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EFFECTIVE AND BIG DIVISORS ON A PROJECTIVE

SYMMETRIC VARIETY

ALESSANDRO RUZZI

Abstract. We describe the effective and the big cones of a projective sym-
metric variety. Moreover, we give a necessary and sufficient combinatorial
criterion for the bigness of a nef divisor on a projective symmetric variety.
When the divisor is G-stable, such criterion has an explicit geometric inter-
pretation. Finally, we describe the spherical closure of a symmetric subgroup.
Keywords: Symmetric varieties, Big divisors.

Mathematics Subject Classification 2000: 14L30, 14C20, (14M17).

Introduction

Brion gave a description of the Picard group of a spherical variety in [Br89].
He also found necessary and sufficient conditions for the ampleness and global
generation of a line bundle. From these conditions follows that a line bundle is nef
if and only if it is globally generated. It is natural to ask what are the conditions
on a line bundle to be effective, respectively big. It is known that the effective cone
is closed, polyhedral and, if the variety is Q-factorial, generated by the classes of
the B-stable prime divisors. But in general it is hard to say which are the B-stable
prime divisors whose classes generate an extremal ray of the effective cone. In the
very special case of projective homogeneous varieties, the big cone coincides with
the ample cone. More generally, the case of wonderful varieties is studied in [Br07].
For any normal projective variety, there is a very useful criterion for a nef divisor
D to be big: D is big if and only if its volume DdimX is strictly positive (see
[La04], Theorem 2.2.16). In the case of a toric T -variety Z this criterion has a more
combinatorial version. A T -stable, nef divisor D can be identified with a certain
polytope with integral vertices, its moment polytope; moreover, the volume of D
is equal to (dimZ)! times the volume of this polytope. In particular, D is big if
and only if its moment polytope has positive volume. See also [FS09] for a partial
study of the big cone of some toric varieties.

We are interested to study the bigness of Cartier Q-divisors on symmetric vari-
eties (over which acts a semisimple group). First, we describe explicitly the effective
cone; we determine also when the classes of two B-stable prime divisors are pro-
portional. When the variety is Q-factorial, we find the conditions for the class
of a B-stable prime divisor to generate an extremal ray of the effective cone (see
Theorem 3.1, Theorem 3.2 and Corollary 3.1).

Given a Q-factorial, projective symmetric variety X , we will give an explicit
description of its big cone using the description of Eff(X) and the fact the Big(X)
is the interior part of Eff(X) (see Theorem 4.1). We will give also a combinatorial
version of the cited criterion on the volume of a nef Q-divisor D, stated in terms of
the T -weights of the fibres of O(D) over the B-stable points (see Theorem 4.2). The
idea of the proof is the following. Up to take a lifting and up to linear equivalence,
one can reduce itself to study G-stable divisors on a projective toroidal symmetric
variety, i.e. a projective variety such that the closure of none B-stable divisor of
the open G-orbit contains a G-orbit. Each projective toroidal symmetric variety X
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(with fixed open G-orbit) contains a projective toric variety Zc which determines X
uniquely. We prove that the restriction of a big Q-divisorD ofX to Zc is always big.
If the divisor is G-stable, then this condition is also sufficient (see Proposition 4.1).
One can show that the subspace of Pic(X)Q generated by the classes of G-stable
divisors is a complement to the kernel of the restriction Pic(X)Q → Pic(Zc)Q.
Then, we use the combinatorial description of H0(Zc,O(D)|Zc) to prove Theorem
4.2.

We describe also the spherical closure of a symmetric subgroup H in Proposition
2.1. We will use such description to give a condition so that the class of a G-stable
prime divisor is proportional to the class of a B-stable, but not G-stable, divisor
(see Corollary 2.1 and Theorem 3.2). Given a symmetric space G/H , H is called a
symmetric subgroup and its spherical closure is defined, after Luna, as the subgroup

H
sph

ofNG(H) which stabilizes all the B-stable prime divisors of G/H . A subgroup
H of G is wonderful (resp. spherical) if G/H has a wonderful compactification
(resp. is spherical). The definition of spherical closure is useful to associate in a
natural way a wonderful subgroup of G to any spherical subgroup of G. Moreover,
NG(H)/H is isomorphic to the group of G-equivariant automorphisms of G/H , so

H
sph

can be thought as a group of automorphisms.

1. Introduction and notations

In this section we introduce the necessary notations. The reader interested to the
embedding theory of spherical varieties can see [LuVu], [Kn91], [Br97a] or [T06].
In [Vu90], this theory is explained in the particular case of symmetric varieties.

1.1. First definitions. Let G be a connected semisimple algebraic group over
algebraic closed field k of characteristic zero and let θ be an involution of G. Let
H be a closed subgroup of G such that Gθ ⊂ H ⊂ NG(G

θ), then we say that
G/H is a symmetric space and that H is a symmetric subgroup. We can assume G
simply connected (see [Vu90], §2.1). An equivariant embedding of G/H is the data
of a G-variety X together with an equivariant open embedding ϕ : G/H →֒ X , in
particular ϕ(g · x) = g · ϕ(x) for each x ∈ G/H . A normal G-variety is called a
spherical variety if it contains a dense orbit under the action of an arbitrarily chosen
Borel subgroup of G. One can show that every normal equivariant embedding of
G/H is spherical (see [dCoPr83], Proposition 1.3); we call it a symmetric variety.
The most important example of symmetric space is the one of a semisimple (or
more generally reductive) group G seen as (G×G)-variety.

We say that a subtorus of G is split if θ(t) = t−1 for all its elements t; moreover
it is a maximal split torus if has maximal dimension. We say that any maximal
torus containing a maximal split torus is maximally split. Any maximally split
torus is θ stable; moreover they are all conjugate under Gθ (see [Vu74], Proposition
2 (iv) and Proposition 6). We fix arbitrarily a maximally split torus T containing
a maximal split torus T 1. Let RG be the root system of G with respect to T . We
can choose a Borel subgroup B containing T such that, given any positive root α
with respect to B, either θ(α) = α or θ(α) is negative. Moreover, BH is dense in
G (see [dCoPr83], Lemma 1.2 and Proposition 1.3).

1.2. Colored fans. We want to describe the Picard group of a symmetric variety.
Before doing this, we need to introduce some details about the classification of the
symmetric varieties by their colored fans (this classification holds more generally
for spherical varieties).

Let D(G/H) be the set of colors of G/H , namely the set of B-stable prime
divisors of G/H . They are the irreducible components of (G/H) \ (BH/H) because
BH/H is affine and open. We say that a spherical variety is simple if it contains
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one closed orbit. Let X be a simple symmetric variety with closed orbit Y . We
define the set of colors of X as the subset F(X) of D(G/H) consisting of the
colors whose closure in X contains Y . To each prime divisor D of X , we can
associate the normalized discrete valuation vD of C(G/H) whose ring is the local
ring OX,D. One can prove that D is G-stable if and only if vD is G-invariant,
i.e. vD(g · f) = vD(f) for each g ∈ G and f ∈ C(G/H). Let N be the set of all
G-invariant valuations of C(G/H) taking values in Z and let N (X) be the set of
the valuations associated to the G-stable prime divisors of X . Observe that each
irreducible component of X \ (G/H) has codimension one, because G/H is affine.
Let S := T/ T ∩H ≃ T · (H/H). One can show that the group C(G/H)(B)/C∗ is
isomorphic to the character group χ(S) of S (see [Vu90], §2.3); in particular, it is
a free abelian group. We define the rank of G/H as the dimension of S. We can
identify the dual group HomZ(C(G/H)(B)/C∗,Z) with the group χ∗(S) of one-
parameter subgroups of S. The restriction map of valuations to C(G/H)(B)/C∗ is
injective over N (see [Kn91], Corollary 1.8), so we can identify N with a subset of
χ∗(S). We say that N is the valuation monoid of G/H . Observe that N is stable
under addiction (see, for example [Kn91], Lemma 5.1). For each color F , we define
ρ(F ) as the restriction of vF to χ(S). In general, the map ρ : D(G/H) → χ∗(S)R is
not injective. Let C(X) be the cone in χ∗(S)R generated by N (X) and ρ(F(X)). A
simple symmetric varieties is uniquely determined by its colored cone (C(X),F(X))
(see [Kn91], Theorem 3.1).

Let Y be a G-orbit of a symmetric variety X . The set {x ∈ X | G · x ⊃ Y }
is an open simple G-subvariety of X with closed orbit Y , because any spherical
variety contains only finitely many G-orbits. Let {Xi} be the set of open simple
subvarieties of X and define the set of colors of X , F(X), as

⋃
i∈I F(Xi). The

family F(X) := {(C(Xi),F(Xi))}i∈I is called the colored fan of X and determines

completely X (see [Kn91], Theorem 3.3). Moreover X is complete if and only if N
is contained in the support

⋃
i∈I C(Xi) of F(X) (see [Kn91], Theorem 4.2).

If one allows G to be reductive, then the toric varieties are a special case of
symmetric varieties. If X is a toric variety, then D(G/H) is empty and we need only
to consider the fan Ff = {(C(Xi))}i∈I associated to the colored fan of X (actually
the classification of spherical varieties by colored fans is a generalization of the
classification of toric varieties by fans). One can show that, fixed any symmetric
space G/H such that ρ is injective (for example if G/H is a group), the symmetric
varieties with open orbit G/H are classified by the fans Ff = {(C(Xi))}i∈I .

1.3. Restricted root system. To describe the sets N and ρ(D(G/H)), we need
to associate a root system to G/H . W can identify χ(T 1)R with χ(S)R because
χ(S) has finite index in χ(T 1). We call again θ the involution induced on χ(T )R.
The inclusion T 1 ⊂ T induces an isomorphism of χ(T 1)R with the (−1)-eigenspace
of χ(T )R under the action of θ (see [T06], §26). Denote byWG the Weyl group of G
(with respect to T ). We can identify χ(T 1)R with its dual χ∗(T

1)R by the restriction
( ·, ·) of the Killing form to χ(T 1)R . The set RG,θ := {β − θ(β) | β ∈ RG}\ {0}
is a root system in χ(S)R (see [Vu90], §2.3 Lemme), which we call the restricted
root system of (G, θ); we call the non zero β− θ(β) the restricted roots. We denote
by α1, ..., αs the elements of the basis RG,θ := {β − θ(β) |β ∈ RG simple} \ {0}
of RG,θ. We denote by {α∨

1 , ..., α
∨
s } the dual basis of the restricted coroot system

R∨
G,θ, i.e. the dual root system of RG,θ. Let C− be the negative Weyl chamber

of RG,θ (in χ∗(S)Q). Given a dominant weight λ of G, we denote by V (λ) the
irreducible representation of highest weight λ. See [ChMa03], Theorem 2.3 or [T06],
Proposition 26.4 for an explicit description of the dominant weights of RG,θ. They
are called spherical weights and are also dominant weights of RG. Let WG,θ be the
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Weyl group of RG,θ; it is isomorphic to NH0(T1)/ZH0(T 1) and to NG(T1)/ZG(T
1)

(see Proposition 26.2 in [T06]).

1.4. The sets N and D(G/H). The set N is equal to C− ∩ χ∗(S); in par-
ticular, it consists of the lattice vectors of the rational, polyhedral, convex cone
C− = cone(N). The set ρ(D(G/H)) is equal to {α∨

1 , ..., α
∨
s } and, for each i, the

fibre ρ−1(α∨
i ) contains at most 2 colors. In particular, the number of colors of a

symmetric space is at least its rank. We say that (G, θ) is indecomposable if any
normal, connected, θ-stable subgroup of G is trivial. In this case the number of col-
ors of G/H is at most equal to rank of G/H plus one. If |D(G/H)| > rank(G/H)
and (G, θ) is indecomposable, we have two possibilities: 1) Gθ = H = NG(G

θ);
2) H is equal to Gθ and has index two in NG(G

θ). In the last case any element
of NG(G

θ)\Gθ exchanges two colors. Because of the simply-connectedness of G,
we can always write G as a direct product

∏
Gi of θ-stable, semisimple, normal

subgroup Gi such that each (Gi, θ) is indecomposable. Moreover, the finite cover
G/Gθ of G/H is the direct product

∏
i∈I Gi/G

θ
i .

We say that a simple restricted root a is exceptional if ρ−1(α∨) contains two
colors and 2α is a restricted root. Moreover, we say that a symmetric variety
is exceptional if there is an exceptional root. If moreover θ is indecomposable,
then Gθ = H = NG(G

θ). Furthermore, ρ is injective if H is semisimple. Let
D(G/H)H be the set of colors F such that ρ−1(ρ(F )) = {F}. One can show that
ρ−1(ρ(F )) = {F} if only if the equation of π−1(F ) in G is H-invariant, where
π : G→ G/H is the projection. We denote by Fα the sum of the colors in ρ−1(α∨).
If α∨∈/ ρ(D(G/H)H), we write ρ−1(α∨) = {F+

α , F
−
α }, so Fα = F+

α + F−
α .

1.5. Toroidal symmetric varieties. Before to describe the Picard group, we
want to define a special class of varieties. We say that a spherical variety is toroidal
if F(X) = ∅. There is a special toroidal completion of any symmetric space G/H
because NG(H)/H is finite. This completion, called the standard completion X0, is
the simple symmetric variety associated to (cone(N ), ∅) and it is the unique simple
completion of G/H which dominates all the other simple completions. When X0 is
smooth then it is a wonderful variety (by the definition of Luna). In particular, X0

is smooth (and wonderful) if H = NG(G
θ). This case is been defined and studied

by De Concini and Procesi in [dCoPr83].
X0 contains an affine toric S-variety Z0, which is a quotient of an affine space by

a finite group. The toroidal varieties are the symmetric varieties which dominate
the standard completion; they are in one-to-one correspondence with the S-toric
variety which dominates Z0. The correspondence is obtained in the following way.
The open set U := X0 \

⋃
D(G/H) F is a B-stable affine set; let P be its stabilizer.

U is P -isomorphic to RuP × Z0, where RuP =
∏

β≻0, θ(β) 6=β Uβ is the unipotent

radical of P and dimZ0 = rankX0. To any toroidal variety X we associate the
inverse image Z of Z0 by the projection X → X0. Moreover, X \

⋃
D(G/H) F

is P stable and is P -isomorphic to RuP × Z. The toroidal varieties are also in
one-to-one correspondence with a class of complete toric variety in the following
way. To a symmetric variety variety X , we associate the closure Zc of Z in X ; Zc

is also the inverse image of Zc
0 . The T -variety Zc can be covered by finitely many

NGθ(T 1)-translated of Z; thus Zc is a S-toric variety, in particular it is normal.
The fan of Z is the fan Ff (X) associated to the colored fan F(X), while the fan of
Zc consists of the translates of the cones of Z by the Weyl group WG,θ of RG,θ.

Given a symmetric variety X there is a unique minimal toroidal variety Xdec,
called the decoloration of X , which dominates X . If F(X) = {(Ci, Fi)}i∈I , the
colored fan of Xdec is {(Ci ∩ cone(N), ∅)}i∈I .
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1.6. Big divisors. Before to describe the Picard group of a symmetric variety, we
define some general notions about the line bundle. The reader can see [La04] for
more details. Let X be a (normal) projective algebraic variety over an algebraically
closed field of characteristic zero. Let CDiv(X) the group of Cartier divisors. Given
two Cartier divisors D1 and D2 on X , we say that they are numerically equivalent
if D1 · C = D1 · C for each curve C on X (here · is the intersection product). In
such a case we say also that O(D1) and O(D2) are numerically equivalent.

We define two generalization of an ample bundle. By Nakai’s criterion (see
[La04], Theorem 1.2.23), a Cartier divisor D is ample if and only if the intersection
product DdimY · Y is strictly positive for each subvariety Y (with dimY > 0).
A first generalization is obtained weakening such property. Indeed, we say that
a Cartier divisor D is nef (or numerically effective) if D · C ≥ 0 for each curve
C in X . Remark that in definition we have used only subvarieties of dimension
one. But, by Kleiman’s Theorem (see [La04], Theorem 1.4.9), D is nef if and only
DdimY · Y ≥ 0 for each subvariety Y (with dimY > 0). To define the second
generalization of ample divisor we need to define the Itaka dimension of a divisor.
Given a Cartier divisor D, let E(D) := {m ≥ 0 : H0(X,O(mD)) 6= 0}; given
any m ∈ E(D) we have a rational map φm : X 99K P(H0(X,O(mD))). If E(D)
is empty we define the Itaka dimension κ(D) of D as −∞. Otherwise we define
κ(D) := maxm∈E(D){dimφm(X)}. Remarks that κ(D) is equal at most to the
dimension of X . When D is the canonical divisor, κ(D) is also called the Kodaira
dimension of X . We say that a Cartier divisor on X is big if and only if its Itaka
dimension is equal to the dimension of X . Clearly an ample divisor is big.

We have some equivalent conditions for the bigness of a divisor. First, we recall
a lemma.

Lemma 1.1 (see [La04], Corollary 2.1.38)). . Let D be a Cartier divisor on X and
let κ = κ(D). Then there are strictly positive constants a and A such that

a ·mκ ≤ dimH0(X,O(mD)) ≤ A ·mκ

for all sufficiently large m ∈ E(D).

Proposition 1.1 (see [La04], Lemma 2.2.3 and Corollary 2.2.7). . Let D be a
Cartier divisor on X. The following conditions are equivalent:

• D is big;
• there is a constant C > 0 such that dimH0(X,O(mD)) ≥ C ·mdimX for
all sufficiently large m ∈ E(D);

• for each ample divisor A, there is m > 0 such that mD − A is linearly
equivalent to an effective divisor;

• for each ample divisor A, there is m > 0 such that mD −A is numerically
equivalent to an effective divisor.

When D is nef is a lot easier to verify if it is big:

Proposition 1.2 (see [La04], Theorem 2.2.16 and Corollary 1.4.41). Let D be a
nef divisor on X and let n be the dimension of X. Then D is big if and only if
vol(D) = Dn is strictly positive.

One can define a Q-divisor (respectively R-divisor) as an element of CDiv(X)Q
(resp. of CDiv(X)Q). All the previous definitions can easily extend to Q-divisors.
For example, we say that a Q-divisorD is big if there ism > 0 such thatmD is a big
divisor. One can also extends such definitions to R-divisors, but we do not do it here
because it is a little more technical. Often one works in the quotient Pic(X)R/ ≡
of the real Picard group by the numerical equivalence for the following two reasons:
such space is finite-dimensional (see [La04], Proposition 1.1.14) and the previous
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definitions depends only by the numerical class of a divisor (see [La04], Corollary
1.2.20 and Corollary 2.2.7). Often, we will work with Q-divisors by simplicity.

We define the following cones in Pic(X)Q/ ≡:

• Amp(X) is the cone generated by the classes of ample divisors;
• Nef(X) is the cone generated by the classes of nef divisors;
• Big(X) is the cone generated by the classes of big divisors;
• Eff(X) is the cone generated by the classes of effective divisors;
• the pseudo-effective cone PE(X) is the closure of Big(X).

Such cone are related in the following way:

Proposition 1.3. All the previous cone are convex. Moreover:

• Amp(X) and Big(X) are open;
• Nef(X) and PE(X) are closed;
• [see citeLa04, Theorem 1.4.23 ] Nef(X) is the closure of Amp(X) and
Amp(X) is the interior part of Nef(X);

• [see citeLa04, Theorem 2.2.26 ] PE(X) is the closure of Big(X) and Big(X)
is the interior part of PE(X);

• Big(X) ⊂ Eff(X) ⊂ PE(X).

We define Eff(X) in the same way when X is only complete (and normal).
Finally we say that X is Q-factorial if its rational Picard group coincides with the
rational class group; clearly the smooth varieties are Q-factorial.

When X is a spherical variety, two Cartier divisors are numerically equivalent if
and only if they are linearly equivalent (see for example [Br93], Corollaire 1.3), so
we can omit the quotient by ≡. Moreover, any effective divisor is linearly equivalent
to a B-stable effective divisor (see for example [Br93], Théorème 1.3). Thus, if X
is Q-factorial, the effective cone Eff(X) is the closed polyhedral cone generated
by the class of the B-stable prime divisors (there are a finite number of them); in
particular Eff(X) is equal to the pseudo-effective cone.

1.7. The Picard group. The class group of a symmetric variety is generated by
the classes of the B-stable prime divisors with the relations div(f), where f ∈
C(G/H)(B). Indeed Cl(BH/H) = Pic(BH/H) is trivial. Given ω ∈ χ(S) we
denote by fω the element of C(G/H)(B) with weight ω and such that fω(H/H) = 1.
We denote by vE the image of E ∈ N (X) in χ∗(S); vice versa, given an element ω
of the image of N (X) in C− ∩ N we denote by Eω the corresponding elements of
N (X).

A Weil divisor D =
∑

F∈D(G/H) aFF +
∑

E∈N(X) bEE is a Cartier divisor if and

only if, for each colored cone (C,F), there is hC ∈ χ(S) such that hC(E) = aE for
each E ∈ C and hC(ρ(F )) = aF for each F ∈ F . The hC define a piecewise linear
function on the support of F(X) (see [Br89], Proposition 3.1). We denote such
function by hD or by h; sometimes we will use also the notation hDC instead of hC .

Let P̃L(X) be the set of functions h on the support
⋃
C of F(X) such that:

1) h is linear on each colored cone; 2) h takes integral values at all the point of

χ∗(S)∩(
⋃
C). Let PL(X) be the quotient of P̃L(X) by the subset of restrictions of

linear functions. If X is complete, there is the following exact sequence (see [Br89],
Theorem 3.1):

0 →
⊕

F∈D(G/H) F(X)

ZF → Pic(X) → PL(X) → 0.

A Cartier divisor is globally generated (resp. ample) if and only if the as-
sociated function is convex (resp. strictly convex) and hC(ρ(F )) ≤ aF (resp.
hC(ρ(F )) < aF ) for each colored cone (C,F) and each F ∈ D(G/H) \ F (see
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[Br89], Proposition 3.3). In particular a Cartier divisor is nef if and only if it is
globally generated. Suppose for simplicity that X is toroidal. Given any Cartier
divisor D =

∑
D(G/H) nFF +

∑
N(X) h(E)E, then H0(X,O(D)) is a multiplicity

free representation of G and its highest weights are in one-to-one correspondence
with the points of χ(S) ∩ P (D) where P (D) is the polytope in χ(S)R intersection
of the following half-spaces (see [Br89], Theorem 3.3): i) {m : m(E) + h(E) ≥ 0}
for each E ∈ N (X); ii) {m : m(F ) + nF ≥ 0} for each F ∈ D(G/H). If D is
globally generated then the hC belongs to χ(S) ∩ P (D). If moreover X is toroidal
and D is G-stable, then P (D) is the intersection of the positive Weyl chamber C+

with the convex hull Q(D) = convex(whC) of the points whC , where (C, ∅) varies
in the set of maximal colored cone and w varies in WG,θ ((see [Bi90], Corollary
4.1). Furthermore, the integral points in Q(D) are the weights of a basis of sem-
invariant vectors of H0(Zc,O(D)|Zc) (see [Bi90], Proposition 4.1) and the volume
of O(D)|Zc is equal to (rank G/H)! vol(Q(D)).

Remark 1. Let ϕ : X → X ′ be a G-equivariant, birational morphism of sym-
metric varieties and let L be any line bundle over X ′, then H0(X ′, L) is isomorphic
to H0(X,ϕ∗(L)); in particular, L is big if and only if ϕ∗(L) is big. Moreover, L is
nef if and only if ϕ∗(L) is nef, because of the previous description of nef divisors.

When X is toroidal we have the following split exact sequence (see [Br89], Propo-
sition 3.2):

0 → Pic(X0) → Pic(X) → Pic(Z) → 0,

where the maps are induced respectively by the projection X → X0 and by
the inclusion Z →֒ X . Given any simple X , its Picard group is isomorphic to⊕

F∈D(G/H)\F(X) Z[F ]; in particular Pic(X0) =
⊕

F∈D(G/H) Z[F ].

A (complete) symmetric variety is Q-factorial if and only if each colored cone is
simplicial and ρ is injective over F(X) (see [Br93], Proposition 4.2). Recall that a
cone is said simplicial if it is generated by a number of vectors equal to its dimension.
In particular the standard completion of any symmetric space is Q-factorial. The
conditions for the smoothness are much more complicated (see [Ru07], Theorem
2.2). Notice that the most part of this section is true for any spherical variety:
in particular the descriptions of the class group and of the Picard group holds in
general. Also the previous condition for the Q-factoriality is stated in [Br93] in a
more general form which holds for all spherical varieties.

2. Spherical closure

We define (after Luna) the spherical closureH
sph

ofH as the subgroup ofNG(H)

which stabilizes all the colors of G/H . The standard completion Xsph
0 of G/H

sph

is wonderful and the standard completion X0 of G/H is a ramified cover over

Xsph
0 . Moreover the projection induces an isomorphism between their rational

Picard groups. Indeed we can identify D(G/H) with D(G/H
sph

).

Proposition 2.1. Let G/H a symmetric space, then we can write (G, θ) =
∏n

i=1(Gi, θ)
so that G/H is a direct product

∏
Gi/(Gi ∩ H), where the (Gi, θ) with i > 1 are

indecomposable and |D(Gi/(Gi ∩ H))| > rank(Gi/(Gi ∩ H)) if and only if i > 1.

Moreover H
sph

= NG1
((G1 ∩H))×

∏n
i=2(Gi ∩H).

To prove such proposition we will use §1.4. In particular, we will use the following
fact: if there is n ∈ N(H) and D1, D2 ∈ D(G/H) such that nD1 = D2, then
ρ(D1) = ρ(D2).
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Proof. First, we reduce to the non-exceptional case. Write (G, θ) =
∏n

i=1(Gi, θ)
with (G1, θ) non exceptional and the other (Gi, θ) indecomposable and exceptional.
For each i > 1, we have Gθ

i = Gi ∩ H = NGi
(Gθ

i ) and |D(Gi/(Gi ∩ H))| =
rank(Gi/(Gi ∩ H))+1; in particular the Gi ∩ H with i > 1 are spherically closed
in Gi and G/H is the direct product

∏
Gi/(Gi ∩H).

Suppose now X non-exceptional and write (G, θ) =
∏
(Gi, θ) with the (Gi, θ)

indecomposable. Let Hi := Gi ∩ H . We can think of D(Gi/G
θ
i ) as a subset of

D(G/Gθ) by associating F ×
∏

j 6=iGj/G
θ
j ∈ D(G/Gθ) to any F ∈ D(Gi/G

θ
i ). We

can suppose that: 1) |D(Gi/G
θ
i )| > rank(Gi/G

θ
i ) if and only if i > r; 2) there is

h ∈ H which exchanges two colors of Gi/G
θ
i if and only if r < i ≤ r +m. Observe

that if i > r there is always an element of NG(H) which exchanges two colors of

Gi/G
θ
i . Let G0 =

∏r+m
i=1 Gi, then H

sph
is contained in N ′ := NG0

(H0)×
∏

i>r+mHi

because any element of NG(H) \ N ′ exchanges two colors of some Gi/G
θ
i with

i > r+m (which correspond to two distinct colors of G/H). Moreover, the number
of colors of G0/H0 is equal to its rank. But |D(G0/H0)| ≥ |D(G0/NG0

(H0))| ≥
rank(G0/NG0

(H0)) = rank(G0/H0), thus the spherical closure of H0 in G0 is

NG0
(H0). Therefore H

sph
⊃ NG0

(H0)×
∏

i>r+mHi. �

Corollary 2.1. If H is spherically closed, then G/H is a direct product of indecom-
posable symmetric spaces

∏
Gi/Hi. Moreover, the wonderful completion of G/H

is the product of the wonderful completions of the Gi/Hi.

Remark 2. Let X be a symmetric variety with open orbit G/H . Then there

is a unique minimal symmetric variety Xsph with open orbit G/H
sph

and with
an equivariant proper morphism X → Xsph that extend the canonical projection

G/H → G/H
sph

. Indeed, we can identify D(G/H) with D(G/H
sph

), respectively

(C(G/H)B/C∗)Q with (C(G/H
sph

)B/C∗)Q. Thus the colored fan of X defines a

colored fan associated to an embedding of G/H
sph

. It is easy to show that this
variety satisfies the requested properties s (see also [Kn91], §4).

3. Effective cone of a complete symmetric variety

First we determine Eff(X) when X is Q-factorial, then we consider the case
where X is projective but possibly not Q-factorial.

Theorem 3.1. Let X be a Q-factorial complete symmetric variety. Then

(1) Eff(X) is a closed polyhedral cone whose extremal rays are generated by:
• the colors which are not contained in D(G/H)H ;
• the G-stable prime divisors E whose classes are not proportional to
any of the [F+

αi
+ F−

αi
].

(2) given any extremal ray r of Eff(X), there exist a unique prime divisor D
which belongs to one of the two previous families and such that [D] ∈ r.

Let D̃iv G(X) be the abelian group freely generated by the G-stable prime divi-
sors and let DivG(X) be its image in Pic(X). These groups are isomorphic; indeed
there is no non-trivial relation between these divisors, because any rational function

which is a G-eigenvector is constant. If X is toroidal, we can identify D̃iv G(X)R
with D̃iv T (Z)R by the restriction.

To prove the theorem we use the explicit knowledge of the relations of Cl(X).
In particular, the principal divisor associated to any function in C(X)(B) is a linear
combination of the Fα and of the G-stable prime divisors. Moreover, any [Fα]
belongs to DivG(X)R because div(fωα

) = Fα+
∑

E∈N (X) vE(ωα)E. Thus the class

of each Fα belongs to σ := Eff(X) ∩DivG(X)R. This will implies that Eff(X)
is generated by the others B-stable prime divisors.
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Proof of Theorem 3.1. Exactly as in [Br07], Lemma 2.3.1, we can prove that σ is

cone([E], E ∈ N (X)); thus σ is simplicial because N (X) is a basis of D̃iv
G
(X)R.

Moreover, σ contains all the [Fα] because div(fωα
) = Fα+

∑
E∈N (X)(ωα, vE)E and

the ωE are antidominant. Therefore, the theorem is proved if ρ is injective.
In the general case, Pic(X)R =

⊕
E∈N (X) R[E] ⊕

⊕
α∨

i
:|ρ−1(α∨

i
)|=2 R[F

+
αi
]. In-

deed, Pic(X)R(= Cl(X)R) is generated by the [E] with E ∈ N (X), the [Fα]
and the [Fα+ ] with |ρ−1(α∨

i )| = 2 (see §1.4 for the definition of F+
α and F+

α ).
Moreover, the relations are freely generated by the following ones (∗ωα

): [Fα] =∑
E∈N (X)(ωα,−vE)[E] with α ∈ RG,θ. Indeed, Cl(X) is generated by the B-stable

prime divisors with relations div(fω) = 0 for any ω ∈ χ(S); moreover the relation
(∗ωα

) is the one corresponding to the fundamental spherical weight ωα (see also
§1.7). Observe that ρ is injective over F(X) because X is Q- factorial. Hence,
Eff(X) is generated by N (X) and by D(G/H) \D(G/H)H . Each [F+

α ] generates
an extremal ray of Eff(X) because for any divisor F+

α +div(fω) =
∑

E∈N (X) nEE+∑
β∈ρ(D(G/H)H) nβFβ++

∑
β/∈ρ(D(G/H)H ) n

+
β F

+
β +

∑
β/∈ρ(D(G/H)H ) n

−
β F

−
β such that

n+
α = 0, we have n−

α = −1. We can argue similarly for the F−
α . �

Given any symmetric variety X , let X≤1 be the open G-subvariety composed of

orbits of codimension at most 1. We have an equivariant morphism q : X≤1 → Xsph
0

which can be extended to X if and only if X is toroidal. Here Xsph
0 is the wonderful

completion of G/H
sph

.

Theorem 3.2. Let X be a Q-factorial complete symmetric variety. Then:

(1) The class of a G-stable prime divisor E belongs to the cone generated by
the classes of colors if and only if it is proportional to some [Fα].

(2) The class of a G-stable prime divisor E is proportional to [Fα] if and only
if the irreducible factor R of RG,θ containing α is orthogonal to vE′ for any
E′ ∈ N (X) different from E.

(3) The class of a G-stable prime divisor E is proportional to some [Fα] if and
only if there is a G-equivariant morphism ϕ : X≤1 → X ′ such that X ′ is
a wonderful symmetric G-variety, ϕ(E) ( X ′ and ϕ(E′) = X ′ for each
G-stable prime divisor E′ of X different from E.

(4) If a such morphism exist, we can identify the restricted root system of X ′

with a product R of irreducible factors of RG,θ. Then [E] is proportional
to [Fα] for each simple α in R. We can also suppose that the stabilizer

of ϕ(H/H) is generated by H
sph

and some normal, θ-stable, connected
subgroups of G. If moreover X is toroidal, ϕ can be extended to X, −vE is
a fundamental spherical weight and X ′ is a product of wonderful symmetric
varieties of rank one.

(5) [Lemma 2.3.2 of [Br07] ] The class of a G-stable prime divisor E generates
an extremal ray of Eff(X)R which does not contain the class of a color if
and only if dimH0(X,O(mE)) = 1 for each positive integer m.

(6) [Lemma 2.3.3 of [Br07] ] The class of a color F generates an extremal ray
of Eff(X)R which does not contain the class of any E ∈ N (X) if and only
if there is a G-equivariant morphism ϕ : X → G/P , where P ⊇ H is a
maximal parabolic subgroup, such that F is the preimage of the Schubert
divisor (the unique B-stable prime divisor) in G/P .

Before to prove the theorem, we do some remarks.
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Remark 3.Observe that given an irreducible factor R of RG,θ, there is always
an E ∈ N (X) with (vE , R) 6= 0 because of the completeness of X . The statement
of the third point is very similar to that of Lemma 2.3.4 in [Br07].

Remark 4.Write RG,θ as a product
∏
Ri of irreducible factors, then Xsph

0 is a
product

∏
XRi

by Corollary 2.1. In the proof we show that to check if [E] belongs
to R≥0[Fα] with α ∈ Ri0 is sufficient to check if πi0 ◦ q : X≤0 → XR0

satisfies the
conditions of point (3).

Remark 5. In the setting of wonderful varieties, there are never two colors whose
classes are proportional.

Remark 6. In [Br07] the Lemma 2.3.1 and 2.3.2 are stated for wonderful va-
rieties, but their proof holds for any Q-factorial complete spherical variety whose
open orbit is sober, i.e. NG(H)/H is finite. In the setting of symmetric varieties,
one can explicitly construct the morphism of point (6). Let F be a color as in the
point (6) and let α∨ be ρ(F ). Then, by Theorem 3.1, ρ−1(α) contains two colors
and ωα is the sum ω1 + ω2 of two (possibly equal) fundamental weights of G. We
can also suppose that Gθ = P (ω1) ∩ P (−ω1) and ω2 = −̟◦ω1, where ̟◦ is the
longest element of WG. Also the other color in ρ−1(α) satisfies the conditions of
(6) and the corresponding applications are the following:

G/Gθ → G/P (ω1) ⊂ P(V (ω1))

g → g · [vω1
]

and

G/Gθ → G/P (−ω1) ⊂ P(V (ω2))

g → g · [v−ω1
]

where vχ is a weight vector of weight χ. Furthermore, G/P (−ω1) is isomorphic to
G/P (ω2). There are some difference according to whether α is exceptional or not.
If α is exceptional then ω1 is different from ω2; in particular the stabilizer of F+

α is
different from the stabilizer of F−

α . Moreover P(V (ω1)), resp. P(V (ω2)), contains
a unique point fixed by Gθ.

Instead, if α is non-exceptional then ω1 = ω2; in particular, the stabilizer of F+
α

is equal to the stabilizer of F−
α . Moreover, P(V (ω1)) contains two points fixed by

Gθ, namely [vω1
] and [v−ω1

] . In this case there is an element n of NG(H) r H
which exchanges F+

α with F−
α ; moreover n exchanges vω1

with v−ω1
.

Proof of Theorem 3.2. We have already showed the first point in the proof of the
previous theorem. First, we will prove the point (2). Then we will use it to prove the
points (3) and (4). We will use also the Corollary 2.1 to find an explicit candidate
for the application ϕ (see also Remark 4). Because div(ωα) = Fα+

∑
E∈N (X)

(ωα, vE)E, [E] is proportional to [Fα] if and only if (ωα, vE′) = 0 for any E′ 6= E.
But the −vE′ are dominant coweights. Thus, if [E] ∈ R≥0[Fα] and α

′ belongs to
the irreducible factor of RG,θ containing α, then [E] ∈ R≥0[Fα′ ].

Given any irreducible factor R of RG,θ, we can write, by Corollary 2.1, Xsph
0 =

X1 ×X2 where the Xi are wonderful varieties and the restricted root system of X2

is equal to R. Given any v ∈ C− and α ∈ R, (ωα, v) = 0 if and only if, for any
α′ ∈ R, −ω∨

α′ is not contained in the face of C− whose relative interior contains v.
Thus, [E] is proportional to [Fα] if and only if the following condition (∗) holds: if

K ∈ N (Xsph
0 ) contains the image of a G-stable prime divisor of X≤1 different from

E, then K has the form K ′ ×X2 with K ′ ∈ N (X1). Hence, if [E] is proportional
to [Fα], then the projection on X2 of any q(E′) with E′ 6= E is the whole X2.
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Vice versa suppose that exists a morphism ϕ as in the statement. By the Corol-
lary 2.1 and by the description of morphisms between spherical varieties, we can
suppose that the stabilizer of ϕ(H/H) is generated by H

sp
and some normal, θ-

stable connected subgroups of G (we may have to compose or to lift ϕ with a finite
equivariant morphism). We need also the following property: if H ′ is a symmetric
subgroup of G which contains H and does not contain any normal connected sub-
group of G, then H ′ ⊂ NG(H) (see [dCoPr83], Lemma 1.7). Therefore, ϕ is the

composite of q with a projection Xsph
0 = X1 ×X2 → X2. Now, the hypotheses on

ϕ implies the condition (∗).
Finally, if X is toroidal then −ω∨

α is contained in N (X), so [Fα] can be propor-
tional only to E−ω∨

α
. �

Remark 7.LetX be any projective symmetric variety (possibly nonQ-factorial)
and let D =

∑
F∈D(G/H) aFF +

∑
E∈N(X) bFF be an effective Cartier divisor on

X , so aF , bE ≥ 0. Up to exchange some F+
α with F−

α , there is an effective divisor
D′ = D1+D2 linearly equivalent toD and such that: i)D1 is G-stable and effective;
ii) D2 =

∑
a+αF

+
α with a+α ≥ 0 for each α. Moreover,D is nef (resp. big) if and only

if D1 is nef (resp. big). Indeed, we can suppose X toroidal by taking the pullback of
these line bundles to a desingularizationX ′ ofXdec. ThenD is nef (resp. big) if and

only if D′ is nef (resp. big). Moreover, hD
′

= hD1 and the coefficients of D′ with
respect to the F−

α are all zero (and lesser than the coefficients of D′ with respect to
the F+

α ). Finally, if D′ =
∑

F∈D(G/H)H cFF+
∑
d+αF

+
α +

∑
d−αF

−
α +

∑
E∈N (X) fEE,

the dimension of H0(X,O(D′)) and the combinatorial conditions on the nefness of

D1 depend only on the linear functions on the linear functions hD1

C , on the cF (= 0)
and on the min{d+α , f

+
α }(= 0).

Corollary 3.1. Let X be a projective symmetric variety. Then Eff(X) is the
intersection of Pic(X)R with the polyhedral cone of Cl(X)R whose extremal rays
are generated by the classes of the colors not in D(G/H)H and by the classes of the
G-stable prime divisors which are not linearly equivalent to a multiple of [Fα] with
Fα /∈ D(G/H)H . Moreover, the statement of Theorem 3.2 holds again.

Proof of Corollary 3.1. To prove the corollary it is sufficient to show that there
is a Q-factorial complete symmetric variety X ′ and an equivariant morphism ψ :
X ′ → X which induces an isomorphism between (X ′)≤1 and X≤1; in particular
ψ induces an isomorphism between Cl(X) and Cl(X ′). Moreover ψ∗Eff(X) =
Eff(X ′) ∩ ψ∗Pic(X)R ⊂ Cl(X)R and Pic(X)R ∼= ψ∗Pic(X)R ⊂ Pic(X ′)R =
Cl(X ′)R ∼= Cl(X)R. Observe that the Theorem 3.2 depends only by X≤1.

Now, we will construct X ′. The procedure will be more complicated if X is nei-

ther non-exceptional nor toroidal. We need to define a new variety X̃ , isomorphic to

X in codimension 1: let F(X̃) := {(C, F̃) : (C,F) ∈ F(X)}, where F̃ := ρ(ρ−1(F)),

and let X̃ be the corresponding variety. Remark that if X is non-exceptional or

toroidal, then it is equal to X̃. We have a morphism p : X → X̃ which is an iso-

morphism between X≤1 and X̃≤1, thus it is sufficient to find a variety ϕ : X ′ → X̃

over X̃ such that: 1) ϕ factorizes by p and 2) ϕ is an isomorphism in codimension
1.

First, we define the fan Ff (X ′) associated to X ′. The idea is the following: the

cones in Ff (X̃)(= Ff (X)) are generated by some faces of an appropriate polytope
in χ∗(S) (which is the polar polytope of the moment polytope of an ample bundle

D over X̃); we triangularize the faces of such polytope and define Ff (X ′) as the
family of cones generated by the simplices obtained from the previous faces.

To define the previous polytope we need an ample Cartier divisor D over X̃ ,
such that: i) the interior of P (D) contains 0 and ii) D is linearly equivalent to a
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G-stable divisor. We have defined X̃ to assure the existence of such a divisor. Now,
we will find it; let D′ an ample Cartier divisor on X . As in the Remark 7 we can
write D′ = D1 +D2 +D3 where: 1) D1 is linearly equivalent to a G-stable divisor;
2) D2 +D3 is a positive linear combination of the F+

α . Moreover, we can suppose
that D2 is

∑
α∈I a

+
αF

+
α , where I is the set of α such that F+

α belongs to F(X) (and

D3 is
∑

α/∈I a
+
αF

+
α ). One can easily show that D′′ := D1 + D2 +

∑
α∈I a

+
αF

−
α is

an ample divisor over X̃. Indeed, hX̃,D′

= hX,D′

= hX,D1+D2 and the minimum of
the coefficients of D′′ w.r.t. the colors in ρ−1(α∨) is lesser than the corresponding
minimum for D′. Remark that we have used the fact that X≤1 is isomorphic to

X̃≤1, so Cl(X) ∼= Cl(X̃) (but Pic(X) can be non-isomorphic to Pic(X̃)). Then

D(3) := D′′+
∑

α/∈ρ(F(X̃)) F
+
α is ample over X̃ and is linearly equivalent to aG-stable

effective divisor D(4) such that hD(4)(vE) > 0 for each E ∈ N (X̃). Indeed, none
irreducible factor of R∨

G,θ can be contained in span{ρ(F(X))} because the colored

cones are strictly convex. Therefore we can choose D as nD(4) +
∑

α/∈ρ(F(X̃)) Fα +∑
α∈ρ(F(X̃))(F

+
α −

∑
N (X̃) vE(ωα)E) with n >> 0.

Let P be the polar polytope of P (D), i.e. P = {n ∈ χ∗(S)R : m(n) ≥ −1 ∀m ∈

P (D)}. Then, given any cone C in the fan Ff (X̃), C is generated by an appropriate
face of P . Observe that there are faces of P which are associated to none colored
cone of X̃. Let A′ be the set of vertices of P and set A = A′ ∪ {0}. We need to
give a triangulation of P with vertices in A. Given a polytope Q generated by the
points S = {q1, ..., qm}, a subdivision of Q with vertices in S is a finite collection
{Q1, ..., Qr} of polytopes such that: i) Q is the union

⋃
Qi; ii) the vertices of each

Qi are drawn from S; iii) if i 6= j then Qi ∩Qj is a common (possibly empty) face
of the boundaries of Qi and Qj . If all the Qi are simplecis, the sudvision is called
a triangulation. Before to define the desired triangulation of P , we need to define
an elementary construction step.

Let Q be a n-dimensional polytope in Rn, let F be a n − 1-dimensional face of
Q, let H be the unique hyperplane containing F and let v be a point in Rd. The
polytope Q is contained in exactly one of the closed halfspaces determined by H .
If v is contained in the opposite open halfspace, then F is said to be visible from
v. If Q is a k-dimensional polytope in Rn with k < n and v ∈ Aff(Q), then the
above definition can be modified in the obvious way so that everything is considered
relative to the ambient space aff(Q). Suppose S = {Q1, ..., Qm} is a subdivision of
a n-dimensional polytope Q = conv(V ) in Rn and let v ∈ V . The result of pushing
v is, by definition, the subdivision S′ of Q obtained by modifying the Qi ∈ S as
follows:

• If v /∈ Qi, then Qi ∈ S′.
• If v ∈ Qi and conv(vert(Qi) r {v}) is (n − 1)-dimensional (i.e. Qi is a
pyramid with apex v), then Qi ∈ S′.

• If v ∈ Qi and Q′
i := conv(vert(Pi) {v}) is n-dimensional, then Q′

i ∈ S′.
Also, if F is any (n− 1)-dimensional face of Q′

i that is visible from v, then
conv(F ∪ {v}) ∈ S′.

Let Q = convex(V ) and order the point of V = {v1, ..., vm} in an arbitrary
way; then the subdivision obtained by starting with the trivial one and pushing the
points of V in that order is a triangulation (see [Le97], §14.2). Returning to our
problem, let P and A be as in the first part of the proof and order the points of A
so that 0 is the first point. Let T be the subdivision of P obtained from the trivial
subdivision by pushing the points of A in in the chosen order. This triangulation
induces a triangulation of the (proper) faces of P . Let {Ti}i∈I be the set of (s− 1)-
dimensional simplices obtained in such way, where s = rankχ∗(S), and let I ′ ⊂ I
be the family of simplices whose relative interior intersects C−. Given i ∈ I ′, let Ci
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be the cone generated by Ti. We want to define F(X ′) so that Ff (X ′) is composed
by the faces of all the Ci with i ∈ I ′. Such set is a fan by the definition of subdivision

of a polytope; moreover its support is the same of the one of F(X̃).
For each i ∈ I ′, we define Fi as follows. For each α

∨ in Ti, choose a color Eα in
F ∩ ρ−1(α∨), where (C,F) is the (s-dimensional) colored cone of X containing Ci.
Finally, define Fi as the set of such Eα. If α

∨ is contained in two different simplices,
say Ti and Tj , then we choose the same Eα for both Fi and Fj . Remark that we
need to work with the colored cones of X because we want that X ′ dominates not
only X̃ , but also X . The previous choices are possible because of the combinatorial
conditions for the ampleness of a Cartier divisor D′ on X . Indeed, suppose by
contradiction that there are a simple restricted root α and two colored cones of X ,
say (C1,F1), (C2,F2), such that F+

α ∈ F1 r F2 and F−
α ∈ F2 r F1. Write D′ =∑

D(G/H)H aFF+
∑
b+β F

+
β +

∑
b−β F

−
β +

∑
N (X) cEE and let h be the convex function

associated to D′. Then b+α = b−α = h(α) because F+
α , F

−
α ∈ F(X). Moreover b+α =

hC1
(ρ(F+

α )) = hC1
(ρ(F−

α )) < h(ρ(F−
α )) = h(α), a contradiction. Thus {(Ci,Fi) :

i ∈ I ′} is a colored fan and the associated symmetric variety satisfies the requested
properties. �

4. Bigness of Q-divisors on a projective symmetric variety

First we describe the big cone of any Q-factorial, projective symmetric variety.
Then we will prove two criterions for a nef (G-stable) divisor to be big.

4.1. The big cone.

Theorem 4.1. Let X be a projective, Q-factorial symmetric variety. Then Big(X)
is the union of the following cones (whose closure is simplicial):

⊕
E∈N (X) R

>0[E]⊕⊕
α∨ /∈ρ(D(G/H)H ) R

≥0[F •
α], where the F • ∈ ρ−1(α∨) are chosen in all the ways

possible.

To prove such theorem we will use Theorem 3.1 plus the explicit expression of
the relations (ωα).

Proof. Let I be R
∨
G,θrρ(D(G/H)H). First, we prove that all the cones in the state-

ment are contained in Big(X). It is sufficient to prove that σ̇ :=
⊕

E∈N (X) Q
>0[E]

is contained in Big(X) because the sum of a big divisor with an effective one is
big. Given any element [D] of σ̇, there are rα such that [D′] := [D] −

∑
I rα[Fα]

belongs to σ̇, because σ̇ is open and all the [Fα] belongs to the closure σ of σ̇. Thus
[D] = [D′] +

∑
I rα[Fα] is big by Theorem 3.1.

Now, let D be a big divisor. Up to exchanging some F+
α with the corre-

sponding F−
α , we can write D =

∑
E∈N (X) nEE +

∑
α∈RG,θ

nαFα +
∑

α∈I n
+
αF

+
α

with positive coefficients. This divisor is linear equivalent to an effective divisor
D′ =

∑
E∈N (X)mEE +

∑
α∈I m

+
αF

+
α , so it is sufficient to show that all the mE

are strictly positive. There are two cases: i) the class of any G-stable prime divi-
sor generates an extremal ray of Eff(X); ii) there is some E linearly equivalent
to a multiple of Fα with α ∈ I (see Theorem 3.1). In the first case, all the mE

(and all the m+
α ) are strictly positive because Big(X) is an open cone of dimen-

sion equal to |N (X)| + |I| and all the vectors in the sum generate an extremal
ray of Eff(X). In the second case, some [E] is equal to some t[F+

α ] + t[F−
α ],

so we can’t use the same argument. Let J be the set of G-stable prime divisors
which generate an extremal ray of Eff(X) and let K ⊂ I be subset of roots
such that [Fα] is proportional to some [E] with E ∈ N (X). Then we can write
[D] =

∑
E∈J mE [E] +

∑
IrK m+

α [F
+
α ] +

∑
K r+α [F

+
α ] +

∑
K r−α [F

−
α ] and, as before,

the coefficients must be strictly positive. Given E′ /∈ J and α ∈ K such that
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[E′] = tα[Fα] with tα > 0, we have r+α = tαmE′ +m+
α and r−α = tαm

−
α . Therefore

m′
E is strictly positive for all E′. �

4.2. Bigness of nef divisors. Now, we want to study the bigness of a fixed (nef)
Cartier divisor.

Remark 8.We want to observe that to study the bigness of a fixed (Cartier)
Q-divisor we can reduce to the case of a smooth toroidal symmetric variety with H
wonderful. These are the smooth symmetric varieties proper over a wonderful one.

First of all, we can reduce to the smooth toroidal case because of the Remark 1.
Suppose now X toroidal and let Xsph be the completion of G/Hsph with the same
colored fan of X (see Remark 2). Then Xsph dominates the wonderful completion

Xsph
0 of G/Hsph. We have unique equivariant morphisms ϕ : X → Xsph and X0 →

Xsph
0 (which send H/H to H

sph
/H

sph
) and the pushforwards of such morphisms

are isomorphisms between their rational Picard groups. In general the pushforwards
are defined between the (rational) class groups; in our case the pushforward define
an isomorphism between the rational class groups which restricts to an isomorphism
between the rational Picard groups.

Indeed, dimCl(X)Q = dimCl(Xsph)Q and dimPic(X)Q = dimPic(Xsph)Q be-
causeD(G/Hsph) ≡ D(G/H) andXsph “has” the same colored fan ofX (forgetting
the lattice in (C(G/H)B/C∗)Q); in other words the rational Picard group does not
depend on the lattice χ∗(S). If Xsph is smooth, then φ∗ ◦ φ∗ : Cl(Xsph)Q →
Cl(Xsph)Q is (deg φ)Id and φ∗(Pic(Xsph)Q) ⊂ Pic(X)Q, so the claim holds. In

the general case we take a desingularization ψ : X
sph

→ Xsph of Xsph and

we define X as the completion of G/H with colored fan F(X
sph

), ϕ : X →

X , resp. ϕ : X → X
sph

, as the obvious maps. Then we regard to the sub-

space ψ∗(Pic(Xsph)Q) of Pic(X
sph

)Q (isomorphic to Pic(Xsph)Q) and use the fol-

lowing facts: i) (φ
∗
◦ ψ∗)(Pic(Xsph)Q) = (ϕ∗ ◦ φ∗)(Pic(Xsph)Q) is contained in

ϕ∗(Pic(X)Q) and ii) φ∗ ◦ ϕ∗ = ψ∗ ◦ φ∗.
A line bundle O(D) on X is big if and only if φ∗(O(D)) is big. Indeed if

χ∗(T/T∩H
sph

) ⊂ 1
mχ∗(T/T∩H), then |P (rD)∩χ∗(T/T∩∩H)| ≤ |P (rD)∩χ(T/T∩

H
sph

)| ≤ |P (mrD) ∩χ∗(T/T ∩H)| for each positive integer r (see §1.6 and [Br89],
§3). The last inequality holds because the multiplication bym defines an inclusion of

P (rD)∩χ∗(T/T∩H
sph

) in P (mrD)∩mχ∗(T/T∩H
sph

)(⊂ P (mrD)∩χ∗(T/T∩H)).

Let X be a toroidal symmetric variety and suppose X0 smooth. Using the results
of [Br89], one can show that a G-stable divisor D on X is ample (resp. nef) if and
only if O(D)|Zc is ample (resp. nef). Moreover, this holds if and only if the
restrictions of O(D) to Z and to the closed orbits are ample (resp. nef). These last
conditions can be stated as appropriate conditions on the function h = {hC} and
on the weights hC , where the (C, ∅) are the maximal colored cones of F(X): 1) D
is nef if and only if h is convex and the −hC are spherical weights; 2) D is ample if
and only if h is strictly convex and the −hC are regular spherical weights (i.e. they
are strictly dominant weights of RG,θ). We want to prove a similar condition for
the bigness of any nef line bundle. Observe that, given a closed G-orbit OC of X
associated to a (maximal) colored cone (C, ∅), the weight of the fiber of O(D) over
the B-stable point of OC is −hC because D is G-stable (see [Bi90], §2). Suppose by
simplicity X toroidal. First we prove that a nef G-stable divisor is big if and only if
its restriction to the associate complete toric variety Zc is big (see Proposition 4.1).
Then, we use the fact the such restriction is big if and only if vol(Q(D)) is strictly
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positive (see §1.7 for the definition of Q(D)). For example, if X is wonderful, θ
is indecomposable and D is a G-stable divisor with associated function h one can
easily prove the following description (recall that there is a unique maximal colored
cone (C, ∅)):

• D is ample if and only if −hC is spherical and regular (i.e. it is an strongly
dominant weight of RG,θ;

• D is nef if and only if −hC is spherical;
• D is big and nef if and only if −hC is spherical and non-zero.

When X is only toroidal, but θ is again indecomposable, we will prove that D is
nef and big if and only the sum −

∑
{C∈Ff (X) maximal} hC is spherical and non-zero

(see Theorem 4.2).
Remark 9.Given a complete symmetric variety X , let p : Xdec → X be the

decoloration of X and let Zc be the complete toric variety associate to Xdec. If X
is projective then Xdec and Zc are projective. Indeed, let D be an ample divisor
on X , then D′ := p∗D +

∑
F∈D(G/H) F is ample on Xdec. Indeed, hp

∗D = hD
′

is equal to the restriction of hD on C−. Thus, (hD
′

C )(F ) ≤ aF < aF + 1 for each
(C, ∅) ∈ F(Xdec) and F ∈ D(G/H) (here aF is the coefficient of D with respect to
F ; see also §1.7).

Proposition 4.1. Let X be a projective symmetric variety and let D be a B-stable,
Cartier Q-divisor on X. If D is big then its restriction O(p∗D)|Zc to the associated
complete toric variety Zc is big. Moreover, if D is G-stable and O(p∗D)|Zc is big
then D is big.

Proof. By the previous discussion we can suppose X is smooth and toroidal (see
also proof of the Corollary 3.1). First, we describe the restriction i∗ : Pic(X)Q →
Pic(Zc)Q , then we use the Proposition 1.1 applied respectively toX and Zc. Under
the previous assumption, we can define a linear map i∗ : DivB(X)Q → DivT (Zc)Q
such that [i∗(D)] = i∗([D]) in the following way: i∗ : DivB(X) ։ Pic(X)Q ≡
PicG(X)Q → PicT (Zc)Q ≡ DivT (Zc)Q. Here i : Zc →֒ X is the inclusion and
PicG(X) is the group of G-linearized line bundles. See [Od88], Proposition 2.1 for
the last isomorphism. First we want to study the kernel and the image of i∗ by
using some techniques similar to ones in [Vu90] and in [Bi90].

Given a G-stable prime divisor E on X we define E|Z as the closure of E ∩ Z
in Zc, so E|Zc := i∗(E) is

∑
w∈WG,θ

wE|Z and has support E ∩ Zc. Hence, E|Zc

and E|Z are effective divisors on Zc. Moreover, the T -stable prime divisors on Zc

are the wE|Z with E ∈ N (X) and w ∈ WG,θ (actually w is a fixed representant
in NH0(T 1) of the corresponding element in WG,θ). Let π : G → G/H be the
projection. The kernel of i∗ : Pic(X)Q → Pic(Zc)Q is generated by the [F+

α − F−
α ]

with α ∈/ ρ(D(G/H)H). Indeed, let ω±
α be the T -weight of an equation of π−1(F±

α ),
then, for any t ∈ T 1, (−ω−

α )(t) = θ(ω+
α )(t) = ω+

α (θ(t)) = ω+
α (t

−1) = (−ω+
α )(t),

so 2ω+
α |T

1 = 2ω−
α |T

1 = ωα|T 1, where ωα is the the fundamental spherical weight
corresponding to α (see [Ru07], pages 6-8 and [Vu90] §3.3-3.4). In particular, there
is Yα ∈ DivG(X) with i∗(2F+

α ) = i∗(2F−
α ) = i∗(Yα). Observe that DivG(X)Q

is a complement to ker(i∗), so i∗ is injective over DivG(X)Q and i∗(Pic(X)Q) =
i∗(DivG(X)Q).

Let (Div T (Zc)Q)
WG,θ be the subgroup of WG,θ-invariants in Div T (Zc)Q; we

can identify this subgroup with its image in Pic(Zc)Q. Moreover, this image is
i∗(Pic(X)Q) = i∗(Div G(X)Q).

Now, we prove the first statement; suppose D big. Then we can assume, up
to linear equivalence, that mD = A + M where m >> 0, A is an ample, B-
stable divisor and M is an effective, B-stable divisor. Then mi∗D = i∗A + i∗M ,
with i∗A ample. By Theorem 3.1 we can write, up to linear equivalence, M =



16 A. RUZZI

∑
E∈N (X) aEE +

∑
b+αF

+
α +

∑
b−αF

−
α with positive coefficients. Thus i∗(M) =∑

E∈N(X) aEE|Zc + 1
2

∑
(b+α + b−α )i

∗(Yα) is effective, so i
∗D is big.

Vice versa, suppose that i∗(D) is big and that D is G-stable. Fix an ample,
G-stable divisor A on X , then, for m >> 0, mi∗(D) − i∗(A) is linearly equivalent
to an effective, T -stable divisorM ′ on Zc. We claim that we can choose i∗(mD−A)
as M ′. Remark that i∗(mD −A) is WG,θ-invariant.

Let D1 and D2 be T -stable divisors on Zc such that: 1) D1 is WG,θ invari-
ant; 2) D2 is linear equivalent to 0; 3) D1 + D2 is effective. We claim that D1

is effective. Indeed, suppose by contradiction D1 non-effective and write D1 =∑
E∈N (X),w∈WG,θ

aE,wwE|Z, D2 =
∑

E∈N (X),w∈WG,θ
bE,wwE|Z. Then D2 6= 0

and there is a strictly negative aE,w. Notice that there is (E,w
′) such that bE,w′ ≤ 0

because D2 is principal. Thus aE,w′ + bE,w′ = aE,w + bE,w′ < 0, a contradiction.
Thus there is M ∈ DivG(X)Q with i∗M = M ′ and mD = A +M . Moreover, the
coefficient ofM with respect to any E is equal to the coefficient of M ′ with respect
to to any E is equal to the coefficient of M ′ with respect to E|Z, which we know
to be positive. �

Remark 10. If D is in the kernel of i∗, then it is not big. Moreover, if ρ is not
injective , there are non-big divisors D with i∗(D) big. Suppose by simplicity X
toroidal and let α∨

i /∈ ρ(D(G/H)H), then
∑

j 6=i Fαj
+ 3Fαi

+ − F−
αi

is not big, but

it is equal to
∑

j Fαj
+ 2(F+

αi
− F−

αi
), where

∑
j Fj is big and (F+

αi
− F+

αi
) ∈ ker i∗.

Let D be a B-stable nef Cartier divisor on a projective symmetric variety. By
the Remark 7 we can write D ∼ D1 + D2 with: i) D1 is G-stable, effective and
nef; ii) D2 is a positive linear combination of the F+

α , up to exchanging some F+
α

with the corresponding F−
α . Moreover D is big if and only if D1 is big. Remark,

however, that the previous choice of F+
α in ρ(α) depends on D and that, if ρ is not

injective, we can always find another nef divisor for which such choice does not hold,
for example D1 + F−

α . Thus to study the bigness of any fixed B-stable nef Cartier
divisor, we can reduce ourselves to study the bigness of an opportune G-stable nef
Cartier divisor. Observe that if none F+

α belongs to F(X) (for example, if X is
toroidal), then hD1+D2 = hD1 . We say that D satisfies (∗) if it is equal to D1+D2,
with D1, D2 as before. Remark the, given any B-stable and nef D, we can rename
the F+

α so that D satisfies (∗).

Theorem 4.2. Let X be a projective symmetric variety. Let D be a nef, B-stable
Cartier Q-divisor on X which satisfies (∗) and let h be the piecewise linear function
over the support of F(X) associated to D1. Write h = {hC}{(C,F)} where the
{(C,F)} are the maximal colored cones. Then D is big if and only if (

∑
hC , R

∨) 6= 0
for each irreducible factor R∨ of R∨

G,θ. Moreover, if X is toroidal or if D is G-
stable, then h is also the piecewise linear function associated to D.

The idea of the proof is the following: first, we reduce to study the pullback of
O(D) to Zc by the previous proposition. Then, we study vol(WG,θ · (

∑
hC)) to

verify if such line bundle is big.

Proof. We can suppose X toroidal and Q-factorial. Let s be the rank of G/H
(equal to the dimension of Zc). In this way the support of h can change, but
the weight

∑
hC doesn’t change. Moreover, we can suppose that D is G-stable

by Remark 7. By Proposition 4.1, D is big if and only if i∗(D) is big, where
i : Zc → X is the inclusion. Observe that i∗(D) is nef and globally generated.
Denoted by Q(D) the polytope convex(WG,θ{hC}) (as in §1.7), i∗(D) is big if and
only if vol(i∗(D)) := i∗(D)s = s!vol(Q(D)) is strictly positive. Observe that the
hC are antidominant because D is nef and G-stable.
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First, suppose that D is big and suppose by contradiction that there is an ir-
reducible factor R∨ of R∨

G,θ such that (
∑
hC , R

∨) = 0. Then (hC , R
∨) = 0 for

each C because the hC are antidominant. Let α∨ be any simple coroot in R∨,
then (whC , α

∨) = 0 for all C and for all w ∈ WG,θ. So Q(D) is contained in the
hyperplane (α∨, ·) = 0, thus it has volume 0.

Now, suppose that it is verified the condition (
∑
hC , R

∨) 6= 0 for each irre-
ducible factor R∨ of RG,θ. Let s be rank of X and let n be the number of s-
dimensional colored cones, then v1 = 1

n

∑
(C,F):dim C=s hC belongs to Q(D), so

convex(WG,θv1) ⊂ Q(D). Thus it is sufficient to prove that vol(convex(WG,θv1)) >

0. Write RG,θ = I1 ⊔ J1 with (v1, α) 6= 0 if and only if α ∈ I1. If J1 is not empty,
then, by hypothesis, there are α ∈ I1 and β ∈ J1 such that (α, β) 6= 0. Thus
(sαv1, β) = −(β, α∨)(v1, α) < 0; moreover sαv1 ∈ Q(D). Hence v2 = 2

3v1 +
1
3sαv1

is antidominant and belongs to convex(WG,θv1). Write RG,θ = I2 ⊔ J2 with
(v2, α) 6= 0 if and only if α ∈ I2. Notice that I1 ( I2; in particular J2 con-
tains no irreducible factor of RG,θ. By induction we can find m such RG,θ = Im
and vm belongs to convex(WG,θv1); in particular vm is strictly antidominant. So
vol(convex(WG,θv1)) ≥ vol(convex(WG,θvm)) > 0. �

Remark that, if (G, θ) is indecomposable, we obtain that any non-trivial, G-
stable, nef, Cartier Q-divisor is big. This fact can also be proved directly, because
in this case the morphism associated to the divisor has to be birational.

5. Final remarks

The results of this work cannot be extended to a general spherical variety. In
particular, Theorem 3.1 is false if H has infinite index in NG(H), i.e. G/H is not
sober. This means that the valuation cone cone(N ) is not strictly convex. First,
the class of two distinct G-stable prime divisors can generate the same halfline.
For example P1 = C∗ ∪ {0} ∪ {∞}, seen as toric variety, has two G-stable prime
divisors and Picard number 1. Furthermore, it is not clear how to extend the
Theorem 3.2 to the horospherical varieties. Consider for example P2 = P(C2 ⊕ C)
as completion of SL2/U , where U is the group of upper triangular matrices with
diagonal entries equal to 1. This variety has one color, one G-stable divisor, rank
1 and Picard number 1. In particular, one can show that, given an equivariant
morphism SL3/U → SL3/H onto a spherical space, H is U , SL3, a Borel subgroup
or the semidirect product of U with a cyclic group (indeed, there is a Borel subgroup
such that U = [B,B] ⊂ H ⊂ B and B/U ∼= C∗). We have take these examples
from [Br07], §4.1.

Also the Theorem 4.2 does not hold for a general spherical variety. We can
generalizes it in two ways: i) substituting RG,θ with the spherical root system; ii)
substituting R∨

G,θ with the image of colors. But, in the first case the horospherical
varieties have not spherical roots and the statement would be trivially satisfied by
all the divisors. In the second case, the flag manifolds have rank zero, so the image
of ρ has to be 0. Therefore none divisor can satisfy the statement. We hope that
the Theorem 4.2 can be generalized to any sober spherical variety. To this aim,
it would be useful to prove such theorem using the definition of big divisors based
on dimH0(X,mL). Unfortunately, we have not succeeded in doing it, even for the
symmetric case.
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