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On the smoothness of the multi-BMPV black hole spacetime

We demonstrate that, in a multi-BMPV black hole spacetime, the event horizon is not smooth. We explicitly show that for a simpler configuration comprising a line of static extremal black holes and a single BMPV black hole, the metric at the horizon of the BMPV black hole is once, but not twice, continuously differentiable. We argue that this result is also valid when all the black holes are rotating. The Maxwell field strength is shown to be continuous, but not differentiable at the horizon.

Introduction

Einstein-Maxwell theory admits multi-centre extremal black hole solutions, thanks to a balance of gravitational and electrostatic forces. Such a solution in four dimensions has been known for a long time, and the event horizon has been shown to be analytic [START_REF] Hartle | Solutions of the Einstein-Maxwell equations with many black holes[END_REF]. In higher dimensions, however, such solutions do not generally have smooth event horizons [START_REF] Welch | On the smoothness of the horizons of multi-black hole solutions[END_REF][START_REF] Candlish | On the smoothness of static multi-black hole solutions of higher-dimensional Einstein-Maxwell theory[END_REF].

In [START_REF] Welch | On the smoothness of the horizons of multi-black hole solutions[END_REF] this lack of smoothness was shown for an axisymmetric set of static black holes by considering the behaviour of components of the Riemann tensor in a parallely propagated orthonormal frame along axial null geodesics. This result was extended in [START_REF] Candlish | On the smoothness of static multi-black hole solutions of higher-dimensional Einstein-Maxwell theory[END_REF] by removing the restriction to axial geodesics and allowing an arbitrary number of coaxial static black holes to be present. Rather than working with the Riemann tensor, the behaviour of a geometric invariant was investigated, as such invariants will be as differentiable as the metric itself. In that work it was shown that the event horizon is generally C 2 but not C 3 in five dimensions 1 , and C 1 but not C 2 in more than five dimensions. Furthermore, in the case of more than five dimensions, it was demonstrated that there is a parallely propagated curvature singularity at the horizon. By tuning the parameters of the solution it is possible to increase the smoothness in five dimensions, and in fact it is possible to ensure that at least one connected component of the horizon is analytic. This is not the case for six dimensions or more.

In five dimensions, the action for Einstein-Maxwell-Chern-Simons theory coincides with the bosonic part of N = 2 five dimensional supergravity. All supersymmetric solutions of this theory have been classified according to whether there exists a timelike or null Killing vector [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF]. In the class of solutions corresponding to the timelike case, there are static black holes as discussed above, stationary rotating black holes [START_REF] Breckenridge | D-branes and spinning black holes[END_REF] (known as the BMPV solution), and black rings [START_REF] Elvang | A Supersymmetric black ring[END_REF].

As these solutions are supersymmetric (they satisfy a BPS bound), they are also extremal, and thus multi-black hole solutions may be constructed due to the balance of forces exactly as described above. A striking example of such a solution comprising a set of concentric black rings is given in [START_REF] Gauntlett | Concentric black rings[END_REF]. The general concentric ring solution is shown there to be analytic, although the spacetime may contain closed timelike curves. When the rings are coplanar or oriented on orthogonal two-planes the solution preserves both the U (1) rotational isometries of a single supersymmetric black ring and, given a certain restriction on the parameters, there are no closed timelike curves outside the horizon.

We generally expect to see a non-analytic metric at the event horizon when a rotational symmetry is broken. A straightforward argument for this is given in [START_REF] Horowitz | How Hairy Can a Black Ring Be?[END_REF], where a supersymmetric black ring of non-constant charge density is shown not to admit a smooth horizon. The presence of a horizon for a rotating black hole requires a limit → ∞ where is the coordinate along the direction of rotation. Any non-trivial periodic function of will therefore run through an infinite number of periods close to the horizon and so will not be continuous there. The behaviour of the coordinate is familiar from the Kerr solution, where the azimuthal angle of the Boyer-Lindquist coordinates diverges at the horizon. It is essentially this effect we will see in this paper: a rotating black hole metric that has a broken symmetry in one of the directions of rotation will exhibit a lack of smoothness at the horizon.

One motivation of this work was to investigate the effects of a spin-spin interaction between two (or more) BMPV black holes. The lack of smoothness of the multi-BMPV spacetime could conceivably have been dependent on the relative alignments of the rotations, with parallel rotation resulting in a higher degree of differentiability than for the non-parallel case. A special case of parallel spins is when only one black hole rotates. Thus in this paper we consider an axial configuration of black holes, with a single, central rotating BMPV black hole, while the other black holes are static. The single BMPV solution has two planes of equal rotation and isometry group R × SU (2) × U [START_REF] Hartle | Solutions of the Einstein-Maxwell equations with many black holes[END_REF]. The axial configuration we are considering preserves only two of the isometries of a single BMPV black hole: time translations and a single U (1) rotational symmetry. From the argument above we therefore expect lack of smoothness resulting from breaking the symmetry in a direction of rotation.

As we already know from [START_REF] Candlish | On the smoothness of static multi-black hole solutions of higher-dimensional Einstein-Maxwell theory[END_REF] that the five dimensional extremal static multi-black hole solution only admits a C 2 horizon, we might ask if our special case of a single rotating black hole amongst static black holes is at least as smooth. Somewhat surprisingly we find that this is not the case, and we will demonstrate that our configuration exhibits an event horizon that is C 1 but not C 2 . Thus we can conclude that a general multi-BMPV solution must not have a C 2 horizon.

To begin with then, in section 2 we briefly describe some important aspects of the single BMPV black hole solution, as well as the Gaussian null coordinates which are central to our work. In section 3 we give the metric for the multi-black hole spacetime we are considering. The main analysis and result is discussed in section 4. Finally we conclude and summarise the results.

Single BMPV Solution

The BMPV black hole [START_REF] Breckenridge | D-branes and spinning black holes[END_REF] is a stationary, asymptotically flat supersymmetric black hole solution of minimal five dimensional supergravity. A general stationary BPS solution to minimal five dimensional supergravity has the following metric [START_REF] Gauntlett | All supersymmetric solutions of minimal supergravity in five dimensions[END_REF]:

ds 2 = -H -2 (dt + ω) 2 + Hds 2 (M 4 ). (1) 
For the BMPV solution the base space M 4 = R 4 . The function H and the one-form ω are defined on R 4 . We will use the following metric on the base space:

ds 2 (R 4 ) = dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 + cos θ 2 dψ 2 ), (2) 
where 0 ≤ θ ≤ π/2 and 0 ≤ φ, ψ < 2π. H satisfies the four dimensional Laplace equation and is therefore harmonic.

Poles in H correspond to the locations of event horizons of black holes. Thus taking H to be

H = 1 + µ r 2 (3) 
corresponds to the presence of a single asymptotically flat black hole with horizon located at r = 0. The parameter µ is proportional to the mass. As we have four spatial dimensions there are two independent planes of rotation. In the coordinates we are using, the two commuting U (1) rotational symmetries of a single axisymmetric five dimensional black hole have orbits whose tangent vectors are ∂ φ and ∂ ψ . For the BMPV black hole, regularity of the horizon demands equal rotations in both two-planes. Thus the four dimensional rotation group SO(4) ∼ = SU (2) × SU (2) is effectively restricted to one of the SU (2) factors. The one-form ω, which describes the rotation of the black hole, may be written in terms of the left-invariant one-forms on the 3-sphere. Without loss of generality, we choose

ω = J 2r 2 (sin 2 θdφ + cos 2 θdψ) ( 4 
)
where J is a parameter proportional to the angular momentum in both two-planes of rotation. As investigated in [START_REF] Gibbons | Supersymmetric rotating black holes and causality violation[END_REF], the BMPV solution becomes a time machine, with closed timelike curves outside the horizon if the causality bound 4µ 3 > J 2 is violated. A further interesting property of this solution is that the angular velocity of the horizon vanishes, even though the asymptotic conserved quantity J = 0. This is a result of supersymmetry as demonstrated in [START_REF] Myers | Black holes of D=5 supergravity[END_REF], where it is shown that a negative fraction of the angular momentum resides behind the horizon. The single BMPV black hole metric is therefore given by

ds 2 = -1 + µ r 2 -2
(dt + J 2r 2 (sin 2 θdφ + cos 2 θdψ)) 2 + 1 + µ r 2 (dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 + cos θ 2 dψ 2 )). ( 5)

Gaussian null coordinates

To investigate the smoothness of the multi-BMPV solution we will put the metric into a Gaussian null system of coordinates. The method of construction of such a coordinate system is discussed in [START_REF] Reall | Higher dimensional black holes and supersymmetry[END_REF] and in detail in [START_REF] Friedrich | On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon[END_REF]. Here we present only a brief description. Consider a connected component of the future event horizon H + of a multi-black hole spacetime, which we will call H + 0 . Let us label the intersection of this component of the horizon with a spatial hypersurface as H 0 . The surface H 0 is topologically an S 3 , on which we introduce the coordinates x i . In the coordinates in (1) the time translation Killing vector is given by V = ∂/∂ t . As this is null on the horizon and the generator of a symmetry, this is tangent to the null geodesic generators of H + 0 . We now define v to be the parameter-distance from H 0 along the integral curves of V . This gives us a coordinate chart (v, x i ) on a neighbourhood of H 0 in H + 0 . We now extend this chart off the horizon along a null geodesic. Let U be the unique (past-directed) null vector field satisfying U • V = 1 and U • ∂/∂x i = 0 on H + 0 . We take γ(v, x i ) to be the null geodesic that begins at the point with coordinates (v, x i ) in H + 0 and whose tangent vector there is U . The affine parameter distance from H + 0 along this geodesic is given by λ. The Gaussian null coordinates on a neighbourhood of H 0 are therefore (v, λ, x i ), and the metric takes the general form

ds 2 = -H(λ, x) -2 dv 2 + 2dvdλ + 2λh i (λ, x)dvdx i + h ij (λ, x)dx i dx j . ( 6 
)
As a warm up, we will perform this transformation to Gaussian null coordinates for the single BMPV black hole metric given in the previous section. For a null geodesic with affine parameter λ in this geometry we have

0 = -1 + µ r 2 -2 ṫ + J 2r 2 (sin 2 θ φ + cos 2 θ ψ) 2 + 1 + µ r 2 ( ṙ2 + r 2 ( θ2 + sin 2 θ φ2 + cos 2 θ ψ2 )) (7) 
where the dot denotes differentiation with respect to λ. From time translation symmetry, and the choice of a past-directed geodesic, we have

-H -2 ( ṫ + ω) = E, (8) 
where ω = J 2r 2 (sin 2 θ φ + cos 2 θ ψ).

We choose the parameterisation such that we can set the constant of the motion E = 1, so we have

ṫ + ω = -H 2 . ( 10 
)
The rotational symmetries, generated by ∂ φ and ∂ ψ , give us

φ = 1 Hr 2 sin 2 θ J φ - J 2r 2 sin 2 θ ψ = 1 Hr 2 cos 2 θ J ψ - J 2r 2 cos 2 θ , (11) 
where J φ and J ψ are the conserved angular momenta of the geodesic in the φ and ψ direction respectively. By definition of the Gaussian null coordinate system, we require the tangent vector to the geodesic to be orthogonal to the vector fields tangent to the S 3 at the horizon H 0 . Therefore we set

θ = J φ = J ψ = 0, (12) 
where we have chosen a geodesic where θ is constant. The conditions on J φ and J ψ ensure that the Killing fields associated to the φ and ψ directions lie tangent to the horizon. Note that for the multi-black hole case we will no longer have a constant θ, although θ will still be chosen to vanish at the horizon. With these conditions on the geodesic we now have

φ = ψ = - J 2Hr 4 . ( 13 
)
Substituting ( 10) and ( 13) into the null condition [START_REF] Elvang | A Supersymmetric black ring[END_REF], and setting θ = 0 we find

ṙ = H - J 2 4H 2 r 6 1/2 (14)
This can be expanded out for small r, integrated and the resulting series inverted to obtain

r(λ) = ∆ µ 1/2 λ 1/2 1 + J 2 + 2µ 3 4µ 2 ∆ λ + O(λ 2 ) ( 15 
)
where the term in brackets is analytic in λ and we have defined the symbol

∆ ≡ (4µ 3 -J 2 ) 1/2 . ( 16 
)
As stated earlier, to ensure the absence of closed timelike curves outside the horizon we must have ∆ > 0. As we want λ = 0 on the horizon, we have also imposed the initial condition r(λ)| λ=0 = 0. Clearly this is an outgoing null geodesic for increasing λ. Using ( 15) and ( 13), along with the initial conditions on our geodesic we can find

φ = - J 2∆ log λ + Φ + J(10µ 3 -J 2 ) 4∆ 2 µ 2 λ + O(λ 2 ) ψ = - J 2∆ log λ + Ψ + J(10µ 3 -J 2 ) 4∆ 2 µ 2 λ + O(λ 2 ) ( 17 
)
with Ψ and Φ constants of integration. From these expressions we can immediately see the consequences of breaking symmetry in either the φ or ψ directions: at the horizon, λ = 0, the angles undergo an infinite shift. If the metric components involve periodic functions of φ or ψ then those functions will go through an infinite number of periods at the horizon and will not be well-behaved. We will see the consequences of this for the smoothness of the multi-centre metric at the horizon later.

We now have all we need to transform the metric to the Gaussian null coordinates. The Gaussian null coordinates on the S 3 , previously denoted x i , will now be given by Θ, Φ and Ψ. The coordinate Θ is the limiting θ value of our null geodesic at the horizon. In the present case we have chosen θ to be constant, so we have the trivial transformation θ = Θ. In the multi-black hole case θ will not be constant and the transformation will be nontrivial. The coordinates Φ and Ψ are the constants of integration in (17). We may use these as coordinates because they are finite and

∂/∂ φ = ∂/∂ Φ , ∂/∂ ψ = ∂/∂ Ψ . ( 18 
)
The Gaussian null coordinate v is defined as

v ≡ t + (H 2 + ω)dλ. (19) 
Using [START_REF] Friedrich | On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon[END_REF] to rewrite ω, and [START_REF] Chruściel | Nonsmoothness of event horizons of Robinson-Trautman black holes[END_REF] to transform all functions of r to functions of λ we find

dt = dv -H(λ) 2 - J 2 4H(λ)r(λ) 6 dλ. ( 20 
)
The final coordinate in the Gaussian null coordinate system is λ, the affine parameter along our null geodesic, which becomes our new radial coordinate. Therefore the full set of coordinate transformations from the original form of the metric given in (5) to the Gaussian null form is given by ( 15), (20) and

dr = H(λ) - J 2 4H(λ) 2 r(λ) 6 1/2 dλ dφ = dΦ - J 2H(λ)r(λ) 4 dλ dψ = dΨ - J 2H(λ)r(λ) 4 dλ dθ = dΘ. (21)
Using these, we find that the metric in Gaussian null coordinates is

ds 2 = -H(λ) -2 dv 2 + 2dvdλ - J H(λ) 2 r(λ) 2 dv sin 2 θdΦ + cos 2 θdΨ + H(λ)r(λ) 2 dΘ 2 + H(λ)r(λ) 2 sin 2 Θ - J 2 sin 4 Θ 4H(λ) 2 r(λ) 4 dΦ 2 + H(λ)r(λ) 2 cos 2 Θ - J 2 cos 4 Θ 4H(λ) 2 r(λ) 4 dΨ 2 - J 2 sin 2 (2Θ) 8H(λ) 2 r(λ) 4 dΦdΨ. (22)
In these coordinates the metric is regular at the horizon λ = 0 where it takes the form

ds 2 | H0 = 2dvdλ + µdΘ 2 + µ - J 2 sin 2 Θ 4µ 2 sin 2 ΘdΦ 2 + µ - J 2 cos 2 Θ 4µ 2 cos 2 ΘdΨ 2 - J 2 cos 2 Θ sin 2 Θ 4µ 2 dΦdΨ, (23)
and the determinant is

g = 1 4 (4µ 3 -J 2 ) cos 2 Θ sin 2 Θ, (24) 
which clearly satisfies g = 0 when the causality bound 4µ 3 > J 2 holds, and for Θ = 0, π/2 which we expect are just coordinate singularities. Expanding the metric components as a series in λ around λ = 0 we can find the form off the metric away from the horizon. This expansion is presented in the appendix for the leading order terms in each component. Obviously the single BMPV solution preserves both rotational U (1) symmetries (with associated Killing vectors ∂ Φ and ∂ Ψ in these coordinates). In addition to this, all the metric functions (i.e. H and ω) depend only on r 2 . From [START_REF] Chruściel | Nonsmoothness of event horizons of Robinson-Trautman black holes[END_REF] we see that r 2 is an analytic function of λ. This shows we have an analytic metric at the horizon.

Axial Multi-Black Hole Spacetime

We now give the metric for the configuration of black holes in which we are interested: a single BMPV black hole in a line of extremal static black holes. As argued in the introduction, the result of the smoothness analysis for this simpler special case will apply to a general multi-BMPV spacetime. The metric in this case is again given by

ds 2 = -H -2 (dt + ω) 2 + H(dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 + cos 2 θdψ 2 )) (25) 
but now we wish to add additional static black holes to the spacetime. As they are static, the one-form ω will be the same as [START_REF] Kimura | Analyticity of Event Horizons of Five-Dimensional Multi-Black Holes with Non-Trivial Asymptotic Structure[END_REF],

ω = J 2r 2 (sin 2 θdφ + cos 2 θdψ), (26) 
but we must add more monopole sources to the harmonic function H. Thus we write

H = 1 + µ 1 r 2 + N i=2 µ i r 2 + a 2 i -2a i r sin θ sin φ (27)
where µ i and a i denote, respectively, the mass parameter and position of the i-th black hole. Therefore the additional static black holes lie at the locations r = a i along the axis given by θ = π/2 and φ = π/2 or φ = 3π/2. We may think of this axis as lying entirely in one of the

R 2 factors of R 4 ∼ = R 2 × R 2 .
The polar angle in this two-plane is φ. We could, of course, have chosen a different axis, possibly one lying entirely in the other R 2 factor, i.e. the orthogonal two-plane with polar angle ψ. This would make no difference to the analysis. The important point is that adding an extra pole away from the origin breaks at least one of the two rotational U (1) isometries of the single BMPV black hole located at r = 0. Thinking of R 4 as R 2 × R 2 it is clear that it is impossible to add a pole away from the origin that does not break a rotational symmetry in either R 2 . Therefore we make an explicit choice of which symmetry to break in the above expression of H. We can expand the harmonic function H in terms of spherical harmonics in the following way:

H = µ 1 r 2 + ∞ n=0 h n r n Y n (sin θ sin φ) ( 28 
)
where the harmonics Y n (sin θ sin φ) are given by the Gegenbauer polynomials

Y n (sin θ sin φ) = C 1 n (sin θ sin φ). ( 29 
)
The coefficients are

h n = δ n,0 + N i=2 µ i a 2+n i . ( 30 
)
For the single black hole case this of course reduces to h 0 = 1, h n = 0 for n ≥ 1. Given our choice of H it is clear that ∂ ψ is still a Killing vector for this metric.

To summarise then, we have added additional static black holes to the single BMPV black hole spacetime. These additional black holes all lie along a common axis, in order to preserve one of the two U (1) rotational isometries of the BMPV black hole.

Smoothness Analysis

We now face the task of examining the smoothness of the metric we have just constructed. We will restrict ourselves to determining the smoothness at the connected component of the spatial cross-section of the future event horizon that corresponds to the S 3 horizon of the BMPV black hole at r = 0 (or λ = 0 in the Gaussian null coordinates).

To do this we will consider the behaviour of the norm of the Killing vector field K = ∂/∂ ψ along a null geodesic that approaches the horizon. We will show that this function is not C 2 at the horizon and hence the horizon cannot be C 2 . We then construct Gaussian null coordinates to show that the metric is C 1 . Therefore we determine that the metric at the horizon is once continuously differentiable but not twice.

Geodesic equations

First we must solve the geodesic equations to determine a past-directed outgoing null geodesic. As before we have

ṫ + ω = -H 2 ( 31 
)
where ω is given by ( 9), and again we have chosen the parameterisation such that the constant of the motion E = 1. The rotational symmetry in the ψ direction again gives

ψ = 1 Hr 2 cos 2 θ (J ψ - J 2r 2 cos 2 θ). ( 32 
)
As we have broken the φ symmetry we no longer have the constant of the motion J φ , and we must solve the geodesic equation for φ explicitly.

The geodesic equation (after substituting for ṫ) for r is r -r θ2 -r φ2 sin 2 θ -r ψ2 cos 2 θ + H -1 ṙ( φ∂ φ H + θ∂ θ H)

+ H -1 ( ψf ψr + φf φr ) -∂ r H + 1 2 H -1 ṙ2 ∂ r H - 1 2 H -1 r 2 ∂ r H( θ2 + ψ2 cos 2 θ + φ2 sin 2 θ) = 0. ( 33 
)
The geodesic equation for θ is

θ + 2r -1 ṙ θ + 1 2 ψ2 sin(2θ) - 1 2 φ2 sin(2θ) + H -1 θ( φ∂ φ H + ṙ∂ r H) + H -1 r -2 ( ψf ψθ + φf φθ ) -r -2 ∂ θ H + 1 2 H -1 θ2 ∂ θ H - 1 2 H -1 ∂ θ H(r -2 ṙ2 + ψ2 cos 2 θ + φ2 sin 2 θ) = 0. ( 34 
)
The geodesic equation for φ is

φ + 2r -1 ṙ φ + 2 cot θ θ φ -r -2 csc 2 θ∂ φ H + 1 2 H -1 csc 2 θ∂ φ H sin 2 θ φ2 -cos 2 θ ψ2 -r -2 ṙ2 -θ -r -2 H -1 csc 2 θ ṙf φr + θf φθ + H -1 φ ṙ∂ r H + θ∂ θ H = 0. ( 35 
)
We have used

f µν = ∂ µ ω ν -∂ ν ω µ ( 36 
)
where ω ν are the components of the one-form ω (of which there are only ω φ and ω ψ ). The final equation we require is the null condition,

-H 2 + H( ṙ2 + r 2 θ2 + r 2 φ2 sin 2 θ + r 2 ψ2 cos 2 θ) = 0. ( 37 
)
We therefore have to solve this set of coupled differential equations for the functions r(λ), θ(λ) and φ(λ). The functions t(λ) and ψ(λ) may then be obtained from (31) and (32) after substituting r(λ), θ(λ) and φ(λ). Finally the null condition must be imposed to ensure we have a null geodesic. In practice it was more straightforward to solve directly (32) and the other three geodesic equations (along with making sure the null condition is satisfied), rather than using (32) to eliminate ψ in the equations for r, θ and φ. We will solve these equations using an ansatz involving a power series in the affine parameter λ. In addition we subject the geodesic to the initial conditions required for constructing a Gaussian null coordinate system. These conditions were applied earlier for the single BMPV case, but we repeat them here:

r(λ)| λ=0 = 0, θ| H0 = 0, J ψ = 0. ( 38 
)
As we have broken the φ symmetry we do not have a conserved angular momentum for the geodesic in that direction.

Arbitrarily close to the BMPV black hole, however, the spacetime is effectively that of the single BMPV solution discussed earlier and we can still use the J φ = 0 condition on the geodesic. These conditions ensure that λ = 0 coincides with the horizon and that the Gaussian null condition of U • ∂/∂ x i = 0 on the horizon is satisfied, where the S 3 coordinates x i are Θ, Φ and Ψ.

Solving the geodesic equations

Before we give the expressions for the power series ansatz, we will first give an idea of what form the ansatz must take. We know that to leading order in λ the geodesic equations must be solved by the expressions for r(λ), θ(λ), φ(λ) and ψ(λ) that we found for the single BMPV black hole. Therefore, we will use these expressions to write the forms of these functions in a general way, with the leading order behaviour as for the single BMPV case plus a subleading correction term:

φ = Φ + w 0 log λ + w 2 λ + δφ ψ = Ψ + y 0 log λ + y 2 λ + δψ r = a 1 λ 1/2 + a 3 λ 3/2 + δr θ = Θ + δθ. ( 39 
)
So we consider the corrections δφ and δψ to be terms of some order higher than O(λ). The correction δr is of some order higher than O(λ 3/2 ) and the correction to θ is simply some non-constant order in λ. The constants w 0 , y 0 , w 2 , y 2 , a 1 and a 3 are precisely the coefficients of the relevant powers of λ in ( 15) and (17):

w 0 = y 0 = - J 2∆ w 2 = y 2 = J(10µ 3 1 -J 2 ) 4∆ 2 µ 2 1 a 1 = ∆ µ 1 1/2 a 3 = (J 2 + 2µ 3 1 ) 4µ 5/2 1 √ ∆ , ( 40 
)
where we have written the BMPV mass parameter as µ 1 rather than µ, in keeping with the form of H given in (27) for the multi-black hole metric. We substitute these expressions into the geodesic equation for θ, and expand for small λ, keeping only the terms of lowest order in λ. We rewrite the trigonometric functions of φ such as sin(φ) using normal trigonometric identities and then we perform a Taylor expansion on any terms that do not involve log λ. After all this we find that, at lowest order in the expansion, we have a single uncoupled second order ordinary differential equation for δθ:

δθ -2 h 1 a 1 + 1 4µ 1 a 3 1 h 1 + a 3 1 µ 1 h 1 w 2 0 cos Θ (cos Φ sin(w 0 log λ) + sin Φ cos(w 0 log λ)) λ -1/2 = 0. ( 41 
)
This is solved by

δθ(λ) = c 1 + c 2 λ + 4c 3 4 sin(Φ + w 0 log λ)w 2 0 -3 sin(Φ + w 0 log λ) + 8 cos(Φ + w 0 log λ)w 0 λ 3/2 9 + 40w 2 0 + 16w 4 0 , ( 42 
)
with c 1 and c 2 undetermined constants, and

c 3 = 2 h 1 a 1 + a 3 1 µ 1 h 1 1 4 + w 2 0 cos Θ. ( 43 
)
Thus we have found θ = Θ + δθ up to order λ 3/2 . Clearly we can absorb the constant c 1 into Θ, and the constant c 2 may be fixed by the initial condition on the geodesic that θ| H0 = 0. From (42) we see that terms such as sin(mw 0 log λ) and cos(mw 0 log λ), with positive integer m, arise in the expansion of θ. Likewise, such terms will arise at the same order in the expansions of φ and ψ when we solve those geodesic equations. Similarly this log λ dependence will appear at order λ 2 in r, because the r expansion begins at a higher order than the expansions for the angles.

It should be noted that this log λ dependence will cause lack of smoothness in the metric at the horizon (where λ = 0). This is in addition to the lack of smoothness arising from half-integer powers of λ in the metric components in the Gaussian null coordinate system, which is the cause of the low degree of differentiability in the static case.

A word about notation: we will write O(F (log λ)λ n ) to denote a term that is morally of order λ n (i.e. there is an overall factor of λ n ) although it also contains terms of the form sin(mw 0 log λ) or cos(mw 0 log λ). Thus F (log λ) represents a bounded periodic function of log λ. These terms are badly behaved at the horizon due to the infinite number of periods.

Series ansatz

Now that we have determined that the unusual terms involving trigonometric functions of log λ will appear in the functions for which we are solving, we must include them in our power series ansatz. We now give the general form of this ansatz. We can, of course, use the expansions for the single BMPV case in ( 15) and ( 17) to write down the first few terms just as we did in the previous section. The general form for the ansatz for r is

r = a 1 λ 1/2 + a 3 λ 3/2 + ∞ n=5 a n (Θ, Φ)λ n/2 (44) + ∞ k=4 λ k/2 k-3 m=1 a (m) k (Θ, Φ) sin(mw 0 log λ) + ã(m) k (Θ, Φ) cos(mw 0 log λ) . ( 45 
) (46)
After solving the geodesic equations we have found that a n = 0 if n is an even integer, and a

(m) k = ã(m) k = 0
if k and m are both even or both odd.

For the coordinates φ and ψ, the leading term in the ansatz is the logarithmic behaviour we found earlier for the single BMPV black hole, while the leading order term in θ is a constant. Thus we have

θ = Θ + b 2 λ + ∞ N =4 b N (Θ, Φ)λ N/2 (47) + ∞ k=3 λ k/2 k-2 M =1 b (M ) k (Θ, Φ) sin(Mw 0 log λ) + b(M) k (Θ, Φ) cos(Mw 0 log λ) (48) φ = Φ + w 0 log λ + w 2 λ + ∞ N =4 w N (Θ, Φ)λ N/2 (49) + ∞ k=3 λ k/2 k-2 M =1 w (M ) k (Θ, Φ) sin(Mw 0 log λ) + w(M) k (Θ, Φ) cos(Mw 0 log λ) (50) ψ = Ψ + y 0 log λ + y 2 λ + ∞ N =4 y N (Θ, Φ)λ N/2 (51) + ∞ k=3 λ k/2 k-2 M =1 y (M ) k (Θ, Φ) sin(Mw 0 log λ) + ỹ(M) k (Θ, Φ) cos(Mw 0 log λ) . ( 52 
)
Again, after solving the geodesic equations, we have that b N = w N = y N = 0 if N is an odd integer, and b

(M ) k = b(M) k = w (M ) k = w(M) k = y (M ) k = ỹ(M) k = 0 if M is
odd and k is even or vice versa. It turns out that we only need terms up to order λ 2 in r(λ) and order λ 3/2 in the angles to determine the degree of differentiability of the metric. For the sake of brevity we have not made explicit the fact that all these coefficients will, in general, depend on the parameters of the solution, that is

a i = a i (µ 1 , J, h n , Φ, Θ) (53)
and likewise for b i , y i and w i . We will continue to leave this dependence on the parameters implicit.

Coefficients

Using computer algebra, we expand each geodesic equation as a series in λ. Then, for each order in λ, we solve for the coefficients in the ansatz. Although we already know what the first few terms are from the single BMPV case, it is a useful check of our procedure to ensure that these terms are reproduced. Therefore we find y 0 in terms of a 1 by solving the ψ geodesic equation at order λ -2 . This is the first non-trivial order (the leading order behaviour of ψ is log λ and the geodesic equations are, of course, second order). Similarly we can find w 0 by solving the φ equation at the same order to find

w 0 = y 0 = - J 2∆ . ( 54 
)
as expected from the single BMPV case. The θ equation has non-zero terms at order λ -2 , but the equation has an overall factor of (w 0 -y 0 ) which vanishes as w 0 = y 0 . The r equation at leading order (O(λ -3/2 )) leads to a quartic polynomial in a 1 , and so there are 4 solutions. We reject the two complex solutions as unphysical, and, since we want r > 0 for λ > 0, of the two real solutions we take the positive one:

a 1 = ∆ µ 1 1/2 (55) 
which agrees with that found earlier for the single BMPV black hole. The coefficients w 2 , y 2 and b 2 are unfixed by the equations, being set by the initial conditions on the geodesic. In terms of the coefficients this means b 2 = 0

w 2 = y 2 = Jh 0 10µ 3 1 -J 2 4∆ 2 µ 2 1 . ( 56 
)
Comparing this with (17) we see this agrees with the O(λ) terms there, upon setting h 0 = 1 to recover the single black hole case. The next few non-vanishing coefficients in the expansion of r are

a 3 = h 0 2µ 3 1 + J 2 4µ 5/2 1 √ ∆ a (1) 4 (Θ, Φ) = - sin(Θ)h 1 ∆ 2J (J cos(Φ) + 2 sin(Φ)∆) -5 cos(Φ)µ 3 1 25µ 6 1 -6J 2 µ 3 1 ã(1) 4 (Θ, Φ) = - sin(Θ)h 1 ∆ 2J (J sin(Φ) -2 cos(Φ)∆) -5 sin(Φ)µ 3 1 25µ 6 1 -6J 2 µ 3 1 . ( 57 
)
The next non-trivial coefficients in the expansion of θ are b

(1) 3 (Θ, Φ) = - 3 cos(Θ)h 1 ∆ 3/2 J (J cos(Φ) + sin(Φ)∆) -3 cos(Φ)µ 3 1 µ 5/2 1 (9µ 3 1 -2J 2 ) b(1) 3 (Θ, Φ) = 3 cos(Θ)h 1 ∆ 3/2 3 sin(Φ)µ 3 1 + J (cos(Φ)∆ -J sin(Φ)) µ 5/2 1 (9µ 3 1 -2J 2 ) . ( 58 
)
The coefficients b

(1)

3 and b(1) 3 determined above may be used to rewrite the order λ 3/2 term in the θ expansion as functions of sin(Φ + w 0 log λ) and cos(Φ + w 0 log λ). After doing this, we recover the order λ 3/2 term given in (42) which was found by directly solving the θ equation. This is a useful consistency check. Note that the coefficient a 5 (Θ, Φ, Ψ) is not fixed by the r geodesic equation, but by the null condition. The coefficients of the φ and ψ expansions at order λ 3/2 are given in the appendix. We will not list the higher order coefficients, as they are somewhat long and unenlightening.

Lack of smoothness

It is now possible to expand the norm of the Killing vector K = ∂ ψ in λ and thus determine the smoothness of the metric, as discussed earlier. The coefficients listed above are all that is necessary for this purpose. In fact, we only need w 0 , a 1 , b [START_REF] Hartle | Solutions of the Einstein-Maxwell equations with many black holes[END_REF] 3 and b(1) 3 . As can be seen from ( 25), the norm of K is

K 2 = -H(r, θ, φ) -2 ω 2 ψ + H(r, θ, φ)r 2 cos 2 θ. ( 59 
)
Using the functions r(λ), θ(λ) and φ(λ) that we have just found, we can expand this in λ to get

K 2 = cos 2 Θµ 1 - J 2 cos 4 Θ 4µ 2 1 + cos 2 Θh 0 (J 2 cos 2 Θ + 2µ 3 1 )∆ 2µ 4 1 λ + O(F (log λ)λ 3/2 ), (60) 
where we have used the notation discussed at the end of section 4.2. The order O(F (log λ)λ 3/2 ) term in (60) is

J 2 cos 2 (Θ) sin(Θ)h 1 ∆ 3/2 5J 2 cos 2 (Θ) -(9 cos(2Θ) + 11)µ 3 1 µ 9/2 1 (2J 2 -9µ 3 1 ) sin Φ - J log λ 2∆ λ 3/2 + 3J cos 2 (Θ) sin(Θ)h 1 J 2 cos 2 (Θ) -2µ 3 1 ∆ 5/2 µ 9/2 1 (9µ 3 1 -2J 2 ) cos Φ - J log λ 2∆ λ 3/2 . ( 61 
)
Thus K 2 is not twice continuously differentiable. As argued earlier, lack of smoothness in the norm of this Killing vector field implies the metric is not smooth. In particular we now see that the metric is not C 2 . We can recover the result for a line of static black holes [START_REF] Candlish | On the smoothness of static multi-black hole solutions of higher-dimensional Einstein-Maxwell theory[END_REF] by simply setting J = 0. Then the dependence on log λ vanishes, and indeed the coefficients of the above terms also vanish. Then the next troublesome term 2 in the expansion of K 2 will be of order λ 5/2 (with, of course, no log λ dependence), and so the result that a multi-centre static metric is not C 3 is recovered.

Gaussian null metric

We have seen that the metric at the horizon is not C 2 . We will now show that it is C 1 there by transforming the metric to Gaussian null coordinates. This proceeds in exactly the same manner as for the single BMPV solution. We use the functions r(λ), θ(λ), φ(λ) and ψ(λ) to perform the transformation. As before the coordinates in the Gaussian null system are v, λ, Θ, Φ and Ψ. The coordinates Θ, Φ and Ψ are simply the constant terms in the expansions of θ, φ and ψ given in (47). Just as before we define the coordinate v according to

v ≡ t + (H 2 + ω)dλ, (62) 
where, to perform the integral, we must of course substitute the functions r(λ), θ(λ) and φ(λ) into H and ω. After doing this we can then write

dt = dv -d (H 2 + ω)dλ . ( 63 
)
Clearly this will involve dλ, dΘ and dΦ components. Next, we can use the functions r(λ), θ(λ), φ(λ) and ψ(λ) directly to find the appropriate transformations. For example:

dr = ∂ λ r(λ, Θ, Φ)dλ + ∂ Θ r(λ, Θ, Φ)dΘ + ∂ Φ r(λ, Θ, Φ)dΦ ( 64 
)
where we must of course keep in mind that the constants Θ and Φ are our new coordinates.

In practice we cannot take the expansions in section 4.3 to infinite order; we truncate the expansions at the order required to find a C 1 metric (as we now know the metric is not C 2 ). As we are truncating our series expansion ansatz, the metric will only take the Gaussian null form up to a certain order. We assume that inclusion of all higher order terms in the ansatz will allow us to find a truly Gaussian null form for the metric. For this reason we refer to the metric as being in "nearly Gaussian null" form.

The components of the metric in the Gaussian null coordinates are given in the appendix. We have already shown, with the analysis of the norm of the ∂ ψ Killing vector in section 4.5 that the metric cannot be C 2 at the horizon. From the form of the metric given in the appendix we see that all the metric components are C 1 . Therefore we have shown that the metric is C 1 but is not C 2 at the horizon. This is the main result of this paper.

Maxwell Field

The one-form potential for the Maxwell field in this solution is given by

A = √ 3 2 H -1 (dt + ω). ( 65 
)
In the Gaussian null coordinate system this will obviously have the general form

A = A v dv + A λ dλ + A Θ dΘ + A Φ dΦ + A Ψ dΨ. ( 66 
)
Performing the coordinate transformation using the expansions we have determined for r, θ, φ and ψ, as well as (62), we find

A v = √ 3∆ 2µ 2 1 λ + 3 √ 3h 0 J 2 -2µ 3 1 4µ 4 1 λ 2 + O(F (log λ)λ 5/2 ) A λ = - √ 3µ 2 1 2∆ λ -1 + 3 √ 3h 0 J 2 -2µ 3 1 4∆ 2 + 4 √ 3 sin(Θ)h 1 J 2 -5µ 3 1 √ ∆ √ µ 1 (25µ 3 1 -6J 2 ) F 1 (Φ, log λ)λ 1/2 + 4 √ 3J sin(Θ)h 1 ∆ 3/2 √ µ 1 (25µ 3 1 -6J 2 ) F 2 (Φ, log λ)λ 1/2 + O(F (log λ)λ) A Θ = O(F (log λ)λ 3/2 ) A Φ = O(F (log λ)λ 3/2 ) A Ψ = √ 3J cos 2 (Θ) 4µ 1 - √ 3J cos 2 (Θ)h 0 ∆ 4µ 3 1 λ + O(F (log λ)λ 3/2 ). (67) 
The order λ -1 and λ 0 terms in A λ are pure gauge, so the Maxwell field strength is continuous at the horizon but not differentiable as F λΘ = O(F (log λ)λ 1/2 . As the metric is not C 2 we might wonder if Einstein's equation makes sense at the horizon. The fact that the Maxwell field is continuous, however, and the metric is C 1 , means that the stress-energy tensor is continuous at the horizon. Einstein's equation therefore holds at the horizon by continuity.

Parallel propagation of the Riemann tensor

The fact that the metric is not C 2 implies the existence of a curvature singularity at the horizon. We will now show that there is a parallely propagated curvature singularity there. We choose a demonstrative component of the Riemann tensor in an orthonormal frame for this purpose. The leading order behaviour of the R λΘλΘ component of the Riemann tensor for small λ is

R λΘλΘ = - 1 2 ∂ 2 λ g ΘΘ + . . . ( 68 
)
where the ellipsis denotes subleading terms. Referring back to (75) we see that this will go as O(F (log λ)λ -1/2 ) and is therefore divergent at the horizon. As the metric is C 1 , no other Riemann tensor components will be more divergent than this. Now we construct an orthonormal basis on the horizon, which we can parallely propagate along the null geodesic with tangent vector U = ∂/∂λ. First, we set e 0 = dλ and e 1 = dv, so we have U = e 1 = e 0 . Finally we take e 2 = g 1/2

ΘΘ dΘ so we have e 0 • e 1 = 1, e 0 • e 2 = 0, (e 0 ) 2 = (e 1 ) 2 = 0 and (e 2 ) 2 = 1 on the horizon. This frame is extended off the horizon by demanding that the basis one-forms are parallely propagated along the null geodesic: U • ∇e 1,2 = 0, which preserves the orthogonality relations. Note that while the basis one-forms given above are valid only on the horizon, e 0 = U everywhere.

In this basis then, we can find a particular component of the Riemann tensor

R 0202 = e λ 0 e Θ 2 e λ 0 e Θ 2 R λΘλΘ + . . . ( 69 
)
which gives

R 0202 = g -1 ΘΘ R λΘλΘ = - 1 2µ 1 ∂ 2 λ g ΘΘ + . . . ( 70 
)
at leading order. This is clearly divergent as λ → 0 and therefore there is a parallely propagated curvature singularity at the horizon.

Discussion

In this paper we have demonstrated that the supersymmetric rotating five dimensional black hole solution known as the BMPV solution does not exhibit a smooth event horizon in the presence of other extremal static black holes.

For the axial configuration discussed here the horizon has been demonstrated to be C 1 but not C 2 . This is worse than the case for a line of only static black holes, which has a C 2 (but not C 3 ) horizon. The physical interpretation for the lack of smoothness in certain multi-black hole solutions depends on the properties of the solution. In [START_REF] Brill | Testing cosmic censorship with black hole collisions[END_REF] and [START_REF] Chruściel | Nonsmoothness of event horizons of Robinson-Trautman black holes[END_REF] non-smooth horizons seem to be related to the existence of non-smooth gravitational and electromagnetic radiation. In the present case the lack of smoothness would seem to be due to breaking one of the rotational symmetries of the BMPV black hole at the horizon. The physical reason for the lack of smoothness in the static case investigated in [START_REF] Candlish | On the smoothness of static multi-black hole solutions of higher-dimensional Einstein-Maxwell theory[END_REF] remains obscure.

Other non-smooth solutions

A similar situation involving breaking of a rotational symmetry occurs in the solution presented in [START_REF] Bena | Sliding rings and spinning holes[END_REF], which comprises a supersymmetric black ring, along with a BMPV black hole vertically displaced from it with respect to the plane of the ring. The BMPV black hole is aligned with the centre of the ring in the sense that the ψ symmetry is not broken, but the vertical displacement breaks the φ symmetry. In [START_REF] Bena | Sliding rings and spinning holes[END_REF] we indeed see that the rotation one form contains terms involving, for example, cos φ.

The breaking of one of the U (1) isometries of both the BMPV black hole and the black ring implies that this solution will be non-smooth. From the results found for the multi-BMPV metric, we expect problems to arise because of the fact that φ ∼ log λ close to the horizon of the BMPV black hole. In fact in [START_REF] Elvang | A Supersymmetric black ring[END_REF] it can be seen that to continue the supersymmetric black ring metric through the horizon requires transformations of the form

dφ = dφ - C r dr, dψ = dψ - C r dr ( 71 
)
where r is a radial coordinate that takes the value r = 0 on the black ring horizon. So for r ∼ λ n where n is some power, the angles must behave as φ ∼ log λ and ψ ∼ log λ, just as we have seen for the BMPV black hole. From this we therefore also expect lack of smoothness at the horizon of the black ring in the solution given in [START_REF] Bena | Sliding rings and spinning holes[END_REF].

It is not surprising that this solution is not smooth, given the results we have found, as it breaks the rotational symmetries at the horizon for both the BMPV black hole and the black ring. (79)

The components g λλ , g λΘ , g λΦ and g λΨ are vanishing in a true Gaussian null coordinate system. The presence of non-zero terms here is purely an artefact of truncating the series ansatz.

1 + sin 2 (Θ)h 0 2µ 3 1 + J 2 sin 2 ( 2 1 2µ 9 / 2 1 (9µ 3 1 -2J 2 )F 1 ( 2 + 1 ∆ 5 F 2 ( 1 + J 2 1 λ+ J 2 1 2µ 9 / 2 1 (9µ 3 1 -2J 2 )F 1 ( 2 + 1 ∆ 5 F 2 ( 1 + cos 2 1 λ+ J 2 1 µ 9 / 2 1 (2J 2 -9µ 3 1 )F 1 2 + 1 ∆ 5 1 -2J 2 )F 2 (F 1 (F 2 (

 1212219212121521212192121215212121921121512212 andg ΦΦ = sin 2 (Θ)µ 1 -J 2 sin 4 (Θ) 4µ 2 sin 3 (Θ)h 1 ∆ 3/2 J 2 (5 cos(2Θ) + 7) -2(9 cos(2Θ) + 13)µ 3 Φ, log λ)λ 3/3J sin 3 (Θ)h 1 J 2 (cos(2Θ) + 3) -8µ 3 Φ, log λ)λ 3/2 + O(F (log λ)λ 2 ) g ΦΨ = -J 2 cos 2 (Θ) sin 2 (Θ) 4µ 2 cos 2 (Θ) sin 2 (Θ)h 0 ∆ 2µ 4 cos 2 (Θ) sin(Θ)h 1 ∆ 3/2 J 2 (5 cos(2Θ) + 1) -6(3 cos(2Θ) + 1)µ 3 Φ, log λ)λ 3/3J cos 2 (Θ) sin(Θ)h 1 J 2 cos 2 (Θ) -3µ 3 Φ, log λ)λ 3/2 + O(F (log λ)λ 2 ) (77)and finallyg ΨΨ = cos 2 (Θ)µ 1 -J 2 cos 4 (Θ) 4µ 2 (Θ)h 0 2µ 3 1 + J 2 cos 2 (Θ) ∆ 2µ 4 cos 2 (Θ) sin(Θ)h 1 ∆ 3/2 5J 2 cos 2 (Θ) -(9 cos(2Θ) + 11)µ 3 (Φ, log λ)λ 3/3J cos 2 (Θ) sin(Θ)h 1 J 2 cos 2 (Θ) -2µ 3 Φ, log λ)λ 3/2 + O(F (log λ)λ 2 ) Φ, log λ) = sin Φ -J log λ 2∆ Φ, log λ) = cos Φ -J log λ 2∆ .

Five dimensional static multi-black holes on a Gibbons-Hawking space were discussed in[START_REF] Kimura | Analyticity of Event Horizons of Five-Dimensional Multi-Black Holes with Non-Trivial Asymptotic Structure[END_REF], where the horizons were shown to be analytic. This is because the solutions are written in terms of harmonic functions on R 3 , and so the dependence of the radial coordinate on an affine parameter along a null geodesic is the same as that in four dimensions. Ensuring each connected component of the horizon has S 3 topology (or a lens space S 3 /Zn) requires placing the black holes on multi-centre Eguchi-Hanson space or multi-Taub-NUT and as such they are no longer asymptotically flat.

In the static case the lack of smoothness is solely because the radial coordinate in the Gaussian null system, λ, appears with half-integer powers (just as it does here). Clearly any term of order λ n where n is an even integer is smooth.
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A Single BMPV metric in Gaussian null coordinates

The metric for a single BMPV black hole in the Gaussian null coordinate system is given below. The metric components are written as a series expansion in λ around λ = 0. The leading order terms are given.

B Expansion coefficients of φ and ψ at order λ 3/2

The O(λ 3/2 ) coefficients for the φ expansion are

At this order the coefficients for ψ are

(74)

C Metric components

We now give the form of the metric for the multi-centre spacetime (single BMPV and additional static black holes) in our "nearly Gaussian null" coordinate system:

(75)