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ASYMPTOTIC LOWEST TWO-SIDED CELL

CÉDRIC BONNAFÉ AND JÉRÉMIE GUILHOT

Abstract. To a Coxeter system (W,S) (with S finite) and a weight function
L : W → N is associated a partition of W into Kazhdan-Lusztig (left, right or
two-sided) L-cells. Let S◦ = {s ∈ S | L(s) = 0}, S+ = {s ∈ S | L(s) > 0}
and let c be a Kazhdan-Lusztig (left, right or two-sided) L-cell. According to
the semicontinuity conjecture of the first author, there should exist a positive
natural number m such that, for any weight function L′ : W → N such that
L(s+) = L′(s+) > mL′(s◦) for all s+ ∈ S+ and s◦ ∈ S◦, c is a union of
Kazhdan-Lusztig (left, right or two-sided) L′-cells.

The aim of this paper is to prove this conjecture whenever (W,S) is an
affine Weyl group and c is contained in the lowest two-sided L-cell.

1. Introduction

Let (W,S) be a Coxeter system (with S finite) and let Γ be a totally ordered
abelian group. Let L : W → Γ be a weight function in the sense of Lusztig [14, §3.1].
To such a datum is associated a partition of W into Kazhdan-Lusztig left, right or
two-sided L-cells [14, Chapter 8]. By virtue of [1, Corollary 2.5], the computation
of these partitions can be reduced to the case where L has only non-negative values,
which we assume here in this introduction. We then set

S◦ = {s ∈ S | L(s) = 0} and S+ = {s ∈ S | L(s) > 0}.

A particular case of the semicontinuity conjecture of the first author [1, Conjec-
ture A(a)] can be stated as follows:

Semicontinuity Conjecture (asymptotic case). There exists a positive integer
m such that, for any Kazhdan-Lusztig (left, right or two-sided) L-cell c and for any
weight function L′ : W → Γ such that L(s+) = L′(s+) > mL′(s◦) for all s+ ∈ S+

and s◦ ∈ S◦, the subset c is a union of Kazhdan-Lusztig (left, right or two-sided)
L′-cells.

The computation of the partition into Kazhdan-Lusztig cells is in general a very
tough problem and a general proof of the semicontinuity conjecture would be very
helpful. Even whenever it is not proved, it gives a lot of speculative “upper bounds”
for the cells (for the inclusion order): at least, it can be seen as a guide along the
computations.

Note that the full semicontinuity conjecture [1, Conjecture A] (not only the
asymptotic case) has been verified in different situations (see for instance the dis-
cussion in [1, §5]). Note also that it has been established by the second author

Date: April 18, 2011.
1991 Mathematics Subject Classification. According to the 2000 classification: Primary 20C08;

Secondary 20C15.
The first author is partly supported by the ANR (Project No JC07-192339).

1
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whenever (W,S) is an affine Weyl group with |S| = 3 (see [11]). Our aim here is to
prove a result slightly different in spirit than the previous ones. Indeed, it works
for all affine Weyl groups and non-negative weight function L but it focuses only
on one particular two-sided cell, namely the lowest one (which we denote by cLmin).

Theorem. Assume that (W,S) is an affine Weyl group. There exists a positive
integer m such that, for any Kazhdan-Lusztig (left, right or two-sided) L-cell c
contained in cLmin and for any weight function L′ : W → Γ such that L(s+) =
L′(s+) > mL′(s◦) for all s+ ∈ S+ and s◦ ∈ S◦, the subset c is a union of Kazhdan-
Lusztig (left, right or two-sided) L′-cells.

The main ingredient of the proof of this result is the generalized induction of the
second author [10] together with the particular geometric description of the lowest
two-sided cell and its left subcells.

The paper is organized as follows. In the literature, the lowest two-sided cell is
defined whenever L takes only positive values on S (i.e. S = S+). The aim of the
first four sections is to extend this description of the case where L is allowed to van-
ish on some elements of S and to relate it to the semidirect product decomposition
of W associated to the partition S = S◦ ∪̇ S+ as in [2] (see also [1, §2.E]). It must
be noticed that the proof of a key lemma (see Lemma 3.9) requires a case-by-case
analysis: this lemma is of geometric nature and does not involve Kazhdan-Lusztig
theory.

In Section 5, we introduce Kazhdan-Lusztig theory and, in Section 6, we recall a
more sophisticated version of the semicontinuity conjecture and we state our main
results. The proof of these results is then done in the last two sections.

2. Affine Weyl groups and Geometric realization

In this paper, we fix an euclidean R-vector space V of dimension r > 1 and we
denote by Φ an irreducible root system in V of rank r: the scalar product will
be denoted by (, ) : V × V −→ R. The dual of V will be denoted by V ∗ and
〈, 〉 : V × V ∗ −→ R will denote the canonical pairing. If α ∈ Φ, we denote by
α̌ ∈ V ∗ the associated coroot (if x ∈ V , then 〈x, α̌〉 = 2(x, α)/(α, α)) and by Φ̌ the
dual root system. We fix a positive system Φ+ and for α ∈ Φ+ we set

Hα,0 = {x ∈ V | 〈x, α̌〉 = 0}.

Then the Weyl group Ω0 of Φ is generated by the orthogonal reflection with respect
to the hyperplanes Hα,0. It acts on the root lattice 〈Φ〉 and the semidirect product

Ω0 ⋉ 〈Φ〉 is an affine Weyl group of type Φ̌.

2.1. Geometric realizations. For α ∈ Φ+ and n ∈ Z, we set

Hα,n = {x ∈ V | 〈x, α̌〉 = n}

Then Hα,n is an affine hyperplane in V . Let

F = {Hα,n | α ∈ Φ+ and n ∈ Z}.

If H ∈ F , we denote by σH the orthogonal reflection with respect to H . Let
Ω = 〈σH | H ∈ F 〉. Then Ω is isomorphic to W0⋉〈Φ〉. We shall regard Ω as acting
on the right of V .
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An alcove is a connected component of the set

V −
⋃

H∈F

H.

It is well-known that Ω acts simply transitively on the set of alcoves Alc(F ). Recall
also that, if A is an alcove, then its closure A is a fundamental domain for the action
of Ω on V .

The group Ω acts on the set of faces (the codimension 1 facets) of alcoves. We
denote by S the set of Ω-orbits in the set of faces. Note that if A ∈ Alc(F ), then
the faces of A is a set of representatives of S since A is a fundamental domain for
the action of Ω. If a face f is contained in the orbit s ∈ S, we say that f is of
type s. To each s ∈ S we can associate an involution A → sA of Alc(F ): the
alcove sA is the unique alcove which shares with A a face of type s. Let W be the
group generated by all such involutions. Then (W,S) is a Coxeter system and it is
isomomorphic to the affine Weyl group W0⋉ 〈Φ〉 (hence we also have Ω ≃W ). We
shall regard W as acting on the left of Alc(F ). The action of Ω commutes with
the action of W .

We denote by A0 the fundamental alcove associated to Φ:

A0 = {x ∈ V | 0 < 〈x, α̌〉 < 1 for all α ∈ Φ+}.

Let A ∈ Alc(F ). Then there exists a unique w ∈ W such that wA0 = A. We will
freely identify W with the set of alcoves Alc(F )

2.2. Associated Coxeter system. Let ℓ : W → N denote the length function
(with respect to the Coxeter system (W,S)). We denote by L (W ) the set of finite
sequences (w1, . . . , wn) of elements ofW such that ℓ(w1 · · ·wn) = ℓ(w1)+· · ·+ℓ(wn).
If (w1, . . . , wn) is a finite sequence of elements of W then, in order to simplify
notation, we shall write w1 •w2 • · · · •wn if (w1, . . . , wn) ∈ L (W ). If I is a subset of
S, we denote by WI the subgroup of W generated by I. We denote by XI the set of
elements w ∈W which are of minimal length in wWI : it is a set of representatives
of W/WI . It follows from the irreducibility of Φ that WI is finite whenever I is a
proper subset of S: in this case, the longest element of WI will be denoted by wI .

Example 2.1. Let λ ∈ V be a 0-dimensional facet of an alcove. We denote by
Wλ the stabilizer in W of the set of alcoves containing λ. It can be shown that
Wλ is the standard parabolic subgroup of W generated by Sλ = S ∩Wλ (in other
words, with the previous notation, Wλ = WSλ

). Note that Wλ is finite: the longest
element of Wλ will be denoted by wλ and we set Xλ = XSλ

. �

Let H = Hα,n ∈ F with α ∈ Φ+ and n ∈ Z. Then H divides V −H into two
half-spaces

V +
H = {µ ∈ V | 〈x, α̌〉 > n},

V −
H = {µ ∈ V | 〈x, α̌〉 < n}.

We say that an hyperplaneH separates the alcovesA and B if A ⊂ V +
H and B ⊂ V −

H

or A ⊂ V −
H and B ⊂ V +

H . For A,B ∈ Alc(F ), we set

H(A,B) = {H ∈ F |H separates A and B}.
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Proposition 2.2. Let x, y ∈ W and A ∈ Alc(F ). We have

(1) ℓ(x) = |H(A, xA)|;
(2) x•y if and only if H(A, yA) ∩H(yA, xyA) = ∅.

2.3. Weight functions. Let (Γ,+) be a totally ordered abelian group: the order
on Γ will be denoted by 6 . Let L : W → Γ be a weight function on W , that is a
function satisfying L(ww′) = L(w)+L(w′) whenever ℓ(ww′) = ℓ(w)+ ℓ(w′). Recall
that this implies the following property:

(2.2) If s, t ∈ S are conjugate in W , then L(s) = L(t).

We denote by Weight(W,Γ) the set of weight function from W to Γ. Throughout
this paper, we will always assume that L is non-negative that is L(s) > 0 for all
s ∈ S. The weight function L is called positive if L(s) > 0 for all s ∈ S (in other
words, L is positive if and only if L(w) > 0 if w 6= 1). Note that a weight function
on W is completely determined by its values on the generators s ∈ S: the element
of the set {L(s) | s ∈ S} are called the parameters.

Example 2.3. The map W → Γ, w 7→ 0 is a weight function (and will be denoted
by 0): it is not positive (if W 6= 1). On the other hand, ℓ : W → Z is a positive
weight function. �

Here is a first consequence of the non-negativeness assumption:

Proposition 2.4. Let x, y ∈ W . If L(x) = 0, then L(xy) = L(yx) = L(y).

Proof. Let l = ℓ(x) and let s1,. . . , sl be elements of S such that x = s1 · · · sl.
Then L(x) = L(s1) + · · ·+ L(sl), so L(si) = 0 for all i ∈ {1, 2, . . . , l}, because L is
non-negative. So, arguing by induction on the length of x, we may (and we will)
assume that ℓ(x) = 1, i.e. that x = s1. Two cases may occur:

• If xy > y, then ℓ(xy) = ℓ(x)+ ℓ(y), so L(xy) = L(x)+L(y) = L(y), as desired.

• If xy < y, then ℓ(y) = ℓ(x) + ℓ(xy), so L(y) = L(x) + L(xy) = L(xy), as
desired. �

2.4. L-special points. Let H ∈ F and assume that H supports a face of type
s ∈ S: we then set LH = L(s). Note that this is well defined since if H supports
faces of type s, t ∈ S then s and t are conjugate in W [4, Lemma 2.1]. Then
LH = LHσ for all σ ∈ Ω. If λ is a 0-dimensional facet of an alcove, we set

Lλ =
∑

H∈F
λ∈H

LH = L(wλ).

Note that Lλσ = Lλ for all σ ∈ Ω. We set

νL := max
λ∈V

Lλ.

We then say that λ is an L-special point if Lλ = νL. We denote by SpeL(W ) the set
of L-special points: it is stable under the action of Ω. Since A0 is a fundamental
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domain for the action of Ω, the set SpeL(W )∩A0 is a set of representative of orbits
of SpeL(W ) under the action of Ω.

Example 2.5. If L = ℓ is the usual length function then Lλ is just the number of
hyperplanes which go through λ hence νℓ = |Φ+| and the set of ℓ-special points is
equal to the weight lattice

P (Φ) = {v ∈ V | ∀ α ∈ Φ, 〈v, α̌〉 ∈ Z}.

Hence we recover the original definition of special points by Lusztig in [13]. �

Convention 2.6. If W is not of type C̃r (r > 1) then any two
parallel hyperplanes have same weight [4, Lemma 2.2]. In the case

where W is of type C̃r with generators t, s1,..., sr−1, t
′ such that

〈t, s1, . . . , sr−1〉 = W0 and 〈s1, . . . , sr−1〉 is of type Ar−1, by sym-
metry of the Dynkin diagram, we may (and we will) assume that
L(t) > L(t′).

Recall that the type C̃1 is also the type Ã1.

Remark 2.7. Note that with our Convention 2.6 for C̃r (r > 1), the point 0 ∈ V is
always an L-special point. �

For α ∈ Φ we set
Lα := max

n∈Z

LHα,n
.

Remark 2.8. Note that ifW is not of type C̃ then since any two parallel hyperplanes
have same weight we have Lα = LHα,n

for all n. In general we will say that
H = Hα,n ∈ F is of maximal weight if LH = Lα. �

We denote by ΦL the subset of Φ which consists of all roots of positive weight.
Note that ΦL is a root system of rank r, not necessarily irreducible, and that
ΦL ∩ Φ+ is a positive system in ΦL: see the proof of Lemma 3.9 where we classify
the root systems ΦL. We denote by ∆L the unique simple system contained in
ΦL ∩ Φ+. We have

• If W is not of type C̃ or if L(t) = L(t′) in type C̃ then

SpeL(W ) = {v ∈ V | ∀ α ∈ ΦL, 〈v, α̌〉 ∈ Z}.

• If W is of type C̃ and L(t) > L(t′) then

SpeL(W ) = 〈ΦL〉  {v ∈ V | ∀ α ∈ ΦL, 〈v, α̌〉 ∈ Z}.

In other words, the L-special points are those points of V which lies in the inter-
section of |ΦL ∩Φ+| hyperplanes of maximal weight.

Let FL = {H ∈ F | LH > 0}. Let λ be a 0-dimensional facet of an alcove
which is contained in an hyperplane of positive weight. An L-quarter with vertex
λ is a connected component of

V −
⋃

H∈F
L

λ∈H

H.
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It is an open simplicial cone: it has r walls.

Let α ∈ ΦL. A maximal L-strip orthogonal to α is a connected component of

V −
⋃

n∈Z

LHα,n=Lα

Hα,n.

If A is an alcove, we denove by U L
α (A) the unique maximal L-strip orthogonal to

α containing A. Finally, we set

U
L(A0) =

⋃

α∈Φ+

Lα>0

U
L
α (A0).

3. On the lowest two-sided cell

We keep the notation of the previous section. We fix a non-negative weight
function L ∈Weight(W,Γ).

3.1. Definition and examples. Recall that we have set νL := maxλ∈V Lλ. Since
Wλ is a standard parabolic subgroup of W , one can easily see that

νL = max
I∈Pfin(S)

L(wI)

where Pfin(S) denotes the set of subsets I of S such that WI is finite. We set

W =
⋃

I∈Pfin(S)

WI .

Then we define the lowest two-sided cell of W by

cLmin(W ) = {xwy | w ∈ W , x•w•y and L(w) = νL}.

We shall see later (see Section 5.2) the reason for this terminology. When the
group W is clear from the context, we will write cLmin instead of cLmin(W ). Note the
following immediate property of cLmin:

Lemma 3.1. Let w, x, y ∈ W be such that w ∈ cLmin and x•w•y. Then xwy ∈ cLmin.

The set cLmin can change quite dramatically when the parameters are varying as
shown in the following example.

Example 3.2. Let W be of type C̃2 with diagram and weight function given by

i i i
a b c

t s t′

where a, b, c ∈ Γ and, by convention, we assume that a ≥ c. We start by describing
the set

W
max = {w ∈ W | L(w) = νL}.



∗

The set cLmin for a > c and b > 0

∗ ∗

The set cLmin for a > c and b = 0

∗

∗

The set cLmin for a = c > 0 and b > 0

∗ ∗

∗ ∗

∗

The set cLmin for a = c > 0 and b = 0
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We have

W
max =







































{tsts} if a > c and b > 0,

{tsts, tst} if a > c and b = 0,

{tsts, t′st′s} if a = c > 0 and b > 0,

{tsts, tst, t′st′s, t′st′, tt′} if a = c > 0 and b = 0,

{sts, stst, st′s, st′st′} if a = c = 0 and b > 0,

W if a, b, c = 0.

If W max = W then we get cLmin = W . Otherwise the corresponding sets cLmin are
described in the following figures: the black alcove is the fundamental alcove A0,
the alcoves with a star correspond to the set W max and the set cLmin consists of all
the alcoves lying in the gray area (via the identification w ↔ wA0).



∗
∗

∗
∗

The set cLmin for a = c = 0 and b > 0
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3.2. Some alternative description of cLmin. Let LL(W ) be the set of finite
sequences (w1, . . . , wn) of elements of W such that L(w1 · · ·wn) = L(w1) + · · · +
L(wn).

Example 3.3. For instance, Lℓ(W ) = L (W ). Note also that L (W ) ⊂ LL(W ),
by definition of a weight function: the inclusion might be strict, as it is shown by
the case where L = 0. Finally, if L(s) > 0 for all s ∈ S, then LL(W ) = L (W ). �

Example 3.4. If L = 0, then νL = 0, SpeL(W ) is the set of 0-dimensional facets,
LL(W ) is the set of finite sequences of elements of W and cLmin = W . �

For A,B ∈ Alc(Φ), we set

HL(A,B) = {H ∈ F
L|H separates A and B}.

Then we have (compare to Proposition 2.2):

Proposition 3.5. Let x, y ∈ W and A ∈ Alc(W ). We have

(1) L(x) =
∑

H∈HL(A,xA) LH ;

(2) (x, y) ∈ LL(W ) if and only if HL(A, yA) ∩HL(yA, xyA) = ∅.

The set cLmin can be described as follows.

Proposition 3.6. The following equalities hold:

cLmin = {xwy | w ∈ W , (x,w, y) ∈ LL(W ) and L(w) = νL}

= {xwλy | λ ∈ SpeL(W ) and (x,wλ, y) ∈ LL(W )}

= {w | w(A0) 6⊂ U
L(A0)}.

Proof. Let

A = {xwy | w ∈ W , (x,w, y) ∈ LL(W ) and L(w) = νL},

B = {xwλy | λ ∈ SpeL(W ) and (x,wλ, y) ∈ LL(W )},

C = {w | wA0 6⊂ U
L(A0)}.
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It is clear that cLmin, B ⊂ A. Now, let z ∈ A. Then there exists w ∈ W and x,
y ∈ W such that z = xwy, L(z) = L(x) + L(w) + L(y) and L(w) = νL.

Let us first prove that z ∈ B. There exists a 0-dimensional facet λ such that
w ∈ Wλ. If L(wλ) < νL, then L(w) 6 L(wλ) < νL, which is impossible. Therefore,
L(wλ) = νL, so λ ∈ SpeL(W ). Write w = wλa, with a ∈Wλ. Then, since wλ is the
longest element of Wλ, we get that ℓ(wλ) = ℓ(w) + ℓ(a), so L(w) + L(a) = L(wλ),
so L(a) = 0. By Proposition 2.4, it follows that L(ay) = L(y). Then z = xwλay,
and L(z) = L(x) + L(w) + L(y) = L(x) + L(wλ) + L(ay). This shows that z ∈ B.
So A = B.

Let us now prove that z ∈ cLmin. We shall argue by induction on ℓ(x)+ ℓ(y). The
result being obvious if ℓ(x)+ℓ(y) = 0, we assume that ℓ(x)+ℓ(y) > 0. By symmetry,
we may assume that x = sx′, with s ∈ S and sx′ > x′. Let z′ = sz. Therefore,
L(z) = L(sx′)+L(w)+L(y) = L(s)+L(x′)+L(w)+L(y) > L(s)+L(x′wy) = L(s)+
L(z′) > L(z′). Consequently, L(z) = L(s)+L(z′) and L(z′) = L(x′)+L(w)+L(y).
So z′ ∈ A and, by the induction hypothesis, z′ ∈ cLmin. Two cases may occur:

• If sz′ > z′, then z = sz′ ∈ cLmin by Lemma 3.1, as desired.

• If sz′ < z′, then L(z) = L(sz′) 6 L(z′). Since we have already proved that
L(z) > L(z′), this forces L(s) = 0. Write z′ = aw′b with w′ ∈ W , L(w′) = νL and
a•w′

•b. Since z = sz′ < z′, this means that z is obtained from the expression aw′b
by removing a simple reflection s′ conjugate to s from a reduced expression of a, b
or w′. It it is removed from a or b, then z = a′w′b′ with a′ •w′

•b′, so z ∈ cLmin. If
it is removed from w′, then z = aw′′b′ with L(w′′) = L(w′) = νL and a•w′′

•b, so
z ∈ cLmin.

Therefore, we have proved that A = B = cLmin.

It remains to show that C = cLmin. Let z ∈ cLmin = B. Then there exist x, y ∈W
and λ ∈ SpeL(W ) such that z = xwλy and (x,wλ, y) ∈ LL(W ). In particular we
have (wλ, y) ∈ LL(W ) hence, using Proposition 3.5, we get

(∗) HL(A0, yA0) ∩HL(yA0, wλyA0) = ∅.

Let α ∈ ΦL. Since λ is a special point there exists an hyperplane Hα,nλ
of weight

Lα which contains λ. The hyperplane Hα,nλ
separates yA0 and wλA0 and is of

maximal weight, therefore by (∗) it cannot lie in HL(A0, yA0) and it follows that
it separates A0 and wλyA0. Therefore for all µ ∈ wλyA0 we have

〈µ, α̌〉 > nλ if nλ ≥ 1
〈µ, α̌〉 < nλ if nλ ≤ 0

and wλy /∈ U L
α (A0). But this holds for all α ∈ ΦL, thus wλyA0 /∈ U L(A0). Now

we have (x,wλ, y) ∈ LL(W ) therefore

HL(A0, wλyA0) ∩HL(wλyA0, xwλyA0) = ∅

from where we see that Hα,nλ
does not lie HL(wλyA0, xwλyA0). Hence xλwλyA0 /∈

U L
α (A0) as required.

Let us now prove that C ⊂ cLmin. Let w ∈ C. The idea is to follow the proof of
[4, Proposition 5.5] using ΦL instead of Φ. The alcove wA0 lies in some connected
component of

V −
⋃

α∈ΦL

Hα,0.
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The group ΩL
0 = 〈σHα,0

| α ∈ ΦL〉 is easily seen to act simply transitively on this

set of connected components, therefore there exists σ ∈ ΩL
0 such that

wA0 ⊂ Cσ := {v ∈ V | 〈v, α̌〉 > 0 for α ∈ σ(∆L)}

This implies that there exist r linearly independent roots β1, . . . , βr in ΦL ∩ Φ+

such that

Cσ := {v ∈ V | 〈v, β̌i〉 < 0 for 1 ≤ i ≤ k, 〈v, β̌i〉 > 0 for k + 1 ≤ i ≤ r〉}.

Removing the alcoves which lies in U L(A0) we obtain the following L-quarter,
which is a translate of Cσ:

C
′
σ := {v ∈ V | 〈v, β̌i〉 < bi for 1 ≤ i ≤ k, 〈v, β̌i〉 > bi for k + 1 ≤ i ≤ r〉}

where

bi =











0 if 1 ≤ i ≤ k,

1 if k + 1 ≤ i ≤ r and L(Hβi,0) = L(Hβi,1),

2 otherwise.

Let λσ be the vertex of C ′
σ that is the point of V which satisfies 〈λσ, β̌i〉 = bi for

all 1 ≤ i ≤ r. Then λσ is a special point: for α ∈ ΦL we set nλ
α = 〈λσ, α̌〉. Note

that for all α ∈ ΦL we have

(†) Cσ ⊂ V +
H

α,nλ
α

if nλ
α > 0 and Cσ ⊂ V −

H
α,nλ

α

if nλ
α ≤ 0.

Now let z ∈W be such that z(A0) ⊂ C ′
σ, λ ∈ zσA0. We get for α ∈ ΦL (using (†))

• if Hα,n ∈ HL(wA0, zA0) then |n| > |nλ
α|;

• if Hα,n ∈ HL(A0, zA0) then |n| ≤ |nλ
α|;

• if Hα,n ∈ HL(wλzA0, zA0) then n = nλ
α.

Finally putting all this together we get that

HL(A0, wλzA0) ∩HL(wλzA0, zA0) = ∅
and HL(A0, zA0) ∩HL(zA0, wz

−1(zA0)) = ∅.

Hence w = wz−1wλwλz and (wz−1, wλ, wλz) ∈ LL(W ). �

Remark 3.7. By direct product, one can easily show that Proposition 3.6 still holds
when W is not irreducible. �

3.3. The elements of cLmin. Keeping the notation of the proof of Proposition 3.6,
every element σ ∈ ΩL

0 defines an L-quarter Cσ with vertex 0 and an L-quarter C ′
σ

(which is a translate of Cσ) with vertex λσ. We get the following equality

cLmin(W ) =
⋃

σ∈ΩL
0

{w ∈W | wA0 ⊂ C
′
σ} =

⋃

σ∈ΩL
0

NL
σ (W ).

We will simply write NL
σ if it is clear from the context what the group W is. Note

that any two sets Cσ,Cσ′ are separated by at least one maximal strip, hence the
above union is disjoint. In fact, the sets Cσ are the connected components of the
closure of {µ ∈ V | µ ∈ wA0, w ∈ cLmin}.

Let bσ be the unique element such that λσ ∈ bσA0 and bσ has minimal length in
the coset Wλσ

bσ. For a 0-dimensional facet λ of an alcove, we set S◦
λ := {s ∈ Sλ |

L(s) = 0} and we denote by w◦
λ the element of minimal length in wλWS◦

λ
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Lemma 3.8. Every element w ∈ cLmin can be uniquely written under the form
xwaww

◦
λσ

bσ where σ ∈ ΩL
0 , aw ∈WS◦

λσ
and xw ∈ Xλσ

.

Proof. Let w ∈ cLmin. We know by the previous proof that w = wz−1wλwλz and

(wz−1, wλ, wλz) ∈ LL(W ) where z is such that z(A0) ⊂ C ′
σ and λσ ∈ zA0. Both

bσA0 and wλzA0 contains λσ in their closure hence they lie in the same right coset
with respect to Wλσ

. Since bσ has minimal length in Wλσ
bσ there exists y′ ∈ Wλσ

such that wλz = y′bσ and (y′, bσ) ∈ L (W ). Next let xw be the element of minimal
length in (wz−1)Wλσ

and let x′ be such that wz−1 = xwx
′. Assume for a moment

that x′, y′ ∈ WS◦
λσ
. Then

x′wλσ
y′ ∈WS◦

λσ
wλσ

WS◦
λσ

= WS◦
λσ
wλσ

and we write x′wλσ
y′ = aww

◦
λσ

. Finally w can be written uniquely as xwaww
◦
λbσ.

Let us now prove that x′, y′ ∈ WS◦
λσ

that is L(x′) = L(y′) = 0. Recall that bσ
has minimal length in Wλbσ. On the one hand we have

L(wλwλz) = L(wλ) + L(wλz) = L(wλ) + L(y′bσ) = L(wλ) + L(y′) + L(bσ).

On the other hand

L(wλwλz) = L(wλy
′bσ) = L(wλy

′) + L(bσ) = L(wλ)− L(y′) + L(bσ)

hence L(y′) = 0. Similarly one can show that L(x′) = 0. The proof is complete �

Later on, we will need the following result. We put it and prove it here because
it uses the notation introduced in this section.

Lemma 3.9. Let w = xwaww
◦
λσ
bσ where σ ∈ ΩL

0 , aw ∈ WS◦
λσ

and xw ∈ Xλσ
.

Then we have

(1) xw •aw •w◦
λσ

•bσ;

(2) if w′ < aww
◦
λbσ and w′ ∈ cLmin then either w′ = aw′w◦

λσ
bσ where aw′ < aw

or w′ = xw′aw′w◦
λσ′

yσ′ where yσ′ < bσ.

Eventhough this result might look fairly natural, it is in fact quite long to prove
and involved a case by case analysis.

Proof. We prove 1. The fact that aw •w◦
λσ

•bσ is clear by definition therefore we
only need to show that xw •(aww

◦
λσ

bσ). To this end we show that

D := H(A0, aww
◦
λσ

bσA0) ∩H(aww
◦
λσ
bσA0, xwaww

◦
λσ
bσA0) = ∅.

Claim 1. If 〈λσ, β̌〉 ∈ Z then Hβ,n /∈ D for all n ∈ Z.

Proof. Let nβ = 〈λσ, β̌〉 and assume that nβ > 0, the case nβ ≤ 0 is similar. Since
xw ∈ Xλσ

, there are no hyperplane containing λσ which lies in

H(aww
◦
λσ
bσA0, xwaww

◦
λσ
bσA0).

Hence Hβ,nβ
/∈ D. Now let n 6= nβ . Then since λσ ∈ aww◦

λσ
bσA0, we have

n < 〈µ, β̌〉 < nβ + 1 for all µ ∈ aww
◦
λσ
bσA0.

If n > nβ we have Hβ,n /∈ H(A0, aww
◦
λσ
bσA0) and Hβ,n /∈ D. If n < nβ then

Hβ,n /∈ H(aww
◦
λσ

bσA0, xwaww
◦
λσ

bσA0) and Hβ,n /∈ D. �
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Claim 2. Let β ∈ Φ+ be such that there exists a hyperplane of direction β in D.
Then Hβ,0 ∩ Cσ 6= ∅

Proof. Let β ∈ Φ+ be such that there exists a hyperplane of direction β in D. By
the previous claim, we know that 〈λσ, β̌〉 /∈ Z. Let n ∈ Z be such that n < 〈λσ, β̌〉 <
n+ 1. We will assume that n > 0. (The case n ≤ 0 is similar.) Note that we must
have Hβ,n ∩ C ′

σ 6= 0. Translating by −λσ we get

t−λσ
(Hβ,n) ∩ Cσ 6= ∅.

Let x ∈ t−λσ
(Hβ,n) ∩ Cσ. Note that we have 〈x, β̌〉 = n− 〈λσ, β̌〉. Let

δ =
〈λy, β̌〉 − n

〈λy , β̌〉
< 1.

Then 0 < δ < 1 and an easy calculation to show that x+ δλσ ∈ Hβ,0 ∩ Cσ. �

Claim 3. Let β ∈ Φ+ be such that Hβ,0 ∩ Cσ 6= ∅. Then we have either

(1) 〈λσ , β̌〉 ∈ Z,
(2) 0 < 〈λσ, β̌〉 < 1.

We now prove that Claims (1)–(3) implies that D = ∅. By Claim 2, the only
hyperplanes that can lie in D are those of the form Hβ,n where Hβ,0 ∩Cσ 6= ∅. But
then Claim 3 implies that we have either

(1) 〈λσ , β〉 ∈ Z,
(2) 0 < 〈λσ, β〉 < 1.

If we are in case (1), we have Hβ,n /∈ D by Claim 1. If we are in case (2), then the
alcove aww

◦
λσ
bσA0, which contains λσ in its closure, must satisfies

aww
◦
λσ

bσA0 ⊂ {x ∈ V | 0 < 〈x, β̌〉 < 1}.

But so does A0, therefore there are no hyperplane of direction β which lies on
H(A0, aww

◦
λσ
bσA0) and Hβ,n /∈ D. Thus D = ∅ as required.

It remains to prove Claim 3. We will proceed by a case by case analysis but first
we want to express Claim 3 in a form which is easier to check. To do so, we need
to introduce some more notation.

Any σ ∈ ΩL
0 defines a partition ∆+

σ ∪∆−
σ of ∆L where

∆+
σ = {α ∈ ∆L | ασ ∈ Φ+} and ∆−

σ = {α ∈ ∆L | ασ ∈ Φ−}.

Remark 3.10. Note that we can obtain all partition of ∆L in this way, but that two
distinct σ might give rise to the same partition. �

To such a partition, we associate λ∆+
σ ,∆−

σ
∈ V defined by

〈λ∆+
σ ,∆−

σ
, α̌〉 = 0 if α ∈ ∆−

σ and 〈λ∆+
σ ,∆−

σ
, α̌〉 = bα if α ∈ ∆+

σ

where

bα =

{

1 if k + 1 ≤ i ≤ r and L(Hα,0) = L(Hα,1);

2 otherwise.
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Then we have λσ = (λ∆+
σ ,∆−

σ
)σ. Claim 3 is then easily seen to be equivalent to

the following statement, by applying σ−1. (In the expression C1, the 1 denotes the
identity of ΩL

0 .)

Claim 3’. Let γ ∈ Φ+ such that Hγ,0 ∩ C1 and let σ ∈ ΩL
0 . Then we have either

(1) 〈λ∆̃+
σ ,∆̃−

σ
, γ̌〉 ∈ Z

(2) 0 < 〈λ∆̃+
σ ,∆̃−

σ
, γ̌〉 < 1 if γσ ∈ Φ+

(3) −1 < 〈λ∆̃+
σ ,∆̃−

σ
, γ̌〉 < 0 if γσ ∈ Φ−

Proof. As mentioned earlier, we proceed by a case by case analysis. Note that it is
enough to prove the claim for γ /∈ ΦL, since for all γ ∈ ΦL we have 〈λ∆̃+

σ ,∆̃−
σ
, γ̌〉 ∈ Z

as λ∆̃+
σ ,∆̃−

σ
is a L-special point.

Type G̃2. It is a straightforward verification.

Type F̃4. Let V = R4 with orthonormal basis (εi)1≤i≤4. The root sytem Φ of type
F4 consists of 24 long roots and 24 short roots:

±εi ± εj and ± εi,
1

2
(±ε1 ± ε2 ± ε3 ± ε4).

Assume that S◦ = {s1, s2}. We get that ΦL is of type D4 and consists of the roots
±εi ± εj . We choose the following simple system:

∆L = {ε1 − ε2, ε2 − ε3, ε3 − ε4, ε3 + ε4}.

We have C1 = {x ∈ V |〈x, α̌〉 > 0, for all α ∈ ∆L}. In other words


















x1 − x2 > 0

x2 − x3 > 0

x3 − x4 > 0

x3 + x4 > 0

for all x1, x2, x3, x4 ∈ C1. In particular, we have x1 > x2 > x3 > |x4|. The first
step is to determine the set B of roots γ ∈ Φ\ΦL which satisfies

Hγ,0 ∩ C1 6= ∅.

We find

B = {±
1

2
(ε1 − ε2 − ε3 + ε4),±

1

2
(ε1 − ε2 − ε3 − ε4)}.

The set of points {λ∆+
σ ,∆−

σ
| σ ∈ ΩL

0 } is the set of points (x1, x2, x3, x4) ∈ V which
are solutions to the systems



















x1 − x2 = δ1

x2 − x3 = δ2

x3 − x4 = δ3

x3 + x4 = δ4

where δi = 0 or 1. Claim 3’ then follows by a straightforward computations. We
find that 〈λ∆+

σ ,∆−
σ
, γ̌〉 ∈ Z in all cases.



14 C. Bonnafé & J. Guilhot

Assume that S◦ = {t1, t2, t3}. We get that ΦL is of type D4 and consists of the
roots ±εi,

1
2 (±ε1 ± ε2 ± ε3 ± ε4). We choose the following simple system:

∆L = {
1

2
(ε1 − ε2 − ε3 − ε4), ε2, ε3, ε4}.

We have C1 = {x ∈ V |〈x, α̌〉 > 0, for all α ∈ ∆L}. The set B of roots γ ∈ Φ\ΦL

which satisfies Hγ,0 ∩ C L
0 6= ∅ is

B = {±(ε2 − ε3),±(ε3 − ε4),±(ε2 − ε4)}.

The set of points λ∆+
σ ,∆−

σ
is the set of points (x1, x2, x3, x4) ∈ V which are solutions

to the systems


















x1 − x2 − x3 − x4 = δ1

x2 = δ2

x3 = δ3

x4 = δ4

where δi = 0 or 1
2 (since for all α ∈ ∆L we have α̌ = 2α). Let γ = εi − εj where

j > i > 1 and let σ ∈ Ω0
L. Then σ defines a partition of ∆L, which in turns defines

the δ’s. There are 3 cases to consider:

• Suppose that δi = δj . Then 〈λ∆+
σ ,∆−

σ
, γ̌〉 = xi − xj = 0 ∈ Z as required;

• Suppose that 1
2 = δi > δj = 0. Then σ sends εi to a positive root and εj

to a negative one. Hence it sends γ to a positive root. We get

〈λ∆+
σ ,∆−

σ
, γ̌〉 = xi − xj =

1

2

as required.
• Suppose that 1

2 = δj > δi = 0. Then σ sends εi to a negative root and εj
to a positive one. Hence it sends γ to a negative root. We get

〈λ∆+
σ ,∆−

σ
, γ̌〉 = xi − xj = −

1

2

as required.

Type B̃n. Let V = Rn with basis (εi)1 6 i 6 n. The root sytem Φ of type Bn

consists of 2n short roots ±εi and 2n(n− 1) long roots roots ±εi ± εj .

Assume that S◦ = {t}. We get that ΦL of type Dn and consists of the roots±εi±εj.
We choose the following simple system:

∆L = {ε1 − ε2, . . . , εn−1 − εn, εn−1 + εn}.

The set B of roots γ ∈ Φ\ΦL which satisfies Hγ,0 ∩ C1 6= ∅ is

B = {±εn}.
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The set of points λ∆+
σ ,∆−

σ
is the set of points (x1, x2, x3, x4) ∈ V which are solutions

to the systems






























x1 − x2 = δ1

x2 − x3 = δ2
...

xn−1 − xn = δn−1

xn−1 + xn = δn

where δi = 0 or 1. This implies that xn = −1/2, 0 or 1/2. Therefore we get

〈λ∆+
σ ,∆−

σ
, ε̌n〉 = 2(λ∆+

σ ,∆−
σ
, εn) = −1, 0 or 1

as required.

Assume that I0 = {s1, . . . , sn}. We get that ΦL of type (A1)
n and consists of the

roots ±εi. We choose the following simple system:

∆L = {εi}.

The set B of roots γ ∈ Φ\ΦL which satisfies Hγ,0 ∩ C1 6= ∅ is

B = {εi − εj |i < j}

The set of points λ∆+
σ ,∆−

σ
is the set of points (x1, x2, x3, x4) ∈ V which are solutions

to the systems






















x1 = δ1

x2 = δ2
...

xn = δn

where δi = 0 or 1
2 . Let γ = εi − εj where j > i and let σ ∈ Ω0

L. Then σ defines a

partition of ∆L, which in turns defines the δ’s. There are 3 cases to consider:

• Suppose that δi = δj . Then 〈λ∆+
σ ,∆−

σ
, γ̌〉 = xi − xj = 0 ∈ Z as required;

• Suppose that 1
2 = δi > δj = 0. Then σ sends εi to a positive root and εj

to a negative one. Hence it sends γ to a positive root. We get

〈λ∆+
σ ,∆−

σ
, γ̌〉 = xi − xj =

1

2

as required.
• Suppose that 1

2 = δj > δi = 0. Then σ sends εi to a negative root and εj
to a positive one. Hence it sends γ to a negative root. We get

〈λ∆+
σ ,∆−

σ
, γ̌〉 = xi − xj = −

1

2

as required.

Type C̃n. Let V = Rn with orthonormal basis (εi)1 6 i 6 n. The root sytem Φ of
type Cn consists of 2n long roots ±2εi and 2n(n− 1) short roots roots ±εi ± εj .

Assume that I0 = {t′}. Then ΦL = Φ and the statement is trivial since Φ\ΦL = ∅.
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Assume that I0 = {s1, . . . , sn−1}. We get that ΦL is of type (A1)
n and consists of

the roots ±2εi. We choose the following simple system:

∆L = {2εi}.

The set B of roots γ ∈ Φ\ΦL which satisfies Hγ,0 ∩ C1 6= ∅ is

B = {εi − εj |i < j}

The set of points λ∆+
σ ,∆−

σ
is the set of points (x1, . . . , xn) ∈ V which are solutions

to the systems






















x1 = δ1

x2 = δ2
...

xn = δn

where δi = 0 or 1 if L(t) = L(t′) or where δi = 0 or 2 if L(t) > L(t′). We find that
〈λ∆+

σ ,∆−
σ
, γ̌〉 ∈ Z in all cases.

Assume that I0 = {s1, . . . , sn−1, t
′}. It is the same thing as the previous case,

except that the δ’s only take values 0 or 2.

Assume that I0 = {t, t′}. We get that ΦL is of type Dn and consists of the roots
±εi ± εj . We choose the following simple system:

∆L = {ε1 − ε2, . . . , εn−1 − εn, εn−1 + εn}.

The set B of roots γ ∈ Φ\ΦL which satisfies Hγ,0 ∩ C1 6= ∅ is

B = {±2εn}.

The set of points λ∆+
σ ,∆−

σ
is the set of points (x1, . . . , xn) ∈ V which are solutions

to the systems






























x1 − x2 = δ1

x2 − x3 = δ2
...

xn−1 − xn = δn−1

xn−1 + xn = δn

where δi = 0 or 1. Let γ = 2εn and let σ ∈ Ω0
L. Then σ defines a partition of ∆L,

which in turns defines the δ’s. There are 3 cases to consider:

• Suppose that δn−1 = δn. Then 〈λ∆+
σ ,∆−

σ
, γ̌〉 = xn = 0 ∈ Z as required;

• Suppose that 1
2 = δn−1 > δn = 0. Then σ sends 2εn = γ to a negative root

and we have

〈λ∆+
σ ,∆−

σ
, γ̌〉 = xn = −

1

2
as required.
• Suppose that 1

2 = δn > δn−1 = 0. Then σ sends 2εn = γ to a positive root
and we have

〈λ∆+
σ ,∆−

σ
, γ̌〉 = xn =

1

2
as required.

The proof of Claim 3’ (hence of Statement (1)) is complete. �
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We now prove (2). Let w′ < aww
◦
λσ

bσ be such that w′ ∈ cLmin and write

w′ = xw′aw′w◦
λσ′

bσ′ .

Assume that Wλσ′ = Wλσ
. Then since

aw′w◦
λσ′

bσ′ < zw′aw′w◦
λσ′

bσ′ < aww
◦
λσ

bσ

and aw′w◦
λσ′

, aww
◦
λσ′
∈ Wλσ

, we get (see [14, Proof of Lemma 9. 10]) that either

bσ′ < bσ or bσ′ = bσ and aw′w◦
λ′ < aww

◦
λ′ which implies that aw′ < aw as required.

Assume that Wλσ′ 6= Wλσ
. Write w′ = wσz

′ where wσ ∈ Wλσ
and z′ has minimal

length in the coset Wλσ
w′.

Note that since w′ = wσz
′ < aww

◦
λσ

bσ we get that z′ ≤ bσ. But we must have
z′ < bσ otherwise we would have wσ < aww

◦
λσ
, which together with the condition

w′ ∈ cLmin would imply that wσ = u′w◦
λσ

for some u′ ∈W ◦
λσ

and λσ = λσ′ .

If we show that

D′ = H(bσ′A0, z
′A0) ∩H(A0, bσ′A0) = ∅

then the result will follow. Indeed if D′ = ∅ then there exists an x ∈ W such that
z′ = xbσ′ and x•bσ′ and we get bσ′ < bσ since bσ′ ≤ z < bσ.

Let λ′ be the unique L-special point which contains z′A0 and w◦
λσ

z′A0. A hyper-
plane H which lies in D′ cannot contain λσ′ (otherwise H /∈ H(A0, bσ′A0)) nor λ

′

(otherwise H /∈ H(bσ′A0, z
′A0)) but it has to separate these two points. Hence it

also separates any alcoves which contains λσ′ and any alcoves which contains λ′.
In particular it separates aw′w◦

λσ′
bσ′A0 and w′A0 = xw′aw′w◦

λσ′
bσ′A0 but there are

no such hyperplanes as we have shown in the proof of Statement (1). �

Example 3.11 (positive weight functions). In this example, and only in this
example, we assume that L is positive. Let PL(S) be the set of proper subsets I
of S such that L(wI) = νL. If I ∈PL(S), then WI ≃ W0 (because L is positive).
Note also that, since L is positive,

PL(S) = {Sλ | λ ∈ SpeL(W )}

and {w ∈ W | L(w) = νL} = {wI | I ∈PL(S)} = {wλ | λ ∈ SpeL(W )}.

Recall also that LL(W ) = L (W ). Therefore

cLmin = {xwIy ∈ W | x, y ∈W, x•wI •y and I ∈PL(S)}

= {xwλy | x, y ∈W, x•wλ •y and λ ∈ SpeL(W )}.

It we set ML
λ = {z ∈ W | wλ •z and swλz /∈ cLmin for all s ∈ Sλ} as in [4, Proof of

Theorem 5.4], then we obtain the following decomposition of cLmin

cLmin =
˙⋃

λ∈Spe0L(W )

z∈ML
λ

Nλ,z (disjoint union)

where Spe0L(W ) = SpeL(W ) ∩ A0 is a set of representatives for the Ω-orbits on
SpeL(W ) and

Nλ,z = {xwλz | x ∈ Xλ}.

It is easily seen that the set ML
λ consists of our elements bσ and that the sets Nλ,z

correspond to NL
σ . �
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4. Semidirect product decomposition

We fix a non-negative weight function L : W → Γ where Γ is a totally abelian
group. The aim of this section is to express the lowest two-sided cell cLmin in relation
to the decomposition of W as semidirect product of two Coxeter groups as in [2].

4.1. Coxeter groups. If I is a subset of S, we set

I◦ = {s ∈ I | L(s) = 0} and I+ = {s ∈ I | L(s) > 0},

so that I = I◦ ∪̇ I+. We also set

Ĩ = {wsw−1 | w ∈ WI◦ and s ∈ I+}

and we denote by W̃Ĩ the subgroup of W generated by Ĩ. For simplification, we set

W ◦ = WS◦ and W̃ = W̃S̃ .
Note that, if s ∈ I◦ and t ∈ I+, then L(s) 6= L(t), so s and t are not conjugate

in W . It then follows from [2] that

(4.1) WI = WI◦ ⋉ W̃Ĩ and (W̃Ĩ , Ĩ) is a Coxeter group.

If I = S, we get that

W = W ◦ ⋉ W̃ and (W̃ , S̃) is a Coxeter group.

We will assume that W ◦ is finite. Note however, that this assumption is not very
restrictive when dealing with an affine Weyl group. Indeed, by direct products, we
can assume that W is irreducible. In this case, either L = 0 (and then cLmin = W
and the problem is uninteresting) or S◦ is a proper subset of S (and then W ◦ is
finite because W is irreducible).

4.2. The group Ω̃. We keep the notation of Section 2.1. Let

SΩ = {σH | H is a wall of A0}.

Then (Ω, SΩ) is a Coxeter system. Let

S◦
Ω = {σH | H is a wall of A0 and LH = 0}

and

S+
Ω = {σH | H is a wall of A0 and LH > 0}.

Then we have Ω = Ω◦ ⋉ Ω̃ where Ω◦ is generated by S◦
Ω and Ω̃ is generated by

S̃Ω := {ρσHρ−1 | ρ ∈ Ω◦ and σH ∈ S+
Ω } = {σHρ | ρ ∈ Ω◦ and σH ∈ S+

Ω }.

We set

F̃ = {H ∈ F | σH ∈ Ω̃}.

It is clear by definition that Ω̃ is generated by {σH | H ∈ F̃}. Further, the following
conditions are satisfied

(D1) Ω̃ stabilizes F̃ .

(D2) The group Ω̃, endowed with the discrete topology, acts properly on V .
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We prove (D1). Let σ̃ ∈ Ω̃ and H ∈ F̃ , that is σH ∈ Ω̃. We have σ̃σH σ̃−1 = σHσ̃ ∈

Ω̃ and, therefore, Hσ̃ ∈ F̃ . Condition (D2) follows easily form the fact that Ω,
endowed with the discrete topology, acts properly on V .
We denote by Alc(F̃ ) the set of alcoves with respect to F̃ , that is the connected
components of

V −
⋃

H∈F̃

H.

Let Ã0 be the unique alcove (with respect to F̃ ) which contains A0. Then we have
(see [3, Chapter 5, §3] and [2, §4])

(1) The group Ω̃ is generated by the orthogonal reflections with respect to the

wall of Ã0.

(2) Ã0 is a fundamental domain for the action of Ω̃.

(3) Ã0 =
⋃

ρ∈Ω◦

A0ρ.

(4) Any element σH ∈ Ω̃ is conjugate in Ω̃ to an orthogonal reflection with

respect to a wall of Ã0.

It follows that Ω̃ is an affine Weyl group (see [2, §4]). Note that Ω̃ is not necessarily

irreducible. In fact, as we expect, the group Ω̃ is nothing else that the group
generated by the reflections with respect to the hyperlanes in FL = {H ∈ F |
LH > 0}.

Lemma 4.2. We have F̃ = FL.

Proof. Let H ∈ FL. There exists σ ∈ Ω and a wall H ′ of A0 of positive weight
such that H ′σ = H . Write σ = ρσ̃ where ρ ∈ Ω◦ and σ̃ ∈ Ω̃. Then σH′ρ ∈ Ω̃ and
we have

σH = σ̃σH′ρσ̃
−1

therefore σH ∈ Ω̃.
Conversely, let H ∈ F̃ that is σH ∈ Ω̃. By (4), σH is conjugate (in Ω̃) to σH′

where H ′ is a wall of Ã0. By (3), we know that the walls of Ã0 are of the form Hρ
where H is a wall of A0 of positive weight. In particular, H ′ has positive weight.
It follows that H has positive weight and H ∈ FL as required. �

Finally we want to define a root system associated to Ω̃. Let

Φ̃ := {bαα | α ∈ ΦL}

where bα is defined to be the smallest integer such that Hα,bα has positive weight.
We also fix a set of positive roots

Φ̃+ = {bαα | α ∈ ΦL ∩ Φ+}.

Remark 4.3. If Ω is not of type C̃ then we simply have Φ̃ = ΦL. Indeed in this
case, any two parallele hyperplane have same weights, hence bα = 1 for all α ∈ ΦL.
If Ω is of type C̃, then we may have bα = 2 for some choices of parameters, namely
when L(t) > L(t′) = 0 (see Convention 2.6). �

Remark 4.4. We have ΩL
0 = Ω̃0 where Ω̃0 = 〈σHα̃,0

| α̃ ∈ Φ̃〉. �
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Lemma 4.5. The group Ω̃ is the affine Weyl group associated to Φ̃. Further the
alcove Ã0 is the fundamental alcove associated to Φ̃, that is

Ã0 = {x ∈ V | 0 < 〈x, α̌〉 < 1 for all α ∈ Φ̃+}

Proof. The first statement is clear since we have

F
L = {Hbαα,n | α ∈ ΦL ∩Φ+, n ∈ Z}.

The second statement follows easily from the above equality and the fact that
A0 ⊂ Ã0. �

Doing as in Section 2.1, we obtain another geometric realization of Ω̃, namely as
a group generated by involutions on the set Alc(F̃ ). Indeed, Ω̃ acts transitively on

the set of faces of alcoves in Alc(F̃ ): we denote by {t̃1, . . . , t̃m} the set of Ω̃-orbits

in the set of faces. Note that the set of faces of Ã0 is a set of representatives of
the set of orbits. To each t̃i we can associate an involution Ã 7→ t̃iÃ of Alc(F̃ )

where t̃iÃ is the unique alcove of Alc(F̃ ) which shares with Ã a face of type t̃i. The

group generated by all the t̃i is an affine Weyl group isomorphic to Ω̃. We would
like to use the notation W̃ and S̃ for this group, and eventually we will, but before
one needs to be careful since W̃ also denotes the group appearing in the semidirect
product decomposition of W (where W is the group generated by involutions on
Alc(F )).

4.3. Alcoves of W̃ . Recall the definition of (W,S) in Section 2.1 and that

S◦ = {s′ ∈ S | L(s) = 0} and S+ = {s ∈ S | L(s) > 0}.

Then we have W = W ◦ ⋉ W̃ where W ◦ is generated by S◦ and W̃ is generated by

S̃ = {wtw−1 | t ∈ S+ and w ∈ W ◦}.

Lemma 4.6. Let t̃ ∈ S̃ = {wtw−1 | t ∈ S+ and w ∈ W ◦}. Then there exists a

unique wall H of Ã0 such that

t̃A0 = A0σH .

Proof. Let w ∈ W ◦ and t ∈ S+ be such that t̃ = wtw−1. Let ρ ∈ Ω◦ be such that
wA0 = A0ρ and let H ′ be the unique hyperplane which contains the face of type t
of A0. Then we have

wtw−1A0 = wtA0ρ
−1 = wA0σH′ρ−1 = A0ρσH′ρ−1 = A0σH′ρ

and the result follows. �

Therefore there is a natural bijection between the set S̃ and the set of faces of Ã0

and therefore between S̃ and the set of orbits {t̃1, . . . , t̃m}: we will freely identify

those two sets. Note that an element t̃ ∈ S̃ can be viewed as acting on the set of
alcoves Alc(F ) when it is considered as an element of W̃ ⊂ W but it can also be

viewed as acting on Alc(F̃ ) if t̃ is considered as acting on Alc(F̃ ) via the action
defined at the end of the previous section. In the following lemma, we show that
these two actions behaves well with one another.

Lemma 4.7. If w̃ ∈ W̃ , then

w̃A0 ⊂ w̃Ã0.
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From where it follows that
⋃

w◦∈W◦

w◦w̃A0 = w̃Ã0.

Proof. Let t̃ ∈ S̃. Then t̃Ã0 is the unique alcove in Alc(F̃ ) which shares with Ã0

a face of type t̃, hence we have

t̃Ã0 = Ã0σH

where H is the hyperplane which supports the face of Ã0 of type t̃. By the previous
lemma we see that

t̃A0 = A0σH .

Hence since A0 ⊂ Ã0, the first assertion follows. The second assertion follows from

Ã0 =
⋃

ρ∈Ω◦

A0ρ =
⋃

w∈W◦

wA0. �

4.4. The lowest two-sided cell of W̃ . Let L̃ denote the restriction of L to W̃ . By
[2, Corollary 1.4], it is a positive weight function. Note that we have L̃(wtw−1) =
L(t) for all w ∈ W ◦.

Theorem 4.8. We have

cLmin(W ) = W ◦ · cL̃min(W̃ ) and NL
σ (W ) = W ◦ ·N L̃

σ (W̃ )

for all σ ∈ ΩL
0 .

Proof. First, since F̃ = FL and A0 ⊂ Ã0 we see that

U
L̃(Ã0) = U

L(A0).

Then applying the results of the previous section we get

cL̃min(W̃ ) = {w̃ ∈ W̃ | w̃(Ã0) 6⊂ U
L̃(Ã0)}

cLmin(W ) = {w ∈ W | w(A0) 6⊂ U
L(A0)}.

Let w ∈ cLmin and write w = w◦w̃ where w◦ ∈ W ◦ and w̃ ∈ W̃ . We have w◦w̃A0 /∈

U L(A0) that is w
◦w̃A0 /∈ U L̃(Ã0). Since the only hyperplane separating w̃A0 and

w◦w̃A0 are hyperplanes of weight 0, this implies that w̃A0 /∈ U L̃(Ã0). Hence, by

Lemma 4.7, we get that w̃Ã0 /∈ U L̃(Ã0) and w̃ ∈ cL̃min(W̃ ) as required.

Conversely let w◦w̃ ∈ W ◦ · c̃L̃min. Since w̃ ∈ c̃L̃min we have w̃Ã0 /∈ U L̃(Ã0). By
Lemma 4.7, it follows that w̃A0 /∈ U L(A0) and w◦w̃A0 /∈ U L(A0) as required.

The second equality in the theorem follows easily from the fact that Ω̃0 = ΩL
0 ,

Lemma 4.7 and

NL
σ (W ) = {w ∈W | wA0 ⊂ C

′
σ} and N L̃

σ (W̃ ) = {w̃ ∈ W̃ | w̃Ã0 ⊂ C
′
σ}.

�

Remark 4.9. Since cLmin(W ), cL̃min(W̃ ) and W ◦ are stable by taking the inverse, we
get that

cLmin(W ) = W ◦ · cL̃min(W̃ ) = cL̃min(W̃ ) ·W ◦ = W ◦ · cL̃min(W̃ ) ·W ◦. �
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5. Kazhdan-Lusztig cells

5.1. Iwahori-Hecke algebras. Recall that Γ is a totally ordered abelian group,
whose law is denoted by + and whose order relation is denoted by 6 . Let A be
the group algebra of Γ over Z. We shall use the following notation for A

A = ⊕
γ∈Γ

Zvγ where vγ .vγ
′

= vγ+γ′

.

Let L : W → Γ be a weight function. For s ∈ S we set vs = vL(s).

We denote by H = H (W,S,L) the corresponding generic Iwahori-Hecke al-
gebra, that is the free associative A -algebra with A -basis {Tw | w ∈ W} and
multiplication given by

(a) TwTw′ = Tww′ if ℓ(ww′) = ℓ(w) + ℓ(w′)
(b) T 2

s = (vs − v−1
s )Ts + 1 if s ∈ S.

Let ¯ be the involution of A which takes vγ to v−γ . It is well known that this
map can be extended to a ring involution on H (we will also denote it by )̄ via
the formula:

∑

w∈W

awTw =
∑

w∈W

awT
−1
w−1 .

For all w ∈ W , by [14, Theorem 5.2], there exists a unique element Cw ∈ H

such that

• Cw = Cw,
• Cw ∈ Tw + (

⊕

y<w A<0Ty) where A<0 =
⊕

γ<0 Zv
γ .

From the second condition, it is clear that the set {Cw, w ∈ W} forms an A -basis
of H , known as the Kazhdan-Lusztig basis.

We write

Cw =
∑

y∈W

Py,wTw where Py,w ∈ A .

The elements Py,w are called the Kazhdan-Lusztig polynomials and they satisfy the
following properties ([14, §5.3])

(1) Py,y = 1
(2) Py,w = 0 if y 66 w,
(3) Py,w ∈ A<0 if y < w,
(4) Py,w = v−1

s Psy,w if sy > y and sw < w.

Following [14, §6], we now describe the multiplication rule for the Cw’s. For each
y, w ∈ W and s ∈ S such that sy < y < w < sw we define M s

y,w ∈ A by the
inductive condition

M s
y,w −

∑

y<z<w
sz<z

Py,zM
s
z,w − vsPy,w ∈ A<0

and the symmetry condition

M s
y,w = M s

y,w.
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For w ∈ W and s ∈ S, we obtain the following multiplication formula for the
Kazhdan-Lusztig basis

CsCw =







Csw +
∑

z;sz<z<w
M s

z,wCz , if w < sw,

(vs + v−1
s )Cw , if sw < w.

Since Cs = Ts + v−1
s T1 for all s ∈ S, one can see that

TsCw =







Csw − v−1
s Cw +

∑

z;sz<z<w
M s

z,wCz , if w < sw,

vsCw, if sw < w.

We will also need the following relation for Kazhdan-Lusztig polynomials. Let
y < w ∈W and s ∈ S such that sw < w. We have

Py,w = vsPy,sw + Psy,sw −
∑

y≤z<sw
sz<z

Py,zMz,sw if sy < y(1)

Py,w = v−1
s Psy,w if sy > y(2)

Finally we define the preorders ≤L ,≤R,≤L R as in [14]. For instance ≤L is the
transitive closure of the relation:

y ←L w⇐⇒ there exists s ∈ S such that M s
y,w 6= 0.

Each of these preorders give rise to an equivalence relation ∼L ,∼R and ∼L R.
The equivalence classes associated to ∼L , ∼R and ∼L R are called left, right and
two-sided cells, respectively. The partition of W in cells depends on the choice of
the weight function. The preorders ≤L ,≤R,≤L R induce partial orders on the left,
right and two-sided cells, respectively.

Remark 5.1. We have x ∼L y if and only if x−1 ∼R y−1 [14, §8]. It follows easily
that a union of left cells which is stable by taking the inverse is a also a union of
two-sided cells. �

Remark 5.2. All the above can also be defined for weight functions which take
negative values. It is shown in [1] that the partition into cells with respect to a
weight function L− is the same as the partition into cells with respect to L where
L is defined by

L(s) =

{

L(s) if L−(s) ≥ 0,

−L(s) if L−(s) < 0.

Note that L is a non-negative weight function. Hence the computation of Kazhdan-
Lusztig cells can be reduced to the non-negative case. �

5.2. Kazhdan-Lusztig lowest two-sided cell. In the case where L is a positive
weight function, it is a well known fact that there is a lowest (Kazhdan-Lusztig)
two sided cell with respect to the partial order ≤L R. This two-sided cell has been
thoroughly studied [15, 16, 17, 4, 9] and it is equal to

cLmin = {xwy | w ∈ W , x•w•y and L(w) = νL}

(Hence the name for the set cLmin.) The aim of this section is to show that this
presentation also holds for non-negative weight function.
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Let L be a non-negative weight function. Then, following Section 4, we have
W = W ◦ ⋉ W̃ . Let L̃ be the restriction of L to W̃ . Then L̃ is a positive weight
function on W̃ and L̃(wtw−1) = L(t) for all w ∈ W ◦ and t ∈ S+. We denote by

H̃ = H (W̃ , S̃, L̃) the corresponding Hecke algebra. The group W ◦ acts on W̃

and stabilizes S̃ and L̃, therefore it naturally acts on H̃ and we can define the the
semidirect product of algebras

W ◦ ⋉ H̃ .

It has an A -basis (x · Tw̃)x∈W◦,w̃∈W̃ and the map

x · Tw̃ 7−→ Txw̃

defines an isomorphism of A -algebras from H̃ to H (W,S,L). The cells of (W,S,L)
can then be described in the following way.

Theorem 5.3. ([1, Corollary 2.13]) The left cells (respectively the two-sided cells)
of (W,S,L) are of the form W ◦.C (respectively W ◦.C.W ◦) where C is a left cell

(respectively a two-sided cell) of (W̃ , S̃, L̃).

Finally we are ready to prove one of the main result of this paper which gives a
general presentation of the lowest two-sided cell, including the case when the weight
function L vanishes on some generators. Note that this theorem is already known
when the parameters are positive: see [15, 16] for the equal parameter case and [4,
§5], [17, Chapter 3] and [9] for the unequal parameters.

Theorem 5.4. Let (W,S,L) be an irreducible affine Weyl group and let L be a
non-negative weight function on W . Set

νL = max
I⊂S

wI and W =
⋃

I⊂S

WI

where I runs over the subset of S such that WI is finite. Then the lowest two-sided
cell of W is

cLmin = {xwy | w ∈ W , x•w•y and L(w) = νL}.

Further, the decomposition of cLmin into left cells is

cLmin =
⋃

σ∈ΩL
0

NL
σ .

Proof. As mentioned previously this result is already known when L is a positive
weight function. On the one hand, by Theorem 5.3, the lowest two-sided Kazhdan-
Lusztig cell of W with respect to ≤L R and the weight function L is

W ◦ · c ·W ◦

where c is the lowest Kazhdan-Lusztig cell of (W̃ , L̃). But in this case we know
that

c = cL̃min(W̃ )

since L̃ is a positive weight function. Then the result follows from Theorem 4.8,
where we proved that

W ◦ · cL̃min(W̃ ) ·W ◦ = cLmin(W ).

The left cells lying in cLmin are of the form W ◦ ·N L̃
σ (W̃ ) where N L̃

σ (W̃ ) is a left cell

of cL̃min(W̃ ). Once again, by Theorem 4.8, we know that W ◦ · N L̃
σ (W̃ ) = NL

σ as
required. �
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6. On the asymptotic semicontinuity of the lowest two-sided cell

In this section, we fix a totally ordered abelian group Γ.

6.1. Semicontinuity conjecture. Let S̄ = {ω1, ..., ωm} be the set of conjugacy
classes in S. Let Z[S̄] be the free Z-module with basis S̄ and let V ′ = R ⊗Z Z[S̄].
We shall view the elements of Z[S̄] as embedded in V ′. We denote by ω∗

1 , . . . , ω
∗
m

the dual basis of ω1, . . . , ωm. For (n1, ..., nm) ∈ Qr − {0} we set

Hn1ω1+...+nmωm
:= ker(

∑

niω
∗
i ).

Such an hyperplane is called a rational hyperplane.

Since Γ is torsion-free, the natural map Γ→ Q⊗ZΓ is injective, so we shall view
Γ as embedded in the Q-vector space Q ⊗Z Γ: in particular, if r ∈ Q and γ ∈ Γ
then rγ is well-defined. Moreover, the order on Γ extends uniquely to a total order
on Q⊗Z Γ that we still denote by ≤.

Following [3] we now introduce the notion of facets and chambers associated to
a finite set of rational hyperplanes. Let H = Hn1ω1+...+nmωm

where ni ∈ Q. We
say that a weight function L ∈Weight(W,Γ) lies on H if we have

m
∑

i=1

niL(ωi) = 0.

We say that two weight functions L,L′ lie on the same side of Hn1ω1+...+nmωm
if

we have
m
∑

i=1

niL(ωi) > 0 and

m
∑

i=1

niL
′(ωi) > 0

or
m
∑

i=1

niL(ωi) < 0 and
m
∑

i=1

niL
′(ωi) < 0.

Let H be a finite set of rational hyperplanes. We define an equivalence relation on
Weight(W,Γ): we write L ∼H L′ if for all H ∈ H we have either

(1) L,L′ ∈ H ;
(2) L,L′ lie on the same side of H .

The equivalence classes associated to this relation will be called H-facets. A H-
chamber is a H-facet F such that no weight function in F lies on a hyperplane
H ∈ H.

Remark 6.1. In [3] the equivalence relation ∼H is defined on V ′ in the following
way: λ ∼H µ ∈ V ′ if for all for all H ∈ H we have either

(1) λ, µ ∈ H ;
(2) λ, µ lie on the same side of H .

There is a one to one correspondance between the equivalence classes of this relation
in V ′ and the sets of facets in Weight(W,Γ). We will freely identify those two sets. �

For an H-facet F we denote by WF the parabolic subgroup generated by

{s ∈ S|L(s) = 0 for all L ∈ F}.
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We say that a subset X of W is stable by translation by WI (I ⊂ S) on the left (re-
spectively on both sides) if for all w ∈ X we have zw ∈ X (respectively zwz′ ∈ X)
for all z ∈ WI (respectively for all z, z′ ∈ WI). Finally we denote by CL (L) (re-
spectively CL R(L)) the partition of W into left (respectively two-sided) cells with
respect to the weight function L.

We can now state the first author’s conjecture for the partition of W into cells.
It is enough to state it for left and two-sided cells (see Remark 5.1).

Conjecture 6.2. There exists a finite set of rational hyperplanes H of V ′ satisfying
the following properties

(1) If L1, L2 are two weight functions belonging to the same H-facet F then
CL (L1) (respectively CL R(L1)) and CL (L2) (respectively CL R(L2)) coin-
cide (we denote these partitions by CL (F ) and CL R(F )).

(2) Let F be an H-facet. Then the cells of CL (F ) (respectively CL R(F )) are
the smallest subsets of W which are at the same time unions of cells of
CL (C) (respectively CL R(C)) for all chamber C such that F ⊂ C̄ and
stable by translation on the left (respectively on both sides) by WF .

Remark 6.3. There are no restriction, such as non-negativity, on the weight func-
tions in this conjecture. However, changing the sign of some values of the weight
function L has no effect on the partition of W into cells (see Remark 5.2). There-
fore, to prove the conjecture, it is enough to find a finite set of rational hyperplanes
H such that Statements (1) and (2) hold for all non-negative weight functions. In-
deed, the conjecture will then hold for the minimal finite set of hyperplane which
contain H and which is stable under the action of the linear maps τi : V ′ → V ′

defined by τi(ωi) = −ωi and τi(ωk) = ωk if k 6= i.

When only looking at the lowest two-sided cell, Statement (1) in the above
conjecture is a direct consequence of Theorem 5.4 (see below). We denote by
Left(cLmin) the set of left cells of (W,S,L) lying in cLmin.

Corollary 6.4 (of Theorem 5.4). Let W be an irreducible affine Weyl group. There
exists a finite set of rational hyperplanes H such that

(1) If L1, L2 are two weight functions belonging to the same H-facet F then

cL1

min = cL2

min (we denote this set cF
min) and Left(cL1

min) and Left(cL2

min) coin-
cide (we denote this partition by Left(cF

min)).

Proof. By Theorem 5.4, cLmin only depends on the values of L on the elements of
the set W (see Section 3.1). But W is finite, hence it is easy to find a finite set of
rational hyperplanes such that (1) holds. �

In the remaining of this paper, we will prove the following theorem which is con-
cerned with the asymptotic behaviour of the lowest two-sided cell, hence providing
new evidences for the semicontinuity conjecture.

Theorem 6.5. Let W be an irreducible affine Weyl group. There exists a finite
set of rational hyperplanes H satisfying property (1) in Corollary 6.4 and satisfying
the following property: if F is an H-facet which is contained in Hωi

for some i,
then cF

min is a union of two-sided cells of CL R(C) and the left cells in Left(cF
min)

are union of left cells of CL (C) for all H-facets C such that F ⊂ C̄.
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Remark 6.6. (a) At the end of this Theorem, we really mean for all H-facets C such
that F ⊂ C̄ and not for all H-chambers C such that F ⊂ C̄ . It is clear that if it is
true for all H-facets such that F ⊂ C̄ then it will also be true for all H-chambers C′

such that F ⊂ C̄′. But the converse is true only if the semicontinuity conjecture
holds!

(b) Arguying as in Remark 6.3, to prove the theorem, it is enough to find a finite
set of rational hyperplanes such that (1) and (2) holds for non-negative weight
functions and then take its closure under the action of the τi’s.

(c) To prove the theorem, it is “enough” to show that the left cells in Left(cF
min)

are union of left cells of CL (C) for all H-facets C such that F ⊂ C̄. Indeed cF
min

is stable by taking the inverse, hence, by Remark 5.1, if it is a union of left cells of
CL (C), it is also a union of two-sided cells of CL R(C). �

6.2. Irreducible affine Weyl groups of type B̃n , F̃4 or G̃2. Let (W,S) be an
irreducible affine Weyl group of one of the following types

G̃2 : e
t

e
s1

e
s2

F̃4 : e
s2

e
s1

e
t1

e
t2

e
t3

B̃n : e
t

e
s1

e
sn−2

esn−1

esn
��

HH
· · ·

Then |S̄| = 2. We set S̄ = {s, t} where s (respectively t) is the subset of S which
consists of all the generators named with the letter s (respectively t). In this case,
we will identify Z[S̄] with Z2 through (i, j) −→ is+ jt.

Let m1,m2 ∈ Q>0. We define the following finite set of rational hyperplanes
of V ′

H(m1,m2) := {Hs+m1t, Hs−m1t, Hs+m2t, Hs−m2t, Hs, Ht}.

Note that H(m,M) is stable under the actions of the τi (see Remark 6.3). In
Figure 1, we draw the finite set of hyperplanes H(m,M) for some choice of constants
M,m ∈ Q>0.
The set of weight functions corresponding to the H-facet C1 of V ′ is

{L ∈Weight(W,Γ) | L(s) > m1 · L(t) and L(s), L(t) > 0}.

Theorem 6.7. There exists m1,m2 ∈ Q>0 such that Theorem 6.5 holds for H(m1,m2).

The proof of this theorem will be given in Section 8.2.

Remark 6.8. Note that this theorem is equivalent to Theorem 1. Let L be a non-
negative weight function on W which vanishes on a proper non-empty subset S◦ of
S. Then we have either L ∈ Hs or Ht. Assume that L ∈ Ht, that is L(t) = 0 for
all t ∈ t. Let c be an L-cell contained in cLmin (note that we have either c = cLmin

or c = NL
σ for some σ ∈ ΩL

0 ). Then Theorem 1 implies that there exists an integer
m such that for all weight functions L′ such that L′(s) > m · L′(t), the set c is a
union of L′-cells. In other words, c is a union of L′-cell for all weight function L′ in
C1 (with m1 = m). Conversely, if Theorem 6.9 holds, then Theorem 1 holds for all
for any integer m greater than m1. The case L ∈ Hs is similar using m = 1/m2.
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Figure 1. Set of hyperplanes H̄(m,M)
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C

6.3. Irreducible affine Weyl group of type C̃. Let W be an irreducible affine
Weyl group of type C̃ with diagram as follows

e
t

e
s1

e
sn−1

e
t′

· · ·

Then |S̄| = 3. We set S̄ = {t, s, t′} where t = {t}, s = {s1, . . . , sn−1} and t′ = {t′}.
In this case, we will identify Z[S̄] with Z3 through (i, j, k) −→ it+ js+ kt′.

Let m = (m1, . . . ,m6) ∈ Q6
>0. We define the following finite set of rational

hyperplanes of V ′

H(m) := {Hs, Ht, Ht′ , Ht−t′ , Ht−m1s, Ht′−m2s, Ht−m3(s+t′),

Ht′−m4(s+t), H(t−t′)±m5s
, H(t+t′)−m6s

}.

We then set H̄(m) to be the closure of H(m) under the actions of the τi (see
Remark 6.3). In Figure 2, we draw the finite set of hyperplanes H(m) for some
choice of constants m ∈ Q6

>0. We intersect on the affine hyperplane with equation
s∗(µ) = 1. We put an arrow in a chamber C pointing towards F ⊂ V ′ to indicate

that C ∩F 6= ∅.
The chamber C1 corresponds to the weight functions

{L | L(t) > L(t′), L(t′) > m2 · L(s), L(t)− L(t′) < m5 · L(s)}.

Theorem 6.9. There exist m ∈ Q6
>0 such that Theorem 6.5 holds for H̄(m).

Remark 6.10. Theorem 6.9 is stronger than Theorem 1. Indeed, let L be a non-
negative weight function on W which vanishes on a proper non-empty subset S◦ of
S. Then, Theorem 1 only gives us informations on weight functions L′ satisfying
L′(s+) = L(s+) for all s+ ∈ S+. However, in Theorem 6.9, we may have L′(s+) 6=
L(s+) for some s+ ∈ S+. For instance, if L(t) = L(t′) > 0 and L(s) = 0, then
Theorem 6.9 implies that for all weight functions L′ such that

{L′ | L′(t) ≥ L′(t′), L′(t′) > m2 · L
′(s), L′(t)− L′(t′) < m5 · L

′(s)}
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Figure 2. Set of hyperplanes H(m)
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any L-cell contained in cLmin is a union of L′-cells. But Theorem 1 does not tell us
anything in this case as we do not have L′(t) = L(t) = L(t′) = L′(t′). We now
show in more details that Theorem 6.9 implies Theorem 1.

(i) Assume that S◦ = s and L(t) = L(t′). Let m ≥ max{m1,m2}. Then if L′

satisfies L′(t) = L′(t′) > mL′(s) we must have L′ ∈ C̄1 ∩ C̄ ′
1. But C̄1 ∩ C̄ ′

1

contains L in its closure, therefore Theorem 6.9 tells us that any L-cells
included in cLmin is a union of L′ cells (see also Claim 8.10).

(ii) Assume that S◦ = s and L(t) > L(t′). Let m be such that

L(t)− L(t′)

m5
m > L(t) and m > m2.

Then if L′ satisfies L′(t) = L(t) > mL′(s) and L′(t′) = L(t′) > mL′(s) we
must have

L′(t′)− L′(t) > m5L
′(s) and L′(t′) > m2L

′(s)

that is L′ ∈ C2 ∪ C3 ∪ (C2 ∩ C3). Then Theorem 1 then follows from
Theorem 6.9 (see also Claim 8.8).
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(iii) Assume that S◦ = s∪ t′. Let m be such that m > 2m3. Then if L′ satisfies
L′(t) = L(t) > mL′(s) and L′(t) = L(t) > mL′(t′) we must have

2L′(t) > 2m3(L
′(t′) + L′(s))

that is L′ ∈ C3 ∪ C4 ∪ (C3 ∩ C4). Then Theorem 1 then follows from
Theorem 6.9 (see also Claim 8.4).

(iv) Assume that S◦ = t′ ∪ t that is L ∈ Ht′ ∩Ht. Let m be such that m > 2
m6

.

Then if L′ satisfies L′(s) = L(s) > mL′(t) and L′(s) = L(s) > mL′(t′) we
must have m6L

′(s) > L′(t)+L′(t′). In other words L′ ∈ C6 and Theorem 1
follows from Theorem 6.9 (see also Claim 8.6).

(v) Assume that S◦ = t′. Then the result is trivial since cLmin = cL
′

min for all
L,L′ such that
• L(t), L(t′) > L(t′) = 0
• L′(s) = L(s), L′(t) = L(t) > L′(t′) and L′(t′) > 0.

Remark 6.11. In this remark, we explain why we do need an hyperplane of the form
H(t−t′)−m5s

in our finite set of hyperplanes in Theorem 6.9, eventhough the lowest
two-sided cell is the same whether the weight function lies in C1 or C2. Assume
that W is of type C̃2. It is shown in [11, 12] that Conjecture 6.2 holds for the
following set of hyperplanes

H := {H(1,0,0),H(0,1,0),H(0,0,1),H(ε,ε,0),H(0,ε,ε),H(ε,0,ε),H(ε,ε,ε),H(ε,2ε,ε)}.

We describe this set of hyperplanes in Figure 3, projecting on the affine hyperplane
with equation s∗(µ) = 1.

Figure 3. Hyperplanes in H.
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In the figure below, we show the partition of W into cells for a weight function
in C1 and for a weight function L′ such that L′(s) = 0 and L′(t) > L′(t′) > 0. The



Partition of W into cells for L ∈ C1. Partition of W into cells for L′.
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set cL
′

min consists of the yellow alcoves. We see that cL
′

min is NOT a union of cells of
(W,S,L). Hence, we need the hyperplane H(t−t′)−m5s

so that there are no weight
function L′ such that L′(s) = 0 and L′(t) > L′(t′) > 0 and which lies in the closure
of C1 (see Figure 2).

7. Proof of Theorem 6.5 in the generic setting

7.1. Hypothesis and notation. Let (W,S) be an irreducible affine Weyl group
generated by S. Let S = S◦ ∪ S+ be a partition of S such that no element of
S◦ is conjugate to an element of S+ and S◦, S+ 6= S. For a subset I of S we set
I◦ = I ∩ S◦ and I+ = I ∩ S+. We denote by S̄ the set of conjugacy classes in S in
W and we set

S̄+ = {ω ∈ S̄|ω ⊂ S+} and S̄◦ = {ω ∈ S̄|ω ⊂ S◦}

As in the previous section, Z[S̄] denotes the free Z-module with basis S̄ and
V ′ = R⊗Z Z[S̄]. We identify Z[S̄] with Z|S|.

A subset X of Z[S̄] is called positive if the following three conditions hold

(1) Z[S̄] = X ∪ (−X);
(2) X +X ⊂ X ;
(3) X ∩ (−X) is a subgroup of Z[S̄].

Any positive subset X defines a total order ≤X on Γ := Z[S̄]/(X ∩ (−X)) simply
by setting

γ ≥X 0⇐⇒ all the representatives of γ belong to X.

We briefly explain how to classify all the positive subsets of Z[S̄]. Let P(Z[S̄])
be the set of all sequences (ϕ1, . . . , ϕd) such that ϕi is a non-zero linear form defined
on ker(ϕi−1) ⊂ V ′, with the convention that ϕ0 = 0. Then we can associate to
Φ = (ϕ1, . . . , ϕd) ∈P(Z[S̄]) a positive subset Pos(Φ) of Z[S̄] by setting

Pos(Φ) = {γ ∈ Z[S̄] | ∃ 0 ≤ k ≤ d− 1; γ ∈ kerϕk and ϕk+1(γ) > 0} ∪ kerϕd.

It can be shown that all positive subsets can be obtained this way. We denote by
P+(Z[S̄]) the subset of P(Z[S̄]) which consists of all sequences Φ = (ϕ1, . . . , ϕd)
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such that

ϕ1 =
∑

ω∈S̄+

ω∗ and ϕk(ω) > 0 for all ω ∈ S̄.

Hypothesis. From now on and until the end of this section, we
fix a positive subset X = Pos(Φ) such that Φ ∈P+(Z[S̄]). In type

C̃ we assume that t ≥ t′.

To simplify the notation, we will denote by ≤ the total order on Γ instead of ≤X .

Example 7.1. Assume that W is of type B̃r, F̃4 or G̃2 and let S̄+ = {s} and
S̄◦ = {t}. Let X ∈ P+(Z[S̄]). Then we have ϕ1 = s∗ and ker(ϕ1) = Rt. Since
we assumed that ϕ2(t) > 0 we must have ϕ2 = κt∗ where κ > 0. It follows that
Γ = Z[S̄] and that the order on Γ is simply the lexicographic order:

(i, j) < (i′, j′)⇐⇒ i < i′ or (i = i′ and j < j′).

Assume that W is of type C̃r and that S+ = t. Let ϕ1 = t∗ and ϕ2 be defined
by ϕ2(0, j, k) = bj + ck for b, c ∈ N. Then we have ker(ϕ2) = 〈(0,−c, b)〉. Finally
we define ϕ3 by ϕ3(0,−c, b) = 1 and we extend it by linearity. Then the order
associated to (ϕ1, ϕ2, ϕ3) can be describe as follows:

{(i, j, k) | (i, j, k) > 0} = {(i, j, k) | i > 0}∪{(0, j, k) | bj+ck > 0}∪{(0,−kc, kb) | k > 0} �

Let L : W −→ Γ be the weight function defined by L(s) = ωi if s ∈ ωi. Let A be
the group algebra of Γ over Z. Recall that we use the exponential notation for A

A =
⊕

γ∈Γ

Zvγ where vγ .vγ
′

= vγ+γ′

.

Let H = H (W,S,L) be the associated Hecke algebra. We will denote by Tx the
element of the standard bases of H, by Cx the elements of the Kazhdan-Lusztig
basis of H and by Px,y,Mx,y the polynomials in A defined in Section 5.1. We set

A<0 =
⊕

γ<0
Zvγ , A≥0 =

⊕

γ≥0

Zvγ

and

H<0 =
⊕

w∈W

A<0Tw.

We denote by + : Γ → Γ (respectively ◦) the map induced by the projection of
Z[S̄] onto ⊕ω∈S̄+Zω (respectively ⊕ω∈S̄◦Zω). For a =

∑

γ∈Γ
aγv

γ ∈ A we define

deg(a) = max{γ ∈ Γ | aγ 6= 0}.

We will write deg+(a) instead of deg(a)+.

Remark 7.2. Note that if a =
∑

aγv
γ satisfies ϕ1(deg

+(a)) < 0, then a ∈ A<0.

Indeed, if aγ 6= 0, then γ = γ+ + γ◦ where γ+ ≤ deg+(a). Applying ϕ1 yields

ϕ1(γ) = ϕ1(γ
+) + 0 ≤ ϕ1(deg

+(a)) < 0 that is γ < 0 as required. �
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In this section we will have to distinguish the following cases. (We keep the
notation of Section 6.2 and 6.3.)

Case 1. W is of type B̃r, F̃4 or G̃2.

Case 2. W is of type C̃r, S̄
+ 6= {t, t′}.

Case 3. W is of type C̃r, S̄
+ = {t, t′} and (−1, k, 1) < 0 for all k > 0.

Case 4. W is of type C̃r, S̄
+ = {t, t′} and (−1, k, 1) > 0 for some k > 0.

If we are in Case (1)–(3), we define the weight function L+ by

L+(ω) = L(ω) if ω ∈ S̄+ and L+(ω) = 0 if ω ∈ S̄◦.

Hence we have L+(w) = (L(w))+ .

If we are in Case (4), we define the weight function L+ by

L+(t) = L+(t′) = t and L+(s) = 0 if s ∈ s.

Note that in this case, we have L+(w) 6= (L(w))+.

Recall that, for a weight function L, we say that a hyperplane H of direction α is
of maximal L-weight if LH = Lα where Lα = maxn∈Z Hα,n. Let H,H ′ ∈ F . Then

we have either [4, Lemma 2.2] (a) LH = LH′ or (b) W is of type C̃r, H contains a
face of type t1 and H ′ a face of type t2 and {t1, t2} = {t, t′} and L(t) 6= L(t′).

Lemma 7.3. Let λ be a L+-special point and let H be an hyperplane orthogonal
to α which contains λ and such that L+

H > 0. Then in Case 1–3, LH is of maximal
L-weight. In Case 4, we may have LH = t′ < t = Lα.

Proof. Let λ be a L+-special point and let H be an hyperplane which contains λ
and such that L+

H > 0. In Case 1, the result is clear since any hyperplane is of
maximal weight. In Case 2, since t > t′ and S̄+ 6= {t, t′}, we must have t′ ⊂ S̄◦.
If t ∈ S̄◦, then since L+

H > 0 we have LH = s and H is of maximal weight. If
t′ ∈ S̄+, then since λ is a L+-special we have Sλ = {t, s1, . . . , sn−1} and we have
LH = t or LH = s and the result follows. In Case 3, since t > t′, we must have
Sλ = {t, s1, . . . , sn−1} and the result follows as above. Finally in Case 4, the result
is clear. �

Remark 7.4. In Case 3, if deg+(a) ≤ (−1, 0, 1) then a ∈ A<0. Indeed, we have
deg(a) = deg+(a) + γ where γ ∈ ker(ϕ1). But then γ = (0, k, 0) for some k ∈ Z.
Therefore deg(a) = (−1, k, 1) < 0. �

7.2. Generalized induction of Kazhdan-Lusztig cells. Recall that every ele-

ment w ∈ cL
+

min can be uniquely written under the form xwaww
◦
λσ

bσ where σ ∈ ΩL
+

0 ,

aw ∈ WS◦
λσ

and xw ∈ Xλσ
. For σ ∈ ΩL

+

0 , we set

NL
+

σ := {w ∈W | w = xawλσ
bσ, x ∈ Xλσ

, a ∈ WS◦
λσ
},

Uσ := {w ∈W | w = awλσ
bσ, a ∈ WS◦

λσ
}
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and

N≤
σ :=

⋃

σ′∈ΩL
0 ,bσ′≤bσ

NL
+

σ′ ,

U≤
σ :=

⋃

σ′∈ΩL
0 ,bσ′≤bσ

Uσ′ .

For u = aw◦
λσ
yσ ∈ Uσ, we set Xu := Xλσ

.

Theorem 7.5. For all σ ∈ ΩL
+

0 , the set U≤
σ together with the collection of subsets

{Xu | u ∈ U≤
σ } satisfy the following condition

I1. for all u ∈ U≤
σ , we have e ∈ Xu,

I2. for all u ∈ U≤
σ and x ∈ Xu we have ℓ(xu) = ℓ(x) + ℓ(u),

I3. for all u, v ∈ U≤
σ such that u 6= v we have Xuu ∩Xvv = ∅,

I4. the submodule M := 〈TxCu| u ∈ U≤
σ , x ∈ Xu〉A ⊆H is a left ideal.

I5. for all v ∈ U≤
σ and y ∈ Xv we have

TyCv ≡ Tyv +
∑

ℓ(xu)<ℓ(yv)

u∈U≤
σ

axu,yvTxu modH<0

Assuming that this theorem holds, we would get, using the Generalised Induction
Theorem [11, Theorem 6.3], that the set

N≤
σ = {xu | u ∈ U≤

σ , x ∈ Xu}

is a left ideal of (W,L) (i.e. y ≤L w ∈ N≤
σ implies y ∈ N≤

σ ) for all σ ∈ ΩL
+

0 .
In particular it would be a union of left cells. Then by an easy induction on the
length of bσ ∈W , we would get that each Nσ is a union of left cells. In turn, since

cL
+

min is stable by taking the inverse, this would implie that cL
+

min is indeed a union
of two-sided cells of (W,L).

Remark 7.6. Condition I5 is stated slightly differently in [11, §6]: for all v ∈ U ,
y ∈ Xv we have

TyCv ≡ Tyv +
∑

xu⊏yv

axu,yvTxCu modH<0

where ⊏ denotes a preorder such that xu ⊏ yv implies ℓ(xu) < ℓ(yv). It is a
straightforward induction on ℓ(xu) to show that those two conditions are equiva-
lent. �

7.3. Kazhdan-Lusztig Polynomials and M-polynomials. Let x ∈ W and let
I ⊂ S be such that WI is finite. There exist unique x′ ∈ WI and dx ∈ X−1

I such
that x = x′dx. Next x′ ∈ WI can be uniquely written as x′ = au where a ∈ WI◦

and u has minimal length in the coset WI◦x′ of WI . We will write x = aIxu
I
xd

I
x

for this decomposition or simply x = axuxdx if it is clear from the context what
the subset I should be. We denote by w◦

I (not to confuse with wI◦) the element of
minimal length in the coset WI◦wI .

Remark 7.7. Note that, for all a ∈ WI◦ and all t ∈ I+, we must have taw◦
I < aw◦

I

since the number of elements of I+ appearing in any reduced expression of aw◦
I is

maximal. �



Asymptotic lowest two-sided cell 35

Lemma 7.8. Let I ⊂ S be such that WI is finite and let y ∈ W be such that
y = aw◦

I z where a ∈WI◦ and z ∈ X−1
I . Let x = axuxdx < y. Then

deg+(Px,y) ≤ L(ux)
+ − L(w◦

I )
+

Furthermore, for all s ∈ S◦ such that sx < x < y < sy we have

Ms
x,y 6= 0 =⇒ ux = w◦

I .

Proof. We prove the result by induction. To this end, to any element x, y ∈ W
satisfying the hypothesis of the lemma, we associate a pair

P(x, y) := (ℓ(y)− ℓ(x), ℓ0 − ℓ(ax))

where ℓ0 = ℓ(wI◦) and x = axuxdx. We order such pairs by the usual lexicographic
order. Let x < y. If L(ux)

+ = L(w◦
I )

+ then the result is clear. Thus we may
assume that L(ux)

+ < L(w◦
I )

+.

First assume that there exists t ∈ I+ such that tx > x. Then, since ty < y, we have

Px,y = v−L(t)Ptx,y

and the result follows by induction.

Next assume that tx < x for all t ∈ I+. Since we supposed that L(ux)
+ < L(w◦

I )
+,

there exists s ∈ I0 such that sx > x. If sy < y then

Px,y = v−L(s)Psx,y

and the result follows by induction since ℓ0 − ℓ(sax) = ℓ0 − ℓ(ax)− 1.
If sy > y then we have

(†) Psx,sy = vL(s)Psx,y +Px,y −
∑

sx≤z<y
sz<z

Psx,zM
s
z,y.

By induction we know that

deg+(vL(s)Psx,y) ≤ L(ux)
+ − L(w◦

I )
+.

Further if Ms
z,y 6= 0 then L(uz)

+ = L(w◦
I )

+ where z = azuzdz. We know that
deg(Ms

x,y) < L(s) (see [14, §6.3]). Thus if Ms
z,y 6= 0, we get using the induction

hypothesis

deg+(Psx,zM
s
z,y) ≤ L(ux)

+ − L(w◦
I )

+.

Now we have

P(sx, sy) = (ℓ(sy)− ℓ(sx), ℓ0 − ℓ(sx0)) = (ℓ(y)− ℓ(x), ℓ0 − ℓ(ax)− 1) < Px,y.

Hence by induction

deg+(Psx,sy) ≤ L(usx)
+ − L(w◦

I )
+ = L(ux)

+ − L(w◦
I )

+.

The result follows using (†). �

Remark 7.9. The same proof can easily be generalised to any Coxeter group (W,S).
Assume that W is finite and let wS be the longest element ofW . Using the previous
lemma, we can show that

WS◦ and WS◦w0

are union of cells of (W,S,L). Indeed, let y ∈WS◦wS and let w ∈ WS◦ be such that
y = ww◦

S and w•w◦
S . Let x ∈W be such that x ≤L y. We may assume that there

exists s ∈ S such that sx < x < y < sy and Ms
x,y 6= 0. Note that y < sy we implies
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that s ∈ S◦. Write x = aSxu
S
xd

S
x . Since Ms

x,y 6= 0 the previous lemma implies that

L(uS
x ) = L(w◦

S) where which in turn implies that x ∈ WS◦wS . Thus we have shown
that WS◦wS is a left ideal of W and thus a union of (left, right and two-sided) cells
of (W,L). Multiplying by the longest element sends (left, right and two-sided) cells
to (left, right and two-sided) cells thus we get that WS◦ is also a union of (left,
right, two-sided) cells of (W,L). This argument provides an alternative proof of
Theorem 1.1 in [10] when W is finite. �

7.4. Multiplication of the standard basis. We set

TxTy =
∑

w

fx,y,wTw where fx,y,w ∈ A.

Following [9, §2.3], we want to study the degree of the polynomials fx,y,w. We will
need more precise result than in [9], but the method of the proof is similar.

We introduce some notation. For α ∈ Φ+, we set Fα = {Hα,n | n ∈ Z}. For
x, y ∈W we set

Hx,y = {H ∈ F | H ∈ H(A0, yA0) ∩H(yA0, xyA0)},

Ix,y = {α ∈ Φ+ | Hx,y ∩Fα 6= ∅}.

For α ∈ Ix,y we set

cLx,y(α) = max
H∈Hx,y∩Fα

LH .

Let

cLx,y =
∑

α∈Ix,y

cLx,y(α).

The following two lemmas can be found in [9].

Lemma 7.10. Let x, y ∈ W and s ∈ S be such that xs > x. Then

Ix,sy ⊆ Ixs,y.

Lemma 7.11. Let x, y ∈ W and s ∈ S be such that xs > x and sy < y. Let
α ∈ Φ+ and n ∈ Z be such that Hα,n is the unique hyperplane separating yA0 and
syA0. There is an injective map ϕ from Ix,y to Ixs,y−{α}. Furthermore if β ∈ Ix,y
we have either ϕ(β) = β or ϕ(β) = ±σHα,0

(β).

Using these two lemmas, one can obtain the following bound on the degree of
fx,y,z in terms of x and y.

Theorem 7.12. We have deg(fx,y,z) ≤ cLx,y for all z ∈ W .

Note that this implies that deg+(fx,y,z) ≤ (cLx,y)
+.

Let x = sN . . . s1 be a reduced expression of x. We denote Ix,y the collection of
all subsets I = {i1, . . . , ip} such that 1 ≤ i1 < . . . < ip ≤ k and

sit . . . ŝit−1
. . . ŝi1 . . . s1y < ŝit . . . ŝit−1

. . . ŝi1 . . . s1y.

For all I = {i1, . . . , ip} ∈ Ix,y and all 1 ≤ k ≤ p, we set

xk = sN . . . sip . . . ŝik and yk = ŝik . . . ŝik−1
. . . ŝi1 . . . s1y

and

zI = sN . . . ŝip . . . ŝi1 . . . s1y.
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Then we have [4, Proof of Proposition 5.1]

TxTy =
∑

I∈Ix,y

(

p
∏

k=1

(vL(sik ) − v−L(sik ))

)

TzI .

Hence

deg(fx,y,zI ) =

p
∑

k=1

L(sik ).

Fix k such that 2 ≤ k ≤ p. Using the previous lemmas, there exists an injective
map ϕk such that

Ixk,yk
= IsN ...sip ...ŝik ,ŝik ...ŝik−1

...ŝi1 ...s1y
ϕk−→ IsN ...sip ...sik ,ŝik ...ŝik−1

...ŝi1 ...s1y

⊆ IsN ...sip ...sik (sik−1...sik−1+1),ŝik−1
...ŝi1 ...s1y

= Ixk−1,yk−1

Thus we have a sequence

Ixp,yp

ϕp

−→ Ixpsip ,yp
⊆ Ixp−1,yp−1

ϕp−1

−→ Ixp−1sip−1
,yp−1

. . . Ix1,y1

ϕ1
−→ Ix1si1 ,y1

⊆ Ix,y.

If we denote by αik the positive root such that the only hyperplane separating ykAk

and sikykA0 lies in Fαik
then we have

{αi1 , ϕ1(αi2), . . . , (ϕ1 . . . ϕp−1)(αip)} ⊆ Ix,y.

Theorem 7.13. Let w = aww
◦
λσ

bσ ∈ cL
+

min. Let x ∈ Xλσ
. We have

TxCw ≡ Txw +
∑

z∈Nσ′ ,bσ′<bσ

azTz modH<0.

Proof. We have

TxCw = TxTw + Tx

(

∑

y<w

Py,wTy

)

= Txw +
∑

y∈cL
+

min

Py,wTxTy +
∑

y/∈cL
+

min

Py,wTxTy

= Txw +
∑

a′
w<aw

Py,wTxTa′
ww◦

λσ
dσ

+
∑

y∈Nσ′

bσ′<bσ

Py,wTxTy +
∑

y/∈cL
+

min

Py,wTxTy

= Txw +
∑

a′
w<aw

Py,wTxa′
ww◦

λσ
dσ

+
∑

y∈Nσ′

bσ′<bσ

Py,wTxTy +
∑

y/∈cL
+

min

Py,wTxTy

≡ Txw +
∑

y∈Nσ′

bσ′<bσ

Py,wTxTy +
∑

y/∈cL
+

min

Py,wTxTy modH<0

Fix a y in the on of the sum above. Let λ be the unique L+-special point which
is contained in the closure of yA0 and which lies in the same orbit as λσ (i.e.
Wλ = Wλσ

). Write y = ayuλdy where dy ∈ X−1
λ , uλ has minimal length in the

coset WS◦
λ
yd−1

y of Wλ and ay ∈ WS◦
λ
.

Let ayuλ = sk . . . s1 be a reduced expression and let v = sn . . . sk+1 be such that
L+(sn . . . s1) = νL+ and ℓ(sn . . . s1) = n. Let Hi be the unique hyperplane which
separates si . . . s1dyA0 and si+1 . . . s1dyA0 and let αi ∈ Φ+ be such that Hi ∈ Fαi

.
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Let 1 ≤ i ≤ k and assume that Hi = Hαi,n where n > 0 (the case n ≤ 0 is similar).

We have Hi ∈ H(A0, yA0) and since λ ∈ Hi ∩ yA0 we see that

n < 〈µ, α̌i〉 < n+ 1 for all µ ∈ yA0.

It follows that Hαi,m /∈ H(A0, yA0) for all m ≥ n+ 1. Next, since x ∈ Xλσ
= Xλ,

we see that Hi /∈ H(yA0, xyA0) and it follows that Hαi,m /∈ H(yA0, xyA0) for all
m ≤ n. Finally, since λ is a L+-special point, we must have

{αi | 1 ≤ i ≤ n} = Φ+ ∩ ΦL
+

.

It follows that

Ix,y ∩ ΦL
+

⊆ {αk+1, . . . , αn}.

By Lemma 7.8, we know that

deg+(Py,w) ≤ L(uλ)
+ − L(w◦

λ)
+ = −L(v)+.

Therefore, we have

(∗) deg+(Px,yfx,y,z) ≤ deg+(fx,y,z)− L(v)+ ≤ (cLx,y)
+ − L(v)+.

If we are in Case 1–3, all the hyperplane which contains λ must be of maximal
weight, hence we have L(si) = Lαi

for all i. Hence

(1) (cLx,y)
+ ≤

n
∑

i=k+1

L(si) = L(v)+.

In Case 4, we may have L+(si) = t′ < t. Let i, k, i′, k′ ∈ N be such that

(2) L(v)+ = it+ kt′ and (cLx,y)
+ = i′t+ k′t′.

Then by the work above we know that i′ + k′ ≤ i+ k.

Claim 7.14. If y ∈ NL
+

σ′ then Px,yfx,y,z ∈ A<0 whenever z /∈ NL
+

σ′ .

Proof. Let x = sN . . . s1 be a reduced expression of x. There exists I = {i1, . . . , ip} ∈

Ix,y such that zI = z. Assume that zI /∈ NL
+

σ . Then there exist α ∈ ΦL
+

and
ik+1 − 1 > M > ik such that

sM . . . ŝik . . . ŝi1 . . . s1yA0 /∈ UL
+

α (A0) and sM+1 . . . ŝik . . . ŝi1 . . . s1yA0 ∈ UL
+

α (A0)

and the unique hyperplane which separates these two alcoves is a wall of NL
+

σ′ .
That means that in the sequence

Ixp,yp

ϕp

−→ Ixpsik ,yp
⊆ Ixp−1,yp−1

ϕp−1

−→ Ixp−1sip−1
,yp−1

. . . Ix1,y1

ϕ1
−→ Ix1si1 ,y1

⊆ Ix,y

we have H ∈ Ixk+1sik+1
,yk+1

but H /∈ Ixk,yk
. Further, if there is an hyperplane of

direction α in Ixk,yk
then it can’t be of maximal weight. Hence we have

cLxk,yk
≥ cLxk+1sik+1

,yk+1
+Cα

where

Cα =



















Lα if we are in Case 1.

Lα or t− t′ if we are in Case 2.

t or t− t′ if we are in Case 3.

t or t′ if we are in Case 4.
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Next, by repetitive use of Lemmas 7.10 and 7.11 we get the following inequalities

cLx,y ≥ cLx1si1 ,y1
≥ cLx1,y1

+ L(si1 )

≥ cLx2si2 ,y2
+ L(si1) ≥ cLx2,y2

+
2
∑

ℓ=1

L(siℓ)

. . .

≥ cLxksik ,yk
+

k−1
∑

ℓ=1

L(siℓ) ≥ cLxk,yk
+

k
∑

ℓ=1

L(siℓ)

≥ cLxk+1sik+1
,yk+1

+

k
∑

ℓ=1

L(siℓ) +Cα

≥ cLxk+1,yk+1
+

k+1
∑

ℓ=1

L(siℓ) +Cα

≥ . . . ≥ cLxp,yp
+

p
∑

ℓ=1

L(sip) +Cα.

Hence, we get (cLx,y)
+ ≥ deg+(fx,y,z) +C+

α .

If we are in Case 1 or in Case 2 with Cα = Lα then we have, using (1)

deg+(fx,y,z)− L(v)+ ≤ (cLx,y)
+ − L(v)+ −C+

α ≤ −Lα.

But we know that ϕ1(Lα) < 0 hence ϕ1(deg
+(Px,yfx,y,z)) < 0 and Px,yfx,y,z lies

in A<0; see Remark 7.2.

If we are in Case 2 and Cα = t − t′, then, we must have t ∈ S̄+ and t′ /∈ S̄◦.
Therefore we have C+

α = t and we can conclude as above.

If we are in Case 3 then Cα ≥ t− t′ and we get

deg+(fx,y,z)− L(v)+ ≤ (cLx,y)
+ − L(v)+ −C+

α ≤ (−1, 0, 1).

But since we are in Case 3, this implies that Px,yfx,y,z ∈ A<0; see Remark 7.4.

Finally, if we are in Case 4 then Cα ≥ t′. Using (2), we get

deg+(fx,y,z)− L(v)+ ≤ (cLx,y)
+ − L(v)+ − t′

≤ (i′ + k′)t− (i+ k)t′ − t′

= (i′ + k′, 0,−(i+ k)− 1)

and since (i + k) ≥ (i′ + k′) ≥ 0 we have ϕ1((i
′ + k′, 0,−(i + k) − 1)) < 0. The

result follows; see Remark 7.2. �

Claim 7.15. If y /∈ cL
+

min then Px,yfx,y,z ∈ A<0.
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Proof. Since y /∈ cL
+

min we have y ∈ UL
+

αm
(A0) for some k + 1 ≤ m ≤ n. Then

cLx,y(αm) =



















0 if we are in Case 1.

0 or t′ if we are in Case 2.

0 or t′ if we are in Case 3.

0 if we are in Case 4.

We have

(cLx,y)
+ ≤

n
∑

i=m+1

Lαi
+ cLx,y(αm)+.

If we are in Case (1) or in Case 2 with cLx,y(αm) = 0, then L(si) = Lαi
for all

1 ≤ i ≤ n (see Lemma 7.3). Hence

(cLx,y)
+ − L(v)+ ≤ −Lαm

and the result follows using (∗).

If we are in Case (2) with cLx,y(αm) = t′. Then

(cLx,y)
+ − L(v)+ ≤ −Lαm

+ (cLx,y)
+ = −t.

and the result follows using (∗) and Remark 7.2.

If we are in Case (3), then cLx,y(αm) ≤ t′. Then L(si) = Lαi
for all 1 ≤ i ≤ n and

(cLx,y)
+ − L(v)+ ≤ −Lαm

+ (cLx,y)
+ ≤ −t+ t′.

and the result follows; ; see Remark 7.4.

Finally, if we are in Case 4, then using (2) we must have i + k > i′ + k′ since

y ∈ UL
+

αm
(A0). The result follows, arguying in a similar fashion as at the end of the

previous Claim. �

The theorem follows easily from the two claims and the expression:

TxCw = Txw +
∑

y∈Nσ′

bσ′<bσ

Py,wTxTy +
∑

y/∈cL
+

min

Py,wTxTy modH<0

�

7.5. Proof of Conditions I1–I5. Condition I1 it is clear. Condition I2 is a
direct consequence of Lemma 3.9. Condition I3 follows from the fact that cL

+

min is

a disjoint union of the sets NL
+

σ . Condition I5 is Theorem 7.13. Hence we only to
prove I4, that is, we need to show that the A-module

M := 〈TxCu| u ∈ U≤
σ , x ∈ Xu〉A ⊆H

is a left ideal of H . Let u = auw
◦
λσ

bσ ∈ Uλ,z and x ∈ Xλσ
. It is enough to show

that TsTxCu ∈M for all s ∈ S. There is 3 cases to consider:

(1) sx > x and sx ∈ Xλσ
;

(2) sx < x and sx ∈ Xλσ
;

(3) sx > x and sx /∈ Xλσ
.
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The result is clear in the first two cases since we have respectively

TsTxCu = TsxCu ∈M

and

TsTxCu = (Tsx + (vL(s) − v−L(s))Tx)Cu ∈M

Assume that we are in the third case. Then by Deodhar’s lemma (see [7, Lemma
2.1.2]), there exists s′ ∈ Sλσ

such that sx = xs′. If s′u < u we get

TsTxCu = TsxCu = TxTs′Cu = vL(s′)TxCu ∈M

as required. Assume s′u > u. Note that this implies that s′ ∈ S◦ since for all
s′ ∈ S+ we have s′u < u. Then

TsTxCu = TxTs′Cu = Tx

(

Cs′u +
∑

z<w

Ms′

z,uCz

)

.

In the above sum, we know that the term TxCs′u ∈ M . If Ms′

z,u 6= 0 then by

Lemma 7.8, we must have z ∈ cL
+

min which in turn implies that by Lemma 3.9, that
either z = azw

◦
λσ
bσ with az < au (in which case TzCu ∈M ) or z = azw

◦
λσ′

bσ′ with

bσ′ < bσ. From there, the result follows by an easy induction on the length of bσ.

8. Proof of Theorem 6.5

Let Γ be a totally ordered group abelian group. In this section we study the rela-
tion between H = (W,S,L) as define in the previous section and H = H (W,S,L)
where L ∈ Weight(W,Γ). The element of H and A will be written with a bold
symbols.

8.1. Specialisation. Let L : W → Γ be weight function. Then the map θLΓ : Γ→
Γ which sends L(s) to L(s) is a group homomorphism. Further, this homomorphism
induces a morphism of Z-algebras θL

A
: A→ A which sends vL(s) to vL(s). If H is

viewed as a A-algebra through θL
A
, then there is a unique morphism of A-algebras

θL
H

: H→H such that θ(Tx) = Tx for all x ∈W .

We recall the some result of [8, 6]. Let N ∈ N and let XN = {z ∈ W | ℓ(z) ≤ N}.
We now define three subsets Γ1

+(N), Γ2
+(N), Γ3

+(N) ⊂ Γ. First, let Γ1
+(N) be the

set of all elements γ > 0 ∈ Γ such that v−γ occurs with a non-zero coefficient in
a polynomial Pz1,z2 for some z1 < z2 ∈ XN . Next for any z1, z2 in XN such that
Ms

z1,z2 6= 0 for some s, we write Ms
z1,z2 = n1v

γ1 + . . . + nℓv
γℓ where 0 6= ni ∈ Z,

γi ∈ Γ and γi − γi−1 > 0 for 2 ≤ i ≤ ℓ. Let Γ2
+(N) be the set of all elements

γi− γi−1 > 0 arising in this way, for any z1, z2 ∈ XN and s ∈ S. Finally let Γ3
+(N)

be the set of all elements γ > 0 ∈ Γ such that v−γ occurs with a non-zero coefficient
in a polynomial of the form

∑

z;z1≤z<z2;sz<z

Pz1,zM
s
z,z2 − vsPz1,z2

for some z1, z2 ∈ XN and s ∈ S. We set Γ+(N) = Γ1
+(N) ∪ Γ2

+(N) ∪ Γ3
+(N).

Proposition 8.1. (see [8, Proposition 3.3]) Let L : W → Γ be a weight function
such that the ring homomorphism θL satisfies the condition

(∗) θLΓ(Γ+(N)) ⊆ {γ | γ > 0}.
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Then, for all x, y ∈ XN , we have θL
A
(Px,y) = Px,y and θL

A
(Ms

x,y) = M s
x,y. In

particular θL
H
(Cx) = Cx.

The following Lemma is a straightforward generalisation of [6, Lemma 3.4].

Lemma 8.2. We have

Γ+(N) ⊂ {(γ1, . . . , γ|S|) ∈ Z
|S| | −N ≤ γi ≤ N}

We now give an outline of the proof of Theorem 6.5. First, note that the proof
of Theorem 7.5 in the previous section only involved elements of bounded length,
say by N0 ∈ N. Let (W,S) be an irreducible affine Weyl group and assume that
S = S+ ∪ S◦ is such that no element of S+ is conjugate to an element of S◦.
Let X ∈ P+(Z[S̄]) as in Section 7.1 and Γ = Z[S̄]/(X ∩ (−X)). Then, using N0

and the previous lemma, we will determine a set of weight functions C (which will
correspond at the end to a union of chambers) such that for all L ∈ C we have

θLΓ(Γ+(N0)) ⊆ {γ | γ > 0}.

For all such weight functions, we can apply the same proof as before to (W,S,L)

by Proposition 8.1 and we get that NL
+

σ , for all σ ∈ ΩL
+

0 is a union of cells of

(W,S,L). But then, it will be easy to see that NL
+

σ = NL′

σ for all weight function

L′ which takes some zero values and which lies in C . Finally by changing the sets
S+ and S◦ (and also the subset X in type C̃), we will eventually cover all the cases
and determine the constants such that Theorem 6.7 and Theorem 6.9 holds. The
constants we are determining are nowhere near the best we can find as one can see
by looking at the essential hyperplanes in type C̃2 in Remark 6.11.

8.2. Affine Weyl group of type B̃r, F̃4 or G̃2. We keep the notation of Section
6.2. Let W be an irreducible affine Weyl group of type B̃r, F̃4 or G̃2.

First let S̄+ = {s} and S̄◦ = {t}. Let Φ ∈ P+(Z[S̄]). Then Γ = Z[S̄] and the
order is the lexicographic order (see Example 7.1).

Claim 8.3. Let L ∈Weight(W,Γ) be such that L(s) > N0 · L(t). Then

θLΓ(Γ+(N0)) ⊂ {v
γ | γ > 0}

Proof. Since the order on Γ is the lexicographic order, we must have

Γ+(N0) ⊂ {(i, j) | i > 0,−N0 ≤ i, j, k ≤ N0} ∪ {(0, j) | j > 0}.

Let i > 0 and −N0 ≤ j ≤ N0. Then

i · L(s) + j · L(t) > iN0 · L(t)−N0 · L(t) ≥ 0.

The result follows. �

Thus Condition (∗) in Proposition 8.1 holds for all weight functions satisfying

the hypothesis of the lemma. Therefore we get that NL
+

σ is a union of cells of
(W,S,L). But one can easily see that for all weight functions L+ : W → Γ such

that L+(s) > 0 and L+(t) = 0 we have ΩL
+

0 = ΩL+

0 and NL+

σ = NL
+

σ .

Next let S̄+ = {t} and S̄◦ = {s}. Then we get that the order on Γ is as follows

(i, j) < (i′, j′)⇐⇒ j < j′ or (j = j′ and i < i′).
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Arguying as above, we get that for all weight functions L ∈Weight(W,Γ) such that
L(t) > N0 · L(s) and all weight functions L+ : W → Γ such that L+(t) > 0 and

L+(s) = 0, the sets NL+

σ are union of left cells of (W,S,L).

Finally, putting all this together, we get Theorem 6.5 holds for the finite set of
rational hyperplanes H(N0, 1/N0).

8.3. Affine Weyl group of type C̃. We keep the notation of Section 6.3. We
have S̄ = {t, s, t′}.

Claim 8.4. Let S̄+ = {t} and S̄◦ = {s, t′} and let L ∈Weight(W,Γ) be such that
L(t) > N0 ·L(s)+N0 ·L(t′). Then, there exists Φ = (ϕ1, . . . , ϕd) ∈P+(Z[S̄]) such
that

θL
Γ
(Γ+(N0)) ⊂ {v

γ | γ > 0}

where Γ is the totally ordered abelian group associated to Pos(Φ).

Proof. Since S̄+ = {t} we set ϕ1 = t∗. Hence

ker(ϕ1) = {(0, j, k) | j, k ∈ R}.

Now we want to find a linear map ϕ2 : ker(ϕ1)→ R defined by ϕ2((0, j, k)) = bj+ck
(where b, c ≥ 0) such that the following property holds for all −N0 ≤ i, j ≤ N0:

(†) bj + ck > 0 then L(s)j + L(t)k > 0

To do so we proceed as in [6, §3]. Set E := {x ∈ Q | x = ±k
j where j, k 6=

0 and − N0 ≤ j, k ≤ N0} and write E = {x1, . . . , xn} where x1 < x2 < . . . < xn.
We set x0 = 0 and xn+1 = +∞. Let b, c ≥ 0 be integers such that

xk =
b

c
= max{r ∈ E | L(s) ≥ rL(t′)}.

Note that we must have xk+1L(t
′) > L(s). Then we claim that property (†) holds.

Let −N0 ≤ j, k ≤ N0 be such that bj+ ck > 0. If j > 0 and k < 0 then b/c > −k/j
and we have

L(s) > −
k

j
L(t′) that is jL(s) + kL(t′) > 0

as required. If j < 0 and k > 0 (in this case we have xk+1 <∞) then b/c < −k/j
but this forces xk+1 ≤ −k/j. Hence

−
k

j
L(t′) > L(s) that is jL(s) + kL(t′) > 0

as required.
Finally we set ϕ2 : ker(ϕ1)→ R by ϕ2((0, j, k)) = bj+ ck where b, c ≥ 0 are chosen
as above. Then Pos(ϕ1, ϕ2) ∈P+(Z[S̄]) and we have

Γ+(N0) ⊂ {(i, j, k) | i > 0,−N0 ≤ i, j, k ≤ N0} ∪ {(0, j, k) | L(s)j + L(t′)k > 0}.

The result follows easily from our assumptions on L. �

Let L ∈ Weight(W,Γ) and Φ as in the previous claim. By Proposition 8.1, we

know that NL
+

σ (for all σ ∈ ΩL
+

0 ) is a union of left cells in (W,S,L). But one

can see that NL
+

σ = NL+

σ for all L+ ∈ Weight(W,Γ) such that L+(t) > 0 and

L+(s) = L+(t′) = 0 and all σ ∈ ΩL
+

0 = ΩL+

0 .
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Remark 8.5. If we set m3 = N0, the above claim implies that Theorem 6.9 holds
for all positive weight functions lying in C3 ∪ C4 ∪ (C̄3 ∩ C̄4) and all non-negative
weight functions lying in Hs ∩Ht′ .

Claim 8.6. Let S̄+ = {s} and S̄◦ = {t, t′} and let L ∈Weight(W,Γ) be such that
L(s) > N0 ·L(t)+N0 ·L(t′). Then, there exists Φ = (ϕ1, . . . , ϕd) ∈P+(Z[S̄]) such
that

θLΓ(Γ+(N0)) ⊂ {v
γ | γ > 0}

where Γ is the totally ordered abelian group associated to Pos(Φ).

Proof. Since S̄+ = {s} and we set ϕ1 = t∗. Hence

ker(ϕ1) = {(i, 0, k) | i, k ∈ R}.

Arguing as in the proof of the previous claim, there exist integers a, c ≥ 0 such that
if we define ϕ2 : ker(ϕ1)→ R by ϕ2((i, 0, k)) = ai+ ck then ϕ2((i, 0, k)) > 0 implies
L(t)i+ L(t′)k > 0. For such ϕ2 we have Pos(ϕ1, ϕ2) ∈P+(Z[S̄]) and

Γ+(N0) ⊂ {(i, j, k) | j > 0,−N0 ≤ i, j, k ≤ N0} ∪ {(i, 0, k) | L(t)j + L(t′)k > 0}.

The result follows easily from our assumptions on L. �

Let L ∈Weight(W,Γ) and Φ as in the previous claim. Arguying as above,we get

that NL+

σ is a union of left cells of (W,S,L) for all L+ ∈ Weight(W,Γ) such that
L+(s) > 0 and L+(t) = L+(t′) = 0.

Remark 8.7. If we set m6 = 1/N0, the above claim implies that Theorem 6.9 holds
for all positive weight functions lying in C6 ∪ (C̄6 ∩ C̄ ′

6) and all non-negative weight
functions lying in Ht ∩Ht′ .

Claim 8.8. Let S̄+ = {t, t′} and S̄◦ = {s} and let L ∈Weight(W,Γ) be such that
L(t) > N2

0 ·L(s), L(t
′) > N2

0 ·L(s) and L(t)−L(t′) > N0 ·L(s). Then, there exists
Φ = (ϕ1, . . . , ϕd) ∈P+(Z[S̄]) such that

θL
Γ
(Γ+(N0)) ⊂ {v

γ | γ > 0}.

where Γ is the totally ordered abelian group associated to Pos(Φ).

Proof. Since S̄+ = {t, t′} we set ϕ1 = t∗ + t′∗. Hence

ker(ϕ1) = {(i, j,−i) | i, j ∈ R}.

We define ϕ2 := t∗ and ϕ3 = s∗. Then Pos(ϕ1, ϕ2, ϕ3) ∈P+(Z[S̄]) and we have

Γ+(N0) ⊂{(i, j, k) | i+ k > 0,−N0 ≤ i, j, k ≤ N0}

∪ {(i, j,−i) | i > 0,−N0 ≤ i, j ≤ N0}

∪ {0, j, 0 | j > 0}.

The result follows from our assumptions on L. Note that the N2
0 in the hypothesis

of the lemma comes from the fact that we need to have

θL
Γ
(−(N0 − 1),−N0, N0) > 0.

That is

L(t′)− (N0 − 1)(L(t)− L(t′))−N0L(s) > 0.

The last inequality will hold whenever L(t′) > N2
0L(s) and L(t)−L(t′) > N0 · L(s).

�
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Let L ∈Weight(W,Γ) and Φ as in the previous claim. Arguying as above,we get

that NL+

σ is a union of left cells of (W,S,L) for all L+ ∈ Weight(W,Γ) such that
L+(t) > L+(t′) > 0 and L+(s) = 0.

Remark 8.9. If we set m1 = m2 = N2
0 and m5 = N0, the above claim implies that

Theorem 6.9 holds for all positive weight functions lying in C2 ∪C3 ∪ (C̄2 ∩ C̄3) and
all non-negative weight functions in Hs ∩Ht′ .

Claim 8.10. Let S̄+ = {t, t′} and S̄◦ = {s} and let L ∈ Weight+(W,Γ) be such
that L(t) > N2

0 · L(s), L(t
′) > N2

0 · L(s). Then, there exists Φ = (ϕ1, . . . , ϕd) ∈
P+(Z[S̄]) such that (1, j0,−1) > 0 for some j0 ∈ N and

θLΓ(Γ+(N0)) ⊂ {v
γ | γ > 0}

where Γ is the totally ordered abelian group associated to Pos(Φ).

Proof. Since S̄+ = {t, t′} we set ϕ1 = t∗ + t′∗. Hence

ker(ϕ1) = {(i, j,−i) | i, j ∈ R}.

Arguing as in the proof of Claim 8.4 there exist integers d, b ≥ 0 (with b > 0
so that (1, j0,−1) > 0 for some j0) such that if we define ϕ2 : ker(ϕ1) → R by
ϕ2((i, j,−i)) = di + bj then ϕ2((i, j,−i)) > 0 implies (L(t) − L(t′))i + L(s)j > 0.
For such ϕ2 we have Pos(ϕ1, ϕ2) ∈P+(Z[S̄]) and

Γ+(N0) ⊂{(i, j, k) | i+ k > 0,−N0 ≤ i, j, k ≤ N0}

∪ {(i, j,−i) | (L(t)− L(t′)) · i+ L(s) · j > 0}.

The result follows from our assumptions on L. �

Let L ∈ Weight(W,Γ) and Φ as in the previous claim (so that we are in Case

4). Arguying as above,we get that NL+

σ is a union of left cells of (W,S,L) for all
L+ ∈Weight(W,Γ) such that L+(t) = L+(t′) > 0 and L+(s) = 0.

Remark 8.11. If we set m1 = m2 = N2
0 , then above claim implies that Theorem 6.9

holds for all positive weight functions lying in C1 ∪ (C̄1 ∩ C̄ ′
1) and all non-negative

weight functions in Hs ∩Ht−t′ .

Finally we still have to consider the case S̄+ = {t, s} and S̄◦ = {t′}. However
in this case, there is nothing to prove since for all L,L+ ∈Weight(W,Γ) such that

• L(s), L(t) > L(t′)
• L+(t) = L(t), L+(s) = L(s) and L+(t′) = 0

we have cLmin = cL
+

min. Indeed, in both cases, we have W max = {w0} where w0 is the
longest element of the group generated by t, s1, . . . , sn−1.

The proof of Theorem 6.9 for type C is now complete.
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