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Abstract

We prove that if the Ahlfors regular conformal dimension Q of a topologically cxc
map on the sphere f : S2 → S2 is realized by some metric d on S2, then either Q = 2
and f is topologically conjugate to a semihyperbolic rational map with Julia set equal
to the whole Riemann sphere, or Q > 2 and f is topologically conjugate to a map
which lifts to an affine expanding map of a torus whose differential has distinct real
eigenvalues. This is an analog of a known result for Gromov hyperbolic groups with
two-sphere boundary, and our methods apply to give a new proof.
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1 Introduction

A topologically coarse expanding conformal (cxc) orientation-preserving branched covering
map f : S2 → S2 is an analog, in the setting of iterated maps, of a Gromov-hyperbolic
group G whose boundary is the two-sphere. Let D denote the dynamical system on S2

given either by the iterates of f or by the elements of G. In both settings, there is a
canonical quasisymmetry class G(D), or conformal gauge, of Ahlfors-regular metrics on S2

in which the elements of D have uniformly bounded metric distortion. With respect to a
metric d ∈ G(D), for maps, one says that f is metrically cxc, while for groups, one says
that the action of G is uniformly quasi-Möbius.

When is D topologically conjugate to a genuine conformal dynamical system, i.e. to
a rational map or to a Kleinian group? The topological assumptions imply that such a
rational map is necessarily semihyperbolic and that such a Kleinian group acts cocompactly
when extended to act on hyperbolic three-space. For groups, Cannon’s Conjecture asserts
that the answer is always yes [Can]. For maps, this is no longer the case: there are
combinatorial obstructions to Euclidean conformality, discovered by Thurston [DH].

The Ahlfors regular conformal dimension confdimAR(D) of D is defined as the infimum
of the set of Hausdorff dimensions H.dim(S2, d) of metrics d ∈ G(D). The general concept
was introduced by Pansu, who computed a closely related invariant for the natural met-
rics on the boundary at infinity of certain homogeneous manifolds of negative curvature
[Pan]. Since the topological dimension is always a lower bound, in our setting one has
confdimAR(D) ≥ 2. If D is given by a group, then conjecturally, confdimAR(D) = 2. If D
is given by a map, however, then the combinatorics of obstructions provide lower bounds
on confdimAR(D) that may be strictly larger than 2 [HP2].

A priori, the infimum in the definition may, or may not, be realized. For groups
with boundary S2, Bonk and Kleiner [BnK3, Thm. 1.1] have proven that if the infimum
is achieved, then the conclusion of Cannon’s Conjecture holds. For a general hyperbolic
group, if the infimum is realized, then the group again has special properties; see [Kle] for
a survey of results. The main result of this work is an analogous statement in the setting
of maps: it gives a topological characterization of when the infimum is realized.

Theorem 1.1 (Rational or Lattès) If f : S2 → S2 is topologically cxc and a metric
d ∈ G(f) realizes confdimAR(f), then f is topologically conjugate to either

1. a semihyperbolic rational map, in which case confdimAR(f) = 2 , or

2. an obstructed Lattès example induced by an affine map on the torus whose dif-
ferential has distinct positive real eigenvalues each larger than one, in which case
confdimAR(f) > 2.

The Lattès examples lift to covering maps of tori. They are a ubiquitous family of
exceptional cases to general statements in the dynamics of rational maps. Our theorem is
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additional evidence that they play a similar role for the dynamics of cxc maps; cf. [MtM]
and also the recent preprint [Yin]. Their conformal gauges are related to those arising from
visual boundaries of certain three-dimensional solvable Lie groups.

We will derive Theorem 1.1 from the following general result, which applies to both
maps and groups:

Theorem 1.2 Suppose D is the dynamical system on S2 determined by a topologically cxc
map or a Gromov hyperbolic group. If confdimAR(D) is attained, then either

1. D is topologically conjugate to a semihyperbolic rational map or cocompact Kleinian
group, or

2. D preserves a foliation of S2 having finitely many singularities.

The two cases are not mutually exclusive; the overlap consists of so-called integral, or
flexible, Lattès examples: the corresponding torus maps are conjugate to group endomor-
phisms of the form x 7→ m · x where m is an integer with |m| > 1.

Theorem 1.2 yields an alternative proof of the result of Bonk and Kleiner mentioned
above:

Theorem 1.3 (M.Bonk & B.Kleiner) Let G be a hyperbolic group with boundary home-
omorphic to S2. Assume that its Ahlfors-regular conformal dimension is attained. Then
the action of G on its boundary is topologically the action of a cocompact Kleinian group.

The proof of Theorem 1.2 relies on a new characterization of the gauge of the Euclidean
two-sphere S2 among those gauges on S2 supporting such dynamical systems D: this gauge
is the only such gauge containing a metric in which two rectifiable thick curves cross; see
the Dichotomy in § 1.4 below, § 4.2, and Proposition 4.17.

In the remaining subsections of this introduction, we give precise definitions and outline
the proofs.

1.1 Topologically cxc maps

Throughout this work, f denotes a continuous, orientation-preserving, branched covering
map from the sphere to itself with degree deg(f) ≥ 2. The following class of dynamical
systems was introduced in [HP1].

Definition 1.4 (Topologically cxc) The map f is called topologically cxc provided there
exists a finite open covering U0 of S2 by connected sets satisfying the following properties:

[Exp] The mesh of the coverings Un tends to zero as n → ∞, where Un denotes the
set of connected components of f−n(U) as U ranges over U0.
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[Irred] The map f is locally eventually onto: for any x ∈ S2, and any neighborhood
W of x, there is some n with fn(W ) = S2.

[Deg] The set of degrees of maps of the form fk|Ũ : Ũ → U , where U ∈ Un,
Ũ ∈ Un+k, and n and k are arbitrary, has a finite maximum p <∞.

We denote by U = ∪n≥0Un.

Note that the definition prohibits recurrent or periodic branch points. Also, one may
choose U0 so that each atom of each cover Un is a Jordan domain.

A rational map is topologically cxc on the sphere if and only if it is semihyperbolic with
Julia set the whole sphere, i.e. has neither nonrepelling cyles nor recurrent critical points
[HP1, Cor. 4.4.2].

The postcritical set of f is Pf = ∪n>0f
n(Bf ), where Bf is finite the set of branch points

of f . If Pf is finite, the orbifold associated to f has weight function ν : S2 → N given by
ν(y) = lcm{deg(fn, x) : fn(x) = y, n ≥ 1} where deg(, ) is the local degree; cf. [DH].

1.2 Conformal gauges

A homeomorphism h : X → Y between metric spaces is quasisymmetric provided there ex-
ists a homeomorphism η : [0,∞) → [0,∞) such that dX(x, a) ≤ t·dX(x, b) ⇒ dY (f(x), f(a)) ≤
η(t) · dY (f(x), f(b)) for all triples of points x, a, b ∈ X and all t ≥ 0.

The conformal gauges associated to maps and to groups possess many metric and
dynamical regularity properties.

A metric space X is Ahlfors regular of dimension Q provided there is a Radon measure
µ such that for any x ∈ X and r ∈ (0,diamX],

µ(B(x, r)) ≍ rQ .

If this is the case, this estimate also holds for the Q-dimensional Hausdorff measure.

The next concept is due to Mackay [Mac2]. Suppose L ≥ 1. A metric space X is
L-annularly linearly connected (ALC) provided

(BT) for any x and y in X, there is a continuum K containing both points such that
diamK ≤ L|x− y|;

(ALC2) for any x ∈ X, and 0 < r ≤ 2r ≤ R ≤ diamX, any pair of points in
B(x,R)\B(x, r) can be joined by a continuum K contained in B(x,LR)\B(x, r/L).

The initials (BT) stand for bounded turning. Such a metric space has no local cut points,
and the continuum in condition (BT) can be taken to be an arc, indeed, a quasi-arc [Mac1].
The portion of the next result dealing with maps summarizes [HP1], Proposition 3.3.2 and
Theorems 3.5.3 and 3.5.6; the portion dealing with groups may be found in [Pau] and
[Mac2].
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Theorem 1.5 (Canonical Gauge) Given a dynamical system D as above, we may en-
dow S2 with a distance dv and a measure µ with the following properties:

1. the space (S2, dv, µ) is Ahlfors regular, annularly linearly locally connected and dou-
bling;

2. the measure µ is quasi-invariant by D, i.e. sets of measure zero are preserved;

3. (D = G) the action of G is uniformly quasi-Möbius: there exists an increasing
homeomorphism η : R+ → R+ such that, for all distincts quadruples x1, x2, x3, x4
and all g ∈ G,

[g(x1) : g(x2) : g(x3) : g(x4)] ≤ η([x1 : x2 : x3 : x4])

where

[x1 : x2 : x3 : x4] =
dv(x1, x2)dv(x3, x4)

dv(x1, x3)dv(x2, x4)
;

(D = {fn}) there exist constants θ ∈ (0, 1) and r0 > 0 with the following
properties: diamvU ≍ θn if U ∈ Un, f

k(Bv(x, rθ
k)) = Bv(f

k(x), r) for any
r < r0.

Furthermore, if d is another metric sharing these properties, then the identity map between
(S2, dv) and (S2, d) is quasisymmetric.

It follows that the set G(D) of all Ahlfors regular metric spaces Y quasisymmetrically
equivalent to (S2, dv) is an invariant, called the Ahlfors regular conformal gauge, of the
topological conjugacy class of D; see [HP1, Thm. 3.5.3, Thm. 3.5.6]. Therefore, the Ahlfors
regular conformal dimension

confdimAR(D) := inf
Y ∈G(D)

H.dim(Y )

is a numerical topological dynamical invariant as well. Moreover, this invariant almost char-
acterizes conformal dynamics among topological ones on the sphere; see [HP1, Thm. 4.2.11]
and [BnK1, Thm. 1.1], [BnK2, Thm. 1.1].

Theorem 1.6 (Characterization of conformal dynamical systems) The dynamical
system D is topologically conjugate to a semihyperbolic rational map or cocompact Kleinian
group if and only if confdimAR(f) = 2 and is realized.

This is a consequence of Bonk and Kleiner’s characterisation of the Riemann sphere (Theo-
rem A.1 in the Appendix below) and of Sullivan’s straightening of uniformly quasiconformal
groups and quasiregular maps.
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1.3 Real Lattès maps

Let Γ be the subgroup of isometries of the plane generated by x 7→ x+(1, 0), x 7→ x+(0, 1),
and x 7→ −x. Let Z

2 ⊂ R
2 be the standard integer lattice, and let A be a 2-by-2 integer

matrix.
The quotient space R

2/Γ is homeomorphic to S2. The map f̃A : R2 → R
2 given by

v 7→ Av descends to a branched covering fA : S2 → S2. The collection of such maps fA
generalizes the well-studied family of rational functions discovered by Lattès, so we call
these Lattès maps. If the eigenvalues of A are real, we say that fA is a real Lattès map.

The following facts are easily verified. A Lattès map fA is topologically cxc if and only if
A is expanding, i.e. all eigenvalues of A lie outside the closed unit disk. The postcritical set
PfA of fA has at most four points, with equality if and only if the orbifold of fA has weight
2 at each point of PfA . Conversely, any critically finite topologically cxc map f : S2 → S2

whose orbifold has signature (2, 2, 2, 2) is topologically conjugate to some Lattès map fA:
the map f lifts to an expanding map on the canonical double covering torus, and such
toral maps are classified up to topological conjugacy by their action on homology. Note
that the linear map given by A is determined only up to sign, cf. [DH, Prop. 9.3].

We will show

Theorem 1.7 Let fA be a Lattès map with associated matrix ±A.

1. If A is a multiple of the identity or has non-real eigenvalues, then fA is topologically
conjugate to a rational function, and confdimAR(f) = 2 and is attained.

2. If A is semisimple with real eigenvalues 1 < |λ| < |µ|, then confdimAR(fA) = 1 +
log |µ|/ log |λ| and is attained.

3. If A has a single repeated eigenvalue |λ| > 1, then confdimAR(fA) = 2 and is not
attained.

The above classification of Lattès maps is intimately related to the classification of
homogeneous three-manifolds of negative curvature.

Heintze [Hei] has classified all homogeneous manifolds of negative sectional curvature:
they are solvable Lie groups obtained as an extension of a nilpotent group by the group
R associated to a derivation α. In [Pan], Pansu computes the conformal dimension of its
boundary at infinity when α is semi-simple, and gives a metric of minimal dimension. We
complete his computations when α is not semi-simple in the three-dimensional case, cf.
[BnK3, § 6]:

Theorem 1.8 Let M be a homogeneous three-manifold of negative sectional curvature
given by a non-semi-simple derivation on R

2. Then the Ahlfors-regular conformal dimen-
sion of its boundary is 2, but is not attained.
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1.4 Outline of proofs

We begin by analyzing weak tangents T of metric spheres X = (S2, d) ∈ G(D).
We first prove a general result: any weak tangent T of an arbitrary doubling and ALC

metric surface is homeomorphic to the plane (Theorem 3.2). In the particular case of
X ∈ G(D), the selfsimilarity of X induced by the dynamics implies that T is equipped
with a locally quasisymmetric map h : T → X; for groups, h is a homeomorphism to the
complement in X of some point, while for maps, it is a surjective branched covering map.

Suppose the Ahlfors regular conformal dimension, Q, is attained by X ∈ G(D). A
theorem of Keith and Laakso [KL] implies the existence of a weak tangent T1 of X which
contains a family of curves of positive Q-modulus. By a theorem of Tyson, the associated
map h1 : T1 → X transports this family to such a family on X. Since Q-modulus behaves
like an outer measure on the separable metric space of curves, there are “density points”,
called thick curves, on X. The collection of thick curves on X is invariant under the
dynamics.

Two thick curves cross if any curve sufficiently close to one intersects any curve suffi-
ciently close to the other. The key point in the proof of Theorem 1.2 is the following

Dichotomy.

1. If there are thick curves which cross, then Q = 2, X is quasisymmetrically equivalent
to the Euclidean round sphere, and the dynamics is conjugate to the action of a
discrete cocompact group of Möbius transformations or to a rational map.

2. If there are no thick curves which cross, then there is a foliation F of X by locally
thick curves such that F has finitely many singularities and is invariant under the
dynamics.

We prove (1) by means of a new estimate relating combinatorial moduli in different
dimensions (Proposition 4.10 and Corollary 4.16) and a comparison theorem relating com-
binatorial and analytic moduli (Proposition 4.14). To prove (2), we show that a tangent
T2 of X at a suitable density point on a thick curve is foliated by curves whose images
under the map h2 : T2 → X are locally thick and which, by assumption, cannot cross; this
yields the foliation F on X.

For groups, case (2) cannot occur since the action of G is minimal on X. For maps,
the invariance of F implies that f is a Lattès map. Theorem 1.7 concludes the proof of
Theorem 1.1.

While the following is not used in the proof, it follows naturally from the arguments
we give; it shows that the tangents arising in the proof can in fact be constructed directly.

Remark 1.9 A posteriori we note that, in the case of maps, it is possible to construct from
a weak tangent at a fixed point the universal orbifold covering map π : X̃ → X associated
to the Lattès map together with an expanding map ψ : X̃ → X̃ whose iterates are uniformly
quasisymmetric and such that π ◦ ψ = f ◦ π.
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1.5 Outline of the paper

The core of the paper deals with the proof when D is a topologically cxc mapping, since
this is new. The case of hyperbolic groups is sketched in the appendix A3. In section 2, we
relate Lattès maps to negatively curved homogeneous three-manifolds and prove Theorems
1.7 and 1.8. In section 3, we recall and complete results concerning weak tangents of
Ahlfors-regular metrics in the gauge of a topologically cxc map f on S2. We also prove
(Theorem 3.2) that weak tangent spaces of doubling annularly linearly connected surfaces
are homeomorphic to the plane. Section 4 is devoted to the notion of moduli of curves and
its coarse version of so-called combinatorial moduli. There, we establish the new estimate
comparing combinatorial moduli in different dimensions. We conclude this section with
the proof of statement (1) in the above dichotomy. Section 5 is devoted to proving that
there families of curves of positive modulus, when the sphere is endowed with a metric
of minimal dimension. In section 6 we exhibit a foliation by locally thick curves when no
thick curve cross: this proves statement (2) in the dichotomy and proves Theorem 1.2 when
D is topologically cxc. In section 7, we summarize results and establish Theorem 1.1. In
the appendix, we provide several applications of our estimate on combinatorial moduli of
different dimensions and we sketch the proof of Theorem 1.3 by first establishing Theorem
1.2. We also state the results which still hold for general topologically cxc maps.

1.6 Acknowledgements

We thank M. Bourdon, B. Kleiner, L. Kolev, and J. Los for useful conversations. Both
authors were partially supported by project ANR Cannon (ANR-06-BLAN-0366). Part of
this work was done while the first author was visiting Indiana University. We thank its
Mathematics Department for its hospitality.

1.7 Notation and conventions

Throughout, f denotes an orientation-preserving branched covering map of the two-sphere
to itself of degree d ≥ 2, unless otherwise specified. If X is a metric space, the distance
function d on X is understood, and R > 0, we denote by RX the metric space (X,R · d).
Similarly, if B = B(x, r) is a ball in X and c > 0, we set cB = B(x, cr). When convenient
we use the notation |x − y| for d(x, y). For two positive functions a, b we write a . b if
a ≤ C · b; a ≍ b means a . b and b . a. A sequence whose nth term is an is denoted (an).
The round Euclidean two-sphere of constant curvature +1 is denoted S

2.

2 Classification of homogeneous manifolds and of Lattès maps

In this section, we relate Lattès maps to negatively curved homogeneous three-manifolds
and give a proof of both Theorems 1.7 and 1.8.
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Let A : R2 → R
2 be an expanding linear map with integer coefficients.

We consider the Lie group G obtained by the extension of the Abelian group R
2 by A,

endowed with an invariant Riemannian metric. It follows from Heintze [Hei, Thm. 1] that
G is a negatively curved homogeneous manifold.

More precisely, we let B be a matrix such that expB = A. We consider the three-
dimensional Lie algebra g such that its derived algebra g′ = [g, g] is Abelian and two-
dimensional; we fix a basis (v1, v2) of g

′. We also assume that there exists a vector v0 ∈ g

such that, for all w ∈ g′, [v0, w] = B(w), when written in the basis (v1, v2). We let 〈·, ·〉
be the scalar product on g which makes the basis (v0, v1, v2) orthonormal. This defines a
Riemannian metric on G.

Then the pointed boundary ∂G \ {∞} can be identified with g′ = R
2 endowed with a

visual metric. The Abelian subgroup R
2 acts freely by isometries in this metric and the

vector v0 via the matrix A induces a dilation f̃A. The Lebesgue measure of R2 defines a
so-called conformal measure on ∂G \ {∞}.

Taking a quotient of ∂G \ {∞} by the group generated by Z
2 and −Id yields a metric

two-sphere. The dilation f̃A descends to a topologically cxc map—the associated Lattès
map fA. By Theorem 1.5, the metric belongs to the canonical gauge of fA, so the Ahlfors-
regular conformal dimension of ∂G coincides with the Ahlfors-regular conformal dimension
of fA.

Proof: (Theorems 1.7 and 1.8) When A is semisimple then the Ahlfors-regular conformal
dimension of the boundary at infinity ofG is attained [Pan]: if there are two real eigenvalues
1 < |λ| ≤ |µ|, then confdimAR∂G = 1 + log |µ|/ log |λ|. So if the eigenvalues are complex
conjugate, then confdimAR∂G = 2 and is attained. One may find an explicit metric on R

2

of minimal dimension. In the real case, let (v1, v2) be a basis by eigenvectors associated to
λ and µ respectively. Then set

d(x1v1 + x2v2, y1v1 + y2v2) = |y1 − x1|+ |y2 − y1|
α

with α = log |λ|/ log |µ|. One may easily check that for this metric, the map f̃A acts as a
dilation, the corresponding Hausdorff dimension is 1 + 1/α, and the conformal dimension
is minimized. In the complex case, write A = λ · R where R is a rotation. This defines
canonically a C-linear map, so the Ahlfors-regular conformal dimension is 2.

We may now assume that A is not semisimple. Then A has a double eigenvalue eλ,
λ > 0. We may then find a basis in R

2 such that

B =

(
λ δ
0 λ

)

with δ arbitrarily small. Using an explicit computation of the sectional curvatures given in
the proof of [Hei, Thm. 1] yields that as δ → 0 the sectional curvature satisfies K(x, y) =
−λ2 +O(δ) for any orthonormal vectors x, y.
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It follows from [Bou] that one may choose the parameter ε of the visual distance to
be of order λ + O(δ). Furthermore, the Bishop inequality [GHL, Thm. 3.101] implies
that the volume entropy h(G) of G is bounded from above by 2λ + O(δ). Finally, [Pan,
Lma5.2] implies that confdimAR∂G ≤ 2 + O(δ). Letting δ tend to 0 establishes that
confdimAR∂G = 2.

It remains to prove that this dimension is not attained. Recall that f̃A defines a
topologically cxc postcritically finite branched covering fA of the sphere with orbifold
(2, 2, 2, 2). The visual distances considered above all belong to the gauge of fA since f̃A
acts as a dilation with respect to this metric. If the conformal dimension were attained,
then fA would be conjugate to a rational map by Theorem 1.6. But, according to [DH,
Prop. 9.7], the matrix A should then be an integral multiple of the identity. Therefore, the
conformal dimension is two but is not attained. This ends the proof of both theorems.

3 Weak tangents

We first recall the definitions of the Gromov-Hausdorff topology and of weak tangent
spaces. We then prove that weak tangents of ALC surfaces are homeomorphic to R

2, and
we establish properties which will be used in the sequel.

3.1 Gromov-Hausdorff convergence

Let Z be a proper metric space. Given two subsets X,Y ⊂ Z, define their Hausdorff
distance as

dH(X,Y ) = max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
.

Note that dH(X,Y ) = dH(X,Y ). The set of nonempty compact subsets of Z endowed
with dH is complete and is sequentially compact if Z is compact.

Given two compact metric spaces X and Y ,we define their Gromov-Hausdorff distance
by

dHG(X,Y ) = inf
Z
{dH(X,Y ), X, Y ⊂ Z}

where the infimum is taken over all compact metric spaces Z which contains isometric
copies of both X and Y . This defines a distance function on the set of isometry classes of
compact metric spaces.

In this topology, a sequence (Xn) of compact metric spaces is sequentially relatively
compact if and only if the sequence is uniformly compact i.e., for any ε > 0, there exists
an integer N(ε) such that each set Xn can be covered by N(ε) balls of radius ε.
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For a uniformly compact family of metric spaces (Xα)α∈A, there exists a compact metric
space Z and isometric embeddings Xα →֒ Z. It follows that a sequence (Xn) of compact
metric spaces converges to X with respect to the Gromov-Hausdorff distance if and only
if there exists a fixed compact metric space Z and isometric embeddings jn : Xn →֒ Z
and j : X →֒ Z such that jn(Xn) → j(X) in the Hausdorff topology on compact subsets
of Z. Henceforth, we will regard the Xn and the limit X simply as subsets of Z. The
completeness of the Gromov-Hausdorff metric implies the limit is in fact independent of Z.

We now extend the notion of convergence to noncompact pointed spaces. Say a sequence
of pointed proper metric spaces (Xn, xn) converges in the Gromov-Hausdorff topology to a
pointed metric space (X,x) if, for all radii R > 0, the sequence of compact pointed closed
balls (BXn(xn, R), xn) in Xn converges with respect to the Gromov-Hausdorff distance to
a compact set BR in X which contains the open ball (BX(x,R), x).

Finally, we extend the notion of convergence to subsets of pointed noncompact spaces.
Suppose a sequence of pointed proper metric spaces (Xn, xn) converges. By definition,
this implies that for all R > 0, the sequence of compact closed balls BXn(xn, R) converges.
This sequence must be uniformly compact, so there is a fixed compact metric space ZR into
which each closed ball BXn(xn, r) embeds. When R1 < R2 we may assume ZR1

→֒ ZR2

isometrically and so we obtain an inductive system of pointed proper metric spaces (ZR)R>0

containing embedded isometric copies of (B(xn, R))n.

Definition 3.1 Suppose (Xn, xn) is a convergent sequence of pointed proper metric spaces,
and Yn ⊂ Xn are subsets. The sequence Yn is said to converge to Y if

1. there exists R0 > 0 such that Yn ∩BXn(xn, R0) 6= ∅ for all n sufficiently large, and

2. for all R ≥ R0, the compact sets Yn ∩BXn(xn, R) converge in the Hausdorff topology
on compact subsets of ZR.

Convergence of maps is defined in the obvious way: suppose (Xn, xn) → (X,x),
(Yn, yn) → (Y, y), fn : (Xn, xn) → (Yn, yn), and f : (X,x) → (Y, y). We say that fn → f
in the Gromov-Hausdorff topology if, after identifying spaces with their images under the
above embeddings, we have fn(xn) → f(x) for every sequence (xn) with xn ∈ Xn for each
n ∈ N, such that xn → x.

3.2 Weak tangents

The notion of weak tangent formalizes the processes of zooming in near a point and passing
to a limit. This requires some tameness on the metric space. A proper metric space X
with distance function d is N -doubling, or doubling if N bears no particular interest, if any
ball of finite radius can be covered by N balls of half its radius. In this case the family
{(X,x,Rd)}x∈X,R>0 is relatively compact in the Gromov-Hausdorff topology. A limit point
of a sequence (X,xn, Rnd) of pointed rescaled spaces with Rn → ∞ and (xn) lying in a
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compact subset of X is called a weak tangent of X. We speak of weak tangents at x0 ∈ X
if it is a limit of the sequence (X,x0, Rnd), i.e. xn = x0 is a constant sequence.

Note that any limit will be at most 2N -doubling.

One may also consider limits of metric measure spaces (Xn, xn, µn) where the µn’s are
Radon measures. This means that (Xn, xn) converges as a sequence of metric spaces, and
in addition there exists constants cn such that cn · µn weakly converges. In particular, if
(µn) are all Ahlfors-regular measures of the same dimension and with uniform constants,
then, rescaling the measures if needed, one may extract a convergent subsequence to an
Ahlfors regular measure µ in the limit.

3.3 Limits of surfaces

The main result of this subsection is the following:

Theorem 3.2 Let X be a doubling proper metric surface which is ALC. Then any weak
tangent space T is ALC and is homeomorphic to the plane.

The doubling property is used to ensure the existence of a tangent space, even if this
is not a necessary condition.

The proof has several steps.

1. Since the ALC condition is scale-independent, a straightforward argument shows T
is ALC.

2. The definition of ALC implies immediately that the one-point, or Alexandroff, com-
pactification T̂ of T is a locally connected continuum without local cut points.

3. Next, we prove that T̂ is embeddable in the sphere. To do this, we use the planarity
of X and a stability result regarding limits of graphs (Proposition 3.6) to show that
T̂ cannot contain certain non-planar graphs. We then appeal to a classical charac-
terization theorem of Claytor [Cla].

4. Therefore, the complement of T̂ in the sphere is either empty, or consists of Jordan
domains. The remainder of the proof consists of ruling out this latter possibility. We
do this by analyzing the complement of simple closed curves in T .

Our graph stability result depends on three technical lemmas.
The first one says that tripods can be unzipped to a pair of arcs meeting at a point in

such a way that the modification takes place only near two of the arms. Think of U as a
small neighborhood of γ′. The arc α might enter and exit U many times.

Lemma 3.3 Let γ′ : [0, 1] → X be an arc in an L-ALC metric space X and let U be an
arcwise connected open set which contains γ′([0, 1)). Let α′ : [0, 1] → X be an arc with the
following properties: α′(0) /∈ U , α′([0, 1)) ∩ γ′ = ∅ and α′(1) ∈ (γ′ ∩ U). Then there are
arcs α : [0, 1] → X and γ : [0, 1] → X such that
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1. (a) γ([0, 1)) ⊂ U ,

(b) γ(1) = γ′(1),

(c) there exists 0 < s0 ≤ 1 such that γ|[0,s0] = γ′|[0,s0];

2. there exists 0 < t0 < 1 such that

(a) α|[0,t0] = α′|[0,t0],

(b) α([t0, 1)) ⊂ U ,

(c) α([t0, 1)) ∩ γ([0, 1)) = ∅,

(d) α(1) = α′(1) = γ′(1) = γ(1).

Proof: We will follow the same strategy as [Mac2, Lma3.1]. We will “unzip” the tripod
defined by γ′ and α′ to have two curves which only meet at x0 = γ′(1).

Let x be the intersection point between γ′ and α′. Let rx = min{|x − x0|, d(x,X \
U)}/L. Pick a point y ∈ γ′ ∩ (B(x, rx) \ B(x, rx/2)) beyond x, and a point y′ ∈ α′ ∩
(B(x, rx) \ B(x, rx/2)) before x. By (ALC2), there is an arc A in U which joins y′ to y
in B(x,Lrx) \B(x, rx/(2L)). If A meets γ′ ∪ α′ only at its extremities y and y′, use A to
replace α′ beyond y′. Otherwise, let z be the first point in γ′ encountered beyond x by A,
and z′ the first point before z in A which meets γ′∪α′: if z′ is on α′, replace the piece of α′

between z′ and x by A, which now ends at z; if z′ is on γ′, replace the part of α′ between
z′ and z by A, and add to α′ the piece of γ′ between x and z.

This implies that we have now two curves γ and α which meet at a definitely closer
point from x0 than before, and they both continue with γ′ up to x0; moreover, they are
contained in U . We continue inductively. At each stage, modifications only alter the
positions in U . Since rx is locally bounded from below for x 6= x0, both curves meet in the
limit exactly at x0.

The next lemma says that a collection of arcs whose endpoints are close can be extended
to a multi-armed tripod.

Lemma 3.4 Let U be an arcwise connected open set of an annularly linearly connected
metric space. Let n be a positive integer, and let us consider n pairwise disjoint arcs γ′j,
j = 1, . . . , n, with γ′j(0) /∈ U , and γ′j(1) = xj ∈ U . Let x0 ∈ U be disjoint from these
curves. There are n arcs γ1, . . . , γn such that γj = γ′j off of U and which only meet at their
other extremities at x0.

Proof: We will procede by induction. Let us assume that we have already constructed
γ1, . . . , γk−1 such that the conclusion of the lemma holds.
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If γ′k intersects ∪γj, we let γ be the one which is first met. We may then apply Lemma
3.3 to γ and γ′k with the connected component of {z ∈ U, d(z, γ) < d(z, (∪γj) \ γ)} which
contains γ ∩ U . This leads to k arcs which satisfy the conclusion of the lemma.

Otherwise, we consider an arc which joins γ′k(1) to x0 in U . If it does not meet the
requirements, we may apply the argument above replacing γ′k with its extension to the first
point of intersection with the other curves.

Hausdorff convergence is quite weak. If Xn → X, arcs in X need not be limits of arcs
in Xn, even if the Xn are required to be arcwise connected. The lemma below says that if
the geometry of the Xn is controlled, then this is possible.

Lemma 3.5 Suppose X is a compact subset of a proper metric space Z, γ : [0, 1] → X
is an arc, η > 0, and L ≥ 1. Then there exists ε > 0 such that if dH(X,Y ) ≤ ε and Y
has L-bounded turning (BT), then, for all y ∈ B(γ(0), ε)∩ Y and y′ ∈ B(γ(1), ε)∩ Y there
exists an arc c : [0, 1] → Y such that c(0) = y, c(1) = y′ and

sup
t∈[0,1]

|c(t) − γ(t)| ≤ η .

Proof: Set ε = dH(X,Y ). We will construct an arc c = cε in Y such that

lim
ε→0

sup
t∈[0,1]

|cε(t)− γ(t)| = 0 .

We first record some facts. Since γ is an arc, there are increasing homeomorphisms
ω± : R+ → R+ such that, for any s, t ∈ [0, 1],

ω−(|s − t|) ≤ |γ(s)− γ(t)| ≤ ω+(|s− t|) .

We note that, for any 0 ≤ s < t ≤ 1, one can find an arc c : [s, t] → Y such that

sup
u∈[s,t]

|c(u) − γ(u)| ≤ ε+ L(ω+(|s − t|) + 2ε) + ω+(|s− t|) . (1)

To prove this, pick c(s), c(t) in Y at distance at most ε from γ(s), γ(t) respectively. By
the (BT) property, there exists an arc c : [s, t] → Y such that

diam c([s, t]) ≤ L|c(s)− c(t)| ≤ L(ω+(|s − t|) + 2ε) . (2)

Therefore, for any u ∈ [s, t], the triangle inequality shows that

|c(u) − γ(u)| ≤ |c(u)− c(s)|+ |c(s)− γ(s)|+ |γ(s)− γ(u)|

≤ L(ω+(|s − t|) + 2ε) + ε+ ω+(|s− t|) .
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Fix an integer n ≥ 1 so that ω+(1/n) ≤ ε. For j = 0, . . . n, let tj = j/n, xj = γ(tj),
and consider yj ∈ Y such that |xj − yj| ≤ ε with y0 = y and yn = y′. By the procedure
above, build for j = 0, . . . , (n − 1), an arc cj : [tj, tj+1] → Y joining yj to yj+1 such that,
according to (1), for any t ∈ [tj , tj+1],

|cj(t)− γ(t)| ≤ (3L+ 2)ε . (3)

Note that if cj ∩ ck 6= ∅ for j < k, then, by (2),

|yj − yk+1| ≤ diam cj + diam ck ≤ 6Lε ,

so that |xj − xk+1| ≤ (6L+ 2)ε. But since |xj − xk+1| ≥ ω−(tk+1 − tj), it follows that

|tk+1 − tj| ≤ ω−1
− ((6L+ 2)ε) .

Therefore, for any t ∈ [tj , tk+1],

|γ(t)− xj | ≤ (ω+ ◦ ω−1
− )((6L + 2)ε) . (4)

We extract an arc c : [0, 1] → Y from the cj ’s by induction as follows. Let us first define
κ : [0, 1] → Y as the concatenation of the arcs cj’s. Set s0 = 0 and c(s0) = κ(0). If sj−1

and c|[0,sj−1] are constructed, let

uj = min{t ∈ [sj−1, 1], ∃ s > t, κ(t) = κ(s)}

if it exists or uj = 1 otherwise, and

sj = max{t ∈ [0, 1], κ(t) = κ(uj)} .

If uj = 1, then we let c|[sj−1,1] = κ|[sj−1,1]. Otherwise, set c|[sj−1,uj ] = κ|[sj−1,uj ] and
c|[uj ,sj] = κ(uj). We may then continue. Since each cj is an arc, this procedure stops after
at most n steps. We obtain a parametrized arc c with connected fibers.

We now estimate the sup-norm. If t ∈ [sj, uj+1] for some j, then c(t) coincides with
κ(t) so (3) implies

|c(t)− γ(t)| ≤ (3L+ 2)ε .

If t ∈ [uj , sj], then c(t) = κ(uj) and there is some index 0 ≤ k < n such that tk ≤ uj <
tk+1. Applying (2) and (4), we obtain

|c(t)− γ(t)| ≤ |ck(uj)− yk|+ |yk − xk|+ |xk − γ(t)|

≤ 3Lε+ ε+ (ω+ ◦ ω−1
− )((3L + 2)ε) .
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Proposition 3.6 Let X be an L-annularly linearly connected doubling proper metric space.
Let T be a limit of Xn = (X,xn, Rnd) for xn ∈ X and Rn → ∞. Suppose f : Γ → T̂ is an
embedding of Γ. Then for all n sufficiently large, there exists an embedding fn : Γ → Xn.
Moreover, if f(Γ) ⊂ T , then the fn may be chosen so that supt∈Γ |fn(t) − f(t)| → 0 as
n→ ∞.

Proof: If B is a ball in an ALC metric space, we let B0 denote its connected component
which contains the center of the ball, so that (1/L)B ⊂ B0 ⊂ B.

Assume first that f(Γ) ⊂ T . Then f(Γ) is compact so we may replace the spaces Xn, T
with closed balls, and we may assume the convergence of spaces is Hausdorff convergence
in a compact metric space Z. It is convenient to supply Γ with a length distance which
makes every edge isometric to [0, 1]. We may think of the restriction of f to each edge e
as given by a map fe : [0, 1] → Γ. Let V be the vertex set of Γ. Choose r > 0 so that
|f(v)− f(w)| ≥ 6Lr for each pair of distinct vertices v,w.

The continuity of f implies the existence of δ > 0 such that if x ∈ Γ and d(x, V ) ≤ δ
then d(f(x), f(V )) ≤ r/2. Furthermore, since f is a homeomorphism onto its image, there
is some η ∈ (0, r/2) such that, for any (x, x′) ∈ e × e′ with e 6= e′, if |f(x) − f(x′)| ≤ η
then d(x, V ) ≤ δ. Since X is ALC, the spaces Xn have uniformly bounded turning. For
each n and each vertex v ∈ V , we pick points xnv ∈ Xn such that |f(v)− xnv | ≤ dH(T,Xn).
According to Lemma 3.5, there is some n0 such that, for each n ≥ n0, for each edge e, there
is an arc cne : [0, 1] → Xn approximating the edge fe with c

n
e (v) = xnv and sup |cne (t)−fe(t)| ≤

η/2. We let fn : Γ → Xn be the map obtained by setting fn|e = cne , i.e. by concatenating
each of the edge approximations.

If fn is injective, then we are done. Otherwise, if fn(x) = fn(x
′) for some x 6= x′, then

x and x′ belong to different edges and |f(x)−f(x′)| ≤ |f(x)−fn(x)|+ |fn(x
′)−f(x′)| ≤ η;

therefore, d(x, V ) ≤ δ, d(f(x), f(V )) ≤ r/2 and d(fn(x), x
n
v ) ≤ η + r/2 ≤ r. Hence, fn is

injective over Xn \ (∪vB
0(xnv , Lr)). For each v ∈ V , let e1, . . . , em be the edges incident

to v, and assume that fej(0) = v for all j. Apply Lemma 3.4 with U = B0(xnv , 2Lr) to
truncated edges (so that they are disjoint) to obtain an extension of the collection of arcs
{cnej}

m
j=1 to arcs [0, 1] → Xn meeting only at xnv . We have therefore produced an embedding

fn : Γ → Xn. Note that if fn(x) ∈ B0(xnv , 2Lr), then |fn(x) − f(x)| ≤ 4Lr + η/2 ≤ 5Lr.
Hence fn and f are 5Lr-close.

Now suppose f(Γ) meets the point at infinity. We may assume the point at infinity
is the image of a vertex v∞. By bisecting the edges meeting the point at infinity we may
assume there is a distinguished collection of valence two vertices v1, . . . , vm comprising the
ends of a star-shaped graph with center at v∞. Suppose the edge ej joins the vertex vj to
v∞, and the edge gj is the other edge incident to vj , j = 1, . . . ,m. Let Γ′ be the subgraph
obtained by deleting the edges e1, . . . , em, and let Γ′′ be the subgraph obtained by deleting
the edges e1, . . . , em and the edges g1, . . . , gm.
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By choosing v1, . . . , vm close enough to v∞, we may assume that f(Γ′′) is contained in a
ball B and that the images f(v1), . . . , f(vm) are contained in the ball 100LB. By the first
case, the restriction f : Γ′ → T is approximated by fn : Γ′ → Xn. Let Bn be a ball in Xn

which is close toB; let Un be the unbounded connected component ofXn\Bn. By the choice
of B, the set Un is arcwise connected and contains the points fn(v1), . . . , fn(vn), which are
endpoints of arcs gnj approximating the arcs gj . Choose arbitrarily a point x∞n ∈ Un which
does not meet the image of any arc gnj . By Lemma 3.4, there is an extension of the arcs
gnj to a collection of arcs which meet only at x∞n . We have produced an embedding of Γ
into Xn and the proof is complete.

Remark 3.7 The proof shows that if Zn are compact and uniformly ALC and if Zn → Z
in the Gromov-Hausdorff topology, then any finite graph embedding f : Γ → Z is a limit of
embeddings fn : Γ → Zn.

We now prove the theorem. We first record some facts and notation. Let X be an
unbounded ALC proper metric space. Given any compact set K and a point x ∈ K, there
is a single connected component of X \K which contains points from X \B(x, 2LdiamK).
Therefore the filling-in of K consisting of K with the other components of X \ K is a
compact subset of B(x, 2LdiamK).

Proof: (Thm3.2). Let (Rn) tend to +∞ and (T, t, dT ) be a limit of Xn = (X,x,Rnd).
We may assume that the spaces are homeomorphic to planes for the statement is local.
Since the Aleksandroff compactification T̂ of T is locally connected with no local cut
points, Claytor’s imbedding theorem implies that it is embeddable in the sphere if T̂ has
no embbeded complete graphs on five vertices, nor a complete bipartite graph on three
vertices [Cla]. This is the content of Proposition 3.6: if there were such a graph, then Xn

would also have a copy in a Jordan neighborhood of x, which is impossible.
This implies that we may think of T̂ as a locally connected continuum of the sphere

with no local cut points. If this is the sphere then the proof is complete. Otherwise, each
connected component of the complement is a Jordan domain, see [Why, Thm.VI.4.4].

Claim.— For any simply closed curve γ in T , there are two continua of T̂ , Ω and D, with
Ω∩T unbounded in T and D bounded, such that Ω∩D = γ, Ω∪D = T̂ and, for any z ∈ γ
and any r > 0, both intersections (Ω \ γ) ∩B(z, r) and (D \ γ) ∩B(z, r) are nonempty.

The claim implies that S2 \ T̂ has no bounded components. Since the point at infinity
is not a local cut point of T̂ , there can be at most one unbounded component, so that T̂
is a closed disk. Applying the Claim to a bounded Jordan curve γ in T which follows a
piece of its boundary, the claim also leads us to a contradiction. So, up to the claim, the
theorem is proven.

Proof of the claim. — Let γ be a simple closed curve in T . Choosing arbitrarily a
pair of vertices, we may regard it as a graph. Proposition 3.6 implies that γ is a limit
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of parametrized Jordan curves γn in Xn where the parametrizations converge uniformly.
Each γn for n large enough separates Xn into two components Dn and Ωn, the latter being
unbounded. We may assume that Dn → D and Ωn → Ω where D,Ω are closed connected
subsets of T . Adding the point at infinity to Ω provides us with a covering of T̂ by two
continua.

In this paragraph, we prove that γ = Ω ∩D. Suppose first that z ∈ Ω ∩D. Then by
definition, there exist wn ∈ Dn, w

′
n ∈ Ωn with wn → z and w′

n → z as n → ∞. The (BT)
property implies that there is a curve cn joining wn to w

′
n such that diam cn ≤ L·dn(wn, w

′
n).

The Jordan curve theorem implies that cn intersects γn in a point zn. As n tends to infinity,
zn → z, so we obtain that z ∈ γ. Conversely, suppose now z ∈ γ. Then z = lim zn with
zn ∈ γn. Applying the Jordan curve theorem again gives wn ∈ Dn and w′

n ∈ Ωn arbitrarily
close to zn; we may therefore assume wn → z and w′

n → z and so z ∈ Ω ∩D.
For the second part of the claim, we argue by contradiction. Suppose one of the

intersections in the statement is empty; we will only treat the case of D. So, assume that
there is some z ∈ γ and r > 0 such that D ∩ B(z, r) ⊂ γ. Fix 0 < ε ≪ r; we will prove
that this implies the existence of points zn, z

′
n ∈ γn such that the connected components

of γn \ {zn, z
′
n} have diameter comparable to that of γn but that dn(zn, z

′
n) ≤ 2ε. Letting

ε go to 0 and going to the limit, this will contradict that γ is a simple closed curve.
Fix a point y on γ at distance 1

2diam γ from z. Suppose yn, zn ∈ γn and yn → y
and zn → z. By assumption, for n large enough, Dn ∩ B(zn, r/2) is contained in the
ε-neighborhood of γn.

Let En be the closure of the filling-in of the component of B(zn, r/6L
2) containing zn

and Fn be the closure of the unbounded component of Xn\B(zn, r/2L) so that d(En, Fn) ≥
(r/3L) and An ⊂ B(zn, r/2) hold. We may assume that r is small enough so that Fn
contains yn. The set An = Xn \ (En ∪ Fn) is an annulus, and the curves γn must connect
the ends (and may also connect an end with itself); see Figure 1. Denote by cn1 and cn2 the
closures of the two components of γn \ {zn, yn}; they are given by parametrizations (which
we denote also by cnj ) defined on compact intervals. By the uniform continuity of the cnj ,
there is some δ > 0 such that if |s− t| ≤ δ then |cnj (s)− cnj (t)| ≤ d(En, Fn)/2. Since the cnj
are defined on compact intervals, it follows that there are only finitely many components
of the intersection cnj ∩An joining the end En to the end Fn. Hence there is a component
Un of An ∩ Dn which has in its boundary pieces of both cn1 and of cn2 . By assumption,
Dn ∩ B(zn, r/2) is contained in the ε-neighborhood of γn, and An ⊂ B(zn, r/2), so the
component Un of the intersection is contained in the ε-neighborhood of γn.

It follows that for all u ∈ Un, we have that d(u, ∂Un) ≤ d(u, γn ∩ ∂Un) ≤ ε where
d(u, ∂Un) is the minimum distance from u to a point in ∂U . For each j = 1, 2, the set
U jn of points in Un which are at distance strictly less than ε from cnj is non-empty and
open, hence the connectivity of Un implies that at least one point in Un is at distance at
most ε from both curves cn1 and cn2 : we may find wnj ∈ cnj such that dn(w

n
1 , w

n
2 ) < 2ε.

Furthermore, the diameters of the components of γn \{w1, w2} are bounded from below by
a constant which depends only on r and diam γn. This ends the proofs of the claim and of
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Figure 1

the theorem.

3.4 Topological mixing properties

We will assume throughout this subsection that f is a topologically cxc map from the
sphere to itself, endowed with a metric dv as in Theorem 1.5. The main result, Proposition
3.9, articulates in quantitative form the principle of the Conformal Elevator: arbitrarily
small balls can be blown up via the dynamics with controlled distortion. The proof will
use the fact ([HP1, Cor. 3.5.4]) that the map f is a so-called metric cxc map with respect
to (S2, dv). Before recalling the properties needed, we define the notion of roundness.

Roundness. Let (Z, d) be a metric space and let A be a bounded, proper subset of Z
with nonempty interior. Given a ∈ int(A), let

L(A, a) = sup{d(a, b) : b ∈ A}

and
l(A, a) = sup{r : r ≤ L(A, a) and B(a, r) ⊂ A}

denote, respectively, the outradius and inradius of A about a. While the outradius is
intrinsic, the inradius depends on how A sits in Z. The condition r ≤ L(A, a) is necessary

20



to guarantee that the outradius is at least the inradius. The roundness of A about a is
defined as

Round(A, a) = L(A, a)/l(A, a) ∈ [1,∞).

One says A is K-almost-round if Round(A, a) ≤ K for some a ∈ A, and this implies that
for some s > 0,

B(a, s) ⊂ A ⊂ B(a,Ks).

Being metric cxc implies the existence of

• continuous, increasing embeddings ρ± : [1,∞) → [1,∞) such that, for all n, k ∈ N

and for all Ũ ∈ Un+k, ỹ ∈ Ũ , if U = fk(Ũ ) ∈ Un and y = fk(ỹ) then

Round(Ũ , ỹ) < ρ−(Round(U, y)) and Round(U, y) < ρ+(Round(Ũ , ỹ)) ;

• increasing homeomorphisms δ± : [0, 1] → [0, 1] such that, for all n0, n1, k ∈ N and for
all Ũ ∈ Un0+k, Ũ

′ ∈ Un1+k with Ũ ′ ⊂ Ũ , if U = fk(Ũ ) ∈ Un0
and U ′ =, fk(Ũ ′) ∈ Un1

,
then

δ−1
+

(
diamU ′

diamU

)
≤

diamŨ ′

diamŨ
≤ δ−

(
diamU ′

diamU

)
.

To control distortion, some “Koebe space” is needed. To this end, let Pk,K denote the
set of preferred pairs (W ′,W ) of elements of U such that |W ′| = |W | + k, W ′ ⊂ W and
Round(W,x) ≤ K for any x ∈W ′.

Proposition 3.8 1. For any K ≥ 1, there exists K ′ such that, whenever (U ′, U) ∈
Pk,K , W

′,W ∈ U are such that fp(U ′) = f q(W ′) and fp(U) = f q(W ) belong to U
for some iterates p and q, and W ′ ⊂W , then (W ′,W ) ∈ Pk,K ′.

2. There exist n1 and K such that, for any kj ∈ N, any Uj ∈ Ukj , j = 1, 2, there exists

Ũ1 ∈ f−(k2+n1)({U1}) such that (Ũ1, U2) ∈ Pk1+n1,K .

3. There exists k0 and K0 such that, for any n ≥ 0 and any k ≥ k0,

(a) for any W ′ ∈ Un+k, there exists W ∈ Un such that (W ′,W ) ∈ Pk,K0
;

(b) for any W ∈ Un, there exists W ′ ∈ Un+k such that (W ′,W ) ∈ Pk,K0
.

Proof: The first statement follows from the roundness distortion bounds enjoyed by metric
cxc maps, by choosing K ′ = (ρ− ◦ρ+)(K). The conclusion in case (a) of the last statement
follows directly from the diameter and roundness bounds using the fact that U is finite;
case (b) follows from the second point.

21



We now prove the second point, and start by fixing some notation. There exists ri > 0
such that, for any U ∈ U , there is some xU ∈ U with B(xU , ri) ⊂ U . Let n0 ≥ 1 be such
that fn0(U ∩ X) = X for any U ∈ U . Choose m ≥ n0 as small as possible such that
2dm ≤ ri/2.

We first assume that U2 ∈ U . Let W ∈ Um contain xU2
. Since f2m(W ) = X, there is a

component Ũ1 of f−2m(U1) which intersects W . It follows that B(y, ri − 2dm) ⊂ U2 for all
y ∈ Ũ1 since, for all z ∈ B(y, ri − 2dm),

|xU2
− z| ≤ |xU2

− y|+ |y − z|

< diamW + diam Ũ1 + (ri − 2dm)

≤ ri.

Therefore, Round(U2, y) ≤ 2d0/ri. Thus, (Ũ1, U2) ∈ P2m+k1,2d0/ri .

Pick now U2 randomly. It follows from above that there exists Ũ ′
1 ∈ U2m+k1 such that

(Ũ ′
1, f

k2(U2)) ∈ P2m+k1,2d0/ri . By choosing a connected component Ũ1 of f−k2(Ũ1) in U2,

we obtain (Ũ1, U2) ∈ Pn1+k1,K with n1 = 2m and K = ρ−(2d0/ri).

We derive the following property:

Corollary 3.9 (Injective conformal elevator) For any X ∈ G(f), there exist a dis-
tortion function ηice, constants c > 0 and r0 > 0 such that, for any x ∈ X and r > 0,
there are an iterate n ≥ 0 and a ball B ⊂ B(x, r) of radius at least c · r such that fn|B is
ηice-quasisymmetric and fn(B) contains a ball of radius at least r0.

Proof: It is enough to prove the statement for the metric dv . Recall that U denotes the
countable set of components of preimages of elements of U0 under iterates of f . The degree
hypothesis in the definition of topologically cxc implies that we can find someW ∈ Uk such
that the degree of fk : W → fk(W ) is maximal, so that any further preimages W̃ of W
map onto W by degree one i.e., are homeomorphisms.

It follows from [HP1, Prop. 3.3.2] that W contains some ball B(ξ, 4R) such that for any
iterate n, any ξ̃ ∈ f−n(ξ), the restriction fn : B(ξ̃, 4Rθn) → B(ξ, 4R) is a homeomorphism.
[HP1, Prop. 3.2.3] shows that fn : B(ξ̃, Rθn) → B(ξ,R) is a similarity (in particular, it

is quasisymmetric) and that the diameter of the unique preimage W̃ of W containing
B(ξ̃, Rθn) is comparable to Rθn.

Now suppose B(x, r) is an arbitrary ball. By [HP1, Prop. 2.6.6], there exists U ∈ U
with U ⊂ B(x, r) and diamU & r. But Proposition 3.8 implies the existence of an iterated

preimage W̃ of W with W̃ ⊂ U and ||W̃ | − |U || = O(1). So U contains W̃ , which is not

too small; the previous paragraph implies W̃ contains the desired ball B.
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3.5 Density points

Let (Z, d, µ) be a Q-regular metric space. We recall that µ extends to an outer measure
(which we also denote by µ) on the power set of Z so that if A is any subset of Z, then
there exists a Borel set A∗ containing A such that µ(A) = µ(A∗).

A point a ∈ A is an m-density point if

lim
r→0

µ(A ∩B(a, r))

µ(B(a, r))
= 1 .

A point a ∈ A is a t-density point if, for all ε > 0,

lim
r→0

1

r
sup

z∈B(a,r)
d(z,A ∩B(a, (1 + ε)r)) = 0 .

Informally: the set A becomes hairier and hairier upon zooming in at a t-density point.

Lemma 3.10 Suppose Z is doubling and A ⊂ Z. Then each m-density point of A is also
a t-density point.

Proof: If not, there are anm-density point a of A, positive constants ε and c > 0, sequences
of radii (rn) tending to 0 and of points zn ∈ B(a, rn) such that d(zn, A∩B(a, (1+ ε)rn)) ≥
crn. Of course c ≤ 1 since a ∈ A, so B(zn, εcrn) ⊂ B(a, (1 + ε)rn) \ A and

µ(B(a, (1 + ε)rn) \ A)

µ(B(a, (1 + ε)rn))
≥

µ(B(zn, εcrn))

µ(B(a, (1 + ε)rn))
& 1

which contradicts that a is an m-density point of A.

If A ⊂ Z and a ∈ A, any tangent space to (A, d|A) at a is naturally a subspace of a
tangent space to (Z, d) at a. Equality holds if a is a t-density point of A.

Lemma 3.11 Let a be a t-density point of a subset A of a doubling proper metric space
Z. Suppose rn ↓ 0 is a decreasing sequence of radii such that the spaces (Zn, dn = d/rn, a)
converge to a tangent (T, d, a). Let A′ ⊂ T be the set of points z such that there are
an ∈ Zn ∩A such that an → z. Then A′ = T .

Proof: Let z ∈ T , and consider a sequence of points zn which tends to z. Since a is a
t-density point, for each n we have

d(zn, A) ≤ sup
x∈B(a,|zn−a|)

d(x,A ∩B(a, 2|zn − a|))
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so there is a point an in A ∩B(a, 2|zn − a|) such that

lim
n

|zn − an|

|zn − a|
= 0 .

Therefore,

dn(zn, an) ≤
|zn − a|

rn
·
|zn − an|

|zn − a|
.

By definition, the first fraction is uniformly bounded and the second tends to 0: this proves
that z ∈ A′.

3.6 Weak tangent spaces for topologically cxc maps

We now analyze weak tangents to metric spaces in the conformal gauge of a topologically
cxc map f . Let dv be a visual metric given by Theorem 1.5. The metric space (S2, dv) is
doubling, a property preserved by quasisymmetries. Hence for any d ∈ G(f), any sequence
rn → 0, and any sequence (xn) of points in X = (S2, d), one may find a subsequence such
that (X, d/rn, xn) tends in the Gromov-Hausdorff topology to a doubling metric space
(T, t).

Proposition 3.12 For any X ∈ G(f), and any weak tangent space (T, t) of X, there is
an open, onto map h : T → X with discrete fibers, and there is some constant 0 < c < 1
such that, for any R > 0, there is some r0 such that any ball B(x, r) with x ∈ B(t, R) and
r ∈ (0, r0) contains a ball B of radius cr such that g|B is η-quasisymmetric.

We will use the following lemma whose proof is left to the reader.

Lemma 3.13 Let X ∈ G(f). Then any tangent space of X is quasisymmetrically equiva-
lent to a tangent space of a visual metric metric (S2, dv).

Proof: (Prop. 3.12) Lemma 3.13 implies that it is enough to treat the case d = dv.
By assumption (T, t) is a limit of (Xn, xn) where Xn = (X, dv/rn) and (rn) tends to

zero.
Axiom [Irred] guarantees an integer n0 so fn0(U) = X for all U ∈ U0. By Proposition

3.8(3), there exists K > 1 such that for each n sufficiently large, there exists Wn ∈ U
containing xn such that Round(Wn, xn) ≤ K and L(Wn, xn) ≍ rn; that is, Wn is K-
almost round about xn and has diameter comparable to 1 in the rescaled metric dv/rn.
Let kn = |Wn|. ¿From the diameter estimates (3) of Theorem 1.5, the family of maps

(fkn+n0 : Xn → X)n
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is uniformly Lipschitz for some constant independent of n. Passing to a subsequence, we
may assume the sequence (fkn+n0 : Xn → X)n converges (in the Gromov-Hausdorff sense)
to a Lipschitz map h : T → X. Since fkn+n0(Wn) = X by construction, the limit h is also
onto.

Let us prove that h is open. Pick z ∈ T and r ∈ (0,diamX), and choose zn ∈ Xn with
zn → z. By the diameter estimates (3) of Theorem 1.5, fkn+n0(BXn(zn, r)) is ball centered
at fkn+n0(zn) with definite radius, at least some uniform constant r′ > 0. It follows that,
for n large enough, it covers B(h(z), r′/2), so h(B(z, r)) ⊃ B(h(z), r′/2).

Similarly, Corollary 3.9 implies the quasisymmetry property; we leave the details to the
reader.

Lastly, we prove that h has discrete fibers. Fix a large ball B(t, R) ⊂ T . Pick WR
n ∈ U

containing xn such that Round(WR
n , xn) ≤ K, B(xn, R ·rn) ⊂WR

n and L(Wn, xn) ≍ R ·rn.
For each n, ||WR

n |−|Wn|| = O(logR) holds so that fkn+n0 |WR
n
have multiplicity bounded by

a constant depending only on R. This implies that h|B(t,R) has also bounded multiplicity.

Applying a theorem of Whyburn [Why, Thm.X.5.1], Theorem 3.2 implies

Corollary 3.14 If f : S2 → S2 is topologically cxc, and X ∈ G(f), then the map h : T →
X given by Proposition 3.12 is a branched covering: it is locally of the form z 7→ zk for
some integer k ≥ 1 and the branch set is discrete.

4 Moduli of curves

This section discusses curves and different notions of moduli of family of curves.

4.1 Rectifiable curves and curve families

Let X be a proper metric space. In this subsection, we discuss some generalities on curves,
see e.g [Väi, Chap. 1] for details.

A curve is a continuous map γ : I → X of a possibly infinite interval I into X; it is
degenerate if it is constant, and nondegenerate otherwise. Given two curves γ : I → X and
γ′ : I ′ → X, we say they differ by a reparametrization if there exists a (not necessarily
strict) monotone and onto map α : I → I ′ such that γ = γ′ ◦ α or α : I ′ → I such that
γ′ = γ ◦ α. Note that two curves which differ by a reparametrization are simultaneously
rectifiable or not.

We want to rescale curves of possibly variable length; for this, it is useful to think
of such curves as maps of a common domain R into X. Let γ : [0, ℓ(γ)] → X be a
rectifiable curve parametrized by arclength. Given t0 ∈ [0, ℓ(γ)] and x0 = γ(t0), we define
its complete parametrization at t0, denoted (γ0, t0) as the map γ0 : (R, 0) → (X,x0) defined
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by γ0(t) = γ(t+ t0) on [−t0, ℓ(γ)− t0], γ0|(−∞,−t0] = γ(0) and γ0|[ℓ(γ)−t0,∞) = γ(ℓ(γ)). We
let Iγ0 be the minimal compact interval such that γ0(Iγ0) = γ0(R). Note that given
x ∈ γ(I), there might be several complete parametrizations γ0 such that γ0(0) = x.

A sequence (γ0n : (R, 0) → (X,xn))n of completely parametrized curves converges if it
converges uniformly on compact subsets of R; note that this implies that the sequence xn
converges. The limit of such a sequence is a locally rectifiable curve. Given a bounded
subset A of X, the set of completely parametrized curves (R, 0) → (X,x) for which x ∈ A
is relatively compact.

Given a completely parametrized curve γ : (R, 0) → (X,x0) and a small constant
r > 0, the rescaled curve given by t 7→ γ(t/r) defines again a completely parametrized
curve γ/r : (R, 0) → ((1/r)X,x0). Note that the intervals on which these rescaled curves
are nonconstant satisfy Iγ/r = (1/r)Iγ0 and therefore grow to R as r → 0.

The following proposition comes from [MgM, Lma9.1].

Proposition 4.1 Let γ : I → X be a rectifiable curve parametrised by arc length in a
metric space X. Then

lim
h→0

d(γ(t+ h), γ(t − h))

2|h|
= 1

for almost all t ∈ I.

Note that if

lim
h→0

d(γ(t+ h), γ(t − h))

2|h|
= 1

holds for some t ∈ I then we also have

lim
h→0

d(γ(t+ h), γ(t))

|h|
= 1

since
d(γ(t+ h), γ(t − h))

2|h|
≤

1

2

(
d(γ(t+ h), γ(t))

|h|
+
d(γ(t − h), γ(t))

|h|

)
≤ 1

and each term of the sum is also bounded by 1. That is, rectifiable curves are asymptotically
geodesic near almost every point.

The next proposition illustrates how this property of rectifiable curves will be used to
produce many geodesics on tangent spaces. The hypothesis gives some uniformity to the
rate at which rectifiable curves become asymptotically geodesic.

Proposition 4.2 Let (X, d) be a doubling proper metric space and (εk) be a sequence of
positive reals tending to 0. Suppose A ⊂ X and for each x ∈ A, there exists a completely
parametrized curve γ : (R, 0) → (X,x) such that, for all k,

sup
|h|≤1/k

∣∣∣∣
d(γ(h), γ(−h))

2|h|
− 1

∣∣∣∣ ≤ εk .
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Assume that x0 is a point of t-density of A. Let (rn) be a sequence of positive reals
tending to zero, and assume that the limit of the rescaled spaces Xn = (X,x0, (1/rn)d)
exists in the pointed Gromov-Hausdorff topology. Let (Z, z0) be the limit.

Then any point in Z lies in the image of a bi-infinite geodesic curve γ : R → Z which
is a limit of rescaled completely parametrized curves passing through points of A.

We say that the geodesic curve γ was obtained by blowing up. The rescaled curves will
be completely parametrized curves in Xn which are rescalings of completely parametrized
curves in X.

Proof: Let z ∈ Z; by Lemma 3.11, since x0 is a t-density point, one may find a sequence
of points xn ∈ Xn ∩ A which tends to z. Consider complete parametrized curves (γ̂n, xn)
in X. Let γn(t) = γ̂n(rnt) be its complete parametrization in Xn. Since the original
parametrizations are by arc length, each γn is a rectifiable curve which is represented by a
1-Lipschitz function: let t, t′ ∈ R,

(1/rn)d(γn(t), γn(t
′)) = (1/rn)d(γ̂n(trn), γ̂n(t

′rn)) ≤ (1/rn)|(trn)− (t′rn)| .

Thus, Arzela-Ascoli’s theorem implies the existence of a 1-Lipschitz limit γ : R → Z, with
γ(0) = z.

We shall prove that γ is a geodesic.
By the choice of γn we have

lim
h→0

sup
n

∣∣∣∣
d(γ̂n(h), γ̂n(0))

|h|
− 1

∣∣∣∣ = 0 ,

and

lim
n→∞

(1/rn)d(γn(t), γn(0)) = lim
n→∞

|t|
d(γ̂n(trn), γ̂n(0))

|t|rn
= |t| .

Hence d(γ(t), γ(0)) = |t|. Similarly,

lim
n→∞

(1/rn)d(γn(t), γn(−t)) = lim
n→∞

|t|
d(γ̂n(trn), γ̂n(−trn))

|t|rn
= 2|t|

and d(γ(t), γ(−t)) = 2|t|.
Let t, t′ be non-zero real numbers. We may assume that |t| ≥ |t′|.
We first assume that they have the same sign. Hence |t− t′| = |t| − |t′|. Therefore,

|t− t′| = |d(γ(t), γ(0)) − d(γ(t′), γ(0))| ≤ d(γ(t), γ(t′)) ≤ |t− t′| .

If t and t′ have opposite signs, then |t− t′| = |t|+ |t′| and |t+ t′| = |t| − |t′|. Thus,

|t− t′| = 2|t| − (|t| − |t′|) = d(γ(t), γ(−t)) − d(γ(t′), γ(−t)) ≤ d(γ(t), γ(t′)) ≤ |t− t′| .

Therefore, γ is geodesic.
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4.2 Analytic moduli

Suppose (X, d, µ) is a metric measure space, Γ is a family of curves in X, and p ≥ 1. The
(analytic) p-modulus of Γ is defined by

modpΓ = inf

∫

X
ρpdµ

where the infimum is taken over all Borel functions ρ : X → [0,+∞] such that ρ is
admissible, i.e. ∫

γ
ρ ds ≥ 1

for all γ ∈ Γ which are rectifiable. If Γ contains no rectifiable curves, modpΓ is defined
to be zero. Note that when Γ contains a constant curve, then there are no admissible ρ,
so we set modpΓ = +∞. We say that a family of curves is nondegenerate if it contains
no constant curves. Modulus behaves like an outer measure: it is countably subadditive,
etc.—see [HK].

We note that the moduli of two families of curves Γ and Γ′ are the same if each curve
of Γ′ differs from a curve of Γ by reparametrization, and vice-versa.

We recall the following basic estimate in an Ahlfors-regular metric space [HK, Lma3.14]:

Proposition 4.3 Let X be a Q-Ahlfors regular metric space with Q > 1, Γ be the family
of curves which joins B(x, r) to X \ B(x,R) for some x ∈ X, and 0 < r < R ≤ diamX.
Then

modQΓ .
1

logQ−1(R/r)
.

In particular, the family of non-trivial curves which go through x has zero Q-modulus.

4.3 Thick curves

Suppose X is a Q-Ahlfors regular metric space. Denote by P(X) the set of compact
continuous curves γ : [0, 1] → X, endowed with the supremum-norm topology inherited
from the metric of X. Thus, if γ is a curve, then B∞(γ, r) denotes the set of curves
γ′ : [0, 1] → X such that |γ(t)− γ′(t)| < r for all t ∈ [0, 1].

Following Bonk and Kleiner, we say a curve γ ∈ P(X) is thick if it is nonconstant and
the Q-modulus of B∞(γ, ǫ) is positive for all ǫ > 0 [BnK3]. The following properties are
established by Bonk and Kleiner:

Proposition 4.4 Let X be an Ahlfors regular space. The set of non-thick curves has zero
modulus. A nonconstant limit in P(X) of thick curves is thick, and nonconstant connected
subcurves of thick curves are thick.
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If there exist curve families of positive modulus, the preceding proposition implies the
existence of many thick curves. The next proposition refines and localizes this result.

Proposition 4.5 Let X be an Ahlfors regular space and Γ ⊂ P(X) a family of nondegen-
erate curves of positive modulus. The subfamily Γ′ of curves γ ∈ Γ such that there is some
ε > 0 with the property that modQ(B∞(γ, ε) ∩ Γ) = 0 has zero modulus.

Proof: We may cover Γ′ ⊂ P(X) by balls Bi of uniformly bounded radius such that
modQBi ∩ Γ = 0. Since P(X) is separable, we may extract a countable subcover: the
proposition follows from the σ-subadditivity of modulus.

Let us observe the following fact: let γ : I → X and γ′ : I ′ → X be two curves
which differ by a reparametrization. Given ε > 0, denote by Γε (resp. Γ

′
ε) the set of curves

c : I → X (resp. c′ : I ′ → X) such that supt∈I |c(t)−γ(t)| ≤ ε (resp. supt∈I′ |c
′(t)−γ′(t)| ≤

ε). Let α : I → I ′ be a monotone onto map such that γ = γ′ ◦ α. If c′ ∈ Γ′
ε, then

(c′ ◦α) ∈ Γε. Conversely, assume that c ∈ Γε. Since α is monotone, it is a uniform limit of
homeomorphisms αn : I → I ′. Then, for all t ∈ I ′,

|α ◦ α−1
n (t)− t| = |α ◦ α−1

n (t)− αn ◦ α
−1
n (t)| ≤ ‖α− αn‖∞ .

Let ω be a modulus of continuity for γ′. It follows that

|c ◦ α−1
n (t)− γ′(t)| ≤ |c ◦ α−1

n (t)− γ ◦ α−1
n (t)|+ |γ ◦ α−1

n (t)− γ′(t)|

≤ ‖c− γ‖∞ + |γ′(α ◦ α−1
n (t))− γ′(t)| ≤ ε+ ω(‖α − αn‖∞) .

Therefore, if n is large enough then c ◦ α−1
n ∈ Γ′

2ε. ¿From this discussion, we see that
thickness is a notion which may be generalized to curves defined on other intervals than
[0, 1], and that two curves which differ by a reparametrization are simultaneously thick or
not.

We record here the following result:

Proposition 4.6 (Tyson) Let X and Y be two regular metric spaces of dimension Q > 1
and h : X → Y be a quasisymmetric map. There exists a constant K ≥ 1 such that, for
any family of curves Γ ⊂ X,

1

K
modQΓ ≤ modQh(Γ) ≤ KmodQΓ .

In particular, quasisymmetric maps preserve the set of thick curves.

For a proof, see [Tys, Thm. 1.4] (see also Prop. 5.2).

Note that thick curves need not exist: if there is no family of curves of positive modulus,
which happens for instance if there are no rectifiable curves, then there are no thick curves.
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4.4 Support of curve families

If Γ is family of curves, we define its support suppΓ as the set of points x ∈ X such that
x ∈ γ for some γ ∈ Γ. We note that suppΓ might not be measurable. In any case, suppΓ
is contained in some Borel set of the same measure. We will then denote by supp∗Γ such
a set.

For L > 0, let ΓL = {γ ∈ Γ, ℓ(γ) ≤ L} be the subfamily of curves in Γ of length
at most L; note that every element of ΓL is rectifiable. We say that Γ is closed if, for
all L > 0, the set of all complete parametrizations of elements of ΓL is closed in the
supremum norm on functions R → X. That is, whenever a sequence (γn) ⊂ ΓL has the
property that some choice of complete parametrizations (γ0n) converges, then the limit is,
up to reparametrization, a curve in ΓL. Note that according to this definition the property
of being closed depends only on the subfamily of rectifiable curves.

Lemma 4.7 Let X be a Q-regular metric space for which there exists a family of non-
degenerate curves of positive Q-modulus. Then there exists L > 1 and a closed family Γ
of rectifiable curves of diameter at least 1/L and of length at most L and with compact
support and positive modulus.

Proof: According to Proposition 4.4, X contains a rectifiable thick curve γ ∈ P(X).
Choose r so that 0 < r < diam γ/3 and put Γ0 = B∞(γ, r) ⊂ P(X). The family Γ0 has
no trivial curves and each curve has diameter at least diam γ/3. Define Γn as the curves
of Γ0 of length at most n. By the σ-subadditivity of moduli, there is some n such that
modQΓn > 0. The closure Γ of the set of all complete parametrizations of elements of Γn
in the sup-norm gives the desired family; the additional curves added as limit points are
rectifiable.

4.5 Combinatorial moduli

After recalling the definition of combinatorial moduli, we establish and recall some basic
estimates which will be used later on.

4.5.1 Definitions and properties

Definitions. Let S be a covering of a topological space X, and let p ≥ 1. Denote by

Mp(S) the set of functions ρ : S → R+ such that 0 <
∑
ρ(s)p < ∞; elements of Mp(S)

we call admissible metrics. For K ⊂ X we denote by S(K) the set of elements of S which
intersect K. The ρ-length of K is by definition

ℓρ(K) =
∑

s∈S(K)

ρ(s) .
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Define the ρ-volume by

Vp(ρ) =
∑

s∈S

ρ(s)p .

If Γ is a family of curves in X and if ρ ∈ Mp(S), we define

Lρ(Γ,S) = inf
γ∈Γ

ℓρ(γ),

modQ(Γ, ρ,S) =
Vp(ρ)

Lρ(Γ,S)p
,

and the combinatorial modulus by

modp(Γ,S) = inf
ρ∈Mp(S)

modp(Γ, ρ,S).

Note that if S is a finite cover, then the modulus of a nonempty family of curves is
always finite and positive.

A metric ρ for which modp(Γ, ρ,S) = modp(Γ,S) will be called optimal. We will
consider here only finite covers; in this case the proof of the existence of optimal metrics
is a straightforward argument in linear algebra. The following result is the analog of the
classical Beurling’s criterion which characterises optimal metrics.

Proposition 4.8 Let S be a finite cover of a space X, Γ a family of curves and p > 1. An
admissible metric ρ is optimal if and only if there is a non-empty finite subfamily Γ0 ⊂ Γ
and non-negative scalars λγ , γ ∈ Γ0, such that

1. for all γ ∈ Γ0, ℓρ(γ) = Lρ(Γ,S) ;

2. for any s ∈ S,

pρ(s)p−1 =
∑

λγ

where the sum is taken over curves in Γ0 which go through s.

Moreover, an optimal metric is unique up to scale, and one has

modp(Γ,S) =
1

p

∑

γ∈Γ0

λγ .

For a proof, see Proposition 2.1 and Lemma 2.2 in [Häı].

Proposition 4.9 Let S be a locally finite cover of a topological space X and p ≥ 1.

1. If Γ1 ⊂ Γ2 then modp(Γ1,S) ≤ modp(Γ2,S).

2. If every curve of Γ1 contains a curve of Γ2 then modp(Γ1,S) ≤ modp(Γ2,S).

31



3. Let Γ1, . . . ,Γn be a set of curve families in X. Then

modp(∪Γj,S) ≤
∑

modp(Γj ,S) .

The proof is the same as the standard one for classical moduli (see for instance [Väi,
Thm. 6.2, Thm. 6.7]) and so is omitted.

4.5.2 Dimension comparison

Let X be a topological space endowed with a finite cover S. Consider a curve family Γ. For
p ≥ 1, when considering admissible metrics ρ for the p-modulus, one may always assume
that Lρ(Γ,S) = 1 and ρ ≤ 1. Thus, if 1 ≤ p ≤ q, then modq(Γ,S) ≤ modp(Γ,S). The
following proposition improves in some cases this estimate:

Proposition 4.10 If 1 ≤ p ≤ q, then, for all ε > 0, the following holds:

modq(Γ,S) ≤

(
εq−p +

1

εp
sup
s∈S

modq(Γ(s),S)

)
modp(Γ,S)

where Γ(s) denotes the subfamily of curves of Γ which go through s.

Proof: Let ρ be the optimal metric for the p-modulus of Γ such that Lρ(Γ,S) = 1. For
ε > 0, set E(ε) = {s ∈ S, ρ(s) ≥ ε}. It follows from the Markov inequality that

card E(ε) ≤
1

εp
modp(Γ,S) .

Decompose Γ into two family of curves: those which go through at least one element of
E(ε), which we will denote by ΓE , and its complement which we denote by Γ′. Then, by
the elementary properties of moduli,





modq(Γ
′,S) ≤

∑

s∈S(Γ′)

ρq(s) ≤

(
sup

S\E(ε)
ρ

)q−p ∑

s∈S(Γ′)

ρp(s) ≤ εq−pmodp(Γ,S) ,

modq(ΓE ,S) ≤
∑

s∈E(ε)

modq(Γ(s),S) ≤

(
1

εp
modp(Γ,S)

)
sup
s∈S

modq(Γ(s),S) .

Hence

modq(Γ,S) ≤

(
εq−p +

1

εp
sup
s∈S

modq(Γ(s),S)

)
modp(Γ,S) .
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Corollary 4.11 Let (Sn) be a sequence of finite coverings and q > p ≥ 1. If we assume
there is a sequence (ηn) of positive numbers tending to zero such that

sup
s∈Sn

modq(Γ(s),Sn) ≤ ηn ,

then

lim
n→∞

modq(Γ,Sn)

modp(Γ,Sn)
= 0 .

This is yet further evidence that combinatorial modulus behaves like Hausdorff measure,
under the appropriate assumptions.

Proof: Pick εn = η
1/(2p)
n so that (εn) converges to 0, and apply Proposition 4.10 for each

n. It follows that
modq(Γ,Sn)

modp(Γ,Sn)
≤ εq−pn +

1

εpn
ηn ≤ εq−pn + η1/2n .

Therefore, since q > p,

lim
n→∞

modq(Γ,Sn)

modp(Γ,Sn)
= 0 .

4.5.3 Transformation rules

Proposition 4.12 Let X and X ′ be two connected, Hausdorff and locally compact topo-
logical spaces, and S, S ′ respectively be coverings by compact connected subsets. Let
f : X ′ → X be an onto, proper and continuous map such that

• for every s′ ∈ S ′, f(s′) ∈ S and for every s ∈ S, the set of connected components of
f−1({s}) is a subset of S ′;

• there exists an integer d ≥ 1 such that, for every s ∈ S, the set f−1({s}) has at most
d connected components.

Let Γ′ ⊂ X ′ and Γ ⊂ X be two family of curves. Then

1. if, for every γ′ ∈ Γ′, f(γ′) contains a curve γ ∈ Γ, then

modp(Γ
′,S ′) ≤ d ·modp(Γ,S) ;

2. if every curve in Γ contains the image of a curve of Γ′, then

modp(Γ
′,S ′) ≥

1

dp
modp(Γ,S) .
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Proof:

1. Let ρ be an admissible metric for Γ. Set ρ′ = ρ ◦ f . If γ′ ∈ Γ′, then let γ ∈ Γ be a
subcurve of f(γ′). One has f(S ′(γ′)) = S(f(γ′)) so

ℓρ′(γ
′) ≥

∑

s∈S(f(γ′))

ρ(s) ≥
∑

s∈S(γ)

ρ(s) ≥ L(Γ, ρ) .

On the other hand, Vp(ρ
′) ≤ d · Vp(ρ) so that

modp(Γ
′,S ′) ≤ dmodp(Γ,S) .

2. Let ρ′ be an admissible metric for Γ′. Set

ρ(s) =


 ∑

f(s′)=s

ρ′(s′)p




1/p

.

It follows that

ρ(s) ≥ max
f(s′)=s

ρ′(s′) ≥
1

d

∑

f(s′)=s

ρ′(s′) .

Therefore, if γ ∈ Γ and γ′ is a curve the image of which is contained in γ, then, as
S ′(γ′) ⊂ S ′(f−1(γ)),

ℓρ(γ) ≥
1

d
ℓρ′(γ

′) ≥
1

d
L(Γ′, ρ′) .

Moreover, Vp(ρ) = Vp(ρ
′) so that

modp(Γ
′,S ′) ≥

1

dp
modp(Γ,S) .

4.5.4 Analytic versus combinatorial moduli

Under suitable conditions, the combinatorial moduli obtained from a sequence (Sn) of
coverings can be used to approximate analytic moduli on metric measure spaces.

The approximation result we use requires the sequence of coverings (Sn) to be a uniform
family of quasipackings.
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Definition 4.13 (Quasipacking) A quasipacking of a metric space is a locally finite
cover S such that there is some constant K ≥ 1 which satisfies the following property.
For any s ∈ S, there are two balls B(xs, rs) ⊂ s ⊂ B(xs,K · rs) such that the family
{B(xs, rs)}s∈S consists of pairwise disjoint balls. A family (Sn) of quasipackings is called
uniform if the mesh of Sn tends to zero as n → ∞ and the constant K defined above can
be chosen independent of n.

Uniform quasipackings are preserved under quasisymmetric maps quantitatively.

The next result says that under appropriate hypotheses, analytic and combinatorial
moduli are comparable.

Proposition 4.14 Suppose Q > 1, X is an Ahlfors Q-regular compact metric space, and
(Sn) is a sequence of uniform quasipackings. Let Γ be a nondegenerate closed family of
curves in X. Then either

1. modQΓ = 0 and limn→∞modQ(Γ,Sn) = 0, or

2. modQΓ > 0, and there exist constants C ≥ 1 and N ∈ N such that for any n > N ,

1

C
modQ(Γ,Sn) ≤ modQΓ ≤ CmodQ(Γ,Sn).

See Proposition B.2 in [Häı].
Suppose now f : S2 → S2 is topologically cxc, let Sn := Un, n = 0, 1, 2, . . . be the

sequence of open covers as in the definition, and let d be a metric in the conformal gauge
of f . Then, according to [HP2, Thm. 4.1], {Sn} is a uniform sequence of quasipackings, so
we may apply Proposition 4.14 to estimate analytic moduli using combinatorial moduli.

4.6 Intersection of curves

Proposition 4.15 Let X be a Q-Ahlfors regular compact metric space, Q > 2. If Γ ⊂
P(X) is a closed nondegenerate curve family of positive Q-modulus, then the family

Γ⊥ = {γ′ ∈ P(X) | ∀γ ∈ Γ, γ′ ∩ γ 6= ∅}

is also closed and nondegenerate, and modQΓ
⊥ = 0.

Proof: That Γ⊥ is closed follows immediately from the definitions. If Γ⊥ contained a
constant curve then every curve of Γ would go through a given point, implying modQΓ = 0
by Proposition 4.3; hence Γ⊥ is nondegenerate.

Given δ > 0, denote by Γ⊥
δ the family of curves c ∈ Γ⊥ of diameter at least δ. The

σ-subadditivity of the modulus implies that it is enough to prove that modQΓ
⊥
δ = 0 for
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all δ > 0. Fix δ > 0, and note that Γ⊥
δ is closed, so we may estimate its modulus using

quasipackings, cf. Proposition 4.14.
Let Rn denote a maximal 2−n-separated set of X, then Sn = {B(x, 1/2n), x ∈ Rn}

defines a uniform sequence of quasipackings. It follows from the Q-regularity of X that

lim
n→∞

sup
s∈Sn

modQ(Γδ(s),Sn) = 0 ,

where Γδ(s) denotes the set of curves of diameter at least δ which intersects s. This
is just the discrete version of Proposition 4.3: given s0 = B(x0, 1/2

n) ∈ Sn, one may
estimate modQ(Γδ(s0),Sn) by setting ρn(s) = 0 if dist(x0, s) > δ/2 or s = s0, and ρn(s) =
diam s/dist(x0, s) otherwise.

Fix n ≥ 1. By Proposition 4.8, there are an optimal metric ρn for mod2(Γ
⊥
δ ,Sn), a

nonempty subfamily Γn ⊂ Γ⊥
δ and nonnegative scalars λγ , γ ∈ Γn, such that

1. for all γ ∈ Γn, ℓρn(γ) = Lρn(Γδ,Sn) = 1 ;

2. for any s ∈ Sn,

2ρn(s) =
∑

λγ

where the sum is taken over curves in Γn which go through s.

We note that any curve of Γ intersects each curve of Γn so that

Lρn(Γ,Sn) ≥
1

2

∑

γ∈Γn

λγ = v2(ρn) .

It follows that

mod2(Γ,Sn) ·mod2(Γ
⊥
δ ,Sn) ≤

(
v2(ρn)

v2(ρn)2

)
v2(ρn) ≤ 1 .

According to Proposition 4.14, one has, for any n large enough,

0 < modQΓ . modQ(Γ,Sn) ≤ mod2(Γ,Sn)

since Q ≥ 2. Therefore,

mod2(Γ
⊥
δ ,Sn) .

1

modQΓ
<∞

for all n. Since Q > 2, we may apply Corollary 4.11 to Γ⊥
δ with q = Q and p = 2 to

conclude
lim
n→∞

modQ(Γ
⊥
δ ,Sn) = 0 .
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Let X be a metric space and suppose γ, γ′ ∈ P(X) are two curves in X. We say that
γ and γ′ cross if there exists ǫ > 0 such that each curve of B∞(γ, ǫ) meets each curve of
B∞(γ′, ǫ).

Corollary 4.16 Let X be a Q-regular metric space with Q ≥ 2. If there are two thick
curves which cross, then Q = 2.

Proof: Suppose γ and γ′ are two thick curves. By definition, for all ǫ > 0, we have
modQB∞(γ, ǫ) > 0 and modQB∞(γ′, ǫ) > 0. If γ, γ′ cross, then for some ǫ we have
B∞(γ′, ǫ) ⊂ B∞(γ, ǫ)⊥. But Proposition 4.15 implies modQB∞(γ, ǫ)⊥ = 0 and so modQB∞(γ′, ǫ) =
0, which contradicts the thickness of γ′.

We may now give a necessary and sufficient condition for a dynamical system to be
conjugate to a conformal one:

Proposition 4.17 Let D be either a topologically cxc mapping on S2or a hyperbolic group
with boundary S2. Assume that the conformal dimension of D is attained by an Ahlfors
Q-regular metric space X in its conformal gauge. Then D is topologically conjugate to a
semihyperbolic rational map or cocompact Kleinian group if and only if there are two thick
curves in X which cross.

Proof: Let d be a metric of minimal dimension Q ≥ 2.
If D is conjugate to a genuine conformal dynamical system, then Q = 2, and there is

a quasisymmetric map from (X, d) to Ĉ by Theorem 1.5. Since the sphere admits thick
curves which cross, so does X, according to Proposition 4.6.

Conversely, if there exist thick curves in X which cross, Corollary 4.16 implies that
Q = 2. Theorem 1.6 completes the proof.

5 Moduli at the minimal dimension

In this section, we assume that f : S2 → S2 is topologically cxc, and that d is a Q-
dimensional Ahlfors regular metric on S2 belonging to the conformal gauge of f . We
denote by X = (S2, d). Recall that the sequence Sn := Un of coverings forms a uniform
sequence of quasipackings.
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5.1 Positive modulus on X

Proposition 5.1 There is a family of curves on X with positive Q-modulus.

Proof: Since Q is the AR-conformal dimension, it follows from [KL, Cor. 1.0.2] that a
weak tangent (T, t) of X admits a family Γ of positive Q-modulus contained in some ball
BT (t, R) for some R > 0. We may assume that this family of curves is closed with compact
support and definite diameter (Lemma 4.7). By Proposition 4.5, we may also assume that
modQ(B∞(γ, ε) ∩ Γ) > 0 for every curve γ in Γ and any ε > 0. Let c ∈ (0, 1) be the
constant given by Proposition 3.12.

Since Γ has positive modulus, its support suppΓ has positive measure, so we may find
a point of m-density z ∈ suppΓ. It follows that we may find a radius r > 0 which is small
enough so that any ball B ⊂ B(z, r) of radius at least cr/3 satisfies µ(B ∩ suppΓ) > 0.

According to Proposition 3.12, there exists a map h : T → X and a ball B ⊂ B(z, r) of
radius cr such that h : B → X is a quasisymmetric embedding. Since µ(suppΓ∩(1/3)B) >
0 by construction, there is some curve γ ∈ Γ which intersects (1/3)B hence there is some
ε > 0 such that every curve from Γ∩B∞(γ, ε) intersects (1/2)B. It follows that modQΓ0 > 0
where Γ0 denotes the subcurves in B of those curves in Γ which enter (1/2)B.

Therefore, from Proposition 4.6, it follows that h(Γ0) is a family of positive Q-modulus
on X.

5.2 Invariance of thick curves

Proposition 5.2 The image of a thick curve under f is a thick curve.

Proof: Let γ be a thick curve and let ε > 0. Since f is uniformly continuous, there exists
δ > 0 such that f(B∞(γ, δ)) ⊂ B∞(f(γ), ε). By definition modQB∞(γ, δ) > 0; there is
some L < ∞ such that the set Γ ⊂ B∞(γ, δ) of curves of length at most L has positive
Q-modulus. According to Proposition 4.14, there exists m > 0 such that

modQ(Γ,Sn) ≥ m > 0

for all n large enough. Therefore, by Proposition 4.12, modQ(f(Γ),Sn) & m holds, and
another appeal to Proposition 4.14 now implies that

modQB∞(f(γ), ε) ≥ modQf(Γ) > 0 .

The following corollary is needed for the construction of the second tangent space, T2,
mentioned in the introduction.
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Corollary 5.3 If T is a tangent space of X, h : T → X be given by Proposition 3.12, and
γ : [0, 1] → T is a nonconstant limit of thick curves in X, then h ◦ γ is thick.

Proof: Let Xn = (Xn, d/rn) and suppose (Xn, xn) → (T, t) is a tangent space. As in
Proposition 3.12, suppose fkn+n0 : (X, d/rn, xn) → (X, d, yn) tends to h : (T, t) → (X, d, y).
The hypothesis implies that there exist thick curves γn : [0, 1] → Xn converging to γ :
[0, 1] → T . The definitions of convergence of maps imply that the curve h ◦ γ : [0, 1] → X
is the uniform limit of the sequence of curves βn = fkn+n0 ◦ γn. By Proposition 5.2, each
curve βn is thick. Since nonconstant limits of thick curves are thick (Proposition 4.4), γ is
thick.

6 Non-crossing curves

In this section, we prove the following:

Theorem 6.1 Assume that f : S2 → S2 is topologically cxc and X ∈ G(f) is a Q-regular
2-sphere with Q = confdimARG(f) > 2. Then f is topologically conjugate to a Lattès
example.

In the remainder of this section, f and X satisfy the hypotheses of Theorem 6.1. ¿From
Propositions 5.1 and 4.4, we obtain a family Γ of thick curves of positive Q-modulus on X;
by Lemma 4.7 we may assume it is closed and that its elements have diameters bounded
above and below. Since Q > 2, Proposition 4.15 implies that thick curves on X cannot
cross.

6.1 Foliation by thick curves

Proposition 6.2 There exist a tangent space T of X and a foliation FT of T by bi-infinite
geodesics such that each leaf is a limit of rescaled thick curves of X.

¿From this, we will deduce:

Corollary 6.3 The space X admits a foliation FX with finitely many singularities invari-
ant by f . More precisely, there exists a finite set F such that X \ F is foliated by locally
thick curves, each point of F is a one-prong singularity of FX , and f

−1(FX \F ) ⊂ FX \F .

This proves Theorem 1.2 in the iterated case.

By a one-prong singularity of a foliation of a surface, we mean that the foliation near
that point is equivalent to the singular foliation of the plane near the origin obtained by
starting with the horizontal foliation on the complex plane and identifying points z and
−z.

The proofs occupy the remainder of this subsection.
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6.1.1 Thick crosscuts

Let D be a Jordan domain in X. A crosscut is a curve γ such that γ(0), γ(1) ∈ ∂D,
γ(0) 6= γ(1), and γ(0, 1) ⊂ D. Let us say that a crosscut γ is thick if, for all ε > 0,
modQΓε > 0, where Γε denotes the subset of crosscuts of B∞(γ, ε).

The main results of this paragraph are

Proposition 6.4 Let γ be a thick crosscut of D.

1. There are exactly two components D± of D\γ(0, 1) for which the boundary intersects
∂D.

2. The image γ[0, 1] is either contained in ∂D+ or in ∂D−.

3. Any other component W is a Jordan domain, and there are parameters 0 < s < t < 1
such that ∂W ⊂ γ([s, t]) with γ(s) = γ(t).

and

Proposition 6.5 Let γ0 and γ+ and γ− be three thick crosscuts of D with endpoints in
the following cyclic order:

γ+(0) < γ0(0) < γ−(0) < γ−(1) ≤ γ0(1) ≤ γ+(1) < γ+(0) .

Then γ0 ∩ γ− ∩ γ+ ∩D = ∅.

We first establish some preliminary facts. The definitions imply at once the following
fact:

Fact 6.6 Let γ, γ′ be two crosscuts with endpoints in the following cyclic order

γ(0) < γ′(0) < γ(1) < γ′(1) .

Then γ and γ′ cannot be thick simultaneously.

Fact 6.7 Let γ0 be a thick crosscut, and let γ1 : [0, 1] → D be thick. Then γ1 intersects at
most one connected component of D \ γ0.

Proof: Let us proceed by contradiction and assume that γ1(0) and γ1(1) lie in different
components U and V of D \ γ0. By Fact 6.6, we may also assume that ∂U ⊂ γ0.

Let τ = sup{t > 0, γ1(t) ∈ U} and z0 = γ1(τ). By construction, (a) z0 ∈ ∂U ; (b) for
any ε > 0, there is some t ∈ (τ − ε, τ) with γ1(t) ∈ U .

Let s ∈ (0, 1) with γ1([s, 1]) ⊂ V . Let D′ ⊂ D be a Jordan neighborhood of γ1([τ, s]). If
it is small enough, then γ1|[a,b] is a crosscut of D′, where (a, b) is the connected component
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of γ−1
1 (D′) containing τ , with γ1(a) ∈ U and γ1(b) ∈ V . Furthermore, the connected

component γ′0 of γ0 ∩D
′ which contains z0 separates γ1(a) from γ1(b) otherwise we would

have U = V .
Therefore, there are two intervals [s1, s2] and [t1, t2] such that γ0(s1), γ0(t1) ∈ ∂D′,

γ0(s2) = γ0(t2) = z0 and γ0((s1, s2]) ∪ γ0((t1, t2]) is the image of a crosscut of D′ which
separates γ1|[a,b]. Since γ1 is thick, one may find another thick curve γ2 arbitrarily close to
γ1 which avoids z0. We may thus extract a crosscut of D′ from γ2 which either intersects
γ0((s1, s2)) or γ0((t1, t2)). In both cases, we may reduce D′ and apply Fact 6.6 to obtain a
contradiction.

We now turn to the proofs of the propositions.

Proof: (Prop. 6.4) The first point is clearly true since γ is a crosscut. Note that if γ is not
contained in ∂D+, then there is some parameter t such that d(γ(t),D+) ≥ δ > 0. Therefore,
any thick curve at distance at most δ/2 from γ cannot lie in D+ by Fact 6.7; similarly for
D−. But any crosscut has to intersect D+ ∪D−, so Fact 6.7 yields a contradiction. This
proves 2.

Let us prove the last point: let W be a component of D \ γ(0, 1) different from D±.
Then ∂W is contained in γ(0, 1) which is locally connected, so that Carathéodory’s theorem
implies that any conformal map h : D →W extends continuously to the boundary. If ∂W
is not a Jordan domain, then there are two rays in D which are mapped to a Jordan curve in
W which separates γ. Fact 6.7 yields another contradiction. SoW is a Jordan domain. Let
s = min γ−1(∂W ) and t = max γ−1(∂W ): by construction, ∂W ⊂ γ([s, t]). If γ(s) 6= γ(t),
then ∂W \ {γ(s), γ(t)} are two arcs a±. Note that since c± = γ[0, s] ∪ a± ∪ γ[t, 1] are
crosscuts contained in γ and a+ ∩ c− = a− ∩ c+ = ∅, point 2. above cannot hold, so we
obtain a contradiction and γ(s) = γ(t).

Proof: (Prop. 6.5) It follows from Fact 6.7 that we may assume that γ− and γ+ lie in
different components of D \ γ0. Let us assume that they all meet at a point z0 ∈ D.

One may find some ε > 0 such that γ± /∈ B∞(γ0, ε). By Fact 6.7, any thick curve in
B∞(γ0, ε) is squeezed between γ− and γ+: thus, they all go through z0, which is impossible
by Proposition 4.3 and the definition of thick curves.

6.1.2 Relation order on thick curves

Let γ0 : [0, 1] → X be a parametrized rectifiable thick curve of X. We will define an
ordering on a space Γ of parametrized thick curves γ that are close to γ0 in P(X). This
ordering will be a reflexive and transitive binary relation (but might not be antisymmetric).
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First, we choose γ0 in a convenient way. Let V be a Jordan domain which contains
γ0 in its interior. Decompose V into three open Jordan subdomains V0, V− and V+ as
shown. That is, there is a homeomorphism of V to [−2, 2]× [0, 1] such that V− is mapped
to [−2,−1] × [0, 1], V+ is mapped to [1, 2] × [0, 1], γ(0) ∈ V− and γ(1) ∈ V+.

Since γ0 is rectifiable and compact, there are at most finitely many subcurves of γ0 in V
connecting V− to V+. Restricting to such a subcurve if necessary and reparametrizing,
Proposition 4.4 implies that we may assume that there is exactly one such subcurve.

Fix γ0, V0, V±, V as in the preceding paragraph. Next, we define Γ, a set of suitable
curves close to γ0. There exists r > 0 small enough so that for any curve γ ∈ B∞(γ0, r),
we have (i) γ ⊂ V , (ii) γ(0) ∈ V−, γ(1) ∈ V+, and (iii) there is exactly one connected com-
ponent of γ ∩ V0 whose closure intersects both ∂V+ and ∂V−; we denote this distinguished
component by γd. By Proposition 4.7, there exists a compact nondegenerate subfamily
Γ ⊂ B∞(γ0, r) comprised of rectifiable thick curves such that modQΓ > 0.

Finally, we define an ordering ≤ on curves in Γ. Given γ ∈ Γ, the distinguished
component γd cuts V0 into at least two components. We let U+(γ) denote the component
of V0 \ γd the boundary of which (when seen in the chart V → [−2, 2] × [0, 1]) contains
the arc [−1, 1]×{1}, and U−(γ) the one whose boundary, when similarly viewed, contains
[−1, 1] × {0}; these boundary arcs are indicated in bold in the figure.

The fact that thick curves do not cross implies that given γ, γ′ ∈ Γ, either U+(γ) ⊂
U+(γ

′) and U−(γ) ⊃ U−(γ
′), or U+(γ) ⊃ U+(γ

′) and U−(γ) ⊂ U−(γ
′). In the former case,

we write γ ≥ γ′.

6.1.3 Definition of the tangent space

The tangent space will be a based at a density point y of a set A which we now define. We
may assume each γ ∈ Γ is parametrized by arc length, the parameter lying in a compact
interval Iγ , and is extended so as to be completely parametrized. We may assume Γ
contains all complete parametrizations of its curves. For γ ∈ Γ and t ∈ Iγ we let

fk(γ, t) = sup
|h|≤1/k

(
1−

d(γ(t − h), γ(t+ h))

2|h|

)
;
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this measures how much γ deviates from being geodesic near t. Since γ is rectifiable and
parametrized by arclength, Proposition 4.1 ensures that fk(γ, t) → 0 as k → ∞ for all
γ ∈ Γ and almost all t ∈ Iγ . Set, for x ∈ suppΓ ∩ V ,

gk(x) = min{fk(γ, t) : γ ∈ Γ, γ(t) = x}

and let A be the set of points x such that limk gk(x) = 0. We claim A has positive measure.
Otherwise, we could define an admissible metric ρ by choosing ρ = ∞ on A∗, and ρ = 0
otherwise. This function is LQ integrable, and for all γ ∈ Γ and almost all t ∈ Iγ , {fk(γ, t)}k
tends to zero, implying that

∫
γ ρ = ∞ for all γ ∈ Γ: this would contradict modQΓ > 0.

Therefore, A has positive measure. By Egorov’s theorem, we may assume that (gk) tends
to zero uniformly on A. We pick a point of t-density y ∈ A, which exists by Lemma 3.10.

The point y belongs to the image of a curve γ. Fix a positive sequence (rn) tending
to 0. Without loss of generality, we may assume that (Xn, dn, y) = (X, d/rn, y) tends to a
metric plane (T, t), and that (fkn)n tends to a map h : T → X with a discrete branch set
(Theorem 3.2 and Proposition 3.12).

The definition of Γ, the definition of A, and Proposition 4.2 imply that every point in
T belongs to the image of a geodesic γ : R → T which is a limit of a sequence (γk) of
rescaled thick curves passing through points of A. We denote by FT the set of geodesics γ
obtained in this way. Note that FT is closed with respect to the compact-open topology.

Lemma 6.8 With the notation from above, the geodesic γ separates T into two simply
connected regions U+(γ) and U−(γ), each of which is the interior of the respective limit of
U+(γk) and U−(γk).

Proof: The curve γ is a simple curve, unbounded on both sides: considering the Alexan-
droff compactification of T , γ becomes a simple closed curve so that the Jordan theorem
implies that T \ γ is the union of two disjoint open disks.

Denote by K±(γ) the set of points w ∈ T arising as limits (as k → ∞) of sequences of
points wk ∈ U±(γk), respectively. Let w ∈ K+(γ)∩K−(γ), and (wk), (w

′
k) be sequences as

above which tend to w; by the bounded turning (BT) property, we may find continua Ck ⊂
Xnk

joining wk and w′
k with diamCk . |wk−w

′
k|. By the Jordan curve theorem, it follows

that Ck ∩ γk 6= ∅. As k tends to infinity, we obtain that w ∈ γ. Hence K+(γ)∩K−(γ) ⊂ γ.
Let us prove that K+(γ) ∪ K−(γ) = T . Pick w ∈ T , and (wk) ∈

∏
Xnk

which tends
to w. Either, there are infinitely many k such that wk ∈ U+(γk) ∪ U−(γk), in which case
w ∈ K+(γ)∪K−(γ). Or, wk is contained in a bounded component W of Xnk

\ γk for all k
large enough.

In the latter case, we apply Proposition 6.4 to obtain s < t such that γk(s) = γk(t),
γk[s, t] separates wk from U+(γk) ∪ U−(γk) and γk(s) ∈ ∂(U+(γk) ∪ U−(γk)).

Since γk(s) = γk(t), we have

|s− t| = |γ(s)− γ(t)| ≤ 2‖γk − γ‖∞
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so that diam γk([s, t]) ≤ 2‖γk − γ‖∞. Property (ALC2) now implies that

diamW ≤ 2Ldiamγk([s, t]) ≤ 4L‖γk − γ‖∞ .

It follows that we may find w′
k ∈ U+(γk) ∪ U−(γk) with

|wk −w′
k| . ‖γ − γk‖∞ .

This proves that w ∈ K+(γ) ∪K−(γ) so K+(γ) ∪K−(γ) = T . The proof follows.

Remark 6.9 If γ, γ′ ∈ FT , then by Corollary 5.3 they cannot cross at a regular point of
branched covering h : T → X.

6.1.4 Simultaneous zooms of thick curves

In this section and the next, we examine the structure of the set of geodesics FT in the
metric plane T constructed in the previous subsection. Recall that the geodesics in FT
were obtained as limits of rescaled curves in the family Γ defined in § 6.1.2.

Let γ, γ′ ∈ FT . We shall write γ ≤ γ′ if there exist a subsequence (nk)k and sequences
of curves (γk) and (γ′k) such that γk, γ

′
k ⊂ Xnk

, γk ≤ γ′k and if both sequences converge to
γ and γ′ respectively.

We now fix γ, γ′ ∈ FT and assume that there exist a subsequence (nk)k and sequences
of curves (γk) and (γ′k) with γk, γ

′
k ⊂ Xnk

and such that both sequences converge to γ
and γ′ respectively. For each k, either γk ≤ γ′k or γ′k ≤ γk. So, extracting a subsequence

if necessary, we may assume that γ ≤ γ′. We may also assume that U±(γk) and U±(γ
′
k)

converge to closed and connected domains K±(γ) and K±(γ
′), cf. Lemma 6.8.

Lemma 6.10 If γ 6= γ′, then, for any z ∈ U+(γ) ∩ U−(γ
′), there exists a curve γz ∈ FT

going through z such that γ ≤ γz ≤ γ′.

Proof: Suppose zn → z, zn ∈ Xn. We may assume that zn ∈ U+(γn)∩U−(γ
′
n). By Lemma

3.11, there is a sequence of curves (γz,n)n such that dn(zn, γz,n) tends to 0. It follows that
γn ≤ γz,n ≤ γ′n. Extracting a limit, the lemma follows.

Lemma 6.11 If γ and γ′ intersect, then γ = γ′.

Proof: We assume that γ and γ′ are distinct but that γ(0) = γ′(0) = z0 and γ((−a, 0)) ∩
γ′ = γ′((−a, 0)) ∩ γ = ∅.

44



Let z ∈ U+(γ)∩U−(γ
′). By Lemma 6.10, there exists a curve γz ∈ FT going through z

such that γ ≤ γz ≤ γ′ For any n, there exists a continuum Cn joining γn(0) to γ
′
n(0) with

diamCn . |γn(0)− γ′n(0)|. By the Jordan curve theorem, Cn ∩ γz,n 6= ∅, so that z0 ∈ γz.
We note that z0 belongs to three limits of thick curves. If h is a local homeomorphism

at z0, then we obtain a contradiction by Proposition 6.5.
We assume now that h is not a local homeomorphism at z0. Set w0 = h(z0). By

Corollary 3.14, we may assume that in local coordinates near z0 and w0, the map h is
given by h : D → D, h(z) = zk, for some k ≥ 2; in particular, this restriction is proper. For
each element c ∈ FT which contains the origin, we may restrict c and reparametrize it so
that c : [−1, 1] → D is a crosscut with c(0) = 0.

We now establish some facts about crosscuts c obtained as the restrictions of elements
C of FT with γ ≤ C ≤ γ′.

1. Since h is proper on D, h(c) joins 0 to the boundary of D.

2. Corollary 5.3 implies h(c) is also thick, so h(c) ∩ h(γ) = {0} since both images are
thick curves.

3. The map h is locally injective on D \ {0} and h−1(0) = 0, so, if (h ◦ c)|[−1,0] was not
injective, then there would be different times s < t in (−1, 0) such that h(c(s)) =
h(c(t)). But then the thick curves c|[−1,(2s+t)/3] and c|[(s+2t)/3,0] intersect at a regular
point of h, which is impossible. Similarly, (h ◦ c)|[0,1] is also injective. It also follows
that if h ◦ c is not globally injective, then c([−1, 0]) = c([0, 1]).

4. Furthermore, there may be at most (k − 1) ordered curves which are mapped 2-to-1
under h|D, so that we may as well consider that h(c∩D) is an arc for every restriction
of a curve c ∈ FT which defines a crosscut and which goes through the origin such
that γ ≤ c ≤ γ′.

Given the curve γ in the lemma, we let Ω be the connected component of D\h−1(h(γ([−1, 0])))
which contains γ in its boundary and intersects U+(γ). Note that h|Ω : Ω → D \
h(γ((−1, 0])) is a homeomorphism. For any other curve c ∈ FT , we know that if h(c)
is not a subset of h(γ), then c cannot intersect h−1(h(γ([−1, 0)))); therefore, we may define
ĉ ⊂ Ω ∪ γ([−1, 0]) as the lift of h(c) to Ω ∪ γ([−1, 0]).

It follows from above that γ̂′ ∩ Ω is contained in a component of Ω \ γ̂, for otherwise
h(γ′) and h(γ) would cross. Let V ′ be the connected component of Ω\ γ̂′ with boundary γ̂′.
We first consider the case that V ′ is not a subset of U+(γ

′). Then, for any z ∈ V ′ \U+(γ
′),

Lemma 6.10 provides us with a curve γz ∈ FT such that γ ≤ γz ≤ γ′. In particular 0 ∈ γz.
Since γz ∩ V

′ 6= ∅, it follows that γ̂z ⊂ V ′ ∪ {0} so that h(γ), h(γ′) and h(γz) satisfy the
assumptions of Proposition 6.5, yielding a contradiction. Therefore, V ′ ⊂ U+(γ

′). We
consider a new curve γ′′ given by Lemma 6.10 such that γ ≤ γ′′ ≤ γ′ and γ′′ ∩ D is not
contained in U+(γ

′): let V ′′ be the connected component of Ω \ γ̂′′ with boundary γ̂′′. By
construction, V ′′ is not a subset of U+(γ

′). As above, we consider a curve γz ∈ FT such
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that γ ≤ γz ≤ γ′ and γ̂z ⊂ V ′′∪{0}: we obtain another contradiction from h(γ), h(γz) and
h(γ′′).

6.1.5 Different zooms

Let us assume that γ, γ′ ∈ FT are two distinct curves.
This implies that there are two increasing functions ϕ,ψ : N → N, and thick curves

γϕ(n) ⊂ Xϕ(n) and γ
′
ψ(n) ⊂ Xψ(n) which tend to γ and γ′ respectively.

Lemma 6.12 The curves γ and γ′ are disjoint.

Proof: By the previous section, we may assume that the sequences ϕ and ψ have no
integers in common. We will show that if γ and γ′ are not disjoint, then we can build a
curve γ′′ which will cross γ′ at a regular point of h, contradicting Corollary 5.3.

We may assume that γ(0) = γ′(0). Since h has a discrete branch set (Corollary 3.14),
we may assume that γ′|(0,a) has no branch points of h, and that it is disjoint from γ. Let
z1 = γ′(a/2), and apply Lemma 6.10 to obtain a curve γ1 going through z1 obtained by
blowing up thick curves from Xϕ(n); we may assume that γ ≤ γ1. If γ1 does not cross
γ′, then we construct a similar curve γ2 (6= γ1) intersecting γ′ such that γ ≤ γ2 ≤ γ1. It
follows that γ2 has to cross γ′, since it is disjoint from γ and γ1 by Lemma 6.11.

6.1.6 Foliations

We have proved that any point in T belonged to a unique element of FT , and that no two
such curves could intersect.

It remains to prove that FT is a genuine foliation. Following Whitney [Whi, Part II],
one has to check that this is a regular family of curves: given any point p and a direction
on the curve through p, there is an arc pq in this direction with the property that for every
ǫ > 0 there is a δ > 0 such that, for any point p′ within a distance δ of p, there is an
arc p′q′ of the curve through p′ which lies within an ǫ-neighborhood of pq and on which
q′ lies within an ǫ-neighborhood of q; moreover, if r′ and s′ are two points on p′q′ within
a distance δ of each other, then the diameter of the arc r′s′ is less than ǫ (see also [Kol,
Lme 4.7] for an explicit construction of a transversal arc).

The second condition is automatically satisfied since curves are geodesics of T . For the
first, assume that it does not hold: then, given an arc from FT joining two points p and
q, there is some ǫ0 > 0 with the property that there is a sequence of points (pn) tending
to p such that no subarc (pnqn) either leaves the ǫ0-neighborhood of (pq) or qn is ǫ0-away
from q. If we consider parametrizations of the curves γn going through pn with γn(0) = pn,
then, Ascoli’s theorem implies that the sequence (γn) tends uniformly on compact sets to
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a geodesic γ going through p; since FT is closed, it follows that γ ∈ FT , contradicting the
definition of (pn). Therefore FT is a regular family of curves, hence a genuine foliation.

This ends the proof of Proposition 6.2.

Before proving Corollary 6.3, we note the following:

Lemma 6.13 Suppose F1,F2 are two nonsingular foliations of an open subset U of X,
each of whose leaves are locally thick curves. Then F1 = F2.

Proof: Let x ∈ U . The leaves L1, L2 in F1,F2 containing x cannot cross at x since they
are both thick. If they are not the same, there is a leaf L′

1 near L1 which crosses L2, which
is impossible.

Proof: (Cor. 6.3) We push the foliation FT down to a singular foliation FX of X using h:
away from the images of branch points of h, we define the leaves of FX to be the images
of the leaves of FT under h by Corollary 5.3, they are locally thick curves, so Lemma 6.13
implies FX is well-defined.

The construction of the tangent T implies that there exists a compact set K ⊂ T such
that h(int(K)) = X. Since h is a branched covering, its branch locus Bh is discrete, hence
its intersection with K is finite. For any regular point z of h in int(K), h∗FT = FX is
regular in the neighborhood of its image h(z). It follows that the set F of singular points
of FX is contained in the image h(int(K) ∩Bh) and is therefore finite.

We now analyze the structure of the singularities of FX . Let x0 be a branch point of h;
we use the fact that T and X are surfaces and h is an open map: by Corollary 3.14, there
are neighborhoods U and V of x0 and h(x0) respectively such that h : (U, x0) → (V, h(x0))
is equivalent to z 7→ zk in the unit disk of the complex plane C for some positive integer
k ≥ 2. Let γ be the connected component in U of the leaf of FT which contains x0; since
h|U is proper onto V , there is some j ∈ {1, 2} such that its image h(γ) cuts V into j
components, so that h−1(h(γ)) cuts U into j · k components. Since thick curves on X
cannot cross, it follows that h−1(h(γ)) ∩ U = γ and j · k = 2: hence k = 2 and j = 1.
Therefore, the branched covering h : T → X can have only simple critical points and a
curve which goes through a critical point of h must map in a locally 2-to-1 fashion onto its
image: all singularities of FX are prongs.

We now prove the invariance of the foliation FX under f : if x ∈ X is not a branched
point of f , then x ∈ F if and only if f(x) ∈ F . Furthermore, if f(x) is a regular point
of FX , then, pulling back FX under f−1 to a neighborhood of x, we see that x cannot
be a branched point for FX would have a singularity which would not be a prong: the
invariance of FX is established.

This ends the proof of Corollary 6.3.
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6.2 Parabolic orbifold structure

In this subsection, we prove that f is conjugate to a Lattès example. We will rely on
the “easy part” of Douady and Hubbard’s classification of finite branched coverings of the
sphere [DH].

Proof: (Theorem 6.1) By Corollary 6.3, we know that f−1(FX \ F ) ⊂ FX \ F . It follows
that f−1(F ) ⊂ (Bf ∪ F ), so that Pf ⊂ F and f is postcritically finite. Note that if f is
locally injective at x, and if y = f(x) ∈ F , then x ∈ F . This implies that in fact Pf = F ,
that f−1(Pf ) = Pf ∪Bf . ¿From [DH, Lma3.2] it follows that #Pf ≤ 4 and more precisely
that in fact #Pf = 4. Since all the singularities of FX are prongs, the branch points of
f and of h are simple, so the orbifold associated to f is the (2, 2, 2, 2)-orbifold. We may
now apply [DH, Prop. 9.3] to deduce that f lifts as a covering map g of a torus X̃ . Since f
is topologically cxc, g is positively expansive. Pick a basis for H1(X̃,Z) and let A be the
matrix of the induced map H1(g) : H1(X̃,Z) → H1(X̃,Z). Since g is positively expansive,
g and the map on the torus R

2/Z2 induced by A are topologically conjugate. Hence f is
topologically conjugate to the Lattès example fA induced by A.

6.3 Tangents as universal orbifold covering

In this subsection, we establish the claim in Remark 1.9.
We begin with an easy consequence of the analysis in the preceding subsection:

Corollary 6.14 Under the hypothesis of Theorem 6.1, the tangent map h : T → X con-
structed in § 6.1.3 is the universal orbifold covering map of the orbifold associated to f .

Proof: Since thick curves cannot cross, every branch point of h is simple and maps to
an element of F and, conversely, any preimage of a point in F under h is a simple branch
point of h.

The construction of the above tangent space T is very indirect. We continue with a
proposition which gives a direct construction in which the basepoint is a periodic point.

Proposition 6.15 Let f : S2 → S2 be a topological cxc map, p be a periodic point of f
of period k, and suppose there is a neighborhood W of p such that fk : W → fk(W ) is a
homeomorphism with W ⊂ fk(W ). Let X ∈ G(f).

Then there exists a tangent space (T, t) to X at p locally homeomorphic to W , an
expanding homeomorphism ψ : (T, t) → (T, t) fixing t whose iterates are uniformly qua-
sisymmetric, and a quasiregular map h : (T, t) → (X, p) such that h ◦ψ = fk ◦ h, h(t) = p.

In the case of the sphere equipped with a visual metric, i.e. X = (S2, dv), the map h is
an isometry near t, and the iterates of ψ are similarities with constant expansion factor.
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Here, by quasiregular, we mean an open map which is locally uniformly quasisymmetric
away from its discrete branch set.

Proof: By Lemma 3.13, it is enough to prove the proposition with d = dv.
Let g : (W,p) → (f−k(W ), p) be the local inverse of fk near p. We may assume that

|g(x) − g(y)| = λ|x − y| with λ = θk, for all x, y ∈ W by [HP1, Prop. 3.2.3]; here, θ is the
constant given by Theorem 1.5.

Define scaling functions σn : (W,d) → Wn = (W,d/λn) and let gn : Wn → Wn+1 be
defined as gn = σn+1 ◦ g ◦ σ

−1
n , which is an isometric embedding.

We may then consider the following inductive limit:

W = lim
−→

(Wn, gn) .

Since the gn are isometries, the set W is naturally a metric space. For all n,Wn embeds
canonically in W. Define ψ : W → W by ψn(x) = σn+1 ◦ σ

−1
n (x), for x ∈ Wn. We check

that

ψn+1 ◦ gn = σn+2 ◦ σ
−1
n+1 ◦ σn+1 ◦ g ◦ σ

−1
n

= σn+2 ◦ g ◦ σ
−1
n+1 ◦ σn+1 ◦ σ

−1
n

= gn+1 ◦ ψn .

It follows that

|ψ(x) − ψ(y)| =
1

λ
|x− y| .

If x ∈Wn, let hn(x) = fkn ◦ σ−1
n (x). This defines a 1-Lipschitz map h : W → X since

hn+1 ◦ gn = fkn ◦ fk ◦ σ−1
n+1 ◦ σn+1 ◦ g ◦ σ

−1
n

= fkn ◦ (fk ◦ g) ◦ σ−1
n = hn .

One has

hn+1 ◦ ψn = fkn+k ◦ σ−1
n+1 ◦ σn+1 ◦ σ

−1
n

= fk ◦ (fkn ◦ σ−1
n ) = fk ◦ hn(x) .

Therefore, h ◦ ψ = fk ◦ h.
Since the maps

σn :

(
W,

d

λn
, p

)
→ (Wn, p) ⊂ W

are isometries, it follows that W is the Gromov-Hausdorff limit of (X, dv/λ
n, p). Note that

if W =W0 is chosen sufficiently small, then h|W1
is an isometry, by construction.
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Remark 6.16 If d = dv, one of the visual metrics given by Theorem 1.5, then the as-
sumption [Deg] in Proposition 6.15 can be omitted, provided that the branch set is disjoint
from the cycle containing p.

We conclude this section with the proof of the claim in Remark 1.9. The Lefschetz
formula shows that f has a fixed-point, p. Let (T, t) be the tangent space at p, h :
(T, t) → (X, p) be the quasiregular map, and ψ : (T, t) → (T, t) be the associated expanding
homothety, each given by Proposition 6.15. Let FX be the foliation of X by thick curves
given by Corollary 6.3.

Restricting the neighborhoodW if necessary, we may assume that FX ∩W has at most
one singularity —which would be at p— and that there is a neighborhood N ⊂ T of t
such that h : N → W is quasisymmetric. The foliation FN = h−1(FX) ∩ N has at most
one singularity —at t— and all the leaves of FN are thick by Proposition 4.6. Applying
iterates of ψ, we obtain a ψ-invariant foliation FT of T by locally thick curves with at most
one singularity such that h : (T,FT ) → (X,FX ), since ∪nψ

n(N) = T .
If FT has no singularity at t, then the same analysis as in Corollary 6.14 shows that

h : T → X is again a universal orbifold cover. In the notation of Remark 1.9, we set X̃ = T ,
π = h, and ψ = ψ. If t is a singularity of FT , let q : (T̃ , t̃) → (T, t) be a double-cover of
T ramified above t (which exists, since T is a plane). The metric on T lifts to T̃ so that q
becomes a local isometry away from t̃. Then h ◦ q : T̃ → X is now the universal orbifold
cover, and ψ lifts to ψ̃ : T̃ → T̃ . We set X̃ = T̃ , π = h ◦ q, and ψ = ψ̃.

7 Lattès or rational

This section is devoted to the proof of Theorems 1.1 and 1.2 in the case of iterated maps.
We let f : S2 → S2 be topologically cxc and we assume that there is an Ahlfors-regular
metric space X ∈ G(f) of dimension Q = confdimAR(f). ¿From Propositions 5.1 and 4.4,
we obtain a family Γ of thick curves of positive Q-modulus on X.

If there are two thick curves which cross, then Proposition 4.17 implies that f is con-
jugate to a rational map. By [HP1, Cor. 4.4.2], this rational map is semihyperbolic.

If thick curves do not cross, then Corollary 6.3 implies the existence of an invariant
foliation —completing the proof of Theorem 1.2— and Theorem 6.1 implies that f is
conjugate to a Lattès map fA.

Since fA is expanding, the eigenvalues of A have modulus larger than one. Since
the conformal gauge is an invariant of topological conjugacy [HP1, § 2.8], the conformal
dimensions of f and of fA are the same. We cannot have Q = 2, otherwise there would be
crossing thick curves. Therefore, Q > 2 and Theorem 1.7 implies that A has two distinct
real eigenvalues.
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A Further applications of the comparison formula

Here, we sketch some applications of Proposition 4.10 and of its corollaries. For brevity,
we refer the reader to the cited references for the relevant definitions and background.

A.1 The Loewner property and its combinatorial version

Following J.Heinonen and P.Koskela [HK], we say that an arcwise connected metric space
is Q-Loewner, Q > 1, if there is a non-increasing function ψ : R+ → R+ such that

modQ(E,F ) ≥ ψ(∆(E,F )) ,

for any pair of disjoint continua E and F in X and with

∆(E,F ) =
dist(E,F )

min{diamE,diamF}
.

In [Kle], B.Kleiner suggests a combinatorial version of a Q-Ahlfors regular and Q-
Loewner space. Let X be a proper metric space. Let Rn denote a maximal 2−n-separated
set of X, then Sn = {B(x, 1/2n), x ∈ Rn} defines a uniform sequence of quasipackings.

Say X satisfies the combinatorial Q-Loewner property if there are non-increasing posi-
tive functions ψ and ϕ such that

(CLP ) ψ(∆(E,F )) ≤ modQ(E,F,Sn) ≤ ϕ(∆(E,F )) ,

for any pair of disjoint continua E and F in X and for any n large enough (with respect
to (E,F )).

The following notion also appears in [Kle]: a compact metric space X is selfsimilar if
there is a constant L0 ≥ 1 such that for any ball B(x, r) ⊂ X with r ∈ (0,diamX], there
is an open set U ⊂ X which is L0-bi-Lipschitz to the rescaled ball (B(x, r), (1/r)d).

In [BdK], M.Bourdon and B.Kleiner prove that, for a selfsimilar space X, for δ > 0
small enough, and for any p ≥ 1,

1. if {modp(Γδ,Sn)}n is bounded, then there exists a decreasing function φ such that
the upper bound of (CLP) holds;

2. the sequence {modp(Γδ,Sn)}n is essentially submultiplicative;

3. there is a critical dimension QM > 0 such that {modp(Γδ,Sn)}n tends to 0 for
p > QM , is unbounded for 1 ≤ p < QM and admits a positive lower bound for
p ∈ [1, QM ].
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The question arises whether the dependence on p behaves like the Hausdorff dimension.
If we assume that there exists Q > 1 such that

modQ(Γδ,Sn) ≍ 1 ,

e.g. if X satisfies the combinatorial Loewner property, then p 7→ {modp(Γδ,Sn)}n has such
a behavior according to Corollary 4.11: the moduli tend to infinity for p < Q and to zero
for p > Q (and Q = QM ).

Let X be the boundary of a hyperbolic Coxeter group endowed with a visual metric.
For positive δ and r small enough, M.Bourdon and B.Kleiner define the family Fg ⊂ Γδ
of so-called generic curves i.e., this is the subfamily of Γδ such that none of these curves is
contained in the r-neighborhood of a sub-Coxeter, also called a parabolic, subgroup. They
introduce the critical exponent

Qm = sup{p ≥ 1, limmodp(F
g,Sn) = +∞} .

If X satisfies the combinatorial Loewner property, then Qm = QM : this follows from choos-
ing two disjoint continua {E,F} such that the family of curves joining them is contained in
Fg. This provides an answer to a question which was raised by M.Bourdon and B.Kleiner;
see [BdK, Rmk (1), § 3].

A.2 Combinatorial moduli on surfaces

The proof of Theorem 1.6 relies heavily on [BnK1, Thm. 1.1]:

Theorem A.1 (M.Bonk & B.Kleiner) Suppose X is a metric space which is homeo-
morphic to S

2, linearly locally connected, and Ahlfors 2-regular. Then X is quasisymmet-
rically equivalent to S

2.

Note that if X is a surface which satisfies the combinatorial Loewner property in some
dimension Q ≥ 2, then it is fairly easy to construct two families of curves Γ1 and Γ2 of
positive modulus such that every curve in Γ1 intersects any curve in Γ2: it follows at once
that Q = 2.

In particular, if X is Q-Loewner and Q-regular then Q = 2. Hence, if X is furthermore
homeomorphic to S

2, then it is also quasisymmetric to S
2: this provides an alternative

proof of [BnK1, Thm. 1.2].

A.3 Conformal dimension and Gromov hyperbolic groups with 2-sphere

boundary

We now sketch how Theorem 1.3 may be proved using Theorem 1.2.
The arguments in [BnK3] used to prove Theorem 1.3 proceed by first showing that there

exists an Ahlfors-regular Loewner metric in the gauge of the group, and then applying the
uniformisation theorem for Loewner spheres [BnK1].
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Here, we sketch how to bypass the Loewner property and prove instead that the bound-
ary admits a 2-regular metric.

Proof: (Thm 1.3) The first step is to prove that there is a family of positive modulus on
the boundary of G: the argument is the same as above. We use [BnK2, Lma5.3] which
says that any weak tangent is quasi-Möbius equivalent, say via a map h, to ∂G, punctured
at some point, cf. [BnK3, Cor. 1.6].

Then it is enough to prove that there are two thick curves which cross. For this, we
may assume that this is not the case: the argument for the proof of Proposition 6.2 works
the same: the same blowup strategy defines a weak tangent space foliated by locally thick
geodesic curves. We push this foliation forward via h to ∂G. Since the group acts by quasi-
Möbius homeomorphisms, it preserves the set of thick curves, hence the foliation; this in
turn implies that G has a global fixed point (the puncture): contradiction. Thus, there are
two thick curves which cross, which implies that Q = 2. An application of Theorem 1.6
concludes the proof.

B Applications to general topologically cxc maps

In [HP1], topologically cxc maps are defined in a much general setting than on spheres. We
recall briefly the definition and record the results which hold in this more general context.

Suppose X,Y are locally compact Hausdorff spaces, and let f : X → Y be a finite-to-
one continuous map. The degree of f is

deg(f) = sup{#f−1(y) : y ∈ Y }.

For x ∈ X, the local degree of f at x is

deg(f ;x) = inf
U

sup{#f−1({z}) ∩ U : z ∈ f(U)}

where U ranges over all neighborhoods of x.

The map f : X → Y is a finite branched covering (abbreviated fbc) provided deg(f) <
∞ and

(i) ∑

x∈f−1(y)

deg(f ;x) = deg f

holds for each y ∈ Y ;
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(ii) for every x0 ∈ X, there are compact neighborhoods U and V of x0 and f(x0) respec-
tively such that ∑

x∈U,f(x)=y

deg(f ;x) = deg(f ;x0)

for all y ∈ V .

Let X0,X1 be Hausdorff locally compact, locally connected topological spaces, each
with finitely many connected components. We further assume that X1 is an open subset
of X0 and that X1 is compact in X0. The repellor of f : X1 → X0 is

X = {x ∈ X1|f
n(x) ∈ X1 ∀n > 0} =

⋂

n

f−nX0.

Let U0 be a finite cover of X by open, connected subsets of X1 whose intersection with
X is nonempty. Let Un, n ≥ 1, be the connected components of f−n(U), where U ranges
over U0.

We say f : (X1,X) → (X0,X) is topologically coarse expanding conformal with repellor
X provided

1. the restriction f |X : X → X is also an fbc of degree equal to d;

2. there exists a finite covering U0 as above, such that the axioms [Exp], [Irred] and
[Deg] hold.

Without any changes, Theorem 1.5, Proposition 3.8, Corollary 3.9, Proposition 3.12 and
Proposition 6.15 hold in this broader context. We conclude with the following statement
whose proof follows from the same arguments as on the sphere:

Theorem B.1 Let f : (X1,X) → (X0,X) is a topologically cxc map with repellor X.
Assume that X is locally connected and that there is an Ahlfors regular distance on X of
minimal dimension Q. Then

1. There exists a family of curves in X of positive Q-modulus.

2. Thick curves are preserved by f .

3. There exists δ > 0 such that every point of X belongs to a thick curve of diameter at
least δ.
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