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Poisson approximations on the free Wigner chaos

by Ivan Nourdin∗ and Giovanni Peccati†

Abstract: We prove that an adequately rescaled sequence {Fn} of self-adjoint operators, living inside
a fixed free Wigner chaos of even order, converges in distribution to a free Poisson random variable
with rate λ > 0 if and only if ϕ(F 4

n
) − 2ϕ(F 3

n
) → 2λ2 − λ (where ϕ is the relevant tracial operator).

This extends to a free setting some recent limit theorems by Nourdin and Peccati (2009), and provides
a non-central counterpart to a result by Kemp et al. (2011). As a by-product of our findings, we
show that Wigner chaoses of order strictly greater than 2 do not contain non-zero free Poisson random
variables. Our techniques involve the so-called ‘Riordan numbers’, counting non-crossing partitions
without singletons.

Key words: Catalan numbers; Contractions; Free Brownian motion; Free cumulants; Free Poisson
distribution; Free probability; Non-central limit theorems; Non-crossing partitions; Riordan numbers;
Semicircular distribution; Wigner chaos.
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1 Introduction

1.1 Overview

Let W be a standard Brownian motion on R+ and let q > 1 be an integer. For every
deterministic symmetric function f ∈ L2(Rq

+), we denote by IWq (f) the multiple stochastic

Wiener-Itô integral of f with respect to W . Random variables of the form IWq (f) compose
the so-called qth Wiener chaos associated with W . The concept of Wiener chaos roughly
represents an infinite-dimensional analogous of Hermite polynomials for the one-dimensional
Gaussian distribution (see e.g. [12] for an introduction to this topic).

The following two results, proved respectively in [11] and [7], provide an exhaustive char-
acterization of normal and Gamma approximations on Wiener chaos. As in [7], we denote by
F (ν) a centered random variable with the law of 2G(ν/2)−ν, where G(ν/2) has a Gamma dis-
tribution with parameter ν/2 (if ν > 1 is an integer, then F (ν) has a centered χ2 distribution
with ν degrees of freedom).

Theorem 1.1 (A) Let N ∼ N (0, 1), fix q > 2 and let IWq (fn) be a sequence of multiple
stochastic integrals with respect to the standard Brownian motion W , where each fn is a
symmetric element of L2(Rq

+) such that E[IWq (fn)
2] = q!‖fn‖2L2(Rq

+
)
= 1. Then, the following

two assertions are equivalent, as n → ∞:

(i) IWq (fn) converges in distribution to N ;

(ii) E[IWq (fn)
4] → E[N4] = 3.

(B) Fix ν > 0, and let F (ν) have the centered Gamma distribution described above. Let q > 2
be an even integer, and let IWq (fn) be a sequence of multiple stochastic integrals, where each
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fn is symmetric and verifies E[IWq (fn)
2] = E[F (ν)2] = 2ν. Then, the following two assertions

are equivalent, as n → ∞:

(i) IWq (fn) converges in distribution to F (ν);

(ii) E[Iq(fn)
4]− 12E[Iq(fn)

3] → E[F (ν)4]− 12E[F (ν)3] = 12ν2 − 48ν.

The results stated in Theorem 1.1 provide a drastic simplification of the so-called method of
moments for probabilistic approximations, and have triggered a huge amount of applications
and generalizations, involving e.g. Stein’s method, Malliavin calculus, power variations of
Gaussian processes, Edgeworth expansions, random matrices and universality results. See
[8, 9], as well as the forthcoming monograph [10], for an overview of the most important
developments. See [6] for a constantly updated web resource, with links to all available
papers on the subject.

In [3], together with Kemp and Speicher, we proved an analogue of Part A of Theorem
1.1 in the framework of free probability (and free Brownian motion). Let (A , ϕ) be a free
probability space and let {S(t) : t > 0} be a free Brownian motion defined therein (see Section
3 for details). As shown in [2], one can define multiple integrals of the type ISq (f), where f is
a square-integrable complex kernel (to simplify the notation, throughout the paper we shall
drop the suffixes q, S, and write simply I(f) = ISq (f)). Random variables of the type I(f)
compose the so-called Wigner chaos associated with S, playing in free stochastic analysis
a role analogous to that of the classical Gaussian Wiener chaos (see for instance [2], where
Wigner chaoses are used to develop a free version of the Malliavin calculus of variations). The
following statement is the main result of [3].

Theorem 1.2 Let s be a centered semicircular random variable with unit variance (see Def-
inition 2.3(i)), fix an integer q > 2, and let I(fn) be a sequence of multiple integrals of order
q with respect to the free Brownian motion S, where each fn is a mirror symmetric (see Sec-
tion 3) element of L2(Rq

+) such that ϕ[Iq(fn)
2] = ‖fn‖2L2(Rq

+
)
= 1. Then, the following two

assertions are equivalent, as n → ∞:

(i) I(fn) converges in distribution to s;

(ii) ϕ[I(fn)
4] → ϕ[s4] = 2.

The principal aim of this paper is to prove a free analogous of Part B of Theorem 1.1.
As explained in Section 2, and somehow counterintuitively, the free analogous of Gamma
random variables is given by free Poisson random variables (see Definition 2.3(ii), and also
[4, p. 203]). The following statement is the main achievement of the present work.

Theorem 1.3 Let q > 2 be an even integer. Let Z(λ) have a centered free Poisson distribu-
tion with rate λ > 0. Let I(fn) be a sequence of multiple integrals of order q with respect to the
free Brownian motion S, where each fn is a mirror symmetric element of L2(Rq

+) such that
ϕ[Iq(fn)

2] = ‖fn‖2L2(Rq
+
)
= ϕ[Z(λ)2] = λ. Then, the following two assertions are equivalent,

as n → ∞:

(i) I(fn) converges in distribution to Z(λ);

(ii) ϕ[I(fn)
4]− 2ϕ[I(fn)

3] → ϕ[Z(λ)4]− 2ϕ[Z(λ)3] = 2λ2 − λ.
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One should note that the techniques involved in our proofs are different from those adopted
in the previously quoted references, as they are based on a direct enumeration of contractions.
These contractions emerge when iteratively applying product formulae for multiple Wigner
integrals – see also [5]. One crucial point is that the moments of a free Poisson random
variable can be expressed in terms of the so-called Riordan numbers, counting the number
of non-crossing partitions without singletons (see e.g. [1]). We also stress that one cannot
expect to have convergence to a non-zero free Poisson inside a Wigner chaos of odd order,
since random variables inside such chaoses have all odd moments equal to zero, while one has
e.g. that ϕ[Z(λ)3] = λ (see Remark 2.5(ii)).

As a consequence of Theorem 1.3, we will be able to prove the following result, stating
that Wigner chaoses of order greater than 2 do not contain any non-zero Poisson random
variable.

Proposition 1.4 Let q > 4 be even, and let F be a non-zero random variable in the qth
Wigner chaos. Then, F cannot have a free Poisson distribution.

As pointed out in Remark 3.2 below, centered Poisson random variables with integer rate
can be realized as elements of the second Wigner chaos. As a consequence, Proposition 1.4
implies that the second Wigner chaos contains random variables whose distribution is not
shared by any element of higher chaoses. This result parallels the findings of [3], where it is
proved that Wigner chaoses of order > 2 do not contain any non-zero semicircular random
variable. Note that, at the present time, it is not known in general whether two non-zero
random variables belonging to two distinct Wigner chaoses have necessarily different laws.

Remark 1.5 We are still far from understanding the exact structure of the free Wigner chaos.
For instance, almost nothing is known about the regularity of the distributions associated with
the elements of a fixed Wigner chaos. In particular, we ignore whether such laws may have
atoms or are indeed absolutely continuous (as those in the classical Wiener chaos).

1.2 The free probability setting

Our main reference for free probability is the monograph by Nica and Speicher [4], to which
the reader is referred for any unexplained notion or result. We shall also use a notation which
is consistent with the one adopted in [3].

For the rest of the paper, we consider as given a so-called (tracial) W ∗-probability space
(A , ϕ), where: A is a von Neumann algebra of operators (with involution X 7→ X∗), and
ϕ is a unital linear functional on A with the properties of being weakly continuous, positive
(that is, ϕ(XX∗) > 0 for every X ∈ A ), faithful (that is, such that the relation ϕ(XX∗) = 0
implies X = 0), and tracial (that is, ϕ(XY ) = ϕ(Y X), for every X,Y ∈ A ).

As usual in free probability, we refer to the self-adjoint elements of A as random variables.
Given a random variable X we write µX to indicate the law (or distribution) of X, which
is defined as the unique Borel probability measure on R such that, for every integer m > 0,
ϕ(Xm) =

∫
R
xmµX(dx) (see e.g. [4, Proposition 3.13]).

We say that the unital subalgebras A1, ...,An of A are freely independent whenever the
following property holds: let X1, ...,Xm be a finite collection of elements chosen among the
Ai’s in such a way that (for j = 1, ...,m−1) Xj and Xj+1 do not come from the same Ai and
ϕ(Xj) = 0 for j = 1, ...,m; then ϕ(X1 · · · Xm) = 0. Random variables are said to be freely
independent if they generate freely independent unital subalgebras of A .
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1.3 Plan

The rest of the paper is organized as follows. In Section 2 we provide a characterization of
centered free Poisson distributions in terms of non-crossing partitions. Section 3 deals with
free Brownian motion and Wigner chaos. Section 4 contains the proofs of the main results of
the paper (that is, Theorem 1.3 and Proposition 1.4), whereas Section 5 is devoted to some
auxiliary lemmas.

2 Semicircular and centered free Poisson distributions

The following definition contains most of the combinatorial objects that are used throughout
the text.

Definition 2.1 (i) Given an integer m > 1, we write [m] = {1, ...,m}. A partition of [m]
is a collection of non-empty and disjoint subsets of [m], called blocks, such that their
union is equal to [m]. The cardinality of a block is called size. A block is said to be a
singleton if it has size one.

(ii) A partition π of [m] is said to be non-crossing if one cannot find integers p1, q1, p2, q2
such that: (a) 1 6 p1 < q1 < p2 < q2 6 m, (b) p1, p2 are in the same block of π, (c)
q1, q2 are in the same block of π, and (d) the pi’s are not in the same block of π as the
qi’s. The collection of the non-crossing partitions of [m] is denoted by NC(m), m > 1.

(iii) For every m > 1, the quantity Cm = |NC(m)|, where |A| indicates the cardinality of a
set A, is called the mth Catalan number. One sets by convention C0 = 1. Also, recall
the explicit expression Cm = 1

m+1

(
2m
m

)
.

(iv) We define the sequence {Rm : m > 0} as follows: R0 = 1, and, for m > 1, Rm is equal
to the number of partitions in NC(m) having no singletons.

(v) For every m > 1 and every j = 1, ...,m, we define Rm,j to be the number of non-crossing
partitions of [m] with exactly j blocks and with no singletons. Plainly, Rm =

∑m
j=1Rm,j .

Also, when m is even, one has that Rm,j = 0 for every j > m/2; when m is odd, then
Rm,j = 0 for every j > (m− 1)/2.

Example 2.2 One has that:

– R1 = R1,1 = 0, since {{1}} is the only partition of [1], and such a partition is composed of
exactly one singleton;

– R2 = R2,1 = 1, since the only partition of [2] with no singletons is {{1, 2}};

– R3 = R3,1 = 1, since the only partition of [3] with no singletons is {{1, 2, 3}};

– R4 = 3, since the only non-crossing partitions of [4] with no singletons are {{1, 2, 3, 4}},
{{1, 2}, {3, 4}} and {{1, 4}, {2, 3}}. This implies that R4,1 = 1 and R4,2 = 2.

The integers {Rm : m > 0} are customarily called the Riordan numbers. A detailed
analysis of the combinatorial properties of Riordan numbers is provided in the paper by
Bernhart [1]; however, it is worth noting that the discussion to follow is self-contained, in the
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sense that no previous knowledge of the combinatorial properties of the sequence {Rm} is
required.

Given a random variable X, we denote by {κm(X) : m > 1} the sequence of the free
cumulants of X. We recall (see [4, p. 175]) that the free cumulants of X are completely
determined by the following relation: for every m > 1

ϕ(Xm) =
∑

π={b1,...,bj}∈NC(m)

j∏

i=1

κ|bi|(X), (2.1)

where |bi| indicates the size of the block bi of the non-crossing partition π. It is clear from
(2.1) that the sequence {κm(X) : m > 1} completely determines the moments of X (and
viceversa).

Definition 2.3 (i) The centered semicircular distribution of parameter t > 0, denoted by
S(0, t)(dx), is the probability distribution given by

S(0, t)(dx) = (2πt)−1
√

4t− x2dx, |x| < 2
√
t.

We recall the classical relation:

∫ 2
√
t

−2
√
t
x2mS(0, t)(dx) = Cmtm,

where Cm is the mth Catalan number (so that e.g. the second moment of S(0, t) is t).
Since the odd moments of S(0, t) are all zero, one deduces from the previous relation
and (2.1) (e.g. by recursion) that the free cumulants of a random variable s with law
S(0, t) are all zero, except for κ2(s) = ϕ(s2) = t.

(ii) The free Poisson distribution with rate λ > 0, denoted by P (λ)(dx) is the proba-
bility distribution defined as follows: (a) if λ ∈ (0, 1], then P (λ) = (1 − λ)δ0 + λν̃,
and (b) if λ > 1, then P (λ) = ν̃, where δ0 stands for the Dirac mass at 0. Here,
ν̃(dx) = (2πx)−1

√
4λ− (x− 1− λ)2dx, x ∈

(
(1−

√
λ)2, (1+

√
λ)2
)
. If Xλ has the P (λ)

distribution, then [4, Proposition 12.11] implies that

κm(Xλ) = λ, m > 1. (2.2)

From now on, we will denote by Z(λ) a random variable having the law of Xλ − λ1
(centered free Poisson distribution), where 1 is the unity of A . Plainly, κ1[Z(λ)] =
ϕ[Z(λ)] = 0.

Note that both S(0, t) and P (λ) are compactly supported, and therefore are uniquely
determined by their moments (by the Weierstrass theorem). Definition 2.3-(ii) is taken from
[4, Definition 12.12]. The choice of the denomination “free Poisson” comes from the following
two facts: (1) P (λ) can be obtained as the limit of the free convolution of Bernoulli distri-
butions (see [4, Proposition 12.11]), and (2) the classical Poisson distribution of parameter λ
has (classical) cumulants all equal to λ (see e.g. [12, Section 3.3]).

The following statement contains a characterization of the moments of Z(λ), and shows
that, when λ is integer, then Z(λ) is the free equivalent of a classical centered χ2 random
variable with λ degrees of freedom. This last fact could alternatively be deduced from [4,
Proposition 12.13], but here we prefer to provide a self-contained argument.
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Proposition 2.4 Let the notation of Definition 2.1 and Definition 2.3 prevail. Then, for
every real λ > 0 and every integer m > 1,

ϕ[Z(λ)m] =

m∑

j=1

λjRm,j . (2.3)

Let p = 1, 2, ... be an integer, then Z(p) has the same law as
∑p

i=1(s
2
i −1), where s1, ..., sp are

p freely independent random variables with the S(0, 1) distribution, and 1 is the unit of A .

Proof. From (2.2), one deduces that κm[Z(λ)] = λ for every m > 2. Since κ1[Z(λ)] = 0, we
infer from (2.1) that

ϕ[Z(λ)m] =
∑

π={b1,...,bj}∈NC(m)

λj 1{π has no singletons},

which immediately yields (2.3). To prove the last part of the statement, consider first the
case p = 1, write s = s1 and fix an integer m > 2. In order to build a non-crossing partition of
[m], say π, one has to perform the following three steps: (a) choose an integer j ∈ {0, ...,m},
denoting the number of singletons of π, (b) choose the j singletons of π among the m available
integers (this can be done in exactly

(
m
j

)
distinct ways), (c) build a non-crossing partition

of the remaining m − j integers with blocks at least of size 2 (this can be done in exactly
Rm−j distinct ways). Since C0 = R0 = 1 and C1 = 1 = R0 +R1, it follows that Catalan and
Riordan numbers are linked by the following relation: for every m > 0

Cm =
m∑

j=0

(
m

j

)
Rm−j =

m∑

j=0

(
m

j

)
Rj , (2.4)

where the last equality follows from
(m
j

)
=
( m
m−j

)
. By inversion, one therefore deduces that

Rm =

m∑

j=0

(
m

j

)
(−1)m−jCj, m > 0.

Therefore

ϕ[(s2 − 1)m] =

m∑

j=0

(
m

j

)
(−1)m−jϕ(s2j) =

m∑

j=0

(
m

j

)
(−1)m−jCj

= Rm =
m∑

j=1

Rm,j = ϕ[Z(1)m],

from which we infer that s2 − 1
law
= Z(1), yielding the desired conclusion when p = 1. Let us

now consider the general case, that is, p > 2. By free independence, for any m > 2, we have
that

κm

(
p∑

i=1

(s2i − 1)

)
= p× κm(s21 − 1) = p× κm(Z(1)) = p = κm(Z(p)).

This implies that
∑p

i=1 s
2
i − 1

law
= Z(p), and the proof of Proposition 2.4 is concluded.
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Remark 2.5 (i) Relation (2.4) is well known – see e.g. [1, Section 5] for an alternate proof
based on “difference triangles”.

(ii) Using the last two points of Example 2.2, we deduce from (2.3) that ϕ[Z(λ)3] = λR3,1 =
λ, while ϕ[Z(λ)4] = λR4,1 + λ2R4,2 = λ+ 2λ2.

3 Free Brownian motion and Wigner chaos

Our main reference for the content of this section is the paper by Biane and Speicher [2].

Definition 3.1 (Lp spaces) (i) For 1 6 p 6 ∞, we write Lp(A , ϕ) to indicate the Lp

space obtained as the completion of A with respect to the norm ‖a‖p = ϕ(|a|p)1/p,
where |a| =

√
a∗a, and ‖ · ‖∞ stands for the operator norm.

(ii) For every integer q > 2, the space L2(Rq
+) is the collection of all complex-valued func-

tions on R
q
+ that are square-integrable with respect to the Lebesgue measure. Given

f ∈ L2(Rq
+), we write

f∗(t1, t2, ..., tq) = f(tq, ..., t2, t1),

and we call f∗ the adjoint of f . We say that an element of L2(Rq
+) is mirror symmetric

if

f(t1, ..., tq) = f∗(t1, ..., tq),

for almost every vector (t1, ..., tq) ∈ R
q
+. Notice that mirror symmetric functions con-

stitute a Hilbert subspace of L2(Rq
+).

(iii) Given f ∈ L2(Rq
+) and g ∈ L2(Rp

+), for every r = 1, ...,min(q, p) we define the rth

contraction of f and g as the element of L2(Rp+q−2r
+ ) given by

f
r
⌢g(t1, ..., tp+q−2r) (3.5)

=

∫

R
r
+

f(t1, ..., tq−r, yr, yr−1, ..., y1)g(y1, y2, ..., yr , tq−r+1, tp+q−2r)dy1 · · · dyr.

One also writes f
0
⌢g(t1, ..., tp+q) = f ⊗ g(t1, ..., tp+q) = f(t1, ..., tq)g(tq+1, ..., tp+q). In

the following, we shall use the notations f
0
⌢g and f ⊗ g interchangeably. Observe that,

if p = q, then f
p
⌢g = 〈f, g∗〉L2(Rq

+
).

A free Brownian motion S on (A , ϕ) consists of: (i) a filtration {At : t > 0} of von
Neumann sub-algebras of A (in particular, Au ⊂ At, for 0 6 u < t), (ii) a collection
S = {S(t) : t > 0} of self-adjoint operators such that:

– S(t) ∈ At for every t;

– for every t, S(t) has a semicircular distribution S(0, t), with mean zero and variance t;
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– for every 0 6 u < t, the ‘increment’ S(t) − S(u) is freely independent of Au, and has a
semicircular distribution S(0, t− u), with mean zero and variance t− u.

For every integer q > 1, the collection of all random variables of the type ISq (f) = I(f),
f ∈ L2(Rq

+), is called the qth Wigner chaos associated with S, and is defined according to [2,
Section 5.3], namely:

– first define I(f) = (S(b1) − S(a1)) . . . (S(bq) − S(aq)), for every function f having the
form

f(t1, ..., tq) =

q∏

i=1

1(ai,bi)(ti), (3.6)

where the intervals (ai, bi), i = 1, ..., q, are pairwise disjoint;

– extend linearly the definition of I(f) to ‘simple functions vanishing on diagonals’, that
is, to functions f that are finite linear combinations of indicators of the type (3.6);

– exploit the isometric relation

〈I(f1), I(f2)〉L2(A ,ϕ) = ϕ (I(f1)
∗I(f2)) = ϕ (I(f∗

1 )I(f2)) = 〈f1, f2〉L2(Rq
+
), (3.7)

where f1, f2 are simple functions vanishing on diagonals, and use a density argument to
define I(f) for a general f ∈ L2(Rq

+).

Observe that relation (3.7) continues to hold for every pair f1, f2 ∈ L2(Rq
+). Moreover,

the above sketched construction implies that I(f) is self-adjoint if and only if f is mirror
symmetric. Finally, we recall the following fundamental multiplication formula, proved in [2].
For every f ∈ L2(Rq

+) and g ∈ L2(Rp
+), where q, p > 1,

I(f)I(g) =

min(q,p)∑

r=0

I(f
r
⌢g). (3.8)

Remark 3.2 Let {ei : 1, ..., p} be an orthonormal system in L2(R+). Then, the random
variables si = I(ei), i = 1, ..., p, have the S(0, 1) distribution and are freely independent.
Moreover, the product formula (3.8) implies that

p∑

i=1

(s2i − 1) = I

(
p∑

i=1

ei ⊗ ei

)
,

and therefore that the double integral I (
∑p

i=1 ei ⊗ ei) has a centered free Poisson distribution
with rate p.

4 Proof of the main results

4.1 Proof of Theorem 1.3

In the free probability setting (see e.g. [4, Definition 8.1]) convergence in distribution is equiv-
alent to the convergence of moments, so that I(fn) converges in distribution to Z(λ) if and
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only if ϕ(I(fn)
m) → ϕ(Z(λ)m), for every m > 1. In particular, convergence in distribution

implies ϕ(I(fn)
4)− 2ϕ(I(fn)

3) → ϕ(Z(λ)4)− 2ϕ(Z(λ)3) = 2λ2 − λ.
Now assume that ϕ[I(fn)

4] − 2ϕ[I(fn)
3] → 2λ2 − λ. We have to show that, for every

m > 2, ϕ[I(fn)
m] → ϕ[Z(λ)m]. Iterative applications of the product formula (3.8) yield

I(fn)
m =

∑

(r1,...,rm−1)∈Am

I
(
(. . . ((fn

r1⌢fn)
r2⌢fn) . . . fn)

rm−1
⌢ fn

)
,

where

Am =
{
(r1, . . . , rm−1) ∈ {0, 1, . . . , q}m−1 : r2 6 2q − 2r1, r3 6 3q − 2r1 − 2r2, . . . ,

rm−1 6 (m− 1)q − 2r1 − . . . − 2rm−2

}
.

We deduce that

ϕ[I(fn)
m] =

∑

(r1,...,rm−1)∈Bm

(. . . ((fn
r1⌢fn)

r2⌢fn) . . . fn)
rm−1
⌢ fn,

with Bm =
{
(r1, . . . , rm−1) ∈ Am : 2r1 + . . . + 2rm−1 = mq

}
. We decompose Bm as follows:

Bm = Dm ∪ Em, with Dm = Bm ∩ {0, q2 , q}m−1 and Em = Bm \Dm, so that

ϕ[I(fn)
m] =

∑

(r1,...,rm−1)∈Dm

(. . . ((fn
r1⌢fn)

r2⌢fn) . . . fn)
rm−1
⌢ fn

+
∑

(r1,...,rm−1)∈Em

(. . . ((fn
r1⌢fn)

r2⌢fn) . . . fn)
rm−1
⌢ fn. (4.9)

By the forthcoming Lemma 5.1, we have ‖fn
q/2
⌢fn − fn‖ → 0 and ‖fn r

⌢fn‖ → 0 for r ∈
{1, . . . , q − 1} \ { q

2}. The conclusion is then obtained by observing that the first sum in
(4.9) converges to ϕ[Z(λ)m] by Proposition 2.4 and the forthcoming Lemma 5.2, whereas the
second sum converges to zero by the forthcoming Lemma 5.4.

2

4.2 Proof of Proposition 1.4

Assume that F = I(f), where f is a mirror symmetric element of L2(Rq
+) for some even q > 4,

and also that ϕ[F 2] = ‖f‖2
L2(Rq

+
)
= λ > 0. If F had the same law of Z(λ), then ϕ(F 4) −

2ϕ(F 3) = 2λ2 − λ, and the forthcoming Lemma 5.1 would imply that ‖f q/2
⌢f − f‖L2(Rq

+
) = 0

and ‖f r
⌢f‖

L2(R2q−2r
+

)
= 0 for all r ∈ {1, . . . , q − 1} \ { q

2}. As shown in [3, Proof of Corollary

1.7], the relation ‖f q−1
⌢f‖L2(R2

+
) = 0 implies that necessarily f = 0, and therefore that F = 0.

Since ϕ[F 2] = λ > 0 we have achieved a contradiction, and the proof is concluded.
2
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5 Ancillary lemmas

This section collects some technical results that are used in the proof of Theorem 1.3.

Lemma 5.1 Let q > 2 be an even integer, and consider a sequence {fn : n > 1} ⊂ L2(Rq
+)

of mirror symmetric functions such that ‖fn‖2L2(Rq
+
)
= λ > 0 for every n. As n → ∞, one

has that

ϕ[I(fn)
4]− 2ϕ[I(fn)

3] → 2λ2 − λ

if and only if ‖fn
q/2
⌢fn − fn‖L2(Rq

+
) → 0 and ‖fn r

⌢fn‖L2(R2q−2r
+

) → 0 for all r ∈ {1, . . . , q −
1} \ { q

2}.

Proof. The product formula yields

I(fn)
2 − I(fn) = λ+ I(fn

0
⌢fn) + I(fn

q/2
⌢fn − fn) +

∑

16r6q−1
r 6=q/2

I(fn
r
⌢fn).

Using the isometry property and the fact that multiple Wigner integrals of different orders
are orthogonal in L2(A , ϕ), we deduce that

ϕ[(I(fn)
2 − I(fn))

2]

= λ2 + ‖fn 0
⌢fn‖2L2(R2q

+ )
+ ‖fn

q/2
⌢fn − fn‖2L2(Rq

+
) +

∑

16r6q−1
r 6=q/2

‖fn r
⌢fn‖2L2(R2q−2r

+ )

= 2λ2 + ‖fn
q/2
⌢fn − fn‖2L2(Rq

+
) +

∑

16r6q−1
r 6=q/2

‖fn r
⌢fn‖2L2(R2q−2r

+
)
,

and the desired conclusion follows because ϕ[I(fn)
2] = ‖fn‖2L2(Rq

+)
= λ.

2

Lemma 5.2 Let m > 2 be an integer, let q > 2 be an even integer, and recall the notation
adopted in (4.9). Assume {fn : n > 1} ⊂ L2(Rq

+) is a sequence of mirror symmetric functions

satisfying ‖fn‖2L2(Rq
+
)
= λ > 0 for every n. If ‖fn

q/2
⌢fn − fn‖2L2(Rq

+
) → 0 as n → ∞, then

∑

(r1,...,rm−1)∈Dm

(. . . ((fn
r1⌢fn)

r2⌢fn) . . . fn)
rm−1
⌢ fn → ϕ[Z(λ)m] =

m∑

j=1

λj Rm,j , (5.10)

as n → ∞.

Proof. Assume that fn
q/2
⌢fn ≈ fn (given two sequences {an} and {bn} with values in some

normed vector space, we write an ≈ bn to indicate that an − bn → 0 with respect to the

associated norm), and consider (r1, . . . , rm−1) ∈ Dm. Using the identities fn
0
⌢fn = fn ⊗ fn,

fn
q
⌢fn = ‖fn‖2L2(Rq

+
) = λ and fn

q/2
⌢fn ≈ fn, it is evident that

(. . . ((fn
r1⌢fn)

r2⌢fn) . . . fn)
rm−1
⌢ fn → λj ,

10



where j equals the number of the entries of (r1, . . . , rm−1) that are equal to q. It follows that,
for every m > 2, there exists a polynomial wm(λ) (independent of q) such that, for every
sequence {fn} as in the statement,

∑

(r1,...,rm−1)∈Dm

(. . . ((fn
r1⌢fn)

r2⌢fn) . . . fn)
rm−1
⌢ fn → wm(λ).

Now consider the case q = 2 and fn = f =
∑p

i=1 ei⊗ei, where p > 1 and {ei : i = 1, ..., p} is an
orthonormal system in L2(Rq

+). The following three facts are in order: (a) I(
∑p

i=1 ei⊗ei) has

the same law as Z(p) (see Remark 3.2), (b) ‖f‖2
L2(R2

+
)
= p, and (c) f

1
⌢f = f . Since Em = ∅

for q = 2, the previous discussion (combined with (4.9) and Proposition 2.4) yields that, for
every m > 2, wm(p) = ϕ[Z(p)m] =

∑m
j=1 p

jRm,j, for every p = 1, 2, .... Since two polynomials
coinciding on a countable set are necessarily equal, we deduce that wm(λ) = ϕ[Z(λ)m] for
every λ > 0.

2

Remark 5.3 By inspection of the arguments used in the proof of Lemma 5.2, one deduces
that Rm = |Dm|, for every m > 2.

Lemma 5.4 Let m > 2 be an integer, let q > 2 be an even integer, and recall the notation
adopted in (4.9). Assume {fn : n > 1} ⊂ L2(Rq

+) is a sequence of mirror symmetric functions

satisfying ‖fn‖2L2(Rq
+
)
= λ > 0 for every n. If (r1, . . . , rm−1) ∈ Em and if ‖fn r

⌢fn‖L2(R2q−2r
+

)
→

0 for all r ∈ {1, . . . , q − 1} \ { q
2}, then

(. . . ((fn
r1⌢fn)

r2⌢fn) . . . fn)
rm−1
⌢ fn → 0, as n → ∞.

Proof. Let j ∈ {1, . . . ,m−1} be the smallest integer such that rj ∈ {1, . . . , q−1}\{ q
2}. Then

∣∣(. . . ((fn
r1⌢fn)

r2⌢fn) . . .
rm−1
⌢ fn

∣∣

=
∣∣(. . . ((fn

r1⌢. . .
rj−1

⌢ fn)
rj
⌢fn)

rj+1

⌢ . . .
rm−1
⌢ fn

∣∣

≈(∗) C
∣∣(. . . ((fn ⊗ . . .⊗ fn)

rj
⌢fn)

rj+1

⌢ . . .
rm−1
⌢ fn

∣∣ (using fn
q/2
⌢fn ≈ fn and fn

q
⌢fn = λ)

6(∗∗) C ‖(fn ⊗ . . . ⊗ fn)⊗ (fn ⊗rj fn)‖ × ‖fn‖m−j−1
L2(Rq

+
)

(by Cauchy-Schwarz)

= C ‖fn
rj
⌢fn‖

L2

(
R
2q−2rj
+

) (since ‖fn‖2L2(Rq
+
)
= λ)

−→ 0, as n → ∞.

In the previous computations, we have adopted the following conventions: (a) C is a finite
constant independent of n that may change from line to line, (b) the tensor products in (∗)
and (∗∗) have an unspecified order which depends on (r1, ..., rk−1), and (c) the first norm in
(∗∗) refers to an appropriate L2(Rs

+) space, for some s depending of the order of the tensor
product.

2
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