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A PROGENERATOR FOR REPRESENTATIONS OF SLn (Fq )

IN TRANSVERSE CHARACTERISTIC

CÉDRIC BONNAFÉ

ABSTRACT. Let G = GLn (Fq ), SLn (Fq ) or PGLn (Fq ), where q is a power of some
prime number p , let U denote a Sylow p -subgroup of G and let R be a commu-
tative ring in which p is invertible. Let D(U ) denote the derived subgroup of U

and let e = 1

|D(U )|

∑

u∈D(U ) u . The aim of this note is to prove that the R-algebras
RG and e RG e are Morita equivalent (through the natural functor RG -mod −→
e RG e -mod, M 7→ e M ).

Let n be a non-zero natural number, p a prime number, q a power of p and let
Fq denote a finite field with q elements. Let Gn = SLn (Fq ). We denote by Un the
group of n×n unipotent upper triangular matrices with coefficients in Fq (so that
Un is a Sylow p -subgroup of Gn ). Let D(Un ) denote its derived subgroup: then,
with N = (n −1)(n −2)/2,

D(Un ) =
n
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0 · · · · · · · · · 0 1
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� a 1,a 2, . . . ,a N ∈ Fq

o

.

We fix a commutative ring R in which p is invertible and we set

en =
1

|D(Un )|

∑

u∈D(Un )

u ∈ RD(Un ).

Then en is an idempotent of RGn . The aim of this note is to prove the following
result (recall that an idempotent i of a ring A is called full if A = Ai A):

Theorem 1. If p is invertible in R , then en is a full idempotent of RGn .

Proof. First, let R0 = Z[1/p ], let ζ be a primitive p -th root of unity in C and let
R̂0 = R0[ζ]. Let I0 = R0Gn en R0Gn and Î0 = R̂0Gn en R̂0Gn . Since p is invertible in R ,
there is a unique morphism of rings R0→ R which extends to a morphism of rings
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R0Gn → RGn . So if 1 ∈ I0, then 1 ∈ I. Also, as (1,ζ, . . . ,ζp−2) is an R0-basis of R̂0, it
is also an R0Gn -basis of R̂0Gn . Therefore, if 1 ∈ R̂0Gn en R̂0Gn = R̂0⊗R0

(R0Gn e R0Gn ),
then 1 ∈ I0. Consequently, in order to prove Theorem 1, we may (and we shall)
work under the following hypothesis:

Hypothesis. From now on, and until the end of this proof, we assume

that R =Z[1/p ,ζ].

Now, let Pn denote the subgroup of SLn (Fq ) defined by

Pn =
n













a 1

M
...

a n−1

0 · · · 0 1













�

�

�M ∈ SLn−1(Fq ) and a 1, . . . ,a n−1 ∈ Fq

o

.

Then Un ⊂ Pn . We shall prove by induction on n that

(Pn ) en is a full idempotent of RPn .

It is clear that Theorem 1 follows immediately from (Pn ).

As e1 = 1 and e2 = 1, it follows that (P1) and (P2) hold. So assume that n ¾ 3 and
that (Pn−1) holds. Let In denote the identity n ×n matrix and let

Vn =
n













a 1

In−1

...
a n−1

0 · · · 0 1
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� a 1, . . . ,a n−1 ∈ Fq

o

.

Then Vn ≃ (F+q )
n−1 and Pn = SLn−1(Fq )⋉Vn ≃ SLn−1(Fq )⋉(F+q )

n−1. We set V ′
n
=D(Un )∩Vn ,

so that V ′
n
≃ (F+

q
)n−2 is normalized by Pn−1. Then

D(Un ) =D(Un−1)⋉V ′
n

.

We now define
f n =

1

|V ′
n
|

∑

v∈V ′n

v,

so that
en = en−1 f n .

By the induction hypothesis, there exists g 1, h1,. . . , g l , h l in Pn−1 and r1,. . . , rl in R

such that

1=

l
∑

i=1

ri g i en−1h i .

Therefore, as Pn−1 normalizes V ′
n

, it centralizes f n and so

f n =
�

l
∑

i=1

ri g i en−1h i

�

f n =

l
∑

i=1

ri g i en−1 f n h i =

l
∑

i=1

ri g i en h i .
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So f n ∈ RPn en RPn .
Let µp denote the subgroup of R× generated by ζ. If χ ∈Hom(Vn ,µp ), we define

bχ to be the associated primitive idempotent of RVn :

bχ =
1

|Vn |

∑

v∈Vn

χ(v )−1v ∈ RVn .

Then, as Vn is an elementary abelian p -group, we get

f n =
∑

χ∈Hom(Vn ,µp )

Res
Vn

V ′n
χ=1

bχ .

We fix a non-trivial element χ0 ∈ Hom(Vn ,µp ) whose restriction to V ′
n

is trivial.
Then

bχ0
= bχ0

f n and b1 = b1 f n ,

so b1 and bχ0
belong to RPn en RPn .

But SLn−1(Fq )⊂ Pn has only two orbits for its action on Hom(Vn ,µp ): the orbit of
1 and the orbit of χ0. Therefore, bχ ∈ RPn en RPn for all χ ∈ Hom(Vn ,µp ). Conse-
quently,

1=
∑

χ∈Hom(Vn ,µp )

bχ ∈ RPn en RPn ,

as desired. �

Finite reductive groups. Let F be an algebraic closure of Fq , let G be a connected
reductive group over F and let F : G→G be an isogeny such that some power F δ

is a Frobenius endomorphism relative to an Fq -structure. We denote by U an F -
stable maximal unipotent subgroup of G (it is the unipotent radical of an F -stable
Borel subgroup). Define

e =
1

|D(U)F |

∑

u∈D(U)F

u ∈ RG
F .

The next result follows immediately from Theorem 1:

Theorem 2. Assume that (G, F ) is split of type A. Then e is a full idempotent of RGF .

Corollary 3. If (G, F ) is split of type A, then the functors

RGF−mod −→ e RGF e−mod

M 7−→ e M
and

RGF e−mod −→ RGF−mod

N 7−→ RGF e ⊗e RGF e N

are mutually inverse equivalences of categories. In particular, RGF and e RGF e are

Morita equivalent, and RGF e is a progenerator for RGF .

Proof. This follows from Theorem 2 and, for instance, [3, Example 18.30]. �
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Examples. Theorem 2 and Corollary 3 can be applied for instance in the case
where GF =GLn (Fq ), SLn (Fq ) or PGLn(Fq ).

Comments. (1) It is natural to ask whether Theorem 2 (or Corollary 3) can be
generalized to other finite reductive groups. In fact, it cannot be generalized:
indeed, if for instance R =C, then saying that e is a full idempotent of RGF means
that every irreducible character of GF is an irreducible component of an Harish-
Chandra induced of some Gelfand-Graev character. But, if G is quasi-simple and
(G, F ) is not split of type A, then GF contains a unipotent character which does not
belong to the principal series: this character cannot be an irreducible component
of an Harish-Chandra induced of a Gelfand-Graev character.

(2) In [1], a crucial step for the proof of a special case of the geometric version
of Broué’s abelian defect conjecture was [1, Theorem 4.1], where R. Rouquier and
the author have proved the above Theorem 2 in the case where R is the integral
closure of Zℓ) in a sufficiently large algebraic extension of Qℓ (here, ℓ is a prime
number different from p ). The proof was essentially based on the classification,
due to Dipper [2, 4.15 and 5.23], of simple modules for Gn in characteristic ℓ, and
especially of cuspidal ones, which involves Deligne-Lusztig theory.

The interest of the proof given here is that it does not rely on any classifica-
tion of simple modules, and is based on elementary methods: as a by-product of
this elementariness, Theorem 2 and Corollary 3 are valid over any commutative
ring (in which p is invertible, which is a necessary condition if one wants the
idempotent en to be well-defined).
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