lemma 5.3, one can easily prove the following proposition:

Proposition 5.1 Let G/H be a symmetric space of rank 2 with X0 smooth.
If θ is indecomposable, the Fano toroidal compactifications of G/H are as in
figure 6. If θ is decomposable, let mi be as in §4. Then, the Fano toroidal
compactifications of G/H are the following ones:

• ∆[p] = {e1, e2};

• ∆[p] = {e1, e2, re1 + e2} with r ≤ m2 + 1;

• ∆[p] = {e1, e2, e1 + re2} with r ≤ m1 + 1.

5.2 Smooth quasi Fano varieties

Now, we want to classify the smooth (resp. locally factorial) quasi Fano sym-
metric varieties with rank two and G semisimple. A Gorenstein (projective)
variety is called quasi Fano if its anticanonical divisor is big and nef.

Theorem 5.2 Let G/H be a symmetric space of rank 2 (with G semisimple).

• The nefness of the anticanonical bundle of a compactification of G/H
depends only by the fan associated to the colored fan (and not by the whole
colored fan).

• The fans of the locally factorial quasi Fano (but non-Fano) compactifica-
tions of an indecomposable symmetric space of rank 2 (with G semisim-
ple) are whose in Figure 7 (we have also to request that ρ is injective over
D(X)). Such a variety is singular if and only if ρ(D(X)) contains an
exceptional root.

• If (G, θ) = (G1, θ) × (G2, θ), let mi and m̄i as in §4. Supposing χ∗(S) =
Ze1⊕Ze2, let vj(i) := −iα∨

j +ejc and wj(x, y) := −(xy+1)α∨
j +yejc . We

have the following locally factorial quasi Fano compactifications of G/H,
which are not Fano (we always suppose ρ injective over D(X)):

1. ∆[p] = {α∨
1 ,−α

∨
1 , v1(r), v1(r + 1), ..., v1(r + s)} if i) s = 0, 1, ii)

r + s ≤ m̄2 + 1, iii) either r + s > m2 + 1 or ♯ρ−1(α∨
1 ) = 2;
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G/H θ ∆[p] ∆[p]

PSL3 A2 {−ω∨
1 ,−ω

∨
2 } {−ω∨

1 ,−ω
∨
2 ,−ω

∨
1 − ω

∨
2 }

SO3 B2 {−ω∨
1 ,−ω

∨
2 }

Spin3 B2 {−2ω∨
1 ,−ω

∨
2 } {−2ω∨

1 ,−ω
∨
2 ,−2ω

∨
1 − ω

∨
2 }

G2 G2 {−ω∨
1 ,−ω

∨
2 }

SL3/N(SO3) AI {−ω∨
1 ,−ω

∨
2 }

SL6/N(Sp6) AII {−ω∨
1 ,−ω

∨
2 } {−ω∨

1 ,−ω
∨
2 ,−2ω

∨
1 − ω

∨
2 }

{−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 } {−ω∨

1 ,−ω
∨
2 ,−ω

∨
1 − 2ω∨

2 }

SLn+1/S(GL2 ×GLn−1) AIII {−ω∨
1 ,−ω

∨
2 } {−ω∨

1 ,−ω
∨
2 ,−rω

∨
1 − ω

∨
2 }, r ≤ n− 3

SL4/N(S(GL2 ×GL2)) AIII {−ω∨
1 ,−ω

∨
2 }

SL4/S(GL2 ×GL2) AIII {−ω∨
1 ,−2ω

∨
2 }

SO2n+1/S(O2 ×O2n−1) BI {−ω∨
1 ,−ω

∨
2 }

SO2n+1/SO2 × SO2n−1 BI {−2ω∨
1 ,−ω

∨
2 }

Sp2n/(Sp4 × Sp2n−4) CII {−ω∨
1 ,−ω

∨
2 } {−ω∨

1 ,−ω
∨
2 ,−rω

∨
1 − ω

∨
2 }, r ≤ 2n− 6

n ≥ 5 {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − 2ω∨

2 }

Sp8/N(Sp4 × Sp4) CII {−ω∨
1 ,−ω

∨
2 } {−ω∨

1 ,−ω
∨
2 ,−ω

∨
1 − ω

∨
2 }

Sp8/(Sp4 × Sp4) CII {−ω∨
1 ,−2ω

∨
2 } {−ω∨

1 ,−2ω
∨
2 ,−2ω

∨
1 − 2ω∨

2 }

{−ω∨
1 ,−2ω

∨
2 ,−ω

∨
1 − 2ω∨

2 } {−ω∨
1 ,−2ω

∨
2 ,−ω

∨
1 − 4ω∨

2 }

SO2n/S(O2 ×O2n−2) DI {−ω∨
1 ,−ω

∨
2 }

SO2n/SO2 × SO2n−2 DI {−2ω∨
1 ,−ω

∨
2 }

SO8/N(SO4) DIII {−ω∨
1 ,−ω

∨
2 }

SO8/SO4 DIII {−ω∨
1 ,−2ω

∨
2 }

SO10/SO5 DIII {−ω∨
1 ,−ω

∨
2 } {−ω∨

1 ,−ω
∨
2 ,−ω

∨
1 − ω

∨
2 }

{−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − 2ω∨

2 } {−ω∨
1 ,−ω

∨
2 ,−2ω

∨
1 − ω

∨
2 }

E6/D5 × C∗ EIII {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − rω

∨
2 }, r ≤ 3 {−ω∨

1 ,−ω
∨
2 ,−rω

∨
1 − ω

∨
2 }, r ≤ 4

{−ω∨
1 ,−ω

∨
2 }

E6/N(F4) EIV {−ω∨
1 ,−ω

∨
2 }

{−ω∨
1 ,−ω

∨
2 ,−rω

∨
1 − ω

∨
2 }, r ≤ 4 {−ω∨

1 ,−ω
∨
2 ,−ω

∨
1 − rω

∨
2 }, r ≤ 4

G2/(A1 ×A1) G ∄

Figure 6: Fano toroidal indecomposable symmetric varieties with rank 2
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2. ∆[p] = {α∨
2 ,−α

∨
2 , v2(r), v2(r + 1), ..., v2(r + s)} if i) s = 0, 1, ii)

r + s ≤ m̄1 + 1, iii) either r + s > m1 + 1 or ♯ρ−1(α∨
2 ) = 2;

3. ∆[p] = {α∨
1 ,−α

∨
1 , v1(r), v1(r + 1), ..., v1(r + s)} if i) s ≥ 2 and ii)

r + s ≤ m̄2 + 1;

4. ∆[p] = {α∨
2 ,−α

∨
2 , v2(r), v2(r + 1), ..., v2(r + s)} if i) s ≥ 2 and ii)

r + s ≤ m̄1 + 1;

5. ∆[p] = {α∨
1 ,−α

∨
1 ,−rα

∨
1 + e2, w1(r, 1), ..., w1(r, s)} if r ≤ m̄2 and

2 ≤ s ≤ m̄1 + 1;

6. ∆[p] = {α∨
2 ,−α

∨
2 ,−rα

∨
2 + e1, w2(r, 1), ..., w2(r, s)} if r ≤ m̄1 and

2 ≤ s ≤ m̄2 + 1;

7. ∆[p] = {α∨
1 , α

∨
2 ,−α

∨
1 − α

∨
2 } if ♯D(G/H) > 2;

8. ∆[p] = {e1, e1 + e2, e1 + 2e2, ..., e1 + (s − 1)e2, e1 + se2, e2)} if 2 ≤
s ≤ m̄1 + 1;

9. ∆[p] = {e2, e1 + e2, 2e1 + e2, ..., (s − 1)e1 + e2, se1 + e2, e1)} if 2 ≤
s ≤ m̄2 + 1.

These varieties are smooth if either they are toroidal or if, ∀α∨ ∈ ρ(D(X)),
♯ρ−1(α∨) = 2 and 2α∈/RG,θ.

• If G/H is decomposable but χ∗(S) = Z(12α
∨
1 + 1

2α
∨
2 ) ⊕ Zα∨

2 , let vj(i) :=

− 2i+1
2 α∨

j −
1
2α

∨
jc and wj(x, y) := −

2xy+y+2
2 α∨

j −
y
2α

∨
jc . We have the fol-

lowing locally factorial quasi Fano compactifications of G/H, which are
not Fano:

1. ∆[p] = {α∨
1 ,−α

∨
1 , v1(r), v1(r + 1), ..., v1(r + s)} if i) r ≥ 0, ii) s ≥ 2

and iii) r + s ≤ m̄2+1
2 ;

2. ∆[p] = {α∨
2 ,−α

∨
2 , v2(r), v2(r + 1), ..., v2(r + s)} if i) r ≥ 0, ii) s ≥ 2

and iii) r + s ≤ m̄1+1
2 ;

3. ∆[p] = {α∨
1 ,−α

∨
1 , v1(r), v1(r+1), ..., v1(r+s)} if i) r ≥ 0, ii) s = 0, 1

and iii) m2+1
2 < r + s ≤ m̄2+1

2 ;

4. ∆[p] = {α∨
2 ,−α

∨
2 , v2(r), v2(r+1), ..., v2(r+s)} if i) r ≥ 0, ii) s = 0, 1

and iii) m1+1
2 < r + s ≤ m̄1+1

2 ;

5. ∆[p] = {α∨
1 ,−α

∨
1 ,−

2r+1
2 α∨

1 −
1
2α

∨
2 , w1(r, 1), ..., w1(r, s)} if i) r ≤

m̄2−1
2 and ii) 2 ≤ s ≤ m̄1 + 1;

6. ∆[p] = {α∨
2 ,−α

∨
2 ,−

1
2α

∨
1 −

2r+1
2 α∨

2 , w2(r, 1), ..., w2(r, s)} if i) r ≤
m̄1−1

2 and ii) 2 ≤ s ≤ m̄2 + 1;

7. ∆[p] = {−α∨
1 ,−α

∨
2 ,−

1
2α

∨
1 −

1
2α

∨
2 }.

The last variety is smooth, while the other ones are smooth if and only if
r = 0.

The idea of the proof is to utilize Theorem 5.1 thanks to the following lemma.
Remark that, when θ is indecomposable, if −KX is nef it is also big (see §1.6).

Proof. The first property holds because the inequalities in the conditions for
the nefness of a Cartier divisor are not strict. I) First suppose ρ non-injective.
We have to consider the varieties whose fan is as in Theorem 5.1, but which
are not Fano because ♯ρ−1(ρ(D(X)) 6= ♯ρ(D(X)). In such cases ρ has to be
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injective over D(X), so that X is locally factorial. If θ is indecomposable we
have the following possibilities: i) RG,θ = BC2 and ∆(2) = {cone(α∨

2 ,−ω2)};
ii) RG,θ = B2, H = Gθ and ∆(2) = {cone(α∨

1 ,−2ω1)}. If θ is decomposable, we
have to consider all the possibilities listed in Theorem 5.1 which correspond to
non-toroidal varieties with χ∗(S) = Ze1 ⊕ Ze2. We have also to substitute the
conditions of type ψi(m) < 0 with the corresponding conditions ψi(m) ≤ 0.

Lemma 5.4 Let X be a projective symmetric variety with −KX nef, then there
is a symmetric variety X ′ below X such that the piecewise linear function asso-
ciated to −KX′ is strictly convex (over the colored fan of X ′) and coincides with
the function associated to −KX. If X is toroidal, we can choose X ′ toroidal.

Proof of Lemma 5.4. Let ∆′ be the fan whose maximal cones are the maximal
cones over which kX is linear. Given any cone C ∈ ∆′, define FC as {D ∈
D(G/H) : ρ(D) ∈ C}. We claim that {(C,FC)}C∈∆′,IntC∩C− 6=∅ is a colored
fan associated to a symmetric variety which satisfies the conditions of the lemma.
Remark that |∆′| = |F(X)|. We have only to prove that the maximal cones of
∆′ are strictly convex. Let C = cone(α∨

1 , ..., α
∨
r ,−̟

∨
1 , ...,−̟

∨
s ) ∈ ∆′(l) (with

̟∨
1 , ..., ̟

∨
s dominant) and suppose by contradiction that it contains the line

generated by v =
∑r

i=1 aiα
∨
i +

∑s
j=1 bj(−̟

∨
j ). Then C contains also Rv′, where

v′ =
∑
bj(−̟

∨
j ); indeed −v

′ = −v+
∑
aiα

∨
i . Write −v′ =

∑
α∈RG,θ

cαα
∨; then

C contains all the α∨ such that cα 6= 0, because −v′ ∈ C∩C+ and any spherical
weight is a positive rational combination of the simple restricted roots. Thus,
if v′ 6= 0, kC(−v

′) =
∑
cαkC(α

∨) ≥ 0, while kC(v
′) =

∑
bjkC(−̟

∨
j ) > 0.

Suppose now that v =
∑r

i=1 aiα
∨
i with aj 6= 0. Then C contains Rα∨

j . Write

−α∨
j =

∑r
i=1 a

′
iα

∨
i +

∑s
i=1 b

′
i(−̟

∨
i ) with positive coefficients, then there is j0

such that bj0 6= 0. So kC(−α
∨
j ) ≥ bj0 > 0 and kC(α

∨
j ) > 0, a contradiction. �.

II) Suppose X toroidal and let X ′ be as in Lemma 5.4. If X ′ = X and
is simple, then G/H = G2/(SL2 × SL2). If X ′ 6= X and is simple, then it
must be singular. Otherwise, given any w = x1e1 + x2e2 ∈ ∆X [p] \∆X′ [p], we
have xi ∈ Z>0 and x1 + x2 = k(w) = 1. If RG,θ = A2 and H = Gθ, then
kX = − 1

3 (ω1 + ω2) /∈ χ(S), so X is not locally factorial. Thus RG,θ = A1 × A1

and χ∗(S) = Z2ω∨
1 ⊕Z(ω∨

1 +ω∨
2 ). Let w = −x1α

∨
1 −x2α

∨
2 be in ∆X [p]\∆X′[p];

then 2x1, 2x2 ∈ Z>0 and x1+x2 = k(w) is 1. Thus ∆X [p] = {−α∨
1 ,−α

∨
2 ,−

1
2α

∨
1−

1
2α

∨
2 }. In this case −KX is nef but non-ample.
If X ′ is not simple, then the standard compactification of G/H has to be

smooth because of Lemma 5.3. So it is sufficient to prove the following lemma.

Lemma 5.5 The smooth toric varieties birationally proper over A2 with nef
anticanonical divisor are, up to isomorphisms, A2 and the varieties Zm, where
Zm is the variety whose fan has maximal cones {cone(e1, e1 + e2), cone(e1 +
e2, e1 + 2e2), ..., cone(e1 + (m− 1)e2, e1 +me2), cone(e1 +me2, e2)}.

Proof of Lemma 5.5. The piecewise linear km function associated to the
anticanonical bundle of Zm is linear on cone(e1, e1+me2). It is easy to see that
thus such function is convex.

Now we show that, given any Z as in the hypotheses, it is isomorphic to
Zm for an appropriate m. Notice, that any smooth toric variety birationally
proper over A2 is obtained by a sequence of blow-ups. Thus there is nothing
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to prove if ♯∆[p] < 4. Suppose now that ♯∆[p] ≥ 4; we claim that up to
isomorphisms, ∆ contains cone(e1, e1 + e2) and cone(e1 + e2, e1 + 2e2). We
know that τ = R≥0(e1 + e2) is contained in ∆.

First of all, we determine the restrictions of k to the cones containing τ and
afterwards we will determine the cones themselves. Let σ = cone(e1+e2, b1e1+
b2e2) ∈ ∆(2) be a maximal cone containing τ and write kσ = x1e

∗
1 + x2e

∗
2,

so (kσ)(e1 + e2) = x1 + x2 = 1 and xi = (kσ)(ei) ≤ 1 for each i. Hence
kσ is e∗i for an appropriate i and bi = (kσ)(b1e1 + b2e2) = 1. Because of the
non-singularity of Z the only possibilities for σ are cone(e1 + e2, e1), cone(e1 +
e2, e2), cone(e1 + e2, e1 + 2e2) and cone(e1 + e2, 2e1 + e2). The fan ∆ does
not contain both cone(e1 + e2, e1 + 2e2) and cone(e1 + e2, 2e1 + e2); otherwise
kcone(e1+e2,e1+2e2)(2e1 + e2) = 2 > 1 = k(2e1 + e2). Observe that if ∆ contains
cone(e1 + e2, 2e1 + e2), then Z is isomorphic to a variety whose fan contains
cone(e1 + e2, e1 + 2e2) by the isomorphism induced by the automorphism of
χ∗(S) that exchanges e1 and e2. So the claim is proved.

Because of the non-singularity of Z, ∆ contains a cone σ = cone(e1+me2, e2)
for a suitable integer m; we want to show that Z is Zm. Let Z ′ be the open
toric subvariety of Z whose fan ∆′ is ∆\{cone(e1 +me2, e2), cone(e2)}.

We claim that, for each integer r > 1, there is an unique variety Z̃ ′
r with the

two following properties: 1) the fan ∆̃′
r of Z̃ ′

r has support cone(e1, e1 + re2); 2)

Z̃ ′
r is an open subvariety of a toric variety Z̃r with nef anticanonical bundle and

birationally proper over A2. In particular, the anticanonical divisor of Z̃ ′
r is nef.

The open subvariety Z ′
r of Zr whose fan is ∆r\{cone(e1 + re2, e2), cone(e2)},

satisfies these properties. So it is sufficient to prove the claim.
We show the claim for induction on r. We have already verified the basis of

induction. Let Z̃ ′
r be a variety that satisfies the hypotheses of the claim and let

σ′ be the unique cone in ∆̃′
r(2) which contains e1+re2. Because of the inductive

hypothesis it is sufficient to show that σ′ = cone(e1 + re2, e1 + (r − 1)e2).

Let k be the function associated to the anticanonical bundle of a fixed Z̃r.
Let kσ′ = x1e

∗
1 + x2e

∗
2, then 1 = kσ′ (e1 + re2) = x1 + rx2 and xi = kσ′ (ei) ≤ 1

for each i, so the unique possibilities for kσ′ are e∗1 and −(r − 1)e∗1 + e∗2. Write
σ′ = cone(e1 + re2, v) with v = c1e1 + c2e2 primitive. If kσ′ = −(r − 1)e∗1 + e∗2,
then c2 = (r − 1)c1 + 1 because (−(r − 1)e∗1 + e∗2)(v) = 1. Because of the
non-singularity of Z we have c1 − 1 = ±1, so there are two possibilities: either
σ′ = cone(e1 + re2, e2) or σ′ = cone(e1 + re2, 2e1 + (2r − 1)e2). We exclude

the first one because e2 does not belong to |∆̃′
r|. We exclude also the second

one because kcone(e1,e1+e2)(2e1 + (2r − 1)e2) = 2 > k(v). If kσ′ = e∗1, then
c1 = kσ′(v) = 1. Because of the smoothness of Z we have c2 − r = ±1.

Again, we exclude e1 + (r + 1)e2 because it does not belong to |∆̃′
r|. Thus

σ′ = cone(e1 + re2, e1 + (r − 1)e2). �
Suppose ∆X [p] = {e1, e1 + e2, e1 + 2e2, ..., e1 + re2, e2}. Then −KX is nef if

and only if −2ρ+2ρ0 + e∗1 and −2ρ+2ρ0− (r− 1)e∗1 + e∗2 are antidominant. In
such a case, if θ is decomposable, then the sum of these weights is regular, so
−KX is big. If r = 1 and the previous weights are regular, then −KX is ample.
Remark that if r = 1 and θ is decomposable, such weights are always regular.

III) If X is not toroidal and θ is indecomposable, let X ′ be as in Lemma
5.4. By Lemma 5.1 and Theorem 5.1, RG,θ = A2, H = Gθ and ∆X′ [p] contains
properly {α∨

1 ,−α
∨
1 −α

∨
2 ,−3ω

∨
1 }, up to reindexing. By Lemma 5.5 we have two
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possibilities for ∆X′ [p]: i) {α∨
1 ,−ω

∨
1 − ω

∨
2 ,−4ω

∨
1 − ω

∨
2 ,−5ω

∨
1 − 2ω∨

2 , ...,−(r +
3)ω∨

1 − rω
∨
2 ,−3ω

∨
1 } and ii) {α∨

1 ,−ω
∨
1 − ω

∨
2 ,−4ω

∨
1 − ω

∨
2 ,−7ω

∨
1 − ω

∨
2 , ...,−(3r +

1)ω∨
1 − ω

∨
2 ,−3ω

∨
1 }.

Recall that ai = (2ρ−2ρ0)(α
∨
i ). In the first case k is linear over cone(α∨

1 ,−ω
∨
1−

ω∨
2 ), σ := cone(−ω∨

1 −ω
∨
2 ,−(r+3)ω∨

1 −rω
∨
2 ) and cone(−(r+3)ω∨

1 −rω
∨
2 ,−3ω

∨
1 ).

The unique non-trivial condition is kσ(α
∨
1 ) = r ≤ a1. In the second case k

is linear over cone(ω∨
1 ,−ω

∨
1 − ω∨

2 ), cone(−ω
∨
1 − ω∨

2 ,−(3r + 1)ω∨
1 − ω∨

2 ) and
σ := cone(−(3r + 1)ω∨

1 − ω∨
2 ,−3ω

∨
1 ). The unique non-trivial condition is

kσ(α
∨
2 ) = 2r− 1 ≤ a2 (or equivalently k̃σ(α

∨
2 ) ≤ 0). If r = 1, then θ = −id over

χ∗(T ) so that −KX is not ample.
IV) Finally, suppose X non toroidal and θ decomposable. Suppose also

X0 smooth; the case X0 singular is very similar. By the proof of Theorem
5.1, ρ(D(X)) cannot be ρ(D(G/H)). If ρ(D(X)) = α∨

1 , then, by the local
factoriality of X , e1 = −α∨

1 and there is r ∈ Z>0 such that σ := cone(α∨
1 , v

′ =
−rα∨

1 +e2) ∈ ∆. We apply Lemma 5.4 to the maximal open toroidal subvariety
of X (whose colored fan has support cone(−α∨

1 , v
′)). Then, by Lemma 5.5, ∆[p]

has to be {−α∨
1 , v

′,−α∨
1 + v′,−α∨

1 + 2v′, ...,−α∨
1 + sv′, α∨

1 }, {−α
∨
1 , v

′,−α∨
1 +

v′,−2α∨
1 + v′, ...,−sα∨

1 + v′, α∨
1 } or {−α

∨
1 , v

′, α∨
1 }.

In the first case, k is linear over cone(α∨
1 , v

′), σ1 := cone(v′,−α∨
1 + sv′) and

σ2 := cone(−α∨
1 + sv′,−α∨

1 ). The non-trivial conditions are k̃σ1
(α∨

1 ) ≤ 0 and
k̃σ2

(α∨
2 ) ≤ 0 (or equivalently s ≤ m̄1 + 1 and r ≤ m̄2). If s = 1, then r > m2

because −KX is not ample. In the second case we can suppose s ≥ 2; k is linear
over cone(α∨

1 , v
′), σ1 := cone(v′,−sα∨

1 + v′) and σ2 := cone(−sα∨
1 + v′,−α∨

1 ).
The unique non-trivial condition is k̃σ2

(α∨
2 ) ≤ 0, or, equivalently, r+s−1 ≤ m̄2.

In the first two cases k̃σ1
(α∨

2 ) < 0 and k̃σ2
(α∨

1 ) < 0, so −K̃X is big. In the last
case, we proceed as in the proof of Theorem 5.1, obtaing m2 + 1 < r ≤ m̄2 + 1.
Moreover, k̃cone(α∨

1
,v′)(α

∨
2 ) < 0 and k̃cone(−α∨

1
,v′)(α

∨
1 ) < 0, so −KX is big.

We can study the smoothness of all the previous varieties as in the proof
of Theorem 5.1. Remark that if H = Gθ, θ is decomposable, ♯ρ−1(α∨

1 ) = 2
and (C(Y ), D(Y )) = (cone(α∨

1 ,−rα
∨
1 − α

∨
2 ), F ), then Y is smooth if and only

if ♯F = 1 and α1 is not exceptional (but Y cannot be an open subvarieties of
a Fano variety). The symmetric varieties in the statement are all projective.
Indeed, if ∆X [p] = {e1, e1+e2, e1+2e2, ..., e1+(s−1)e2, e1+se2, e2)}, then the
following divisor is ample: −pKX +

∑s
i=1 i

2De1+ie2 +m
∑

D(G/H)\D(X)D with

p,m >> 0. Indeed the piecewise linear function associated to
∑s

i=1 i
2De1+ie2 is

strictly convex on {C ∈ ∆X : C ⊂ cone(e1, e1 + s2)}. Moreover, kX is strictly
convex on the fan with maximal cones cone(e1, e1 + s2) and cone(e1 + s2, e2).
The other cases are similar to this one.

5.3 Symmetric Fano varieties with G reductive

In this section we consider the 2-rank locally factorial Fano symmetric varieties
over which acts a group G which is only reductive. If G is a torus, then X is the
projective space. So, we can suppose G = G′×C∗ withH∩C∗ = (C∗)θ = {±id}.
Write χ∗(C∗/{±id}) = Zf .

If RG,θ = BC1, then H = Gθ and χ∗(S) = Zf ⊕Zα∨. Instead, if RG,θ = A1

there are three possibilities: 1) χ∗(S) = Zf ⊕ Zα∨ and H = Gθ; 2) χ∗(S) =

Zf ⊕ Z1
2α

∨ and H = NG′(Gθ) × {±1}; 3) χ∗(S) = Zf ⊕ Zα∨+f
2 . In the last

case H is generated by Gθ and by n1n2, where n1 ∈ NG′((G′)θ) \ (G′)θ and
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G/H θ ∆[p]

PSL3 (A2) ∄
SL3 (A2) {α∨

i ,−ω
∨
i − ω

∨
ic ,−4ω

∨
i − ω

∨
ic ,−5ω

∨
i − 2ω∨

ic ,−3ω
∨
i }, i = 1, 2

SO5 (B2) {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 }

Spin5 (B2) {−2ω∨
1 ,−ω

∨
2 ,−2ω

∨
1 − ω

∨
2 ,−2ω

∨
1 − 2ω∨

2 }
G2 (G2) ∄
SL3/N(SO3) AI {−ω∨

1 ,−ω
∨
2 ,−ω

∨
1 − ω

∨
2 }

SL3/SO3 AI {α∨
i ,−3ω

∨
i ,−ω

∨
i − ω

∨
ic ,−4ω

∨
i − ω

∨
ic}, i = 1, 2

SL6/N(Sp6) AII {−ω∨
1 ,−ω

∨
2 ,−ω

∨
i − ω

∨
ic ,−2ω

∨
i − ω

∨
ic}, i = 1, 2

SL6/Sp6 AII {α∨
i ,−ω

∨
i − ω

∨
ic , ...,−(r + 3)ω∨

i − rω
∨
ic ,−3ω

∨
i }, i = 1, 2; r = 2, 3, 4

{α∨
i ,−ω

∨
i − ω

∨
ic ,−4ω

∨
i − ω

∨
ic ,−7ω

∨
i − ω

∨
ic ,−3ω

∨
i }, i = 1, 2

SLn+1/S(GL2 ×GLn−1) AIII {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 , ...,−rω

∨
1 − ω

∨
2 }, 2 ≤ r ≤ n− 2

n ≥ 4 {α∨
2 ,−ω

∨
2 }

SL4/N(S(GL2 ×GL2)) AIII {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 }

SL4/S(GL2 ×GL2) AIII {−ω∨
1 ,−2ω

∨
2 ,−ω

∨
1 − 2ω∨

2 }
{α∨

2 ,−2ω
∨
2 }

SO2n+1/S(O2 ×O2n−1) BI {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 , ...,−rω

∨
1 − ω

∨
2 }, r ≤ n− 2; n ≥ 3

SO5/S(O2 ×O3) BI ∄
SO2n+1/ BI {−2ω∨

1 ,−ω
∨
2 ,−2ω

∨
1 − ω

∨
2 , ...,−2rω

∨
1 − ω

∨
2 }, r ≤ n− 1

(SO2 × SO2n−1) {α∨
1 ,−ω

∨
1 }

Sp2n/(Sp4 × Sp2n−4), CII {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 , ...,−rω

∨
1 − ω

∨
2 }, 2 ≤ r ≤ n− 5

n > 4 {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 ,−ω

∨
1 − 2ω∨

2 }
Sp8/N(Sp4 × Sp4) CII {−ω∨

1 ,−ω
∨
2 ,−ω

∨
1 − ω

∨
2 ,−2ω

∨
1 − ω

∨
2 }

{−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 ,−ω

∨
1 − 2ω∨

2 }
Sp8/(Sp4 × Sp4) CII {−ω∨

1 ,−2ω
∨
2 ,−ω

∨
1 − 2ω∨

2 , ...,−rω
∨
1 − 2ω∨

2 }, 2 ≤ r ≤ 3
{−ω∨

1 ,−2ω
∨
2 ,−ω

∨
1 − 2ω∨

2 ,−ω
∨
1 − 4ω∨

2 }
SO2n/S(O2 ×O2n−2) DI {−ω∨

1 ,−ω
∨
2 ,−ω

∨
1 − ω

∨
2 , ...,−rω

∨
1 − ω

∨
2 }, r ≤ n− 2

SO2n/(SO2 × SO2n−2) DI {−2ω∨
1 ,−ω

∨
2 ,−2ω

∨
1 − ω

∨
2 , ...,−2rω

∨
1 − ω

∨
2 }, r ≤ n− 2

{α∨
1 ,−2ω

∨
1 }

SO8/N(SO4) DIII {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 }

{−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 ,−ω

∨
1 − 2ω∨

2 }
SO8/SO4 DIII {−ω∨

1 ,−2ω
∨
2 , ...,−ω

∨
1 − 2rω∨

2 }, r = 1, 2
{α∨

2 ,−2ω
∨
2 }

SO10/SO5 DIII {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 , ...− rω

∨
1 − ω

∨
2 }, r = 2, 3

{−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 ,−ω

∨
1 − 2ω∨

2 }
{α∨

2 ,−ω
∨
2 }

E6/(D5 × C∗) EIII {−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 , ...,−rω

∨
1 − ω

∨
2 }, 2 ≤ r ≤ 5

{−ω∨
1 ,−ω

∨
2 ,−ω

∨
1 − ω

∨
2 , ...,−ω

∨
1 − rω

∨
2 }, 2 ≤ r ≤ 3

{α∨
2 ,−ω

∨
2 }

E6/N(F4) EIV {−ω∨
1 ,−ω

∨
2 ,−ω

∨
i − ω

∨
ic , ...− rω

∨
i − ω

∨
ic}, i = 1, 2; r = 2, 3, 4

E6/F4 EIV {α∨
i ,−ω

∨
i − ω

∨
ic , ...,−(r + 3)ω∨

i − rω
∨
ic ,−3ω

∨
i }, i = 1, 2; r = 2, ..., 8

{α∨
i ,−ω

∨
i − ω

∨
ic , ...,−(3r + 1)ω∨

i − ω
∨
ic ,−3ω

∨
i }, i = 1, 2; r = 2, 3, 4

G2/(A1 ×A1) G {−ω∨
1 ,−ω

∨
2 }

Figure 7: quasi-Fano indecomposable symmetric varieties with rank 2
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n2 ∈ C∗ has order four; in particular [Gθ : H ] = 2. Let e be the primitive
positive multiple of −α∨ and let {e∗, f∗} be the dual basis of {e, f}.

Theorem 5.3 Let G/H be a symmetric space of rank two, such that G is nei-
ther semisimple nor abelian. As before, write ψ(r) = −2ρ + 2ρ0 − re∗ and
m1 := max{r : ψ(r) < 0}. The Fano locally factorial compactifications of G/H
are the following ones:

1. ∆[p] = {f,−f, e + rf} if χ∗(S) = Ze ⊕ Zf , r ∈ Z, r ≤ m1 + 1 and
−r ≤ m1 + 1;

2. ∆[p] = {f,−f, e + rf, e + (r + 1)f} if χ∗(S) = Ze ⊕ Zf , r ∈ Z, r ≤ m1

and −r ≤ m1 + 1;

3. ∆[p] = {α∨,−f,−α∨ + f} (and ∆[p] = {α∨, f,−α∨ − f}) if χ∗(S) =
Zα∨ ⊕ Zf and ♯D(G/H) = 1;

4. ∆[p] = {α∨,−f,−α∨,−α∨ + f} (and ∆[p] = {α∨, f,−α∨,−α∨ − f}) if
χ∗(S) = Zα∨ ⊕ Zf and ♯D(G/H) = 1;

5. ∆[p] = {f,−f,− 1
2α

∨+ 2r+1
2 f} if χ∗(S) = Zf⊕Z(α

∨+f
2 ), r ∈ Z, r ≤ m1+1

2

and −r ≤ m1+3
2 ;

6. ∆[p] = {f,−f,− 1
2α

∨ + 2r+1
2 f,− 1

2α
∨ + 2r+3

2 f} if χ∗(S) = Zf ⊕Z(α
∨+f
2 ),

r ∈ Z, r ≤ m1−1
2 and −r ≤ m1+3

2 ;

7. ∆[p] = {α∨,− 1
2α

∨ + 1
2f,−

1
2α

∨ − 1
2f,−α

∨} if χ∗(S) = Zf ⊕ Z(α
∨+f
2 );

8. ∆[p] = {α∨,− 1
2α

∨ + 1
2f,−

1
2α

∨ − 1
2f} if χ∗(S) = Zf ⊕ Z(α

∨+f
2 );

9. ∆[p] = {α∨,−f,− 1
2α

∨+ 1
2f} (and ∆[p] = {α∨, f,− 1

2α
∨− 1

2f}) if χ∗(S) =

Zf ⊕ Z(α
∨+f
2 );

10. ∆[p] = {α∨,−f,− 1
2α

∨ + 1
2f,−

1
2α

∨ − 1
2f} (and ∆[p] = {α∨, f,− 1

2α
∨ +

1
2f,−

1
2α

∨ − 1
2f}) if χ∗(S) = Zf ⊕ Z(α

∨+f
2 ).

The only singular varieties are the ones in the cases 3) and 4).

Observe that X cannot be simple because the valuation cone is not strictly
convex. We begin with a lemma similar to Lemma 5.2.

Lemma 5.6 Let X be a Fano locally factorial symmetric variety with G as
before. If X is toroidal, there are at most four colored 1-cones. Otherwise, there
are at most three colored 1-cones.

Proof of Lemma 5.6. First suppose X toroidal. Then k(±f) = 1. Let
σ ∈ ∆(2) be a cone which does not contain neither f nor −f , then kσ(±f) ≤ 0.
So kσ is a multiple of e∗. If there is another cone σ′ ∈ ∆(2) with the same
properties (and such that dim (σ∩σ′) = 1), then kσ = kσ′ . If X is not toroidal,
we can study the maximal open toroidal subvariety X ′ of X as in Lemma 5.2
(because |F(X ′)| is strictly convex). �

Proof of Theorem 5.3. We have to request, as in Theorem 5.1, that ♯ρ(D(X))
= ♯ρ−1(ρ(D(X))), but in this case ♯ρ(D(X)) ≤ 1. If X is not toroidal, then
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e = −α∨, because there is an appropriate cone(α∨, v) in ∆(2). Suppose first
that χ∗(S) = Ze ⊕ Zf . We have to consider the following cases: 1) If ∆[p] =
{f,−f, v}, then v = e+rf because {f, v} is a basis of χ∗(S). We have to impose

that k̃cone(f,e+rf)(α
∨) = ψ(r−1)(α∨) < 0 and that k̃cone(−f,e+rf)(α

∨) = ψ(−r−
1)(α∨) < 0. 2) Suppose ∆[p] = {f,−f, v1, v2}. As before vi = e+xif ; moreover
x1 = x2 ± 1 because {v1, v2} is a basis of χ∗(S). Suppose x1 = x2 +1. We have

to impose k̃cone(f,e+(x2+1)f)(α
∨) = ψ(x2)(α

∨) < 0 and k̃cone(−f,e+x2f)(α
∨) =

ψ(−x2 − 1)(α∨) < 0.
3) Suppose ∆[p] = {α∨,−f, v}. Then v = −α∨ + rf = −mα∨ ± f because

X is smooth. But −f is not contained in cone(α∨, v), thus v = −α∨ + f . 4)
Suppose ∆[p] = {α∨,−f, v1, v2} and ∆(2) = {cone(α∨, v1), σ := cone(v1, v2),
cone(−f, v2)}. Then v1 = −mα∨+f and v2 = −α∨+rf . Observe that R≥0v1 =
R≥0(−α∨ + 1

mf), so r ≤ 0. Furthermore v2 − rv1 = −(1 − rm)α∨ = ±α∨, so
mr is 0 or 2. Thus v2 = −α∨. Moreover hσ(−f) = m− 1 < 1, so v1 = −α∨+ f .

5) Suppose ∆[p] = {α∨, v1, v2} and ∆(2) = {cone(α∨, v1), cone(v1, v2),
cone(α∨, v2)}. Thus v1 = −rα∨ + f and v2 = −mα∨ − f with r,m > 0.
Moreover, v1 + v2 = −(r +m)α∨ = ±α∨, a contradiction. 6) Suppose ∆[p] =
{α∨, v1, v2, v3} and ∆(2) = {cone(α∨, v1), σ := cone(v1, v2), cone(v2, v3), cone
(α∨, v3)}. Write v2 = −xα∨ + yf . By the smoothness of X , v1 = −rα∨ + f ,
v3 = −mα∨ − f , x = −my ± 1 and x = +ry ± 1. The last two conditions, plus
x > 0 imply that v2 = −α∨. Moreover kσ(v3) = m+ r− 1 < 1, a contradiction.

Now, suppose χ∗(S) = Zf+α∨

2 ⊕ Zf . 1) The toroidal case can be studied
as before. 2) Suppose that ∆(2) contains two cones σ± := cone(v±, α

∨). Let
u = 1

2α
∨ + 1

2f . We have v+ = − 2m+1
2 α∨ + 1

2f = −(2m+ 1)u + (m+ 1)f and
v− = − 2r+1

2 α∨ − 1
2f = −(2r + 1)u + rf with m, r ≥ 0. First, suppose that

there is another v = −xu + yf in ∆[p]; here x > 0. By the smoothness, we
have x(m + 1) = y(2m+ 1) ± 1 and xr = y(2r + 1)± 1. Thus x[(m + 1)(2r +
1) − r(2m + 1)] = ±1 ∓ 1, so x(m + r + 1) = 2, x(m + 1) = y(2m + 1) + 1
and xr = y(2r + 1) − 1. If x = 1, then the previous three equations are not
compatible. Instead, if x = 2 then ∆[p] = {α∨,− 1

2α
∨ + 1

2f,−α
∨,− 1

2α
∨ − 1

2f}.
Next, suppose that ∆[p] = {α∨, v+, v−}; in particular {v+, v−} is a basis. Thus
v+ + v− = −(m+ r + 1)α∨ = ±α∨, so ∆[p] = {α∨,− 1

2α
∨ + 1

2f,−
1
2α

∨ − 1
2f}.

3) Finally, suppose that ∆[p] contains α∨ and −f . Then ∆ contains σ =
cone(α∨, v1) and cone(−f, v2), with v1 = − 2m+1

2 α∨ + 1
2f , m ≥ 0 and v2 =

− 1
2α

∨ − 2r+1
2 f . If v1 = v2, then ∆[p] = {α∨,−f,− 1

2α
∨ + 1

2f}. Otherwise, by
Lemma 5.6, ∆ contains cone(v1, v2). Furthermore, (2r+1)v1+v2 = ±α

∨, hence
(2r + 1)(2m + 1) is 1 or -3. But r ≥ 0 because v2 /∈ σ, so v1 = − 1

2α
∨ + f and

v2 = − 1
2α

∨ − f .
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